
VDL Documentation

Weichao, Vincent, Kaiyue

Jul 05, 2018

Contents:

1 Multiple learners component 3
1.1 Multiple learners on Tensorflow MNIST . 3
1.2 Multiple learners on Neonrace task . 4

2 Run 5 learners and 10 actors in a cluster 5
2.1 Install dependencies for the code . 5
2.2 Modify the cluster configuration . 5
2.3 Start the parameter server . 6
2.4 Start five learners . 6
2.5 Start all actors and start learning . 6
2.6 Check the learning result . 6

3 The virtual robot arm 7

4 Files in this project 9

i

ii

VDL Documentation

This documentation documents how to reproduce the result in the VDL project. The most update-to-date version can
be found in the VDL github repository

The final presentation is hosted here. The pdf version can be downloaded from here

Fig. 1: The architecture with multiple learners and multiple actors

This project implements the distributed learning system as shown in the above figure. How to run and benchmark each
component and how to run the complete system are documented in the following sections.

Contents: 1

https://github.com/qiuwch/VDL.git
https://docs.google.com/presentation/d/1r4zVv6bnImt8xTVtxopYhg1lWAeXrgliMfQQTo5Nlng/edit?usp=sharing

VDL Documentation

2 Contents:

CHAPTER 1

Multiple learners component

1.1 Multiple learners on Tensorflow MNIST

First, please go to tensorflow_MNIST folder. To run P2P multi-learner code on Tensorflow MNIST task, you can use
either unreliable Python multicast (slightly faster) or reliable Spread mutlicast. To run Python multicast, do:

python mnist_mcast_peer.py <num_peers> <my_peer_ID> <batch_size> <num_rounds>

For instance, if you want to run 4 parallel learners, each with a data batch size of 100 and 250 rounds each, do on four
different machines:

python mnist_mcast_peer.py 4 1 100 250
python mnist_mcast_peer.py 4 2 100 250
python mnist_mcast_peer.py 4 3 100 250
python mnist_mcast_peer.py 4 4 100 250

To synchronize the training, you also need to run a short script after all 4 learner programs have been started. Do:

python start_mcast.py

To run Spread mutlicast, do:

python mnist_spread_peer.py <num_peers> <my_peer_ID> <batch_size> <num_rounds>

The corresponding commands for 4 parallel learners will be:

python mnist_spread_peer.py 4 1 100 250
python mnist_spread_peer.py 4 2 100 250
python mnist_spread_peer.py 4 3 100 250
python mnist_spread_peer.py 4 4 100 250

Similarly, to synchronize the training, do:

3

VDL Documentation

python start_spread.py

1.2 Multiple learners on Neonrace task

First, please go to universe-starter-agent folder. To run P2P multi-learner code on Neonrace task, say for 3 paralell
learners for example, do:

python run.py --num-workers 3 --log-dir train-log/pong-multi-learners-0 -id 0
python run.py --num-workers 3 --log-dir train-log/pong-multi-learners-1 -id 1
python run.py --num-workers 3 --log-dir train-log/pong-multi-learners-2 -id 2

In any machine

python start_spread.py

To clean up the train log

rm train-log/pong-multi-learners* -r

4 Chapter 1. Multiple learners component

CHAPTER 2

Run 5 learners and 10 actors in a cluster

The setup and execution is a complex procedure. If not clear, please report an issue in the issue tracker

2.1 Install dependencies for the code

The complete system requires several dependencies. The dependencies are:

• docker

• python libraries

– OpenAI gym

– OpenAI universe

– Tensorflow

• The learning code for neonrace is modified from openai/universe-starter-agent

An installation script is provided in universe-starter-agent/install/install.sh

2.2 Modify the cluster configuration

The multiple-learner component is implemented with distributed tensorflow.

The learner configuration is hard coded in universe-starter-agent/ccvl_cluster_spec.py. Modify
this file according to your cluster spec.

In the following document, the parameter server will be ccvl2. And the other five machines ccvl1-5 will run
learners. The parameter server is responsible for coordinating weights between learners.

5

https://github.com/qiuwch/VDL/issues
http://gym.openai.com
http://universe.openai.com
http://tensorflow.org
https://github.com/openai/universe-starter-agent
https://www.tensorflow.org/deploy/distributed

VDL Documentation

2.3 Start the parameter server

In the machine for parameter server, ccvl2, start the parameter server with

cd universe-starter-agent/
sh run_ps.sh

universe-starter-agent/run_ps.sh will start ps_run.py with proper parameters.

2.4 Start five learners

In each machine from ccvl1-5, start the learner with

sh run_learner.sh 0

The number 0 is the worker id for ccvl1, number 1 will be the id for ccvl2.

The learner will wait until all actors are connected.

2.5 Start all actors and start learning

Start docker which contains the neonrace virtual environment. This script will start two docker containers, each
running a neonrace virtual environment.

sh run_docker.sh

Start the actor code with

sh run_actor.sh

run_actor.sh will run actor.py with proper parameters.

2.6 Check the learning result

The learning procedure can be visualized by connecting to the docker container through vnc.

Use TurboVNC client to connect to ccvl1.ccvl.jhu.edu:13000. Change the url to your own configuration.

The learnt models will be stored in train-log folder. Use tensorboard to visualize the result, or use the code in
neonrace to use trained model.

6 Chapter 2. Run 5 learners and 10 actors in a cluster

CHAPTER 3

The virtual robot arm

The virtual arm is stored in a different repository qiuwch/UE4VirtualArm. This is because the 3D CAD models are
very large. This repository is still in private mode, because we are still finializing the design and will release it together
with a publication. If you are interested in this project, please send an email to qiuwch@gmail.com to request access.

A compiled virtual arm binary can be downloaded.

• Windows version

• Linux version

The screenshot of the virtual arm

7

https://github.com/qiuwch/UE4VirtualArm
mailto:qiuwch@gmail.com
https://www.cs.jhu.edu/~qiuwch/release/UE4VirtualArm-win64.zip
https://www.cs.jhu.edu/~qiuwch/release/UE4VirtualArm-linux.zip

VDL Documentation

The arm is placed in an empty environment. If you want to place the arm to a different virtual environment. The access
to the source project is required.

This virutal arm can be controlled with the unrealcv project.

8 Chapter 3. The virtual robot arm

http://unrealcv.org

CHAPTER 4

Files in this project

Main
docs/ # Documentation files in reStructuredText format
universe-starter-agent/ # Virtual distributed learning system, the code is
modified from https://github.com/openai/universe-starter-agent, which
provides the baseline learning algorithm.

Components
learner-actor/ # Experiment code for learner-actor communication
tensorflow_MNIST/ # Experiment code for P2P-multi-learner

Utility
gym-demo/ # Virtual environnment demos to make sure the dev
boxs are correctly configured.
benchmark/ # Benchmark code to evaluate the network speed and
speed of different virtual environments
neonrace/ # Code to run trained neonrace auto-driving model
spread/ # Compiled spread and its python wrapper

Virtual arm
arm-pose/ # Pose estimation code trained on the virtual arm
and test on the real arm.
owi-arm/ # Code to control real and the virtual arm

9

	Multiple learners component
	Multiple learners on Tensorflow MNIST
	Multiple learners on Neonrace task

	Run 5 learners and 10 actors in a cluster
	Install dependencies for the code
	Modify the cluster configuration
	Start the parameter server
	Start five learners
	Start all actors and start learning
	Check the learning result

	The virtual robot arm
	Files in this project

