

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/vdl/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/vdl/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

VDL

Distributed reinforcement learning in virtual environment

 The code to do supervised training to estimate the robo arm pose.

The input is image I and the output are six nmubers: three are the camera location relative to the arm (distance, elevation, azimuth) and three are the arm configuration (base rotation, upper arm rotation and lower arm rotation).

python capture-imgs.py to generate synthetic dataset

python train-cnn.py to train an alexnet to do the regression task

 Compare the speed between virtual environments, from very simple to very complex.

The list includes:

	CartPole-v0 [https://gym.openai.com/envs#classic_control]

	Breakout-v0 [https://gym.openai.com/envs#atari]

	Hopper-v1 [https://gym.openai.com/envs#mujoco]

	Humanoid-v1 [https://gym.openai.com/envs#mujoco]

	DoomDeathmatch-v0 [https://gym.openai.com/envs#doom]

python obs-stat.py > obs-stat.log 2>&1python gym-fps.py > fps.log 2>&1

export LD_LIBRARY_PATH=/lib64:/usr/lib64:$LD_LIBRARY_PATH, use this for libGL.so.1 not found error for mujoco.

	baseline.py, run gym in single machine for comparison

	learner.py, actor.py, learner and actor in different machines to distribute the env workload.

Result

Version v0.0.1

In version v0.0.1, which is implemented by @wooloo. It is worth noticing in this version, the message sent through socket is str(obs), which is not the data itself.

Single machine without socket is 1.10s, the result is produced by sh bench-single-machine.sh.

Single machine with two actor processes is 11.8s, the result is produced by sh bench-multi-local.sh.

Three machines with two actors is 15.6, produced by sh bench-multi-machine.sh.

Use Timer defined in util.py, it is possbile to know how much time is spent in communication.

The environment is Breakout-v0

Timer: Communication, total: 10.595837
Timer: Computation, total: 0.535670
Speed ~ 40KB/s

Version v0.0.2

Fix critical performance issue caused by waiting the timeout of socket.

Timer: Communication, total time: 1.146311, count: 1000
Timer: Computation, total time: 0.492614, count: 1000
Counter: Network Throughput, Sum: 429000.00
Speed: 374.24KB/s

Version v0.0.3

	Change the serialization code, avoid serialize the data multiple times, which is very expensive.

	Send bytearray instead of str(obs)

	Use multi thread to send message

 The result reported in this page is one server <-> one client.

packet_size: 1000, packet_count: 1000

[wqiu7@yuille-fb-head speed_test]$ sh run_speed_test.sh
[wqiu7@yuille-fb-head speed_test]$ Counter: Network Throughput, Sum: 8000000.00
Timer: Communication, total time: 0.021127, count: 1000
Speed: 378662.63KB/s
Done

[wqiu7@yuille-fb-head speed_test]$ sh run_fb_speed.sh
[wqiu7@yuille-fb-head speed_test]$ Done
Counter: Network Throughput, Sum: 8000000.00
Timer: Communication, total time: 0.035649, count: 1000
Speed: 224411.34KB/s

packet_size: 100000, packet_count: 1000

[wqiu7@yuille-fb-head speed_test]$ sh run_speed_test.sh
[wqiu7@yuille-fb-head speed_test]$ Counter: Network Throughput, Sum: 800000000.00
Timer: Communication, total time: 0.245775, count: 1000
Speed: 3255003.56KB/s
Done

[wqiu7@yuille-fb-head speed_test]$ sh run_fb_speed.sh
[wqiu7@yuille-fb-head speed_test]$ Done
Counter: Network Throughput, Sum: 800000000.00
Timer: Communication, total time: 3.153588, count: 1000
Speed: 253679.28KB/s

One server <-> two clients. The speed is for per client.

Counter: Network Throughput, Sum: 800000000.00
Timer: Communication, total time: 11.381395, count: 1000
Speed: 70290.15KB/s
Done
Counter: Network Throughput, Sum: 800000000.00
Timer: Communication, total time: 12.255185, count: 1000
Speed: 65278.49KB/s

One server <-> three clients

Timer: Communication, total time: 19.186336, count: 1000
Speed: 41696.34KB/s
Done
Done
Counter: Network Throughput, Sum: 800000000.00
Timer: Communication, total time: 19.811284, count: 1000
Speed: 40381.03KB/s
Done
Counter: Network Throughput, Sum: 800000000.00
Timer: Communication, total time: 18.688811, count: 1000
Speed: 42806.36KB/s

 This code is modified from https://github.com/openai/universe-starter-agent. This is the original readme file.

The original code is modified with P2P learner communication and multi-machine learner-actor.

Baseline

The PongDeterministic-v3

python run.py --logdir train-log/pong-baseline

The training result can be visualize in tensorboard, a tool to visualize the training result of tensorflow. To see the training result in tensorboard, use tensorboard --logdir train-log/pong-baseline. Use internet browser (such as chrome) to open the url printed in the console

The flashgames.NeonRace-v0

python run.py --env-id flashgames.NeonRace-v0 --logdir train-log/neonrace-baseline

Learner - multiple actors

Run run.py without defining value of num_actors to run one environment locally. python run.py --env-id flashgames.NeonRace-v0

To run two actors, do python run.py --env-id flashgames.NeonRace-v0 --num_actors 2 --port (...) to run learner. Port number is 10000 as default. And do python actor.py --server_ip (...) --port (...)on two different machine to run actors. Server ip is ccvl2 as default.

Multiple learners

python run.py --num-workers 3 --log-dir train-log/pong-multi-learners -id 0
python run.py --num-workers 3 --log-dir train-log/pong-multi-learners -id 1
python run.py --num-workers 3 --log-dir train-log/pong-multi-learners -id 2

In any machine

python start_mcast.py
python start_mcast.py // run a second time after a while; wait for the "Waiting for start_mcast signal..." prompt

universe-starter-agent

The codebase implements a starter agent that can solve a number of universe environments.
It contains a basic implementation of the A3C algorithm [https://arxiv.org/abs/1602.01783], adapted for real-time environments.

Dependencies

	Python 2.7 or 3.5

	six [https://pypi.python.org/pypi/six] (for py2/3 compatibility)

	TensorFlow [https://www.tensorflow.org/] 0.12

	tmux [https://tmux.github.io/] (the start script opens up a tmux session with multiple windows)

	htop [https://hisham.hm/htop/] (shown in one of the tmux windows)

	gym [https://pypi.python.org/pypi/gym]

	gym[atari]

	universe [https://pypi.python.org/pypi/universe]

	opencv-python [https://pypi.python.org/pypi/opencv-python]

	numpy [https://pypi.python.org/pypi/numpy]

	scipy [https://pypi.python.org/pypi/scipy]

Getting Started

conda create --name universe-starter-agent python=3.5
source activate universe-starter-agent

brew install tmux htop cmake # On Linux use sudo apt-get install -y tmux htop cmake

pip install "gym[atari]"
pip install universe
pip install six
pip install tensorflow
conda install -y -c https://conda.binstar.org/menpo opencv3
conda install -y numpy
conda install -y scipy

Add the following to your .bashrc so that you’ll have the correct environment when the train.py script spawns new bash shells
source activate universe-starter-agent

Atari Pong

python train.py --num-workers 2 --env-id PongDeterministic-v3 --log-dir /tmp/pong

The command above will train an agent on Atari Pong using ALE simulator.
It will see two workers that will be learning in parallel (--num-workers flag) and will output intermediate results into given directory.

The code will launch the following processes:

	worker-0 - a process that runs policy gradient

	worker-1 - a process identical to process-1, that uses different random noise from the environment

	ps - the parameter server, which synchronizes the parameters among the different workers

	tb - a tensorboard process for convenient display of the statistics of learning

Once you start the training process, it will create a tmux session with a window for each of these processes. You can connect to them by typing tmux a in the console.
Once in the tmux session, you can see all your windows with ctrl-b w.
To switch to window number 0, type: ctrl-b 0. Look up tmux documentation for more commands.

To access TensorBoard to see various monitoring metrics of the agent, open http://localhost:12345/ in a browser.

Using 16 workers, the agent should be able to solve PongDeterministic-v3 (not VNC) within 30 minutes (often less) on an m4.10xlarge instance.
Using 32 workers, the agent is able to solve the same environment in 10 minutes on an m4.16xlarge instance.
If you run this experiment on a high-end MacBook Pro, the above job will take just under 2 hours to solve Pong.

Add ‘–visualise’ toggle if you want to visualise the worker using env.render() as follows:

python train.py --num-workers 2 --env-id PongDeterministic-v3 --log-dir /tmp/pong --visualise

[image: pong]

For best performance, it is recommended for the number of workers to not exceed available number of CPU cores.

You can stop the experiment with tmux kill-session command.

Playing games over remote desktop

The main difference with the previous experiment is that now we are going to play the game through VNC protocol.
The VNC environments are hosted on the EC2 cloud and have an interface that’s different from a conventional Atari Gym
environment; luckily, with the help of several wrappers (which are used within envs.py file)
the experience should be similar to the agent as if it was played locally. The problem itself is more difficult
because the observations and actions are delayed due to the latency induced by the network.

More interestingly, you can also peek at what the agent is doing with a VNCViewer.

Note that the default behavior of train.py is to start the remotes on a local machine. Take a look at https://github.com/openai/universe/blob/master/doc/remotes.rst for documentation on managing your remotes. Pass additional -r flag to point to pre-existing instances.

VNC Pong

python train.py --num-workers 2 --env-id gym-core.PongDeterministic-v3 --log-dir /tmp/vncpong

Peeking into the agent’s environment with TurboVNC

You can use your system viewer as open vnc://localhost:5900 (or open vnc://${docker_ip}:5900) or connect TurboVNC to that ip/port.
VNC password is "openai".

[image: pong]

Important caveats

One of the novel challenges in using Universe environments is that
they operate in real time, and in addition, it takes time for the
environment to transmit the observation to the agent. This time
creates a lag: where the greater the lag, the harder it is to solve
environment with today’s RL algorithms. Thus, to get the best
possible results it is necessary to reduce the lag, which can be
achieved by having both the environments and the agent live
on the same high-speed computer network. So for example, if you have
a fast local network, you could host the environments on one set of
machines, and the agent on another machine that can speak to the
environments with low latency. Alternatively, you can run the
environments and the agent on the same EC2/Azure region. Other
configurations tend to have greater lag.

To keep track of your lag, look for the phrase reaction_time in
stderr. If you run both the agent and the environment on nearby
machines on the cloud, your reaction_time should be as low as 40ms.
The reaction_time statistic is printed to stderr because we wrap our
environment with the Logger wrapper, as done in
here [https://github.com/openai/universe-starter-agent/blob/master/envs.py#L32].

Generally speaking, environments that are most affected by lag are
games that place a lot of emphasis on reaction time. For example,
this agent is able to solve VNC Pong
(gym-core.PongDeterministic-v3) in under 2 hours when both the agent
and the environment are co-located on the cloud, but this agent had
difficulty solving VNC Pong when the environment was on the cloud
while the agent was not. This issue affects environments that place
great emphasis on reaction time.

A note on tuning

This implementation has been tuned to do well on VNC Pong, and we do not guarantee
its performance on other tasks. It is meant as a starting point.

Playing flash games

You may run the following command to launch the agent on the game Neon Race:

python train.py --num-workers 2 --env-id flashgames.NeonRace-v0 --log-dir /tmp/neonrace

What agent sees when playing Neon Race
(you can connect to this view via note above)
[image: neon]

Getting 80% of the maximal score takes between 1 and 2 hours with 16 workers, and getting to 100% of the score
takes about 12 hours. Also, flash games are run at 5fps by default, so it should be possible to productively
use 16 workers on a machine with 8 (and possibly even 4) cores.

Next steps

Now that you have seen an example agent, develop agents of your own. We hope that you will find
doing so to be an exciting and an enjoyable task.

 worker_num=2

In node1 python run.py --log-dir /tmp/neonrace --env-id flashgames.NeonRace-v0 --num-workers ${worker_num} --task 0 --remotes 1

In node2 python run.py --log-dir /tmp/neonrace --env-id flashgames.NeonRace-v0 --num-workers ${worker_num} --task 1 --remotes 1

In any node, python start_mcast.py

Code to control the OWI arm (real and virtual)

Do pip install roboarm

If no backend error [http://stackoverflow.com/questions/13773132/pyusb-on-windows-no-backend-available].

Related links

	nvbn/roboarm, python library [https://github.com/nvbn/roboarm]

	haroldl/owi, c library [https://github.com/haroldl/owi]

 _static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

