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CHAPTER 1

Introduction

Todo
Testing TODO.
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CHAPTER 2

Bayesian inference

The Bayesian framework provides a principled way to model and analyze data. The framework uses probabilities to
represent the knowledge of the modelled process and the unknown quantities. Thus, simple rules of probability theory
can be used for inference. The same basic rules are used regardless of the complexity or the application field of the
problem. The beauty of the Bayesian framework is that it can be derived from simple axioms as a unique way of doing
rational reasoning.

Bayesian modelling has several advantages over ad hoc approaches: 1) The probabilities account for the uncertainty in
the results. 2) Missing values are usually not a problem because the whole framework is about incomplete knowledge.
3) Model comparison can be done in a principled way. 4) Overfitting is prevented by combining many models and
taking into account their complexities. 5) Modelling assumptions and priors are expressed explicitly and can be
modified. 6) Existing models can be straightforwardly modified, extended or used as building blocks for more complex
models.

This chapter gives a brief introduction to Bayesian modelling. Section Probability Theory summarizes the foundation
by explaining how the probability theory can be interpreted as a unique system of consistent rational reasoning under
uncertainty. Section inference shows how this theory is applied in Bayesian modelling.

2.1 Probability Theory

The Bayesian framework is based on probability theory by interpreting probabilities as plausibility assignments. This
differs from the frequentist approach, which interprets probabilities as frequencies in repeated experiments. The
Bayesian framework uses probability theory as an extension of logic to handle uncertain propositions which do not
need to be related to random events or repeated experiments. Thus, the rules of the probability theory can be applied
to a wide range of problems involving incomplete knowledge instead of random events or repeated experiments.

The Bayesian interpretation of probability can be derived from desired qualitative properties for rational reasoning
[12][5]. The idea is that propositions have subjective plausibilities and the rules for handling the plausibility assign-
ments should have rational properties. The desired properties of rational reasoning can be roughly summarized as
follows:

• Comparability: degrees of plausibility can be compared and are represented by real numbers.

• Continuity: an infinitesimally greater plausibility corresponds to an infinitesimally greater number.

• Logicality: rules are consistent with Aristotelian logic.

• Rationality: rules have qualitative correspondence with weak syllogisms.[#weak-syllogisms]

• Consistency: every possible way of reasoning must lead to the same result and equivalent plausibilities are
represented by equal numbers.

• Neutrality: all relevant evidence is taken into account without ignoring any information.

5
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The list is a slightly rephrased and simplified version of the list presented by [12].

From the properties of rational reasoning, one can derive a unique set of quantitative rules. Omitting the long and
rigorous derivations [12], the resulting rules are the well-known product rule

𝑝(𝐴,𝐵) = 𝑝(𝐴|𝐵)𝑝(𝐵) = 𝑝(𝐵|𝐴)𝑝(𝐴) (2.1)

and the sum rule

𝑝(𝐴) + 𝑝(𝐴) = 1,

where 𝐴 and 𝐵 are propositions, and 𝐴 is the complement of 𝐴. The probabilities 𝑝(·) represent the state of knowl-
edge, where certainty is represented by 1 and impossibility by 0. Therefore, applying probability theory to inference
problems means that one uses common sense consistently.

From the product rule (2.1), it follows that

𝑝(𝐴|𝐵) =
𝑝(𝐴,𝐵)

𝑝(𝐵)
=

𝑝(𝐵|𝐴)𝑝(𝐴)

𝑝(𝐵)
, (2.2)

which is the Bayes’ theorem. This can be seen as a formula for updating the beliefs about 𝐴 after given new evidence
𝐵. Thus, the properties of rational reasoning determine how we should rationally change the beliefs we have when
given new evidence. However, note that the rules do not determine which beliefs are a priori rational. kk

2.2 Inference

In Bayesian modelling, the probability theory provides tools for constructing generative models for data and obtaining
knowledge about the models given some data (see, e.g., [4][2][16]). This information can be used to get insight into
the data and to make predictions. A generative model ℳ consists of a likelihood function 𝑝(𝑌 |𝑍,ℳ) explaining the
data 𝑌 with parameters 𝑍 and a prior function 𝑝(𝑍|ℳ) providing the prior knowledge about the model parameters.
The goal is to find the posterior distribution of the model parameters:

𝑝(𝑍|𝑌,ℳ) =
𝑝(𝑌 |𝑍,ℳ)𝑝(𝑍|ℳ)

𝑝(𝑌 |ℳ)
,

which can be used, for instance, to make predictions. The denominator 𝑝(𝑌 |ℳ) is called the marginal likelihood,
defined as

𝑝(𝑌 |ℳ) =

∫︁
𝑝(𝑌 |𝑍,ℳ)𝑝(𝑍|ℳ)𝑑𝑍,

which is the probability (density) of the observations when the model ℳ is assumed to be true. Typically, the con-
ditioning on the model is not explicitly shown if there is no risk of misunderstanding. Thus, we discard ℳ from our
notation.

Models usually have hierarchical structure, which means that the prior of a set of unknown variables is defined in
terms of another set of unknown variables. This may lead to extremely complex posterior inference unless priors have
convenient forms to simplify calculations. In particular, the prior for an unknown variable can be chosen such that
the resulting posterior distribution conditioned on all other unknown variables is in the same family as the prior. This
type of prior distribution is called a conjugate prior for the likelihood. In addition, if the distributions are from the
exponential family, the model is said to be from the conjugate exponential family.

The main challenge in Bayesian inference is that the posterior distribution (2.2) is often analytically intractable. There-
fore, one has to resort to methods that approximate the posterior. These methods can roughly be divided into two
categories: deterministic and stochastic techniques ([4]). Both of these techniques have their advantages and disad-
vantages.

6 Chapter 2. Bayesian inference
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Deterministic methods use analytic approximations to the posterior. The resulting approximate distribution is often
evaluated efficiently, but it usually requires extra work because some formulas must be derived analytically. The
approximate distribution does not, in general, recover the true posterior distribution exactly. Important deterministic
approximations include: maximum likelihood and maximum a posteriori methods, which approximate the posterior
distribution with a point estimate; Laplace method, which fits a Gaussian distribution to a mode of the posterior
probability density function; variational Bayes ([13]) and expectation propagation ([15]), which find an approximate
distribution by minimizing an information-theoretic dissimilarity to the true distribution; and integrated nested Laplace
approximations for latent Gaussian models ([17]).

Stochastic techniques approximate the posterior distribution with a finite number of samples. The samples from the
intractable posterior may be obtained in several ways depending on the problem. These stochastic techniques are
covered comprehensively, for instance, in the book by [7]. In complex problems, sampling is often implemented with
random-walk type algorithms, called Markov chain Monte Carlo (MCMC). In general, stochastic methods have the
property that the approximation approaches the true posterior at the limit of infinite computation time. However, for
large and complex problems, the convergence can be extremely slow.

2.2. Inference 7
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CHAPTER 3

Variational Bayesian approximation

3.1 Minimizing Kullback-Leibler divergence

• lower bound

3.2 Mean-field, fixed form

3.3 Variational Bayesian expectation maximization algorithm

(conjugate exponential family models)

Todo
Split and fix the text below into the sections

In variational Bayesian (VB) methods, the idea is to find an approximate distribution 𝑞(𝑍) which is close to the true
posterior distribution 𝑝(𝑍|𝑌 ) (see, e.g., [13][1][4][6]). The dissimilarity is defined as the Kullback-Leibler (KL)
divergence of 𝑝(𝑍|𝑌 ) from 𝑞(𝑍):

KL(𝑞||𝑝) = −
∫︁

𝑞(𝑍) log
𝑝(𝑍|𝑌 )

𝑞(𝑍)
d𝑍.

The divergence is always nonnegative and zero only when 𝑞(𝑍) = 𝑝(𝑍|𝑌 ). However, the divergence cannot typically
be evaluated because the true posterior distribution is intractable.

The key idea in VB is that the divergence can be minimized indirectly by maximizing another function which is
tractable. This function is a lower bound of the log marginal likelihood. It can be found by decomposing the log

9
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marginal likelihood as

log 𝑝(𝑌 ) =

∫︁
𝑞(𝑍) log 𝑝(𝑌 )d𝑍

=

∫︁
𝑞(𝑍) log

𝑝(𝑌, 𝑍)

𝑝(𝑍|𝑌 )
d𝑍

=

∫︁
𝑞(𝑍) log

𝑝(𝑌, 𝑍)𝑞(𝑍)

𝑝(𝑍|𝑌 )𝑞(𝑍)
d𝑍

=

∫︁
𝑞(𝑍) log

𝑝(𝑌,𝑍)

𝑞(𝑍)
d𝑍 −

∫︁
𝑞(𝑍) log

𝑝(𝑍|𝑌 )

𝑞(𝑍)
d𝑍

=

∫︁
𝑞(𝑍) log

𝑝(𝑌,𝑍)

𝑞(𝑍)
d𝑍 +KL(𝑞‖𝑝)

≥
∫︁

𝑞(𝑍) log
𝑝(𝑌,𝑍)

𝑞(𝑍)
d𝑍

≡ ℒ(𝑞).

Because the KL divergence is always non-negative, ℒ(𝑞) is a lower bound for log 𝑝(𝑌 ). Furthermore, because the sum
of ℒ(𝑞) and KL(𝑞‖𝑝) is constant with respect to 𝑞, maximizing ℒ(𝑞) is equivalent to minimizing KL(𝑞‖𝑝). In some
cases, even ℒ(𝑞) may be intractable and further approximations are needed to find a tractable lower bound.

Thus far, there is nothing approximate in the procedure, because the optimal solution which minimizes the divergence
is the true posterior distribution 𝑞(𝑍) = 𝑝(𝑍|𝑌 ). In order to find a tractable solution, the range of functions needs
to be restricted in some way. However, the range must be as rich and flexible as possible in order to find as good an
approximation as possible. This can be achieved by assuming a fixed functional or factorial form for the distribution.

This work restricts the class of approximate distributions by assuming that the 𝑞 distribution factorizes with respect to
some grouping of the variables:

𝑞(𝑍) =

𝑀∏︁
𝑚=1

𝑞𝑚(𝑍𝑚), (3.1)

where 𝑍1, . . . , 𝑍𝑀 form a partition of 𝑍. The notation is kept less cluttered by ignoring the subscript on 𝑞. The
lower bound ℒ(𝑞) can be maximized with respect to one factor at a time. The optimal factor 𝑞(𝑍𝑚) can be found by
inserting the approximate distribution eqref{eq:VB factorized} to ℒ(𝑞) and maximizing ℒ(𝑞) with respect to 𝑞(𝑍𝑚).
This yields

𝑞(𝑍𝑚) = exp
(︀
⟨log 𝑝(𝑌,𝑍)⟩∖𝑚

)︀
, (3.2)

where the expectation is taken over all the other factors except 𝑞(𝑍𝑚). An iterative update of the factors until con-
vergence is called the variational Bayesian expectation maximization (VB-EM) algorithm ([1][3]). Alternatively, it is
also possible to use, for instance, gradient-based optimization methods to optimize the parameters of the approximate
𝑞 distributions (see, e.g., [11] or stochastic variational inference ([10]) in order to improve scaling to large datasets
with stochastic optimization.

Fig. 3.1 illustrates typical effects of the factorizing VB approximation: only one mode of the true posterior is captured,
dependencies between variables are lost and marginal distributions are too narrow.

10 Chapter 3. Variational Bayesian approximation
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Figure 3.1: An illustration of typical effects of the factorizing approximation. A true posterior (in black) and the
optimal factorizing VB posterior (in red).

3.3. Variational Bayesian expectation maximization algorithm 11
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CHAPTER 4

Variational message passing

If the model is in the conjugate exponential family, the VB-EM algorithm can be implemented as the variational
message passing (VMP) algorithm ([19]). The algorithm is based on local computations, in which each factor is
represented by a node. When a node is updated, it receives messages from its children and parents and uses those
messages to compute the new approximate distribution and relevant expectations. The advantage of this message
passing formulation is that the computations are local and depend on well-defined messages. This makes it easy to
modify the model by adding or changing nodes.

13
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CHAPTER 5

Stochastic variational inference

Stochastic variational inference ([10]) learns shared latent variables with stochastic optimization. It uses subsets of the
data to compute noisy estimates of the gradients. The method can be used to scale the inference on large datasets, if
the model has a specific structure.

15
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CHAPTER 6

Non-conjugate methods

6.1 Lower bounding

• logistic regression

6.2 Numerical integration

numerical integration of expectations

• logistic regression

6.3 Conjugate exponential family interpretation

• Student-t

6.4 Tilted VB

It is also possible to extend VB inference to a wide range of non-conjugate models (see, e.g., [14][9]).

6.5 Other methods

In later chapters:

• black box variational inference

• inference or recognition model

• Riemannian conjugate learning

17
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CHAPTER 7

Riemannian conjugate gradient learning

7.1 Riemannian manifold

• basics about Riemannian manifold

7.2 Algorithm

• riemannian conjugate gradient learning

19
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CHAPTER 8

Improving optimization

8.1 Deterministic annealing

8.2 Parameter expansion

8.3 Pattern searches
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CHAPTER 9

Gaussian processes

9.1 Gaussian process regression

Rasmussen:2006

9.2 Variational sparse approximation

variational sparse approximation Titsias:2009

9.3 Uncertain inputs

9.4 Stochastic inference

“GPs for big data”

9.5 Variational approximation of hyperparameters? Elsewhere?

VB approximation for hyperparameters (Titsias:2014) or maybe this elsewhere

9.6 GP-LVM?

GP-LVM? does this contain something interesting and specific to VB?

9.7 Deep GPs?

again: does this contain something interesting and specific to VB?

23
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CHAPTER 10

Markov models

10.1 Smoothing in HMM

10.2 Smoothing in LSSM

10.3 Gaussian Markov random fields

25
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CHAPTER 11

General black-box framework

11.1 “Black box”

In order to have minimal amount of model specific computations, one can use black box variational inference ([Pais-
ley:2013][Ranganath:2014]). It uses stochastic optimization and computes noisy gradients of the VB lower bound
by sampling from the approximate posterior distribution 𝑞(𝑍) to estimate the relevant expectations. In principle, the
method can be applied to any model for which the (unnormalized) joint density 𝑝(𝑌,𝑍) can be computed.

11.2 Variational approximation as linear regression

[Salimans:2013]

11.3 Gradient-based approximation

Titsias:2014

continuous variable and differentiable density

27
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CHAPTER 12

Inference model

• inference or recognition model

• deep learning / neural networks
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