

Welcome to variants’s documentation!

variants

[image: _images/variants.svg]
 [https://pypi.org/project/variants/][image: _images/variants1.svg]
 [https://travis-ci.org/python-variants/variants][image: Documentation Status]
 [https://variants.readthedocs.io/en/latest/?badge=latest]variants is a library that provides syntactic sugar for creating alternate forms of functions and other callables, in the same way that alternate constructors are class methods that provide alternate forms of the constructor function.

To create a function with variants, simply decorate the primary form with @variants.primary, which then adds the .variant decorator to the original function, which can be used to register new variants. Here is a simple example of a function that prints text, with variants that specify the source of the text to print:

import variants

@variants.primary
def print_text(txt):
 print(txt)

@print_text.variant('from_file')
def print_text(fobj):
 print_text(fobj.read())

@print_text.variant('from_filepath')
def print_text(fpath):
 with open(fpath, 'r') as f:
 print_text.from_file(f)

@print_text.variant('from_url')
def print_text(url):
 import requests
 r = requests.get(url)
 print_text(r.text)

print_text and its variants can be used as such:

print_text('Hello, world!') # Hello, world!

Create a text file
with open('hello_world.txt', 'w') as f:
 f.write('Hello, world (from file)')

Print from an open file object
with open('hello_world.txt', 'r') as f:
 print_text.from_file(f) # Hello, world (from file)

Print from the path to a file object
print_text.from_filepath('hello_world.txt') # Hello, world (from file)

Print from a URL
hw_url = 'https://ganssle.io/files/hello_world.txt'
print_text.from_url(hw_url) # Hello, world! (from url)

Differences from singledispatch

While variants and singledispatch [https://docs.python.org/3/library/functools.html#functools.singledispatch] are both intended to provide alternative implementations
to a primary function, the overall aims are slightly different. singledispatch transparently
dispatches to variant functions based on the type of the argument, whereas variants provides
explicit alternative forms of the function. Note that in the above example, both
print_text.from_filepath and print_text.from_url take a string, one representing a file
path and one representing a URL.

Additionally, the variants is compatible with singledispatch, so you can have the best of
both worlds; an example that uses both:

@variants.primary
@singledispatch
def add(x, y):
 return x + y

@add.variant('from_list')
@add.register(list)
def add(x, y):
 return x + [y]

Which then automatically dispatches between named variants based on type:

>>> add(1, 2)
3
>>> add([1], 2)
[1, 2]

But also exposes the explicit variant functions:

>>> add.from_list([1], 2)
[1, 2]
>>> add.from_list()
 7 @add.register(list)
 8 def add(x, y):
----> 9 return x + [y]

TypeError: unsupported operand type(s) for +: 'int' and 'list'

It is important to note that the variants decorators must be the outer decorators.

Installation

To install variants, run this command in your terminal:

$ pip install variants

Requirements

This is a library for Python, with support for versions 2.7 and 3.4+.

Documentation

Contents:

	variants
	Differences from singledispatch

	Installation

	Requirements

	Installation
	Stable release

	From sources

	Usage

	Contributing

	Credits

	Changelog

	API Documentation
	variants

	variants.inspect

Indices and tables

	Index

	Module Index

	Search Page

variants

[image: _images/variants.svg]
 [https://pypi.org/project/variants/][image: _images/variants1.svg]
 [https://travis-ci.org/python-variants/variants][image: Documentation Status]
 [https://variants.readthedocs.io/en/latest/?badge=latest]variants is a library that provides syntactic sugar for creating alternate forms of functions and other callables, in the same way that alternate constructors are class methods that provide alternate forms of the constructor function.

To create a function with variants, simply decorate the primary form with @variants.primary, which then adds the .variant decorator to the original function, which can be used to register new variants. Here is a simple example of a function that prints text, with variants that specify the source of the text to print:

import variants

@variants.primary
def print_text(txt):
 print(txt)

@print_text.variant('from_file')
def print_text(fobj):
 print_text(fobj.read())

@print_text.variant('from_filepath')
def print_text(fpath):
 with open(fpath, 'r') as f:
 print_text.from_file(f)

@print_text.variant('from_url')
def print_text(url):
 import requests
 r = requests.get(url)
 print_text(r.text)

print_text and its variants can be used as such:

print_text('Hello, world!') # Hello, world!

Create a text file
with open('hello_world.txt', 'w') as f:
 f.write('Hello, world (from file)')

Print from an open file object
with open('hello_world.txt', 'r') as f:
 print_text.from_file(f) # Hello, world (from file)

Print from the path to a file object
print_text.from_filepath('hello_world.txt') # Hello, world (from file)

Print from a URL
hw_url = 'https://ganssle.io/files/hello_world.txt'
print_text.from_url(hw_url) # Hello, world! (from url)

Differences from singledispatch

While variants and singledispatch [https://docs.python.org/3/library/functools.html#functools.singledispatch] are both intended to provide alternative implementations
to a primary function, the overall aims are slightly different. singledispatch transparently
dispatches to variant functions based on the type of the argument, whereas variants provides
explicit alternative forms of the function. Note that in the above example, both
print_text.from_filepath and print_text.from_url take a string, one representing a file
path and one representing a URL.

Additionally, the variants is compatible with singledispatch, so you can have the best of
both worlds; an example that uses both:

@variants.primary
@singledispatch
def add(x, y):
 return x + y

@add.variant('from_list')
@add.register(list)
def add(x, y):
 return x + [y]

Which then automatically dispatches between named variants based on type:

>>> add(1, 2)
3
>>> add([1], 2)
[1, 2]

But also exposes the explicit variant functions:

>>> add.from_list([1], 2)
[1, 2]
>>> add.from_list()
 7 @add.register(list)
 8 def add(x, y):
----> 9 return x + [y]

TypeError: unsupported operand type(s) for +: 'int' and 'list'

It is important to note that the variants decorators must be the outer decorators.

Installation

To install variants, run this command in your terminal:

$ pip install variants

Requirements

This is a library for Python, with support for versions 2.7 and 3.4+.

Installation

Stable release

To install variants, run this command in your terminal:

$ pip install variants

This is the preferred method to install variants, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io/en/stable/] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for variants can be downloaded from the Github repo [https://github.com/python-variants/variants].

You can either clone the public repository:

$ git clone git://github.com/python-variants/variants

Or download the tarball [https://github.com/python-variants/variants/tarball/master]:

$ curl -OL https://github.com/python-variants/variants/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use variants in a project, decorate the primary function with the @variants.primary
decorator, which will add the variant method to your original function.

	
variants.primary(f)

	Decorator to register a function that has variant forms.

Decorate the main form of the function with this decorator, and then
subsequent variants should be declared with the same name as the original
function 1:

import variants

@variants.primary
def myfunc(fpath):
 with open(fpath, 'r') as f:
 do_something(f.read())

@myfunc.variant('from_url') as f:
def myfunc(url):
 r = requests.get(url)
 do_something(r.text)

The primary decorator returns an object that attempts to transparently
proxy the original methods of the original callable, but variants added to
the primary function will shadow the original methods and attributes. Other
than this, any valid python identifier is a valid name for a variant.

	1

	Declaring subsequent variants with the same name as the original
function is a stylistic convention, not a requirement. Decorating
any function with the .variant decorator will mutate the primary
function object, no matter the name of the variant function. However,
whatever function you use for the variant function declaration will
become an alias for the primary function.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/python-variants/variants/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

variants could always use more documentation, whether as part of the
official variants docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/python-variants/variants/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up variants for local development.

	Fork the variants repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/variants.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv variants
$ cd variants/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 variants tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.4, 3.5, 3.6 and for PyPy. Check
https://travis-ci.org/python-variants/variants/pull_requests
and make sure that the tests pass for all supported Python versions.

Credits

Development Lead

	Paul Ganssle <paul@ganssle.io>

Contributors

None yet. Why not be the first?

Changelog

Version 0.2.0 (2018-05-03)

Features

	Added the variants.inspect module, which provides a public API for
inspecting variant function groups. It currently provides two functions:
is_primary and is_primary_method. (GH #29)

	Added python_requires to setup, indicating Python version support. (GH #34)

Bugfixes

	Updated MANIFEST.in to include NEWS.rst (GH #34)

Improved Documentation

	Updated permanent redirect links in documentation. (GH #28)

	Flattened TOC entry for changelog in documentation. (GH #32)

	Added section for API documentation, including documentation for the inspect
submodule. (GH #33)

Variants API Documentation

	variants

	variants.inspect

variants

	
variants.primary(f)

	Decorator to register a function that has variant forms.

Decorate the main form of the function with this decorator, and then
subsequent variants should be declared with the same name as the original
function 1:

import variants

@variants.primary
def myfunc(fpath):
 with open(fpath, 'r') as f:
 do_something(f.read())

@myfunc.variant('from_url') as f:
def myfunc(url):
 r = requests.get(url)
 do_something(r.text)

The primary decorator returns an object that attempts to transparently
proxy the original methods of the original callable, but variants added to
the primary function will shadow the original methods and attributes. Other
than this, any valid python identifier is a valid name for a variant.

	1

	Declaring subsequent variants with the same name as the original
function is a stylistic convention, not a requirement. Decorating
any function with the .variant decorator will mutate the primary
function object, no matter the name of the variant function. However,
whatever function you use for the variant function declaration will
become an alias for the primary function.

inspect

Provides inspection tools for extracting metadata from function groups.

	
variants.inspect.is_primary(f)

	Detect if a function is a primary function in a variant group

	
variants.inspect.is_primary_method(f)

	Detect if a function is a primary method in a variant group

 Python Module Index

 v

 		 	

 		
 v	

 	[image: -]
 	
 variants	

 	
 	
 variants.inspect	

Index

 I
 | P
 | V

I

 	
 	is_primary() (in module variants.inspect)

 	
 	is_primary_method() (in module variants.inspect)

P

 	
 	primary() (in module variants)

V

 	
 	variants (module), [1]

 	
 	variants.inspect (module)

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to variants’s documentation!

 		
 variants

 		
 Differences from singledispatch

 		
 Installation

 		
 Requirements

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 Changelog

 		
 Version 0.2.0 (2018-05-03)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 API Documentation

 		
 variants

 		
 variants.inspect

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

