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The building blocks for a Vagrant environment for Django development.

Contents 1
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2 Contents



CHAPTER 1

Introduction

Included are shell provisioning scripts and sample configuration files allowing the construction of a Vagrant guest
machine designed to support either full Django projects or the development of single Django apps for packaging and
distribution.

The scripts are also designed to be run independently of Vagrant in order to provision production environments that
match those used in development. See Usage in Production.

While various aspects of the provisioned environment are configurable, some are not. Therefore, it may not be suitable
for all projects. In particular, the locations of various important directories (such as the Vagrant synced folder) and the
system users used for various tasks are fixed.

Be sure to check out the Features and Limitations and Restrictions documentation.

1.1 How to use

1. Copy the provision/ directory into your project.

2. Copy the included Vagrantfile or add provision/scripts/bootstrap.sh as a shell provisioner
in your existing Vagrantfile, specifying the project name. The included Vagrantfile is pretty basic,
but it can be used as a foundation. See Vagrantfile for details.

3. Modify the example provision/env.sh file. See env.sh for details.

4. Add/modify any further configuration files to provision/conf/. See Configuring the environment for de-
tails on what further customisation options are available.

5. Add any project-specific provisioning steps to a provision/project.sh file. See Project-specific Provi-
sioning for details.

6. Add provision/env.sh (and any other necessary config files) to your .gitignore file, or equivalent.
Environment-specific configurations should not be committed to source control.

7. vagrant up

3
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In production environments, a few additional steps are necessary. See Usage in Production for details.

Note: When running a Windows host and using VirtualBox shared folders, vagrant up must be run with Admin-
istrator privileges to allow the creation of symlinks in the synced folder. See Windows Hosts for details.

1.2 Re-provisioning

The provisioning scripts can be re-run on existing environments to update them with any changes.

• Any newly-added provisioning steps will be run.

• Dependency packages will be updated if the specified versions have changed (e.g. in requirements.txt or
package.json).

• Config files in provision/conf will be re-copied.

• Existing software will NOT be updated (the scripts do not run apt-get upgrade). This step will need to be
run manually if required. Note: This is particularly important when provisioning a new environment.

• env.pywill NOT be overwritten if it exists. This allows it to be modified as necessary (either changing existing
settings or adding new ones) without those changes getting replaced. As such, if the file needs rewriting (e.g.
provisioning has been updated to change what it writes to env.py), it should be deleted first.

1.3 Upgrading

When upgrading to a new version of vagrant-django, do not replace the entire provision/ directory - that
will wipe out any customised configuration files, templates, etc. The provision/scripts/ subdirectory is not de-
signed to be customised, so it can safely be replaced as a whole. Modifications/additions to files in other subdirectories
will be specified in the release notes, and can be updated individually.

4 Chapter 1. Introduction



CHAPTER 2

Features

The following features are available in the environment constructed by the included provisioning scripts.

Several features may only apply in a production or development environment. This is differentiated based on the
DEBUG setting in the env.sh file.

2.1 Well-defined project structure

The provisioning process creates a well-defined directory structure for all project-related files.

The root of this structure is /opt/app/.

The most important subdirectory is /opt/app/src/. This is the project root directory, and the target of the Vagrant
synced folder. Subsequently, /opt/app/src/provision/ contains all the provisioning scripts.

Some of the other useful directories in this structure are:

• /opt/app/conf/: For storage of configuration files such as nginx.conf and gunicorn’s conf.py. Such
files are copied here instead of being referenced directly from within provision/conf/ so they may be
modified without affecting the committed source files.

• /opt/app/logs/: For storage of log files output by supervisor, etc.

• /opt/app/media/: Target for Django’s MEDIA_ROOT.

• /opt/app/static/: Target for Django’s STATIC_ROOT (in production environments).

The final directory is /opt/app/ln/. This directory is primarily used to simplify the process of configuring the
server. It acts as a container for shortcut symlinks to various project-specific files and directories (i.e. those that
contain the project name). It is designed to allow using known paths in config files, without forcing customisation in
projects that would not otherwise need it. Using the shortcuts in the ln directory, default config files that work out-of-
the-box can be provided (such as provision/conf/supervisor/production_programs/gunicorn.
conf). Otherwise, such files would require the modification of a series of paths to include the project name.

5
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2.2 Locked down user access

SSH access is locked down to the custom webmaster user created during provisioning. SSH is available via public
key authentication only - no passwords. In a development environment, only the webmaster and vagrant users
are allowed SSH access. In a production environment, only webmaster is granted access. No other users, including
root, can SSH into the machine.

The public key to use for the webmaster user must be provided via the PUBLIC_KEY variable in the env.sh file.
This will be installed into /home/webmaster/.ssh/authorized_keys.

The webmaster user is given sudo privileges. In development environments, for convenience, it does not require a
password. In production environments, it does. A password is not configured as part of the provisioning process, one
needs to be manually created afterwards. When logged in as the webmaster user, simply run the passwd command
to set a password.

Most provisioned services, such as nginx and gunicorn, are designed to run under the default www-data user.

Warning: Using the provisioning scripts in a production environment with DEBUG set to 1 will leave the
webmaster user with open sudo access, unprotected by a password prompt. This is a Bad Idea.

2.3 Time zone

The time zone can be set using the TIME_ZONE setting in the env.sh file.

2.4 Firewall

In production environments, and if a firewall rules configuration file is provided, a firewall is provisioned using Un-
complicatedFirewall.

2.5 Git

Git is installed.

Note: A .gitconfig file can be placed in provision/conf/ to enable configuration of the git environment
for the webmaster user.

2.6 Ag (silver searcher)

The “silver searcher” commandline utility, ag, is installed in the guest machine. ag provides fast code search that is
better than ack.

Note: An .agignore file can be placed in provision/conf/ to add some additional automatic “ignores” for
the command.

6 Chapter 2. Features
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2.7 Image libraries

Various system-level image libraries used by Pillow are installed in the guest machine.

To install Pillow itself, it should be included in requirements.txt along with other Python dependencies (see
Python dependency installation below). But considering many of its features require external libraries, and the high
likelihood that a Django project will require Pillow, those libraries are installed in readiness.

The exact packages installed are taken from the Pillow “depends” script for Ubuntu, though not all are used.

Installed packages:

• libtiff5-dev

• libjpeg8-dev

• zlib1g-dev

• libfreetype6-dev

• liblcms2-dev

2.8 PostgreSQL

PostgreSQL is installed.

In addition, a database user is created with a username equal to the project name and a password equal to DB_PASS.
A database is also created, also with a name equal to the project name, with the aforementioned user as the owner.

The Postgres installation is configured to listen on the default port (5432).

2.9 Nginx

In production environments, nginx is installed.

The nginx.conf file used can be modified. Also, the site config can - and must - be modified. See Configuring
nginx for details.

Nginx is controlled and monitored by Supervisor. A default supervisor program is provided, but can be modified. See
Supervisor programs for details.

2.10 Gunicorn

In production environments, gunicorn is installed.

The conf.py file used can be modified. See Configuring gunicorn for details.

Gunicorn is controlled and monitored by Supervisor. A default supervisor program is provided, but can be modified.
See Supervisor programs for details.

2.7. Image libraries 7
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2.11 Supervisor

Supervisor is installed.

The supervisord.conf file used can be modified. See Configuring supervisor for details.

Default programs for Nginx and Gunicorn are provided, but any number of additional programs can be added. See
Supervisor programs for details.

2.12 Virtualenv

A virtualenv is created using pyenv and its pyenv-virtualenv plugin.

The version of Python used to build the virtualenv can be specified in versions.sh using the BASE_PYTHON_VERSION
setting. If not specified, the system version will be used.

The virtualenv is automatically activated when the webmaster user logs in via SSH.

2.12.1 Python dependency installation

If a requirements.txt file is found in the project root directory (/opt/app/src/), the included requirements
will be installed into the virtualenv (via pip -r requirements.txt).

In development environments, a dev_requirements.txt file can also be specified to install additional
development-specific dependencies, e.g. debugging tools, documentation building packages, etc. This keeps these
kinds of packages out of the project’s primary requirements.txt.

2.13 Node.js/npm

If a package.json file is found in the project root directory (/opt/app/src/), node.js and npm are installed.
The version of node.js installed is dictated by the NODE_VERSION setting in versions.sh.

A node_modules directory is created at /opt/app/node_modules/ and a symlink to this directory is created
in the project root directory (/opt/app/src/node_modules). Keeping the node_modules directory out of
the synced folder helps avoid potential issues with Windows host machines - path names generated by installing certain
npm packages can exceed the maximum Windows allows.

Note: In order to create the node_modules symlink when running a Windows host and using VirtualBox shared
folders, vagrant up must be run with Administrator privileges to allow the creation of symlinks in the synced
folder. See Windows Hosts for details.

Note: If a package.json file is added to the project at a later date, provisioning can be safely re-run to install
node/npm (using the vagrant provision command).

2.13.1 Node.js dependency installation

npm install will be run in the project root directory.

8 Chapter 2. Features
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In production environments, npm install --production will be used, limiting the installed dependencies to
those listed in the dependencies section of package.json. Otherwise, dependencies listed in dependencies
and devDependencies will be installed. See the documentation on npm install.

2.14 Multiple Python versions and tox support

The base Python version (used to create the virtualenv under which all relevant Python processes for the project will
be run) and additional versions of Python can be specified in versions.sh, via the BASE_PYTHON_VERSION and
PYTHON_VERSIONS, respectively.

All specified Python versions are installed with pyenv. The pyenv global command is used to provide system-wide
access to all installed versions, with the following priority:

• PYTHON_VERSIONS, in the order they are defined

• The specified BASE_PYTHON_VERSION, if there is one and if it doesn’t already appear in
PYTHON_VERSIONS

• The system Python

For example:

# The following settings...
BASE_PYTHON_VERSION='3.6.4'
PYTHON_VERSIONS=('2.7.14' '3.5.4')

# ... yield the command:
pyenv global 2.7.14 3.5.4 3.6.4 system

If you want the specified base version to appear somewhere specific among the list of versions, include it explicitly in
PYTHON_VERSIONS:

# The following settings...
BASE_PYTHON_VERSION='3.6.4'
PYTHON_VERSIONS=('3.6.4' '2.7.14' '3.5.4')

# ... yield the command:
pyenv global 3.6.4 2.7.14 3.5.4 system

This support is most useful when using tox to test your code under multiple versions of Python.

2.15 env.py

Several of the env.sh settings are designed to eliminate hardcoding environment-specific and/or sensitive settings in
Django’s settings.py file. Things like the database password, the SECRET_KEY and the DEBUG flag should be
configured per environment and not be committed to source control.

12factor recommends these types of settings be loaded into environment variables, with these variables subsequently
used in settings.py. But environment variables can be a kind of invisible magic, and it is not easy to simply view
the entire set of environment variables that exist for a given project’s use. To make this possible, an env.py file is
written by the provisioning scripts.

This ordinary Python file simply defines a dictionary called environ, containing settings defined as key/value pairs.
It can then be imported by settings.py and used in a manner very similar to using environment variables.

2.14. Multiple Python versions and tox support 9
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# Using env.py
from . import env
env.environ.get('DEBUG')

# Using environment variables
import os
os.environ.get('DEBUG')

The environ dictionary is used rather than simply providing a set of module-level constants primarily to allow
simple definition of default values:

env.environ.get('DEBUG', False)

The default environ dictionary will contain the following key/values:

• DEBUG: Will be True if DEBUG is set to 1, False if it is set to 0.

• DB_USER: Set to the value of the project name.

• DB_PASSWORD: Set to the value of DB_PASS. Automatically generated by default.

• TIME_ZONE: Set to the value of TIME_ZONE.

• SECRET_KEY: Set to the value of SECRET_KEY . Automatically generated by default.

If a specific project has additional sensitive or environment-specific settings that are better not committed to source
control, it is possible to modify the way env.py is written such that it can contain those settings as well, or at least
placeholders for them. See Customising env.py for more details.

Note: The env.py file should not be committed to source control. Doing so would defeat the purpose!

2.16 Project-specific provisioning

In addition to the above generic provisioning, any special steps required by individual projects can be included using
the provision/project.sh file. If found, this shell script file will be executed during the provisioning process.
This file can be used to install additional system libraries, create/edit configuration files, etc.

For more information, see the Project-specific Provisioning documentation.

2.17 Shortcut commands

The following shell commands are made available on the system path for convenience:

• pull+: For git users. A helper script for pulling in the latest changes from origin/master and performing several
post-pull updates. It must be run from the project root directory (/opt/app/src/). Specifically, and in order
of operation, the script:

– Runs git pull origin master as the www-data user

– Runs python manage.py collectstatic (production environments only), also as the
www-data user

– Checks for differences in requirements.txt#

– Asks to install from requirements, if any differences were found

10 Chapter 2. Features
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– Runs pip install -r requirements.txt if installing was requested

– Checks for unapplied migrations (using Django’s showmigrations management command)

– Asks to apply the migrations, if any were found

– Runs python manage.py migrate if applying was requested

– Runs python manage.py remove_stale_contenttypes if using Django 1.11+

– Restarts gunicorn (production environments only)

#: When first run, pull+ detects differences between the requirements.txt file as it existed before the pull
vs after the pull. Even if no differences are found, the installed packages may still be out of date if an updated
requirements.txt was pulled in prior to running the command. After the first run, it stores a temporary copy of
requirements.txt any time updates are chosen to be installed. It can then compare the newly-pulled file to this
temporary copy, enabling it to detect changes from any pulls that took place in the meantime as well. However, if the
requirements are updated manually (outside of using this command), it will detect differences in the files even if the
installed packages are up to date.

2.17. Shortcut commands 11
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CHAPTER 3

Limitations and Restrictions

While various aspects of the provisioned environment are configurable, some are not. The following are some of the
limitations and restrictions the provisioning scripts are subject to.

3.1 Target OS

The provisioning scripts have only been tested on Ubuntu Linux, specifically 16.04 Xenial Xerus.

While some versions have been tested in Ubuntu 16.04 production environments (outside of Vagrant), recent and
in-development versions will probably only have been tested via Vagrant, using the “bento/ubuntu-16.04” box.

3.2 apt-get upgrade

The provisioning scripts do NOT run apt-get upgrade. They avoid this specifically so that re-provisioning does
not trigger updates to installed packages beyond the scope of provisioning (i.e. system packages that provisioning
didn’t install in the first place).

The scripts do run apt-get update, so the packages they do install are the latest repository versions at the time
of installation.

It is incumbent on the user to run apt-get upgrade, especially for a newly provisioned system. This is particu-
larly important in production environments.

3.3 Python

Python (either 2 or 3) is required to be installed on the unprovisioned system. This is due to its use generating random
strings, which is potentially one of the first things the provisioning scripts do (if env.sh settings such as DB_PASS
and SECRET_KEY are not given).

13
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3.4 Directory structure

The provisioning process creates the /opt/app/ directory to store most things related to the project.

The provisioning scripts and various configuration files expect this directory, and its subdirectories, to exist and contain
the relevant files.

See Well-defined project structure for a description of this structure.

3.5 Users

The provisioning process creates a webmaster user. This is the only user with SSH access and is granted sudo
privileges. See the feature documentation for more details.

The webmaster user is placed in the www-data group.

File ownership of almost everything under /opt/app/ is www-data:www-data. Various services, such as nginx
and gunicorn, are configured to run under www-data.

3.6 Windows Hosts

If using Virtualbox as a provider for Vagrant under Windows, the synced folders will be handled by Virtualbox’s
“shared folders” feature by default. When creating symlinks in this mode, which the provisioning scripts do when
installing Node.js (see Node.js/npm), requires Administrator privileges. Specifically, vagrant up needs to be run
from a command prompt with Administrator privileges.

This can be done by right-clicking the command prompt shortcut and choosing “Run as administrator”, then running
vagrant up from that command prompt.

Alternatively, the Windows .cmd script found here can be used to automatically launch a command prompt with Ad-
ministrator privileges requested from UAC, opened to a given development directory, ready for vagrant commands
to be issued. See the script’s comments for details on usage.

14 Chapter 3. Limitations and Restrictions

https://www.virtualbox.org/
https://gist.github.com/oogles/a6de0462cfa755013a90


CHAPTER 4

Configuring the environment

The environment of the Vagrant guest machine (or production server) provisioned by these scripts is designed to
provide everything necessary for developing and hosting Django-based projects with minimal configuration. However,
several configuration files are recognised and utilised by the scripts.

4.1 Vagrantfile

Location: project root (/opt/app/src/)

The use and feature set of the Vagrantfile are beyond the scope of this documentation. For more information on
the file itself, see the Vagrant documentation.

An example Vagrantfile is included, but an entirely custom one can be used. In either case, the following features
are of note:

• The provisioner The provision/scripts/bootstrap.sh shell provisioner needs to be included and
configured.

config.vm.provision "shell" do |s|
s.path = "provision/scripts/bootstrap.sh"
s.args = ["<project_name>"]

end

<project_name> should be replaced with a suitable name for the project. It dictates multiple features
of the environment. See below for details.

• Synced folder The type of synced folder used is not important, however the following aspects are:

– The location of the folder on the guest machine must be /opt/app/src/. Various provisioning
scripts and included config files expect the project’s source to be found there.

– The owner and group should be www-data. Various other files and directories will have their own-
ers/groups set to www-data, and certain included config files (such as the supervisor programs for
nginx and gunicorn) run programs under www-data.
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• The box While not necessarily a requirement, the most recent versions of the provisioning scripts have only
been tested on “bento/ubuntu-16.04”.

4.1.1 Project name

The name of the project is used by the provisioning scripts for the following:

• The name of the default PostgreSQL database created.

• The name of the default PostgreSQL database user created.

• The location of the env.py Python settings file: <project root>/<project name>/env.py. It is
assumed this is the directory containing settings.py.

• The name of the nginx site config file (placed in /etc/nginx/sites-available/ and linked to in /
etc/nginx/sites-enabled/).

This means that the name given must be valid for each of those uses. E.g. names incorporating hyphens should use
underscores instead (use project_name instead of project-name).

4.2 env.sh

Location: provision/env.sh

The primary configuration file is env.sh. It is simply a shell script that gets executed by the provisioning scripts to
load the variables it contains. Each of the variables is discussed below. An example file is included.

When provisioning is first run, it will most likely modify this file. Some of the settings below generate defaults if no
value is provided, and that default will get written back to the file so the same value will be used in the case of re-
provisioning. Some additional settings may also be written to this file - these are convenience settings used internally
by the provisioning process and should not be modified.

Note: The settings contained in env.sh are sensitive and/or environment-specific, and thus should not be committed
to source control.

Note: Several of these settings affect env.py. See env.py for the virtues of using these values over values hardcoded
in settings.py.

4.2.1 DEBUG

Required

This flag controls whether or not to provision a development or production environment. A value of 1 indicates a
development environment, a value of 0 indicates a production environment.

This flag affects numerous aspects of the environment. For a breakdown of the features only available in production
environments (when the flag is 0), see Usage in Production.

This value is also written to env.py so it may be imported into settings.py and used for Django’s DEBUG
setting. A value of 1 is written as True, a value of 0 is written as False.
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4.2.2 PUBLIC_KEY

Required

This public key will be installed into /home/webmaster/.ssh/authorized_keys so it may be used to SSH
into the provisioned environment as the webmaster user.

4.2.3 TIME_ZONE

Optional

The time zone that the provisioned environment should use. Defaults to “Australia/Sydney”.

This value is also written to env.py so it may be imported into settings.py and used for Django’s TIME_ZONE
setting.

4.2.4 SECRET_KEY

Optional

A value for the Django SECRET_KEY setting. If provided as an empty string, or left out of the file altogether,
a default random string will be generated. This generated value is more secure than the default provided by
Django’s startproject - containing 128 characters from an expanded alphabet, chosen using Python’s random.
SystemRandom().choice.

If a default value is generated, it will be written back to this file so the same value can be used in the case of re-
provisioning.

This value is also written to env.py so it may be imported into settings.py and used for Django’s SECRET_KEY
setting.

4.2.5 DB_PASS

Optional

The password to use for the default database user. If provided as an empty string, or left out of the file altogether, a
default 20-character password will be generated.

If a default value is generated, it will be written back to this file so the same value can be used in the case of re-
provisioning.

This value is also written to env.py so it may be imported into settings.py and used as a database password in
Django’s DATABASES setting.

4.2.6 ENV_PY_TEMPLATE

Optional

The template to use when writing the env.py file, as a file path relative to provision/templates/. Defaults to
env.py.txt. A default template file is provided at provision/templates/env.py.txt.

See Customising env.py for more details on using custom env.py templates.
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4.3 versions.sh

Location: provision/versions.sh

This file contains the versions of various packages to be installed during provisioning. Like env.sh, it is simply a
shell script that gets executed by the provisioning scripts to load the variables it contains. Unlike env.sh, this file
should be committed to source control. All environments should install the same versions of the software they use.

The included versions.sh comes with acceptable default values for all variables. It will not require modification
unless the default values are unsuitable for your project.

4.3.1 BASE_PYTHON_VERSION

The “base” Python version is the version that will be used to create the virtualenv under which all relevant Python
processes for the project will be run. It can be left blank in order to use the operating system’s standard version.

If specified, it must be the full version string, e.g. “2.7.14”, “3.6.4”, etc. In addition, it must be a version recognised
and usable by pyenv. Pyenv is used to automate the process of downloading and installing the specified version of
Python, and using it to build the virtualenv (via its pyenv-virtualenv plugin).

4.3.2 PYTHON_VERSIONS

An array of Python versions to install, e.g. to use with tox for testing under multiple versions. It can be left empty to
install no additional versions of Python on the provisioned system. If specified, each version should be a full version
string, such as “2.7.14”, “3.6.4”, etc. For example:

PYTHON_VERSIONS=('2.7.14' '3.5.4' '3.6.4')

Pyenv is used to automate the download and installation of the specified versions.

These versions are installed in addition to any base version, but the same base version can be included in the list in
order to control its position in the version priority list used with the pyenv global command. If the base version
is not included in the list, it will be added to the end of it for the purposes of the pyenv global command. See the
feature documentation for more details.

4.3.3 NODE_VERSION

The version of node.js to install. Only the major version should be specified - the latest minor version will always be
used.

Installation is performed by first installing the relevant Nodesource apt repo, using a script from the Nodesource
binary distribution repository on GitHub. Therefore, the version must correspond to a installation script provided by
Nodesource.

Note: Regardless of this version setting, node.js will only be installed if a package.json file is present in the root
directory of your project.

4.4 Configuring the firewall

Only applicable in production environments
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Location: provision/conf/firewall-rules.conf

In production environments, the existence of the provision/conf/firewall-rules.conf file determines
whether a firewall will be configured. A default file is provided, so be sure to remove it if no firewall is desired. The
default file also defines a default set of useful firewall rules, namely:

• Allowing incoming traffic on port 22, for SSH connections

• Allowing incoming traffic on ports 80 and 442, for web traffic

Any modifications to these rules or additions to them should be done in the firewall-rules.conf file. Each
line in the file simply needs to be a valid argument sequence for the ufw command. Refer to the manual for details on
the ufw command syntax.

Making changes to this file and re-provisioning via vagrant provision will enact the changes.

4.5 Configuring nginx

Only applicable in production environments

4.5.1 nginx.conf

Location: provision/conf/nginx/nginx.conf

In production environments, this file is copied to /opt/app/conf/nginx/nginx.conf as part of the provi-
sioning process. The provided nginx supervisor program references that location when providing a config file to the
nginx command.

A default file is provided which requires no configuration out of the box.

The only aspect of the default configuration to note is that it passes access and error logs through to be written and
rotated by supervisor.

Making changes to this file and re-provisioning via vagrant provision will enact the changes. Alternatively,
on-the-fly changes can be made to the copied file, simply restarting nginx via supervisorctl restart nginx
to make them effective.

Note: On-the-fly changes to the copied file will not survive re-provisioning. Any changes made to this file should be
duplicated in provision/conf/nginx/nginx.conf.

4.5.2 Site config

Location: provision/conf/nginx/site

In production environments, this file is copied to /etc/nginx/sites-available/<project_name>, and
symlinked into sites-enabled, as part of the provisioning process.

A default file is provided which does require minimal configuration: setting the server_name directive.

The default configuration contains a single server context for port 80, with three location contexts:

• /static/: Directly serving static content out of /opt/app/static/.

• /media/: Directly serving media content out of /opt/app/media/.

• /: Proxying to gunicorn via a unix socket.
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Making changes to this file and re-provisioning via vagrant provision will enact the changes. Alternatively,
on-the-fly changes can be made to the copied file, simply restarting nginx via supervisorctl restart nginx
to make them effective.

Note: On-the-fly changes to the copied file will not survive re-provisioning. Any changes made to this file should be
duplicated in provision/conf/nginx/site.

4.6 Configuring gunicorn

Only applicable in production environments

Location: provision/conf/gunicorn/conf.py

In production environments, this file is copied to /opt/app/conf/gunicorn/conf.py as part of the provi-
sioning process. The provided gunicorn supervisor program references that location when providing a config file to
the gunicorn command.

A default file is provided which requires no configuration out of the box.

The default configuration binds to nginx via a unix socket and passes error logs through to be written and rotated by
supervisor.

Making changes to this file and re-provisioning via vagrant provision will enact the changes. Alternatively,
on-the-fly changes can be made to the copied file, simply restarting gunicorn via supervisorctl restart
gunicorn to make them effective.

Note: On-the-fly changes to the copied file will not survive re-provisioning. Any changes made to this file should be
duplicated in provision/conf/gunicorn/conf.py.

4.7 Configuring supervisor

4.7.1 supervisord.conf

Location: provision/conf/supervisor/supervisor.conf

This file is copied directly into /etc/supervisor/supervisord.conf as part of the provisioning process.

A default file is provided which requires no configuration out of the box.

The only aspect of the default configuration to note is that it makes the supervisor socket file writable by the
supervisor group. The supervisor group itself is added during provisioning, and the webmaster user is
added to it, enabling the webmaster user to interact with supervisorctl without needing sudo.

Making changes to this file and re-provisioning via vagrant provisionwill enact the changes. Alternatively, on-
the-fly changes can be made to the copied file, simply restarting supervisor via service supervisor restart
to make them effective.

4.7.2 Supervisor programs

Location: provision/conf/supervisor/dev_programs/ or provision/conf/supervisor/
production_programs/
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A separate set of supervisor program files is used in development and production environments. In either case, though,
the entire contents of the relevant *_programs directory is copied into /etc/supervisor/conf.d/ as part of
the provisioning process.

Default programs are provided for running nginx and gunicorn in production environments. Neither program should
require any configuration out of the box.

Making changes or additions to program files and re-provisioning via vagrant provisionwill enact the changes.

4.8 Configuring the user’s shell environment

Location: provision/conf/user/

Any files found in the provision/conf/user/ directory will be copied directly into the webmaster user’s
home directory. This facility can be used to provide config files that affect the logged in user’s shell environment. E.g.
.gitconfig for the configuration of git, or additional shortcut scripts under the bin subdirectory.

Note: Files will not be copied if they already exist in the user’s home directory. This means local changes to these
files will not be overwritten, and also that changes to the files in provision/conf/user/ will not be applied
when re-provisioning unless the home directory file is removed.

Note: Any files present in the provision/conf/user/bin/ directory will be marked as executable when they
are copied, and will be available on the system path.

4.9 Customising env.py

Location: provision/templates/env.py.txt

If a specific project has additional sensitive or environment-specific settings that are better not committed to source
control, it is possible to modify the way env.py is written such that it can contain those settings, or at least place-
holders for them.

The env.py file is written by taking a template and replacing placeholders with settings from env.sh. The default
template lives in provision/templates/env.py.txt.

This template can be extended or replaced to produce a custom env.py file. env.py is just a Python file, so any
custom template needs to generate valid Python code. Other than that, there is no limitation on what can be included
in the env.py file, though it is recommended it remain a simple key/value store, with as little logic as possible.

Note: The env.py file will not be overwritten once it is created, so if the template is modified, the existing file will
need to be removed prior to re-provisioning if a new file is to be generated.

4.9.1 Placeholders

The default template contains placeholders for the following settings: DEBUG, SECRET_KEY, TIME_ZONE,
PROJECT_NAME and DB_PASSWORD.

These placeholders share the name of the setting, prefixed with a dollar sign. E.g. the placeholder for the DEBUG
setting is $DEBUG.
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When the env.py file is written, any occurrence of these placeholders within the template will be replaced with that
setting’s actual value.

A custom env.py template can use as many additional placeholders for these settings as necessary.

On its own, just customising the template cannot inject additional settings. But it can define the structure, and all the
keys, that are necessary - such that viewing the env.py file shows all the values that need to be provided.

The following shows the default env.py template compared to an example that modifies the structure and adds an
additional entry for an API key that isn’t known at the time of provisioning, but needs to be added afterward.

# Default template
environ = {

'DEBUG': $DEBUG,
'SECRET_KEY': r'$SECRET_KEY',
'TIME_ZONE': '$TIME_ZONE',
'DB_USER': '$PROJECT_NAME',
'DB_PASSWORD': r'$DB_PASSWORD'

}

# Example custom template
environ = {

'DEBUG': $DEBUG,
'SECRET_KEY': r'$SECRET_KEY',
'TIME_ZONE': '$TIME_ZONE',
'DATABASE': {

'NAME': '$PROJECT_NAME',
'USER': '$PROJECT_NAME',
'PASSWORD': r'$DB_PASSWORD'

},
'API_KEY': r'<replace_this>'

}

4.9.2 Injecting additional settings

If a project has other settings that are generated as part of the provisioning process, such as a random password or key,
it is convenient to also be able to inject it into the env.py file. Customising the template allows defining a key, but
injecting the generated value itself cannot be done through the custom template alone.

That’s where project-specific provisioning comes in.

The custom template simply needs to provide a placeholder that can be identified for replacement. As per the main
settings, a unique name prefixed with a dollar sign works well. E.g. $MY_CUSTOM_VALUE. Then, in project.sh,
add the following:

sed -i -r -e "s|\\\$MY_CUSTOM_VALUE|$MY_CUSTOM_VALUE|g" "/opt/app/src/project_name/
→˓env.py"

The following shows a custom template that includes extra entries for credentials generated for RabbitMQ, installed
and configured as per the project-specific provisioning example.

# Example custom template
environ = {

'DEBUG': $DEBUG,
'SECRET_KEY': r'$SECRET_KEY',
'TIME_ZONE': '$TIME_ZONE',
'DB_USER': '$PROJECT_NAME',

(continues on next page)
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(continued from previous page)

'DB_PASSWORD': r'$DB_PASSWORD',
'RABBIT_USER': '$PROJECT_NAME',
'RABBIT_PASSWORD': r'$RABBIT_PASSWORD'

}
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Project-specific Provisioning

Individual projects will usually require some additional provisioning that isn’t included in these generic provisioning
scripts. The provision/project.sh file provides support for this. If found, this shell script file will be executed
during the provisioning process. Execution happens:

• after the project directory structure under /opt/app/ is generated, allowing additions to be made to it

• after the env.py file is written, allowing it to be modified

• before Python and Node.js dependencies are installed, allowing required system libraries to be installed first

Some common uses for project.sh are:

• installing additional software and services

• altering system configuration files

• modifying the env.py file with additional generated settings

• generating the necessary media directory structure under /opt/app/media/ (any subdirectories specified in
FileField/ImageField upload_to arguments will need to exist before any upload is attempted)

5.1 Accessing env.sh settings

Any setting present in env.sh can be loaded into project.sh and can be used to control the provisioning done
within. This includes any custom settings that may be added specifically for this process to use. Simply include the
following at the top of the file:

source /tmp/env.sh

Note: /tmp/env.sh is a temporary copy of env.shwritten when provisioning starts, simplifying the provisioning
scripts’ references to it.
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5.2 Generating random strings

A helper utility exists for generating random strings, such as those used for passwords. The same utility is used to
generate the database password and the Django SECRET_KEY setting when they are not provided. It uses Python,
specifically random.SystemRandom().choice(), to pseudo-randomly generate a string of characters. The
length of the string to generate is passed in. The alphabet used is a fixed set of letters, numbers and special characters,
with several problem-causing characters excluded (such as quotes).

E.g. Generating a 12 character string:

MY_RAND_STR=$("$PROVISION_DIR/scripts/utils/rand_str.sh" 12)

Note: $PROVISION_DIR is a setting that can be loaded as per Accessing env.sh settings above.

5.3 Writing settings back to env.sh

Sometimes it is useful to write values back to env.sh so the same value can be read again in the event of re-
provisioning. This is particularly important if generating random strings. A simple utility exists for doing exactly
that. If the given variable name exists in env.sh, it is replaced. If it does not already exist, it is added to the end of
the file.

E.g. To write a value stored in $MY_VAR to a variable called SOME_VALUE in env.sh:

"$PROVISION_DIR/scripts/utils/write_var.sh" 'SOME_VALUE' "$MY_VAR" "$PROVISION_DIR/
→˓env.sh"

Note: $PROVISION_DIR is a setting that can be loaded as per Accessing env.sh settings above.

5.4 Full example

The following example demonstrates a custom project.sh file that:

• loads settings from env.sh

• installs and configures project-specific software - the RabbitMQ message broker

• generates a random password

• writes the generated password back to env.sh, to avoid generating a new one on re-provisioning

• injects the generated password into env.py, assuming a custom template

#!/usr/bin/env bash
# project.sh

# Source provisioning settings
source /tmp/env.sh

#
# Install and configure RabbitMQ

(continues on next page)
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(continued from previous page)

#

# Generate a password if necessary, and write it back to env.sh
if [[ ! "$RABBIT_PASSWORD" ]]; then

$RABBIT_PASSWORD=$("$PROVISION_DIR/scripts/utils/rand_str.sh" 12)
"$PROVISION_DIR/scripts/utils/write_var.sh" '$RABBIT_PASSWORD' "$RABBIT_PASSWORD"

→˓"$PROVISION_DIR/env.sh"
fi

# Install rabbitmq and create a user with the password
apt-get -qq install rabbitmq-server
rabbitmqctl add_user "$PROJECT_NAME" "$RABBIT_PASSWORD"

# Replace the env.py placeholder for the password
sed -i -r -e "s|\\\$RABBIT_PASSWORD|$RABBIT_PASSWORD|g" "$SRC_DIR/$PROJECT_NAME/env.py
→˓"
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CHAPTER 6

Usage in Production

The provisioning scripts are designed to be run independently of Vagrant in order to provision production environments
that match those used in development. While provisioning is not as simple as vagrant up, it is very straightforward.

6.1 Production-specific features

There are several features that are only available in production environments. These include:

• Firewall

• Nginx

• Gunicorn

In addition, the following features behave differently when in a production environment:

• SSH access: the vagrant user is not on the list of SSH allowed users

• Python dependencies: only requirements.txt is considered, dev_requirements.txt is ignored

• Node dependencies: in package.json, only dependencies is considered, devDependencies is ig-
nored

• The pull+ shortcut command performs additional steps

6.2 Configuration

Due to the additional features supported in production environments, some additional configuration may be required.
The following are some of the things to consider:

• Configuring the firewall

• Configuring nginx

• Configuring gunicorn
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• Configuring supervisor

Of particular importance is the nginx site config. It must be modified to, at least, provide the server_name directive.

6.3 Provisioning

Provisioning in a production environment is not quite as simple as vagrant up, it requires a few more steps:

1. Create the /opt/app/src directory.

2. Copy the project source, including provisioning files into /opt/app/src. The provisioning files should be at
/opt/app/src/provision. The easiest way to do this is probably to clone your git repository, if you use
one.

3. Manually invoke the provisioning bootstrap script as root, passing it the name of the project:

$ /opt/app/src/provision/scripts/bootstrap.sh project_name_here

There are several final steps that automated provisioning does not take care of. This may be because they are unsafe
to include in the provisioning process (e.g. in the event of re-provisioning), or because user input is required.

• sudo apt-get upgrade (see the limitations documentation for more details)

• In order to have sudo privileges, a password needs to be created for the webmaster user. When logged in as
the webmaster user, simply run the passwd command to set a password.
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