
uzmq Documentation
Release

Author

November 07, 2012

CONTENTS

i

ii

CHAPTER

ONE

UZMQ

libuv interface for ZeroMQ for your Python programs.

With uzmq you can use zmq sockets with the libuv event loop binding proposed by the pyuv library

1.1 Features

• Simple interface to zeromq with the libuv event loop

• ZMQPoll handle: Poll handle

• ZMQ handle: ZMQ handle

Note: uzmq source code is hosted on Github

1.2 Example of usage

Example of an echo server using a Poll handle:

import pyuv
import zmq
import uzmq

loop = pyuv.Loop.default_loop()

ctx = zmq.Context()
s = ctx.socket(zmq.REP)
s.bind(’tcp://127.0.0.1:5555’)

def rep_handler(handle, events, errors):
We don’t know how many recv’s we can do?
msg = s.recv()
No guarantee that we can do the send. We need a way of putting the
send in the event loop.
s.send(msg)

poll = uzmq.ZMQPoll(loop, s)
poll.start(pyuv.UV_READABLE, rep_handler)

1

http://zeromq.org
http://pyuv.readthedocs.org
https://secure.travis-ci.org/benoitc/uzmq
http://github.com/benoitc/uzmq.git

uzmq Documentation, Release

loop.run()

The same but using a ZMQ handle:

import pyuv
import zmq
import uzmq

loop = pyuv.Loop.default_loop()

ctx = zmq.Context()
s = ctx.socket(zmq.REP)
s.bind(’tcp://127.0.0.1:5555’)

stream = uzmq.ZMQ(loop, s)

def echo(handle, msg, err):
print " ".join(msg)
stream.write_multipart(msg)

stream.start_read(echo)

loop.run()

Contents:

1.2.1 API

uzmq Package

Classes

• ZMQ : ZMQ handle class

• ZMQPoll : ZMQPoll handle class

ZMQPoll handle

ZMQPoll: ZMQ Poll handle

class uzmq.poll.ZMQPoll(loop, socket)
Bases: object

Parameters

• loop – loop object where this handle runs (accessible through Poll.loop).

• socket (int) – zmq socket to be monitored for readibility or writability.

ZMQPoll ZMQPoll handles can be used to monitor any ZMQ sockets for readability or writability.

loop
Read only

pyuv.Loop object where this handle runs.

2 Chapter 1. uzmq

uzmq Documentation, Release

active
Read only

Indicates if this handle is active.

close(callback=None)

Parameters callback (callable) – Function that will be called after the ZMQPoll handle is
closed.

Close the ZMQPoll handle. After a handle has been closed no other operations can be performed on it.

closed
Read only

Indicates if this handle is closing or already closed.

start(events, callback)

Parameters

• events – int Mask of events that will be detected. The possible events are
pyuv.UV_READABLE or pyuv.UV_WRITABLE.

• callback – callable Function that will be called when the Poll handle receives events.

Callback signature: callback(poll_handle, events, errorno).

Start or update the event mask of the ZMQPoll handle.

stop()
Stop the Poll handle.

ZMQ handle

class uzmq.sock.ZMQ(loop, socket)
Bases: object

Parameters

• loop – loop object where this handle runs (accessible through Poll.loop).

• socket (int) – zmq socket

The ZMQ handles provides qsynchronous ZMQ sockets functionnality both for bound and connected sockets.

close()
Close the ZMQ handle. After a handle has been closed no other operations can be performed on it.

flush()
Flush pending messages.

This method safely handles all pending incoming and/or outgoing messages, bypassing the inner loop,
passing them to the registered callbacks.

start_read(callback, copy=True, track=False)

Parameters

• callback – callable callback must take exactly one argument, which will be a /iist, as
returned by socket.recv_multipart() if callback is None, recv callbacks are disabled.

• copy – bool copy is passed directly to recv, so if copy is False, callback will receive
Message objects. If copy is True, then callback will receive bytes/str objects.

1.2. Example of usage 3

uzmq Documentation, Release

• track – bool Should the message be tracked for notification that ZMQ has finished with
it? (ignored if copy=True)

Callback signature: callback(zmq_handle, msg, error).

Start reading for incoming messages from the remote endpoint.

stop()
Stop the ZMQ handle

stop_read()
Stop reading data from the remote endpoint.

write(msg, flags=0, copy=True, track=False, callback=None)

Parameters

• msg – object, str, Frame The content of the message

• flags – int Any supported flag

• copy – bool Should the message be tracked for notification that ZMQ has finished with it?
(ignored if copy=True)

• track – bool Should the message be tracked for notification that ZMQ has finished with
it? (ignored if copy=True)

Callback signature: callback(zmq_handle, msg, status).

Send a message. See zmq.socket.send for details.

write_multipart(msg, flags=0, copy=True, track=False, callback=None)

Parameters

• msg – object, str, Frame, the content of the message

• flags – int Any supported flag

• copy – bool Should the message be tracked for notification that ZMQ has finished with it?
(ignored if copy=True)

• track – bool Should the message be tracked for notification that ZMQ has finished with
it? (ignored if copy=True)

Callback signature: callback(zmq_handle, msg, status).

Send a multipart message. See zmq.socket.send_multipart for details.

1.2.2 CHANGES

2012/11/07 - version 0.1.0

Initial release

4 Chapter 1. uzmq

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

5

uzmq Documentation, Release

6 Chapter 2. Indices and tables

PYTHON MODULE INDEX

u
uzmq.__init__, ??
uzmq.poll, ??
uzmq.sock, ??

7

