

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Design

Utapi tracks metrics of a service's usage. Metrics provided by Utapi include the
number of incoming and outgoing bytes, the number of objects being stored, the
storage utilized in bytes, and a count of operations performed on a service's
resources. Operations supported by Utapi include APIs offered by Scality's S3
Server [https://github.com/scality/S3]. Metrics can be retrieved for a given
time range in a service's history.

Time Range

Utapi offers metrics for a time range provided by the user. For example, Utapi
allows a user to view all actions that have occurred over the course of a
particular month, week, or day. Time ranges are customizable up to a precision
of fifteen minutes.

Note: A time range precision of less than fifteen minutes can be supported as a
feature request and could be set as a configurable option.

Timestamps

Metrics provided by Utapi are set to the latest fifteen minute interval (i.e.,
00:00:00, 00:15:00, 00:30:00, or 00:45:00). For example, if a user creates a
bucket at 06:15:01, the operation will have a timestamp of 06:15:00. All
timestamps are then formatted as a UNIX epoch expressed in milliseconds. During
a listing of metrics, then, we can know that this operation occurred sometime
between 06:15:00 and 06:29:59.

Example

current time	timestamp	UNIX epoch timestamp
06:15:01	06:15:00	1483280100000
06:29:59	06:15:00	1483280100000
06:31:00	06:30:00	1483281000000
07:01:00	07:00:00	1483282800000

[image: timestamp graphic]

Data Storage

Utapi uses Redis as a database for storage of its metrics values. Accordingly,
it uses three different Redis data types: Sorted Sets, Strings, and Lists. This
document describes how these three data types are used by Utapi. For further
information on data types see the Redis
documentation [https://redis.io/topics/data-types].

Sorted Sets

The Redis keys storing metrics for the number of objects and the storage
utilized are recorded with a Sorted Set data type. We use this data type to
associate the value of the key with its timestamp (in Redis terminology, a
score). In this way, these two metrics hold stateful data. That is, the key's
value represents the state of a metric at that point in history.

With a Sorted Set, then, we can create a list of values ordered by their
timestamp. This ordered nature is especially useful for Utapi during a listing
of metrics, as it allows for speedy retrieval of the nearest starting and ending
values.

Strings

The Redis keys storing metrics for incoming bytes, outgoing bytes, and all S3
operations (e.g., 'CreateBucket', 'PutObject', etc.) are recorded with a String
data type.

Moreover, there are also global counters associated with metrics for the number
of objects and the storage utilized. Such counters are updated during any
applicable operation. For example, when uploading or deleting an object, the
counter for the number of objects increments or decrements, respectively. These
counters are used internally by Sorted Sets to record the state (the storage
used and the number of objects) at a particular point in time.

Lists

Redis keys storing cached metrics use a List data type, where each List element
is a string containing information from the original request. This datatype is
used by a component named UtapiReplay that pushes any metrics stored in the List
every five minutes, by default.

Example

Steps occurring during a successful 'PutObject' request:

	If the new object overwrites a pre-existing object, the counter for the
number of objects remains unchanged. Otherwise it increments by one.

	If the new object overwrites a pre-existing object, the counter for the
storage utilized increments by the difference between the byte size of the
object and byte size of the object being overwritten. Otherwise, it
increments by the byte size of the new object.

	The metric for the incoming bytes increments by the byte size of the new
object.

	The metric for the 'PutObject' operation increments by one.

	The Sorted Set keys (the storage used and the number of objects) are updated
to the value of their respective counter.

If a connection to the Redis datastore cannot be made, metrics from the original
request to Utapi are pushed to a local Redis cache to be retried at a later
time.

Schema Keyspace

The key created for each metric expresses a hierarchy of the data stored by that
key. It expresses the service, resource type, the resource, and the metric value
being stored by the key. These levels are divided by a colon.

<service>:<resourcetype>:<resource>:<metric>

<service> The service that the metric belongs to (for example, 's3').

<resourcetype> The type of resource being accessed (for example, 'buckets'
or 'accounts').

<resource> The bucket name or account ID (for example, 'foo-bucket').

<metric> The metric to get values for (for example, 'storageUtilized').

Thus, a key storing the storage utilized by 'foo-bucket' in 's3' would be:

s3:buckets:foo-bucket:storageUtilized

Timestamped Keys

Metrics for S3 operations create keys that generally follow the same pattern as
above. However, they also include the timestamp at which the operation occurred.
For example, the key storing the count of 'PutObject' operations foo-bucket on
January 01 2016 00:01:00 (where 1451635200000 is the UNIX epoch timestamp of
the operation):

s3:buckets:1451635200000:foo-bucket:PutObject

Local Redis Cache Key

Metrics of operations pushed by S3 that are unsuccessfully recorded as schema
keys in the Redis datastore (for example, in the case of a failed connection)
are stored in a local Redis cache. For example, the key storing cached metrics
of S3 operations:

s3:utapireplay

The value of the the local Redis cache key is list of JSON strings, where each
string contains the parameters and timestamp of an unsuccessful pushMetric
call. For example, a string storing metrics for a 'PutObject' operation:

"{\"action\":\"putObject\",\"reqUid\":\"3d534b1511e5630e68f0\",\"params\":{\"bucket\":\"foo-bucket\",\"newByteLength\":1024,\"oldByteLength\":null},\"timestamp\":1451635200000}"

redis-cli

Note: Using blocking calls (for example, KEYS *) with a Redis client during
production will temporarily block other calls to the Redis Server by Utapi.

Access the storage utilized for the latest fifteen minute time interval using
the command line interface of Redis, redis-cli (see Redis
documentation [https://redis.io/topics/rediscli]):

ZRANGE s3:buckets:foo-bucket:storageUtilized -1 -1 WITHSCORES

The WITHSCORES option in the above command will return the timestamp for each
value.

Access the value stored by a key that is a String data type:

GET s3:buckets:1451635200000:foo-bucket:PutObject

utapi

[image: Utapi logo]

![Circle CI][badgepub] [https://circleci.com/gh/scality/utapi]
![Scality CI][badgepriv] [http://ci.ironmann.io/gh/scality/utapi]

Service Utilization API for tracking resource usage and metrics reporting

Design

Please refer to the design for more information.

Client

The module exposes a client, named UtapiClient. Projects can use this client to
push metrics directly to the underlying datastore (Redis) without the need of an
extra HTTP request to Utapi.

const { UtapiClient } = require('utapi');

const config = {
 redis: {
 host: '127.0.0.1',
 port: 6379
 },
 localCache: {
 host: '127.0.0.1',
 port: 6379
 }
}
const c = new UtapiClient(config);

// The second argument to `pushMetric` is a hexadecimal string Request Unique
// Identifier used for logging.
c.pushMetric('createBucket', '3d534b1511e5630e68f0', { bucket: 'demo' });

c.pushMetric('putObject', '3d534b1511e5630e68f0', {
 bucket: 'demo',
 newByteLength: 1024,
 oldByteLength: null,
});

c.pushMetric('putObject', '3d534b1511e5630e68f0', {
 bucket: 'demo',
 newByteLength: 1024,
 oldByteLength: 256,
});

c.pushMetric('multiObjectDelete', '3d534b1511e5630e68f0', {
 bucket: 'demo',
 byteLength: 1024,
 numberOfObjects: 999,
});

If an error occurs during a pushMetric call and the client is unable to record
metrics in the underlying datastore, metric data is instead stored in a local
Redis cache. Utapi attempts to push these cached metrics (every five minutes, by
default) using a component named UtapiReplay. If the pushMetric call initiated
by UtapiReplay fails, the metric is reinserted into the local Redis cache. The
particularities of this behavior are configurable. For further information, see
design.

Listing Metrics with Utapi

To make a successful request to Utapi you would need

	IAM user with a policy giving access to Utapi

	Sign request with Auth V4

IAM user with a policy giving access to Utapi

Note: The examples here use AWS CLI but any AWS SDK is capable of these actions.

endpoint-url: This would be https://<host>:<port> where your Identity(IAM)
Server is running.

	Create an IAM user

aws iam --endpoint-url <endpoint> create-user --user-name utapiuser

	Create access key for the user

aws iam --endpoint-url <endpoint> create-access-key --user-name utapiuser

	Define a managed IAM policy

sample utapi policy

cat - > utapipolicy.json <<EOF
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "utapiMetrics",
 "Action": ["utapi:ListMetrics"],
 "Effect": "Allow",
 "Resource": [
 "arn:scality:utapi::012345678901:buckets/*",
 "arn:scality:utapi::012345678901:accounts/*",
 "arn:scality:utapi::012345678901:users/*",
]
 }
]
}
EOF

In the above sample, the Resource property includes a series of Amazon
Resource Names (ARNs) used to define which resources the policy applies to.
Thus the sample policy applies to a user with an account ID '012345678901',
and grants access to metrics at the levels 'buckets', 'accounts', and
'users'.

The account ID of the ARN can also be omitted, allowing any account to
access metrics for those resources. As an example, we can extend the above
sample policy to allow any account to access metrics at the level 'service':

...
"Resource": [
 "arn:scality:utapi::012345678901:buckets/*",
 "arn:scality:utapi::012345678901:accounts/*",
 "arn:scality:utapi::012345678901:users/*",
 "arn:scality:utapi:::service/*",
]
...

The omission of a metric level denies a user access to all resources at that
level. For example, we can allow access to metrics only at the level
'buckets':

...
"Resource": ["arn:scality:utapi::012345678901:buckets/*"]
...

Further, access may be limited to specific resources within a metric level.
For example, we can allow access to metrics only for a bucket 'foo':

...
"Resource": ["arn:scality:utapi::012345678901:buckets/foo"]
...

Or allow access to metrics for the bucket 'foo' for any user:

...
"Resource": ["arn:scality:utapi:::buckets/foo"]
...

	Create a managed IAM policy

Once your IAM policy is defined, create the policy using the following
command.

aws iam --endpoint-url <endpoint> create-policy --policy-name utapipolicy \
 --policy-document file://utapipolicy.json

A sample output of the above command would look like

{
 "Policy": {
 "PolicyName": "utapipolicy",
 "CreateDate": "2017-06-01T19:31:18.620Z",
 "AttachmentCount": 0,
 "IsAttachable": true,
 "PolicyId": "ZXR6A36LTYANPAI7NJ5UV",
 "DefaultVersionId": "v1",
 "Path": "/",
 "Arn": "arn:aws:iam::0123456789012:policy/utapipolicy",
 "UpdateDate": "2017-06-01T19:31:18.620Z"
 }
}

The arn property of the response, which we call <policy arn>, will be used
in the next step to attach the policy to the user.

	Attach user to the managed policy

aws --endpoint-url <endpoint> iam attach-user-policy --user-name utapiuser
--policy-arn <policy arn>

Now the user utapiuser has access to ListMetrics request in Utapi on all
buckets.

Signing request with Auth V4

There are two options here.

You can generate V4 signature using AWS SDKs or the node module aws4. See the
following urls for reference.

	http://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html

	http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html

	https://github.com/mhart/aws4

You may also view examples making a request with Auth V4 using various languages
and AWS SDKs here.

Alternatively, you can use a nifty command line tool available in Scality's S3.

You can git clone S3 repo from here https://github.com/scality/S3.git and follow
the instructions in README to install the dependencies.

If you have S3 running inside a docker container you can docker exec into the S3
container as

docker exec -it <container id> bash

and then run the command

node bin/list_metrics

It will generate the following output listing available options.

Usage: list_metrics [options]

 Options:

 -h, --help output usage information
 -V, --version output the version number
 -a, --access-key <accessKey> Access key id
 -k, --secret-key <secretKey> Secret access key
 -m, --metric <metric> Metric type
 --buckets <buckets> Name of bucket(s) with a comma separator if
 more than one
 --accounts <accounts> Account ID(s) with a comma separator if more
 than one
 --users <users> User ID(s) with a comma separator if more than
 one
 --service <service> Name of service
 -s, --start <start> Start of time range
 -r, --recent List metrics including the previous and
 current 15 minute interval
 -e --end <end> End of time range
 -h, --host <host> Host of the server
 -p, --port <port> Port of the server
 --ssl Enable ssl
 -v, --verbose

A typical call to list metrics for a bucket demo to Utapi in a https enabled
deployment would be

node bin/list_metrics --metric buckets --buckets demo --start 1476231300000
--end 1476233099999 -a myAccessKey -k mySecretKey -h 127.0.0.1 -p 8100 --ssl

Both start and end times are time expressed as UNIX epoch timestamps expressed
in milliseconds.

Keep in mind, since Utapi metrics are normalized to the nearest 15 min.
interval, so start time and end time need to be in specific format as follows.

Start time

Start time needs to be normalized to the nearest 15 minute interval with seconds
and milliseconds set to 0. So valid start timestamps would look something like
09:00:00:000, 09:15:00:000, 09:30:00:000 and 09:45:00:000.

For example

Date: Tue Oct 11 2016 17:35:25 GMT-0700 (PDT)

Unix timestamp (milliseconds): 1476232525320

Here's a typical JS method to get start timestamp

function getStartTimestamp(t) {
 const time = new Date(t);
 const minutes = time.getMinutes();
 const timestamp = time.setMinutes((minutes - minutes % 15), 0, 0);
 return timestamp;
}

This would format the start time timestamp to 1476231300000

End time

End time needs to be normalized to the nearest 15 minute end interval with
seconds and milliseconds set to 59 and 999 respectively. So valid end timestamps
would look something like 09:14:59:999, 09:29:59:999, 09:44:59:999 and
09:59:59:999.

Here's a typical JS method to get end timestamp

function getEndTimestamp(t) {
 const time = new Date(t);
 const minutes = time.getMinutes();
 const timestamp = time.setMinutes((minutes - minutes % 15) + 15, 0, -1);
 return timestamp;
}

This would format the end time timestamp to 1476233099999

Guidelines

Please read our coding and workflow guidelines at
scality/Guidelines [https://github.com/scality/Guidelines].

Contributing

In order to contribute, please follow the
Contributing Guidelines [https://github.com/scality/Guidelines/blob/master/CONTRIBUTING.md].

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down.png

_images/timestamp-graphic.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_images/utapi-logo.png
UTAPY

_static/ajax-loader.gif

_static/comment-close.png

