

 Navigation

 	
 index

 	
 next |

 	UTAH Tutorial 0.1 documentation

Welcome to UTAH Tutorial’s documentation!

Contents:

	PART I: Basic usage
	Installation

	Writing tests

	Executing tests

	Including/excluding test cases

	Build/setup/cleanup

	Timeout

	PART II

	PART III

	PART IV

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, UTAH development team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	UTAH Tutorial 0.1 documentation

PART I: Basic usage

Installation

To install the latest stable version of the utah client, let’s add the UTAH
stable PPA to our sources, and install the utah-client package:

$ sudo add-apt-repository -y ppa:utah/stable
$ sudo apt-get update
$ sudo atp-get install utah-client

The binary used to run the test cases is utah. We can take a look at all
the available arguments using the -h/--help option:

$ utah -h

Note

utah is installed as part of the utah-client package.

In this example, we’re interested just in the -r/--runlist argument
which is used to tell the client which test suites should executed in a single
run.

Writing tests

Test suite

To create a test suite and a test case from scratch, we’ll use the phoenix
command installed as part of the utah-client package:

$ cd /tmp
$ phoenix utah_howto test_one

This will create a new test suite under a directory called utah_howto with
some files in it:

	master.run: main run list expected to be passed to utah in the
-r/--runlist argument. As explained above, it contains a list of all
the test suites to be executed in a single run.

Note

In the general case, the run list will be in a different location, not in
the same directory as the test suite.

	tslist.run: test suite list with a description of the test cases to be
executed.

Note

Test cases created by phoenix will be automatically added to the test
suite list. In particular, note that test_one is already in the file.

	ts_control: test suite metadata file with additional information needed
to set the environment to execute the test suite properly.

	test_one/tc_control: test case metdata file with specific information
needed to run a particular test case.

Note

All the files above use yaml syntax, take advantage of the syntax
highlighting feature of your preferred editor.

Test case

Let’s edit test_one/tc_control to write a simple test case that verifies
that /bin/true works as expected. The final result should be as follows:

description: System sanity check
dependencies: coreutils
action: |
 1. Run /bin/true
expected_results: |
 1. /bin/true exits with status 0
type: userland
timeout: 60
command: /bin/true
run_as: utah

where:

	command: is what will be executed to run the test case

Note

the return code from the command is used by utah to determine whether
the test case passed or not using the unix convention.

	run_as: is the user that will executed the command

Note

dependencies, action and expected_results are there for
description purposes only. The utah client doesn’t parse/use them for now,
but that might change in the future.

Run list

Once we have a test suite and a test case, we need to edit the run list to be
able to execute them:

testsuites:
 - name: utah_howto
 fetch_method: dev
 fetch_location: /tmp/utah_howto

where:

	fetch_method: tells the utah client how to get the test suite

	fetch_location: tells the utah client where to get the test suite from

Note

By default all test cases in the test suite are executed

Executing tests

Once the test suite and cases have been writen and the run list is ready, the
utah client can be used to run the test cases as follows:

$ sudo utah -r master.run > report.yaml
$ vim report.yaml

Note

utah must be executed as root for now to make it possible to
execute commands as a different user easily. In the future this might be
improved to avoid the this.

The contents of the test execution report should be similar to the one below:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

arch: amd64
build_number: '20121017.5'
commands:
- cmd_type: testsuite_fetch
 command: cp -r /tmp/utah_howto utah_howto
 returncode: 0
 start_time: '2012-11-08 14:08:21.972824'
 stderr: ''
 stdout: ''
 time_delta: '0:00:00.003381'
 user: root
- cmd_type: testsuite_fetch
 command: echo 'DEVELOPMENT'
 returncode: 0
 start_time: '2012-11-08 14:08:21.976431'
 stderr: ''
 stdout: |-
 DEVELOPMENT
 time_delta: '0:00:00.001907'
 user: root
- cmd_type: testcase_test
 command: /bin/true
 extra_info:
 action: |-
 1. Run /bin/true
 dependencies: coreutils
 description: System sanity check
 expected_results: |-
 1. /bin/true exits with status 0
 returncode: 0
 start_time: '2012-11-08 14:08:22.004614'
 stderr: ''
 stdout: ''
 testcase: test_one
 testsuite: /var/lib/utah/testsuites/utah_howto
 time_delta: '0:00:00.029548'
 user: utah
errors: 0
failures: 0
fetch_errors: 0
install_type: desktop
media-info: Ubuntu 12.10 "Quantal Quetzal" - Release amd64 (20121017.5)
name: unnamed
passes: 1
ran_at: '2012-11-08 14:08:21.972824'
release: quantal
runlist: /tmp/utah_howto/master.run
uname:
- Linux
- xps8300
- 3.5.0-18-generic
- '#29-Ubuntu SMP Fri Oct 19 10:26:51 UTC 2012'
- x86_64
- x86_64

The more important things to note for now are:

	lines 5-6: the test suite is fetched from its location.

	lines 22-23: the test case is executed

	line 45: the test case passed successfully

Including/excluding test cases

Let’s continue the example by adding a new test case to the test suite we’ve
already created:

$ phoenix . test_two

Note

phoenix will add test_two to tslist.run automatically

After that, let’s edit test_two/tc_control and set the following contents:

description: Test FAIL protocol
dependencies: wget
action: |
 1. Use fail protocol to retrieve example.com
expected_results: |
 1. example.com retrieved
type: userland
timeout: 60
command: wget fail://example.com
run_as: utah

As it can be seen, the call to wget will fail because the protocol in the
URL is invalid.

Warning

there’s a bug and utah that will cause problems when trying this example
depending on the locale configuration.

When we’re done editing the test case metadata, the utah client can be executed
again:

$ sudo utah -r master.run > report.yaml
$ vim report.yaml

Looking at the test execution report, the part about the new test case command
is as follows:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

arch: amd64
build_number: '20121017.5'
commands:
- cmd_type: testsuite_fetch
 command: cp -r /tmp/utah_howto utah_howto
 returncode: 0
 start_time: '2012-11-08 15:02:46.993684'
 stderr: ''
 stdout: ''
 time_delta: '0:00:00.003440'
 user: root
- cmd_type: testsuite_fetch
 command: echo 'DEVELOPMENT'
 returncode: 0
 start_time: '2012-11-08 15:02:46.997347'
 stderr: ''
 stdout: |-
 DEVELOPMENT
 time_delta: '0:00:00.001918'
 user: root
- cmd_type: testcase_test
 command: /bin/true
 extra_info:
 action: |-
 1. Run /bin/true
 dependencies: coreutils
 description: System sanity check
 expected_results: |-
 1. /bin/true exits with status 0
 returncode: 0
 start_time: '2012-11-08 15:02:47.024652'
 stderr: ''
 stdout: ''
 testcase: test_one
 testsuite: /var/lib/utah/testsuites/utah_howto
 time_delta: '0:00:00.010179'
 user: utah
- cmd_type: testcase_test
 command: wget fail://example.com
 extra_info:
 action: |-
 1. Use fail protocol to retrieve example.com
 dependencies: wget
 description: Test FAIL protocol
 expected_results: |-
 1. example.com retrieved
 returncode: 1
 start_time: '2012-11-08 15:02:47.064155'
 stderr: |-
 fail://example.com: Unsupported scheme `fail'.
 stdout: ''
 testcase: test_two
 testsuite: /var/lib/utah/testsuites/utah_howto
 time_delta: '0:00:00.049322'
 user: utah
errors: 0
failures: 1
fetch_errors: 0
install_type: desktop
media-info: Ubuntu 12.10 "Quantal Quetzal" - Release amd64 (20121017.5)
name: unnamed
passes: 1
ran_at: '2012-11-08 15:02:46.993684'
release: quantal
runlist: /tmp/utah_howto/master.run
uname:
- Linux
- xps8300
- 3.5.0-18-generic
- '#29-Ubuntu SMP Fri Oct 19 10:26:51 UTC 2012'
- x86_64
- x86_64

where it can be seen that:

	line 48: the test case command failed

	lines 50-51: the problem was indeed using an invalid protocol in the url

	line 58: the command failure was considered a test case failure

Let’s say that we know the test case has a problem, but we don’t have time to
fix it now. Instead, what we want to do is skip it until it’s fixed in the
future.

To do that, edit master.run and specify that test_two must be excluded:

testsuites:
 - name: utah_howto
 fetch_method: dev
 fetch_location: /tmp/utah_howto
 exclude_tests:
 - test_two

After this change, if the utah client is executed again:

$ sudo utah -r master.run > report.yaml
$ vim report.yaml

The report only shows a test case executed and no errors:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

arch: amd64
build_number: '20121017.5'
commands:
- cmd_type: testsuite_fetch
 command: cp -r /tmp/utah_howto utah_howto
 returncode: 0
 start_time: '2012-11-08 15:34:58.501273'
 stderr: ''
 stdout: ''
 time_delta: '0:00:00.003482'
 user: root
- cmd_type: testsuite_fetch
 command: echo 'DEVELOPMENT'
 returncode: 0
 start_time: '2012-11-08 15:34:58.504980'
 stderr: ''
 stdout: |-
 DEVELOPMENT
 time_delta: '0:00:00.001902'
 user: root
- cmd_type: testcase_test
 command: /bin/true
 extra_info:
 action: |-
 1. Run /bin/true
 dependencies: coreutils
 description: System sanity check
 expected_results: |-
 1. /bin/true exits with status 0
 returncode: 0
 start_time: '2012-11-08 15:34:58.526534'
 stderr: ''
 stdout: ''
 testcase: test_one
 testsuite: /var/lib/utah/testsuites/utah_howto
 time_delta: '0:00:00.010364'
 user: utah
errors: 0
failures: 0
fetch_errors: 0
install_type: desktop
media-info: Ubuntu 12.10 "Quantal Quetzal" - Release amd64 (20121017.5)
name: unnamed
passes: 1
ran_at: '2012-11-08 15:34:58.501273'
release: quantal
runlist: /tmp/utah_howto/master.run
uname:
- Linux
- xps8300
- 3.5.0-18-generic
- '#29-Ubuntu SMP Fri Oct 19 10:26:51 UTC 2012'
- x86_64
- x86_64

Build/setup/cleanup

Sometimes, it might happen that a test case is written in a compiled language
or that it requires a special configuration to be in place before it’s
executed. To handle those test cases, there’s a special metadata that can be
added to the test case.

Let’s create another test case in our test suite:

$ phoenix . test_three

To simulate a test case that requires a build step, let’s write a Makefile
under the test_three directory that generates the a script we want to
execute later in the test case:

test_three.sh:
 echo 'test -f /tmp/foo' > test_three.sh
 chmod +x test_three.sh

After that, let’s edit test_three/tc_control to make sure that the make
command is used in a build step before running the test case:

description: Test that /tmp/foo exists
dependencies: make
action: |
 1. Test that /tmp/foo exists
expected_results: |
 1. /tmp/foo indeed exists
type: userland
timeout: 60
command: ./test_three.sh
run_as: utah
build_cmd: make

At this point, we can run the utah client:

$ sudo utah -r master.run > report.yaml
$ vim report.yaml

and check the test execution report:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

arch: amd64
build_number: '20121017.5'
commands:
- cmd_type: testsuite_fetch
 command: cp -r /tmp/utah_howto utah_howto
 returncode: 0
 start_time: '2012-11-08 16:23:18.733182'
 stderr: ''
 stdout: ''
 time_delta: '0:00:00.003528'
 user: root
- cmd_type: testsuite_fetch
 command: echo 'DEVELOPMENT'
 returncode: 0
 start_time: '2012-11-08 16:23:18.736933'
 stderr: ''
 stdout: |-
 DEVELOPMENT
 time_delta: '0:00:00.001879'
 user: root
- cmd_type: testcase_test
 command: /bin/true
 extra_info:
 action: |-
 1. Run /bin/true
 dependencies: coreutils
 description: System sanity check
 expected_results: |-
 1. /bin/true exits with status 0
 returncode: 0
 start_time: '2012-11-08 16:23:18.765374'
 stderr: ''
 stdout: ''
 testcase: test_one
 testsuite: /var/lib/utah/testsuites/utah_howto
 time_delta: '0:00:00.010362'
 user: utah
- cmd_type: testcase_build
 command: make
 returncode: 0
 start_time: '2012-11-08 16:23:18.796690'
 stderr: ''
 stdout: |-
 echo 'test -f /tmp/foo' > test_three.sh
 chmod +x test_three.sh
 testcase: test_three
 testsuite: /var/lib/utah/testsuites/utah_howto
 time_delta: '0:00:00.005390'
 user: root
- cmd_type: testcase_test
 command: ./test_three.sh
 extra_info:
 action: |-
 1. Test that /tmp/foo exists
 dependencies: make
 description: Test that /tmp/foo exists
 expected_results: |-
 1. /tmp/foo indeed exists
 returncode: 1
 start_time: '2012-11-08 16:23:18.817905'
 stderr: ''
 stdout: ''
 testcase: test_three
 testsuite: /var/lib/utah/testsuites/utah_howto
 time_delta: '0:00:00.010506'
 user: utah
errors: 0
failures: 1
fetch_errors: 0
install_type: desktop
media-info: Ubuntu 12.10 "Quantal Quetzal" - Release amd64 (20121017.5)
name: unnamed
passes: 1
ran_at: '2012-11-08 16:23:18.733182'
release: quantal
runlist: /tmp/utah_howto/master.run
uname:
- Linux
- xps8300
- 3.5.0-18-generic
- '#29-Ubuntu SMP Fri Oct 19 10:26:51 UTC 2012'
- x86_64
- x86_64

What we see here is that:

	lines 39-40: there’s a new build command that generates the
files needed to run the test case.

	line 60: the test case failed because the /tmp/foo doesn’t exist.

Hence, we managed to generate the file needed to run the test case, but
failed to configure the environment properly, that is, have
the /tmp/foo file in place.

To address that issue, let’s edit again
test_three/tc_control as follows:

description: Test that /tmp/foo exists
dependencies: make
action: |
 1. Test that /tmp/foo exists
expected_results: |
 1. /tmp/foo indeed exists
type: userland
timeout: 60
command: ./test_three.sh
run_as: utah
build_cmd: make
tc_setup: touch /tmp/foo
tc_cleanup: rm /tmp/foo

where:

	tc_setup is a command that is executed to take care of
all the configuration needed for the test case to work
correctly.

	tc_cleanup is a command that is executed to undo
whatever the setup command did and set the environment as it
was before executing the test case.

Now if we run agan the utah client,

$ sudo utah -r master.run > report.yaml
$ vim report.yaml

we see the following test execution report:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104

arch: amd64
build_number: '20121017.5'
commands:
- cmd_type: testsuite_fetch
 command: cp -r /tmp/utah_howto utah_howto
 returncode: 0
 start_time: '2012-11-08 16:37:12.817425'
 stderr: ''
 stdout: ''
 time_delta: '0:00:00.003487'
 user: root
- cmd_type: testsuite_fetch
 command: echo 'DEVELOPMENT'
 returncode: 0
 start_time: '2012-11-08 16:37:12.821134'
 stderr: ''
 stdout: |-
 DEVELOPMENT
 time_delta: '0:00:00.001893'
 user: root
- cmd_type: testcase_test
 command: /bin/true
 extra_info:
 action: |-
 1. Run /bin/true
 dependencies: coreutils
 description: System sanity check
 expected_results: |-
 1. /bin/true exits with status 0
 returncode: 0
 start_time: '2012-11-08 16:37:12.849988'
 stderr: ''
 stdout: ''
 testcase: test_one
 testsuite: /var/lib/utah/testsuites/utah_howto
 time_delta: '0:00:00.010241'
 user: utah
- cmd_type: testcase_build
 command: make
 returncode: 0
 start_time: '2012-11-08 16:37:12.874301'
 stderr: ''
 stdout: |-
 echo 'test -f /tmp/foo' > test_three.sh
 chmod +x test_three.sh
 testcase: test_three
 testsuite: /var/lib/utah/testsuites/utah_howto
 time_delta: '0:00:00.005345'
 user: root
- cmd_type: testcase_setup
 command: touch /tmp/foo
 returncode: 0
 start_time: '2012-11-08 16:37:12.889391'
 stderr: ''
 stdout: ''
 testcase: test_three
 testsuite: /var/lib/utah/testsuites/utah_howto
 time_delta: '0:00:00.002992'
 user: root
- cmd_type: testcase_test
 command: ./test_three.sh
 extra_info:
 action: |-
 1. Test that /tmp/foo exists
 dependencies: make
 description: Test that /tmp/foo exists
 expected_results: |-
 1. /tmp/foo indeed exists
 returncode: 0
 start_time: '2012-11-08 16:37:12.900769'
 stderr: ''
 stdout: ''
 testcase: test_three
 testsuite: /var/lib/utah/testsuites/utah_howto
 time_delta: '0:00:00.010171'
 user: utah
- cmd_type: testcase_cleanup
 command: rm /tmp/foo
 returncode: 0
 start_time: '2012-11-08 16:37:12.919748'
 stderr: ''
 stdout: ''
 testcase: test_three
 testsuite: /var/lib/utah/testsuites/utah_howto
 time_delta: '0:00:00.002942'
 user: root
errors: 0
failures: 0
fetch_errors: 0
install_type: desktop
media-info: Ubuntu 12.10 "Quantal Quetzal" - Release amd64 (20121017.5)
name: unnamed
passes: 2
ran_at: '2012-11-08 16:37:12.817425'
release: quantal
runlist: /tmp/utah_howto/master.run
uname:
- Linux
- xps8300
- 3.5.0-18-generic
- '#29-Ubuntu SMP Fri Oct 19 10:26:51 UTC 2012'
- x86_64
- x86_64

where:

	lines 51-52: there’s a new setup step before executing the
test case.

	lines 78-79: there’s a new cleanup step after execution the
test case.

	line 94: all test cases now pass.

Todo

Move the setup/cleanup code to the test suite to give an
example about how to do the same thing at the suite level
(useful when multiple test cases need the same
configuration).

Timeout

Todo

Fix the formatting and provide more information about the
example.

$ phoenix . test_four

Edit tc_control file:

 description: Sleep test
 despendencies: sleep
 action: |
 1. Sleep for 10 seconds
 expected_results: |
 system waits and returns 0
 command: sleep 10
 timeout: 5

- Run again
There's one failure because of the timeout

Note

Timeout returncode is -9 (process is killed). This is documented, but the
yaml output file might explain this better in the future.

Different architectures? Override the timeout value in the master.run, so that
the timeout value adjust to the target hardware.

	Edit master.run:

timeout: 15

(top level setting, not per test suite)

	Run again

Now we have three passes

 Copyright 2012, UTAH development team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	UTAH Tutorial 0.1 documentation

PART II

1. Different architectures
$ phoenix . test32
- Edit test32/tc_control
description: Test for 32 bit systems
dependencies: 32 bit system
actions: |

	Get hardware platform from uname

	expected_results: |

	1. Hardware platform is i386 or i686
type: userland
timeout: 60
command: uname -i | grep -qE “i(3|6)86”
run_as: utah

$ phoenix . test64
- Edit test64/tc_control
description: Test for 64 bit systems
dependencies: 64 bit system
actions: |

	Get hardware platform from uname

	expected_results: |

	1. Hardware platform is x86_64
type: userland
timeout: 60
command: uname -i | grep -q “x86_64”
run_as: utah

	Run

$ sudo utah -r master.run > output.yaml; view output.yaml
- Look at the output
test32 failed
test64 passed
(assuming you’ve got a 64 bits system)
- Create a new master.run list for 32/64bits
$ cp master.run utah32.run
Edit file:
- exclude_tests:

test64

$ cp master.run utah64.run
- exclude_tests:

test32

Note: Right now utah isn’t able to exclude automatically the tests. That could probaly be supported in the future using the dependencies field.
2. Version control
$ bzr init
$ bzr push lp:~<lp_username>/+junk/utah_howto
- Create new runlist
cp master.run launchpad.run
- Edit:
fetch_method: bzr
fetch_location: lp:~<lp_username>/+junk/utah_howto
- Run
$ sudo utah -r launchpad.run > output.yaml; view output.yaml
Note: This failed because “bzr branch” is executed as root. I should be possible to execute “bzr branch” as my user.
- Use this url:
https://code.launchpad.net/~<lp_username>/+junk/utah_howto
Note: In a test machine in the lab, nobody wants to put his own ssh keys.
- Look at the output
It’s the same as when running locally except for the fetch command.
3. Provisioning
Note: Hardware virtualization recommended. With qemu will work as well, but it will be very slow (and timeouts will need to be overriden on some test cases).
- Install the server
$ sudo apt-get install utah
- Explain what the server does
$ run_utah_tests.py -h
This cover virtual, physical, arm boards, etc. What we need for this example:
- runlist: A positional argument
$ run_utah_tests.py $HOME/launchpad.run
Note: This will download the ISO (precise i386 desktop)
$ run_utah_tests.py $HOME/launchpad.run -s quantal -a amd64 -t server
Note: This will download the ISO (quantal server amd64)
$ run_utah_tests.py $HOME/launchpad.run -i <path_to_iso>
Note: <path_to_iso> can be a local path or an http url as well.
$ run_utah_tests.py $HOME/launchpad.run -i http://archvie.ubuntu.com/ubuntu/dists/quantal/main/installer/images/netboot/mini.iso
Download image
- Unpack kernel, initrd
- Create preseed
- Create vm
(around 30 minutes)
Note: For now the VM is always created from an ISO. In the future, support for existing VMs might be provided.
Note: Additional configuration for the VM XML can be passed to prevent VM disk caching (which might invalidate some disk tests).
4. Reboot tests
Note: No to be used in your own laptop, but in a vm or in another device to be tested.
$ phoenix . reboot_test
- Edit tc_control file
description: Create a file in /tmp
dependencies: none
action: |

	Create /tmp/utah

	Reboot if successful

	expected_results: |

	
	File is created

2. system reboots
type userland
timeout: 60
command: touch /tmp/utah
run_as: utah
reboot: pass # (always, never)

	Create another test case to be executed after the reboot

$ phoenix . post_reboot_test
- Edit tc_control file
description: Check that a reboot cleans up files in /tmp
dependencies: reboot_test
action: |

1. Check for /tmp/utah after reboot
expected_results

	/tmp/utah does not exist

type: userland
timeout: 60
command: ls /tmp/utah
run_as: utah
Note: tslist.run defines the ordering for test cases. User is expected to put the test cases in the right order so that the ones after the reboot are executed when they should.
Note: master.run is supposed in a different location
Note: provisioners
- libvirt
- cobbler
- panda board (in the lab)

Note: Passing parameters to the test cases:
- Option 1: Use an environment variable
- Option 2: Generate a data file on the fly and read from it in the setup

 Copyright 2012, UTAH development team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	UTAH Tutorial 0.1 documentation

PART III

How to write good test cases: <link>
- Let’s work on an example:
$ bzr branch lp:~utah/utah/utah_ls_example
- Look at the ts_control file
There are both a setup and a cleanup command
- Look at ts_util.py
sys.path used to import from common module
- Look at the common module

	STATE_FILE, DATA_FILE defined in terms of the module’s directory

	run_cmd used as a method to run a command and get stdout, stderr and returncode.

	setup_logging

	get_testfiles_data: Used to get the data used by the test cases

	Look at data.json: contains filenames and permissions (both in octal number and as string)

	Look again at ts_util.py
- setup: create directory and files according to the information in the data file

Note: The creation of a tmp directory is something that will be commonly needed and worth having in a library.
- Look at permissions/tc_control
action and expected results describe what the test does.
- Look at permissions.py

	sys.path used to import from common

	Using unittest module

	Look at runTest method

	Directory and files exist

	Permission string for every file is also correct

	Look at dotfiles/tc_control

action and expected results describe what the test does.
- Look at dotfiles.py

	Directory exists

	Dot files are there

Note: We’re not using the unittest runner on purpose.
Note: Quite a lot of discussion of whether unittest only for the assertions should be a good practice because it’s confusing.
Question: Do you have a skeleton file to encourage users to follow best practice?
- Edit master.run
- Run
Two test case passes
Feature request: sudo utah -r .
(Run test suite and cases without any master.run file)

 Copyright 2012, UTAH development team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	UTAH Tutorial 0.1 documentation

PART IV

Discussion about writing test cases for UTAH

 Copyright 2012, UTAH development team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	UTAH Tutorial 0.1 documentation

Index

 Copyright 2012, UTAH development team.
 Created using Sphinx 1.3.5.

 _static/down.png

search.html

 Navigation

 		
 index

 		UTAH Tutorial 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, UTAH development team.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/comment.png

_static/comment-close.png

_static/up.png

