

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/ushahidi-platform-v3/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/ushahidi-platform-v3/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

layout: page
title: “Get Involved”
date: 2015-04-23 22:53:00
categories: top
weight: 4

Join the Community

Connect with the wider Ushahidi community:

	Join the discussion on our forum [http://forums.ushahidi.com/]

	Sign up on the mailing list [http://list.ushahidi.com]

	Chat with us on:
	IRC at #ushahidi on Freenode

	Gitter at ushahidi/Community [https://gitter.im/ushahidi/community]

	Hipchat Platform v3 room [https://www.hipchat.com/g9I7z8M9a]

	Messages to any of these channels should show up on all of them!

Contributing code

See the developer guide and our step-by-step guide to adding code to the platform

Contributing to translations

Help us make the platform available in as many languages as possible.

	Translations live in our Transifex repository [https://transifex.com/ushahidi/ushahidi-v3/]

	Instructions on how to start translating [https://wiki.ushahidi.com/display/WIKI/Localization+and+Translation+-+How+to]

docs.ushahidi.com

The Ushahidi v3 User Documentation

This repository holds the nascent documentation for the Ushahidi v3 platform.

layout: page
title: “Developer Guide”
subtitle: “A guide for developing Ushahidi”
date: 2015-04-23 22:53:00
categories: top
weight: 3

First, thank you for contributing to Ushahidi - thousands of
groups use this platform worldwide, and your work will help benefit all of
them.

Ushahidi is an open source web application. It collects information
from SMS, Twitter (pending), RSS feeds, Email and direct reports to a
platforms website. It helps users process that information, categorize it,
geo-locate it, visualise it and publish it on a map.

Ushahidi v3 is a rebuild from the ground up – not only the code but
the way in which we think about users interacting with mobile and social data.

The ushahidi platform stack is:

	Back-end: Linux [http://en.wikipedia.org/wiki/Linux], PHP [https://php.net], Apache [http://httpd.apache.org/]/Nginx [http://wiki.nginx.org/Main], MySQL [http://www.mysql.com] or PostgreSQL [http://www.postgresql.org]

	Front-end: AngularJS [https://angularjs.org], Javascript [http://en.wikipedia.org/wiki/JavaScript], Html [http://en.wikipedia.org/wiki/HTML], CSS [http://en.wikipedia.org/wiki/Cascading_Style_Sheets]. Built with NodeJS [http://nodejs.org] and Browserify [http://browserify.org/]. Using Leaflet [http://leafletjs.com] for mapping, and a collection of other frontend libraries

Ushahidi will run on any platform that supports PHP, including Linux,
Mac OSX and Windows.

Get started

	Installing Ushahidi

	Connecting with other developers

	Adding code to Ushahidi

Further reading

	Old Developer Guide [https://wiki.ushahidi.com/display/WIKI/Ushahidi+v3.x+-+Developer+Guide] on the wiki. This is slowly being migrated to this site.

layout: page
title: “Adding code to the platform”
subtitle: “”
date: 2015-04-23 22:53:00
categories: dev-guide
weight: 0

You will need these on your development machine

	git

	PHP version 5.4 or greater

Get a github account

Ushahidi code development has been happening on Phabricator [https://phabricator.ushahidi.com]. However we’re moving back to Github [https://github.com/ushahidi/platform/issues] so new contributors should start there.

First, create a github account [https://github.com/join]

Fork the repository

A fork is a copy of a repository. Forking a repository allows you to freely experiment with changes without affecting the original project.

The Ushahidi is built from 3 separate repositories. Depending on the task you’ll need to fork [https://help.github.com/articles/fork-a-repo/] one or more of these. Usually you’ll need to fork at least the API and the Client repositories.

	Platform API [https://github.com/ushahidi/platform]: This is the where the API for the platform is developed.

	Platform Client [https://github.com/ushahidi/platform-client]: This is where the JS client for the platform is developed.

	Platform Pattern Library [https://github.com/ushahidi/platform-pattern-library]: This is where the designs, HTML and CSS for the platform is developed

To fork a repository:

	Click the link above

	In the top-right corner of the page, click Fork.

Thats all! Now you have your very own fork of the original repository.

Clone your fork

If you hadn’t yet cloned (and installed) the platform code, you can just go ahead an clone your fork:

git clone git@github.com:yourusername/platform.git

Add your fork as a remote

If you already cloned and installed the platform, you can add your new fork as a “remote” repository:

git remote rename origin upstream
git remote add origin git@github.com:yourusername/platform.git

When you clone a repository, the URL you clone is always created as the “origin” remote repository. The commands above rename the “origin” to “upstream”, and create a new “origin” that points to your fork. This will allow you to pull in new versions of the platform, but push your own branches to your fork.

Find a feature to work on

The best way to pick a feature to work on is to say hi to Ushahidi’s developers, let them know what you’d like to work on (front end, back end, etc), and chat about what could be suitable for you.

Ushahidi issues (bugs, feature requests, etc) are in Github Issues. Find something that needs doing.

	Community tasks [https://github.com/ushahidi/platform/labels/Community%20Task] in github are feature that are up for grabs by community devs.

Older tasks (bugs, features) are still in Phabricator. There are two places to look for open tasks in phabricator:

	The community tasks [https://phabricator.ushahidi.com/tag/ushahidi_community_tasks/] list contains features that are up for grabs by community devs.

	The unassigned features [https://phabricator.ushahidi.com/maniphest/query/J8sOKvhY4RKo/] list contains features that aren’t yet claimed by a developer.

Start a branch for your feature

If you’re working on a feature that nobody has claimed before, you will need to create a branch of Ushahidi that’s specific to this feature. To do this, cd (change directory) into your Ushahidi code in the terminal window, and type:

git checkout master
git pull
git checkout -b some-task

Where “some-task” is a short description without spaces of what this task is (e.g. “visualise-data”). Now you can start work on your code.

Write Code

Now write your code. Make sure you meet the Ushahidi coding standards [https://wiki.ushahidi.com/pages/viewpage.action?pageId=8359652] and use the Ushahidi pattern library [https://github.com/ushahidi/platform-pattern-library] if you’re writing front-end code.

If you get stuck, or want to talk through ideas, you can contact other Ushahidi developers on the hipchat, IRC or Gitter.

Submit your code

When you’re ready to submit your code for approval, do this:

	Commit and push your code

git add .
git commit -m “message about this commit”
git push origin some-task

	Then, open your fork on github, ie. https://www.github.com/yourusername/platform. You’ll see a banner indicating that you’ve recently pushed a new branch, and that you can submit this branch “upstream,” to the original repository:

	Click on “Compare and Pull Request” to create a pull request. Enter a title and description, then click “Create pull request”

The first time you submit code you may be asked to sign Ushahidi’s contributor agreement [https://phabricator.ushahidi.com/L2].

The Ushahidi admins will then review and comment on your code, and will either accept your code or ask you to make changes to it. If you are asked to make changes to your code, make those changes then resubmit your code using:

git add .
git commit -m “message about this commit”
git push origin some-task

If your code is accepted, then the admin will merge your pull request. Your code will then appear in the Ushahidi Platform github repository, with you credited for it.

Further Reading

	Contributing to open source [https://guides.github.com/activities/contributing-to-open-source/]

	Forking projects [https://guides.github.com/activities/forking/]

layout: page
title: “Installing with vagrant”
subtitle: “”
categories: install
weight: 0

	Installing the API
	Getting the api code

	Preparing the Server

	Installing the client
	Getting the client code

	Dependencies

	Install, build and run a local dev server

	Logging in the first time

Installing the API

Getting the API code

First, you will need a copy of the source code, which lives in our Github
repository:

git clone https://github.com/ushahidi/platform.git

Note: if you’re getting set up for development, you might want to fork the repository first.

Once you have the code, the next step is to prepare a web server.

Prerequisites

	Vagrant [http://www.vagrantup.com/]

	Ruby

If you already use Vagrant, check the settings in the Vagrantfile [http://docs.vagrantup.com/v2/vagrantfile/index.html] and make sure the IP address won’t conflict with your existing VMs.

Preparing the Server

Before we run vagrant we need to get some puppet modules. We do this with librarian puppet:

gem install puppet librarian-puppet
librarian-puppet install

Then you can bring up the vagrant server and provision it:

vagrant up && vagrant provision

This should set up a server, and install all the dependencies too.

Go to 192.168.33.110 [http://192.168.33.110] to check the API is up and running. You should see some JSON with an API version, endpoints and user info.

The vagrant set up uses a 64 bit VM so you may need to enable 64 bit virtualization on your host machine.

Installing the client

Getting the client code

First, you will need a copy of the source code, which lives in our Github
repository:

git clone https://github.com/ushahidi/platform-client.git

The latest install instructions for the client are always in the [README](https://github.com/ushahidi
/platform-client/blob/master/README.md). If you have any trouble check those instructions first.

Client dependencies

First you’ll need nodejs or io.js installed,
npm takes care of the rest of our dependencies.

	nodejs v0.10 or v0.12 or io.js v1.2

Install, build and run a local dev server

	Clone the repo

git clone https://github.com/ushahidi/platform-client.git

Note: if you’re getting set up for development, you might want to fork the repository first.

	Navigate to project root

cd platform-client

	Install Build Requirements

npm install -g gulp

	Install Packages

npm install

This will install both NPM and Bower dependencies! No separate bower install command is required.

	Set up build options. Create a .env file, you’ll need to point BACKEND_URL at an instance of the platform api [https://github.com/ushahidi/platform] (If you followed the vagrant instructions above that’ll be: http://192.168.33.110)

NODE_SERVER=true
BACKEND_URL=http://192.168.33.110

	Run gulp

gulp

	You should now have a local development server running on http://localhost:8080

Logging in the first time

The default install creates a user admin with password admin. Once
logged in this user can create further user accounts or give others admin
permissions too.

layout: page
title: “Installing on Heroku”
subtitle: “”
categories: install
weight: 1

Deploying on Heroku is good way to test out the platform quickly. Its also a viable option for running a production deployment (though this could be expensive depending on your traffic needs).

	First deploy the API with the latest release [https://heroku.com/deploy?template=https://github.com/ushahidi/platform/tree/release] or the latest development code [https://heroku.com/deploy?template=https://github.com/ushahidi/platform/tree/master]

	If you haven’t used heroku before, you’ll be asked to sign up:

	Pick an App name for your deployment (or let heroku pick one for you)

	then hit Deploy for free

	.. and wait

	Confirm you’re deployment went ok by clicking “View”. You should see a block of JSON something like:

	Take not of the URL of the created app (ie: https://afternoon-castle-5024.herokuapp.com/)

	Deploy the client with the latest release [https://heroku.com/deploy?template=https://github.com/ushahidi/platform-client/tree/release] or the latest development code [https://heroku.com/deploy?template=https://github.com/ushahidi/platform-client/tree/master].
Make sure you use the same version as you did for the API.

	Again, Pick an App name for your deployment

	Set Backend URL to the URL of the API app you just created (ie: https://afternoon-castle-5024.herokuapp.com/)

**Important: make sure you don’t include the trailing slash **

	Leave other config as-is

	hit Deploy for free

	.. and wait (the client takes much longer to deploy)

	Click View and check out you’re new deployment

	Log in to your new deployment

	By default there is a single user

username: admin

password: admin

Follow up: configuring scheduled jobs for fetching/sending messages

layout: page
title: “Installing Ushahidi”
subtitle: “”
date: 2015-04-23 22:53:00
categories: top
weight: 1

Ushahidi can be installed on several operating systems. We have different instructions depending on what type of user you are:

Just trying it out?

	Installing on Heroku

	Install with Vagrant + a NodeJS dev server

Installing in production

	Install on Linux

	Not recommended: Windows or Mac

Getting set up for development

	Install with Vagrant + a NodeJS dev server

After install

	Video tutorials coming soon

{% assign pages = (site.pages | sort: “weight” | where: “categories”, “install” | where: “hideFromMenu”, false) %}

layout: page
title: “Installing on linux”
subtitle: “”
categories: install
weight: 0

	Installing the API
	Getting the api code

	System Requirements

	Set up the database

	Set up URL rewrites

	Enable writing logs, cache and uploads dirs

	Installing dependencies

	Installing the client
	Getting the client code

	Building the client

	Configure nginx or apache

	Logging in the first time

Installing the API

Getting the API code

First, you will need a copy of the source code, which lives in our Github
repository:

git clone https://github.com/ushahidi/platform.git

Once you have the code, the next step is to prepare a web server.

System Requirements

To install the platform on your computer/server, the target system must meet
the following requirements:

	PHP [http://php.net] version 5.4.0 or greater
	The following php extensions enabled: curl, gd, imap, json, mcrypt, mysqlnd (optional)

	Composer [http://getcomposer.org]

	MySQL [http://mysql.com] database version 5.5 or greater (PostgreSQL support planned)

	Apache [http://apache.org] 2.2+ or nginx [http://nginx.org]

Set up the database

To create a database, first login to MySQL as root.

mysql -u root -p

Using the -p is only required when your MySQL configuration requires it.

You may need to use the -h option to specify localhost or 127.0.0.1
if you are unable to connect.

Next, create a new user and database for Ushahidi. The username and database
can be anything; we will use ushahidi for both in this example:

CREATE DATABASE ushahidi_db;
GRANT ALL ON ushahidi_db.* to ushahidi_user@localhost IDENTIFIED BY 'ushahidi-db-password';
quit;

Now create a .env config file in the base of repository. Make sure that the database, username, and password match the database you just created.

DB_HOST=localhost
DB_NAME=ushahidi_db
DB_TYPE=MySQLi
DB_USER=ushahidi_user
DB_PASS=ushahidi-db-password

Set up URL rewrites

Rename httpdocs/template.htaccess to httpdocs/.htaccess (for Apache)
to enable rewriting of all non-existent files to index.php.

If you are unable to enable rewriting, then you’ll need to customize the init settings.

	Copy the application/config/init.php file into application/config/environments/development/ (create this directory if it doesn’t exist).

	Edit init.php and set index_file to "index.php" to include index.php in your URLs

A note on urls, docroots and base_url

Typically, Ushahidi is run under a separate virtual host / domain name. Be
sure to make platform/httpdocs/ the DocumentRoot (for Apache) or root
(for nginx) setting in your virtual host.

If you are running Ushahidi via http://localhost/ then the base_url will be
http://localhost/platform/httpdocs/

Enable writing to the logs, cache, and upload directories

The webserver will need write access to logs, cache and upload directories.
To do this run:

% chmod 0777 application/logs application/cache application/media/uploads

OR

% chown www-data 0777 application/logs application/cache application/media/uploads

Its generally better to use chown to set the owner of the directories to the user the web
server runs as, rather than making them globally writable.

Installing dependencies

We use Composer [https://getcomposer.org/] to manage server side dependencies.
Once you have installed composer, you can run the update script with:

bin/update

Whenever the repository is updated using git pull, run the update script to
ensure that your installation stays updated!

If you are updating a production deployment, you will want to avoid installing
developer dependencies (testing tools, etc) by using the “deploy” option:

bin/update --production

Extra: Customizing configuration

Base config files are in application/config/.

You can add per-environment config overrides in application/config/environments/.
The environment is switched based on the KOHANA_ENV environment variable.

Installing the client

Getting the client code

First, you will need a copy of the source code, which lives in our Github
repository:

% git clone https://github.com/ushahidi/platform-client.git

Client dependencies

First you’ll need nodejs or io.js installed,
npm takes care of the rest of our dependencies.

	nodejs v0.10 or v0.12 or io.js v1.2
	We recommend using NodeJS builds from NodeSource [https://github.com/nodesource/distributions] or using NVM [https://github.com/creationix/nvm]

	Build tools for building native addons from npm:
	Debian users install the build-essential package

	Fedora users install gcc-c++ and make

	nginx or apache2

Building the client

	Clone the repo

git clone https://github.com/ushahidi/platform-client.git

Note: if you’re getting set up for development, you might want to fork the repository first.

	Navigate to project root

cd platform-client

	Install Build Requirements

npm install -g gulp

	Install Packages

npm install

This will install both NPM and Bower dependencies! No separate bower install command is required.

	Set up build options. Create a .env file, you’ll need to point BACKEND_URL at an instance of the platform api [https://github.com/ushahidi/platform]

BACKEND_URL=http://myapi.server/

	Run gulp

gulp build

You should now have a client build in server/www.

Configure nginx or apache

Nginx:

	Copy the virtual host config from server/nginx-site.conf into your nginx conf dir (/etc/nginx or /etc/nginx/sites-enabled)

	Edit the config:

	Set server_name to whatever domain you plan to use

	Replace root /var/www with the path to server/www ie. platform-client/server/www

	Include the config in your nginx.conf (usually located in /etc/nginx.conf) by adding the following

include /etc/nginx/ushahidi-site.conf

	Restart nginx

	Load the new vhost in a browser

Apache2:

	Copy server/rewrite.htaccess to server/www/.htaccess

	Create a new apache vhost and point the docroot at server/www

	Restart apache

	Load the new vhost in a browser

Logging in the first time

The default install creates a user admin with password admin. Once
logged in this user can create further user accounts or give others admin
permissions too.

layout: page
title: “Chapter 5”
subtitle: “Data & Data Models”
date: 2015-04-23 22:35:00
categories: user-guide
weight: 5

The word DATA derives from the Latin for “to give”; thus, data are really GIVEN FACTS, from which additional facts can be inferred… A given fact in turn corresponds to what logicians call a TRUE PROPOSITION; for example, the statement “Supplier S1 is located in London” might be called a true proposition. It follows that a database is really A COLLECTION OF SUCH TRUE PROPOSITIONS.

C.J. Date, An Introduction to Database Systems

Ushahidi is designed to allow many sources to contribute facts to a central dataset, from which analysts might infer additional facts. For example, many sensors reporting rising water in one village will allow analysts to infer that water is going to rise downstream. Many people reporting fraud at a particular polling site will allow analysts to infer that something is amiss; they may then choose to correlate voting patterns with the allegations of fraud.

For all the power of transparency, data is not itself a force for good or even for change. Data can drive informed decisions, but only when their analysis is more compelling than the narrative already in the head of the decision maker. More often than not, evidence fails to overcome the inertia of history: a manager will default to actions that have usually worked in the past, regardless of any changes or new approaches that new or data or unfamiliar dynamics might suggest (see ALNAP study, Insufficient Evidence). For example, even if sensors say that a flood is particularly bad, a person who knows the place only gets mild flooding may choose to take actions inadequate to the actual scale of the emergency.

Your job in developing the design for your data collection works back from the decision that needs to be made. In general, this work takes two forms: 1) providing data around a signal or trigger for a course of action within an existing system (such as a logistics supply chain); or 2) advocating for changes to behavior (or mindset) based on making some dynamic more legible or transparent (such as election fraud or crisis mapping). The questions for each option differ:

	Are you driving an operational decision in an existing system? If so, what data are needed to drive those decisions? How does data currently flow in the existing system? How would Ushahidi alter the architecture of these data flows? Would Ushahidi be a net positive or would it only help in one particular stream of data? Would it augment the existing flows or replace them? What are the issues around disruption of flows?

	If you are working to change the structure of the system, whose mind are you trying to open? What is the mental model that he or she has of the problem? What actions have worked in the past? What evidence would it take to open his or her mind to a different course of action?

This chapter will help you to move from your answers to these questions to a data model: an architecture for collecting, storing, and querying an assembly of facts from a set of human or automated sensors.

Knowing Your Data Needs

While it is tempting to start building a custom form for your deployment, there is an art to creating the data model and the management process around its security, collection, curation, analysis, reporting, and archiving. We recommend engaging in a process that defines the minimal viable model for the decision that needs to be made alongside this business process.

Too often, organizations take a kitchen sink approach: they create long custom forms and discover that they end up with inconsistent data entry and incomplete data sets. When data are in such a state, it is often difficult—or even impossible—to infer additional facts from the database. Worse, managers discover these challenges with security, privacy, partners, field sites, or communications network too late, and these issues often defy inexpensive fixes.

Start small. Know what outputs you need to create and how data will flow from their sources to those outputs. Managing these flows will be far easier when a simple data model is built around all the potential opportunities and constraints of the place where you are working.

1. Define the spatial and temporal bounds of your data collection efforts

You will collect data over a defined geographic region, time period, or (most commonly) both.

What is the target area for your data collection efforts? Projects that span a larger geographic region often require more planning, time and resources. In many parts of the world, languages vary across the country. When using SMS or IVR and the crowd as your data feeds, it may come into the platform in many different dialects. Organizing a translation team will likely require recruiting staff and/or volunteers with coordinators familiar with these needs for translation and cultural content interpretation.

{ seek example here }

When do you plan on opening and closing your data collection? How does this align with cultural, religious, national, or local events? Are there other surveys slated for the same period, perhaps on a similar topic?

Are you planning on a multi-year project to encourage citizens like tourists and conservationists to report the sighting of vultures in Namibia? The Vultures of Namibia project started nine years ago and covers the entire country of Namibia. This requires planning and outreach to spread the word to report over such a large geographical area. It also requires data collection over a longer period of time.

Another project is the Christmas Lights in Houston project. This project has a smaller target area in one city within the United States over a short time period, from December 7th to 17th.

2. Survey the Environment and know your data capacity

Managers of successful deployments recommend surveying the way that data currently flows from remote sites to your analytical team. When possible, go to a remote site and explore the challenges that local staff have around the simple act of sending an SMS, tweet, or email. What days of the week do they have power and Internet? How reliable are these connections? Are there backups, such as a generator or satellite internet connection? Are the cell towers always on? What is cellular coverage like? Do their cell phones have keyboards that support the local language? Do their computers have backup drives or uninterruptable power supplies (UPSs) so that someone can shutdown gracefully before losing data? Is the only way to get data to Ushahidi by driving a computer with the data from a disconnected remote site to another place which has an Internet connection? Who drives the motorbike or van between sites, how often, and at what cost?

3. Define Security and Privacy Guidelines

The context for your work will define what kind of security protocols your staff will need to build around the data flows, as well as the privacy concerns that you will need to manage around the way that you release any data.

Are your data going to describe dynamics that challenge the political, social, cultural, or religious status quo? Will your sources be taking a risk by submitting the data? Are the pathways by which the data will flow secure? Is there a relationship between the national telecommunications provider and internal security services, gangs, or other groups which may be able to exact retribution on your sources?

Once the data is on the Ushahidi server, what level of security will be necessary to protect the data? Would individual reports or the aggregated data be targets for cyberattacks or cybertheft? What are the potential consequences of an unplanned release of your data on your sources, your organization, or the local context?

{extend}

Considering the risks and privacy issues is a responsibility of you and your team during a Ushahidi or Crowdmap Project. This starts from designing your project goals and objectives and we will help provide some tips here on how to integrate safe practices into planning your data model and data collection. Consider the following.

As your team determines what types of data to collect and how consider the following:

For example your project is planning to collect information using SMS short code. The plan is to collect the names and locations of reporters for a corruption project. Ask members of your partner groups how they feel about sharing this information.

Consider the following questions.

	Will this endanger their lives during a conflict?

	Will this cause their family and community scrutiny from government official if they report corruption about their homes?

	How do people and communities feel about being reported by others in their community? Is this acceptable?

	How might they change the data model or collection to ensure privacy of information and acceptability to their members involved?

Reporting, collecting and sharing data using the Ushahidi software or crowdmap software is a responsibility not only to your partners but also to the communities and the crowd.

Defining your Outputs

Your data will rarely be given to a decision maker in their raw form. More often, you will be presenting some kind of analysis that makes one or more assertions based on the data. Your terms of reference may specify a particular kind of report that you need to communicate, or you may be using the data as an input into an advocacy campaign. You may use visualizations to convey this point; you may just use charts or a purely text-based narrative. In each case, you have an output in mind (even if its design remains inchoate).

Defining this output is a critical aspect of building your data model. If you do not collect what you need, you will not be able to make assertions based on evidence. If you collect too much, you may be overloaded not only in information, but the management of a campaign with unnecessary complexity and (potentially) cost overruns.

Decision Makers Needs

Who is making a decision based on the data? Are you changing the minds of a population facing an epidemic of violence? Are you driving a donor to make an investment in your organization? Are you engaging in continuous monitoring of a parallel project so that you have better data for your M&E team?

Regardless of who you are trying to reach, ask these questions:

	Where do these decision makers sense uncertainty?

	What data would reduce that uncertainty?

	What is the minimum amount of data necessary to drive a decision?

Information Overload

With data, organizations often think ‘more is more.’ More data means more time devoted to cleansing it (data munging), correlating it (statistical analysis), and building a story (reporting)—all of which contribute the perception of being overloaded with information. When you lack the resources to ensure that a large campaign is collecting complete and accurate data across a large region, time span, or both, much of the data collected is irrelevant, incomplete, inaccurate, and/or questionable veracity. Ask yourself these questions:

	What is your organization’s capacity to ensure that your data collection process is accurate and complete?

	How much capability can you mobilize to check the veracity of your posts and/or messages?

	What analytical capacity does your organization have to work with large, sometimes messy datasets? Who will perform the work and what experience do they have with preparing SMS social media data for analysis?

Analysis and Visualizations

Although Ushahidi was originally built to put dots on a map, the v3 platform removes the assumption that you are building a geospatial analysis. You can now choose the way that you visualize your data: charts, graphs, and/or maps. This freedom also gives you more responsibility to plan what data you will need for your visualization.

	Do you need temporal series?

	What kind of sampling method will you analysts be using and what do they need?

	Are there ways your form needs to be structured to allow for the survey techniques that your analytic team needs?

Data Collection Methods

Whether you are collecting data from Twitter feeds, a digital data collection tool, or SMS messages from short code, it needs to be collected, managed and processed to fit the goals and objective of your project.

Primary or Secondary Sources

Data collection can come directly from your sources (from the crowd or your project partners) or imported from an existing database into the platform. With the new capabilities of the v3 platform, data could come from both simultaneously. You will need to develop an approach to managing both your primary sources (from direct observation or from sources that report on behalf of others), as well as your secondary sources (datasets and data pulled in via API from social media).

Here are some questions to consider:

	Will those sending information to the platform be directly observing or will they be reporting on behalf of another person or group?

	If the data or report sent to the platform is observed and includes urgent or sensitive information, how will you determine how accurate the data is for decision and action?

For example the WaterTracker project collected community-level data of direct observations of broken water sources. Community members in Afghanistan reported their observations using short code and IVR (Interactive Voice Response) technology that was linked to their Ushahidi platform.

The Anti-Eviction Mapping Crowdmap Project aims to “highlight struggles of increasing inequality across the Bay Area and create a community around those wishing to remember neighborhood stories and character”. The project uses both primary and secondary data. There are original radio transcripts from evicted persons as well as news stories about those evicted from their homes.

Tips and Resources

Data Collection Do’s and Don’ts . Don’t just collect it because you can. Have a purpose. Anticipate the people side of data and your Ushahidi platform. How will you manage and re-organize your data. What can you do to ease this process as you collect the data? What is necessary to do post colleciton? Does your pre-existing data or collected data need fusion or merging? Who might do this on your team?

Posts & Messages

Ushahidi offers a method to handling your various data sources: posts and messages. Posts hold information from your primary sources where you are able to structure the data within your data model(s). Messages are from your secondary sources (Twitter and other social media). Messages also provide a private backchannel for emails from a bounded list of trusted sources.

The big difference is this: Posts are where you get to control the structure of the data. Messages are where your source controls the structure of the data.

Posts

SMS Posts

Web Posts

Messages

Email Messages

Social Media Messages (Twitter)

Posts and Messages Configuration

Email

Server settings: POP|IMAP, etc.

FrontlineSMS

Key, FrontlineCloud API URL

Nexmo

From, secret, api key, api secret

SYSync

Android App, Android App Settings/Secret

Twilio

From Phone, Account SID, Auth Token, SMS Auto Response

Building a Data Model

Data Model from Deployment Types

Human Rights Evidence Gathering
Crisis Reporting
Citizen Journalism
Election Monitoring
Health Mapping
Poverty Mapping
Sensor Tracking

Custom Forms

Toolkit will give overview of thinking about forms, manual will examine what can and cannot be done with individual field types. This page will be in two parts:

	How to think about forms

	How to build forms.

	What forms will and won’t allow you to do with filtering and sets

	Forms and Mapping and visualizations

May split into multiple files
Matching data collection needs to post structure

Managing Forms

Field Types
Text
Text Area
Number (Decimal)
Number (Integer)
Select
Radio
Checkbox
Checkboxes
Date
DateTime
Location
Creating a Form
Editing a Form
Deleting Forms

Categories & Tags

Planning categorization of posts and messages
Categories
Tags

Resources

Categorization: Sometimes Less is More Ushahidi allows users to create and visualize categories to help organize and analyze data. But sometimes category lists get out of control, slowing report processing and compromising accuracy, or at least consistency. What I learned about the way the U.S. Armed Forces use categorization and maps at the Esri User Conference in San Diego provided an interesting lesson – when it comes to categorization, sometimes less is more. http://blog.ushahidi.com/2011/08/16/categorization-sometimes-less-is-more/

What is Georeferencing?

The term “georeferencing” broadly means associating something with a location in physical space. In an Ushahidi deployment, reports and their accompanying images, videos, or links to other content can be georeferenced to provide new insights about the content of the reports such as, “are human rights abuses being reported in one part of a city more than another?” This process is sometimes referred to as “geocoding”, which generally means deriving geographic coordinates from other location information, such as an address, or “geotagging”; the process of adding geographical identification metadata to various media. We use the term “georeference” as a general term for the sake of simplicity.

Georeferencing is an important part of Ushahidi’s functionality and is best considered before launching a deployment to ensure consistent quality of geographic information across reports. In many cases, georeferencing is performed manually by those making a report or by those managing the deployment after the report has been entered. Some deployments may desire a great degree of geographic precision, such as associating a report with a precise building or cross-street, while others may only require less precision such as associating a report with a town, city, or village. In any event, understanding your needs, and communicating those clearly to the users and managers of your deployment is critical to ensuring quality georeferencing.

How georeferencing works using Ushahidi

We find that many first-time users of Ushahidi assume that incoming reports are “automatically” georeferenced by the software. While some parts of this process can be automated, georeferencing often requires the work of a human being at some point during the process: this is especially true when receiving incoming short message service (SMS) reports from dumb-phones or feature phones that do not have a global positioning systems (GPS) unit. Good georeferencing will be largely contingent on your ability to communicate the type of descriptive geographic information you need to accurately geocode reports to those who will be reporting to the deployment. For example, do not say, “include location in your report.” This is too vague and can be interpreted in a wide variety of ways: are you asking for latitude and longitude (which few people will know); or a country name; or an exact address? Rather, do say, “in your report, include the name of the city or village that you are in, followed by any further information such as an address, street name, or specific building or landmark associated with this report.” The more clearly you can communicate your needs the better.

In Ushahidi, users georeference reports via a map interface that allows them to drop a marker by hand or, if connected, use a geocoding service, such as Google or Geonames [1], to search for place names, addresses, etc. Users can often search for an address or place via the geocoding service, which will place their marker in the general vicinity, and then further refine the precise placement of the marker manually. Remember that place names may have different spellings, or different names altogether, in different languages. Test any geocoding services you use before hand to spot any potential problems that can be caused by this.

If you’re deployment is dependent on those making the reports to georeference them you will need to communicate the level of precision you require: make this part of your communications strategy. You may want to add form fields to the reporting screen that that allows users to describe the level of geographic precision they used while making the report. You can make these subjective terms such as “neighborhood level”, “city level”, etc. or use clearly defined categories. One example of this is the “geographic precision code” used by the International Aid Transparency Initiative (IATI) to clarify the geographic precision of reported development projects [2]. This standard allows analysts using IATI data to sort reports into comparable levels of geographic precision or aggregate reports in a way that they may be geographically comparable by assigning each record a number that corresponds to a specific level of geographic detail.

If your deployment has dedicated managers to assist in geocoding reports be sure to including geographic precision in any training or communications that they receive. Talk with them about the ideal level of geographic precision for reports but understand that their ability to precisely georeference a report will be dependent upon the contents of that report. Reports may only contain a city name even though you are asking for exact locations. Communicating the type of geographic description you need from those making the reports is critical: make this part of your communications plan. Talk to your team about best practices given the contents of reports and agree on a consistent way to georeference. Take time to practice: ask friends to create test reports that you and your team can experiment with.

For the most precise georeferencing, we recommend using mobile applications, such as the Ushahidi app (available for iOS or Android) to report to a deployment. Users must allow the app to access the mobile’s GPS unit for the greatest accuracy. Once this is done, reports and images will be automatically referenced with latitude and longitude. Even though reports will automatically be georeferenced, GPS units are prone to error. Large vertical objects, such as trees or tall buildings, can deflect or block signals that a mobile’s GPS units needs to take an accurate reading. While different devices will have different levels of error, it is reasonable for you to assume that most mobile devices will provide a GPS reading within 10-20 meters of the actual location at the time of reporting.

Basemaps

Social Media

Resources

[1] Further information about the Geonames geocoding database and the Google geocoding API can be found using these links. For further information about other geocoding services see this Wikipedia page. [2] The International Aid Transparency Initiative’s standard for clarifying the level of geographic precision for reporting of development projects can be found here.

layout: page
title: “Introduction”
subtitle: “Ushahidi as Testimony”
date: 2015-03-24 17:31:20
categories: user-guide
weight: 0

“People become the stories they hear and the stories they tell.”

— Elie Wiesel, Nobel Laureate for Peace

Ushahidi was born from calamity. When the 2008 Kenyan elections descended into social conflict, a few of us who came together around an idea. As activists and technologists, we asked: what if we created a platform that would allow Kenyans to report incidents of violence in their neighborhoods? What if this tool harnessed a common technology—the cell phone—so that any anyone could submit a report via text message/SMS? What if we made it possible for everyone to see these reports and develop a consciousness about what was happened to our country?

While the idea was simple, the process of building software and business process raised deeper questions. What would a minimal report look like? How would volunteers then verify each report and approve it for public release? What would be the best way to post all the verified data for the world to see? And who would staff that project?

Rather than seeking to solve every potential problem, we built a simple and admittedly imperfect solution. Over a few days, our team agreed on minimal functionality, sketched out the workflows, and developed a stack of software code that allowed anyone with a cell phone to turn a report into a dot on a map. We called this new tool ushahidi: the word for testimony in Swahili. Then we launched it for Kenyans to use.

Over the weeks after the election, the Ushahidi platform collected thousands of reports. Volunteers took thousands of small observations and built the outlines of a larger story, making it possible for the public to see a growing narrative of violence on the Web. From the contributions of many voices, Kenyans had formed a collective understanding about their shared experience of social strife.

The first version of the Ushahidi platform had been born, and with it, a movement to harness the power of the crowd.

Giving Testimony to the World

The Ushahidi model resonated with other activists and journalists around the world. In 2009, the Pajhwok Afghan News hired Small World News to train its journalists in the use of citizen-generated reports to monitor the second election under Afghanistan’s constitution. This effort harnessed SMS reports collected via Ushahidi as well as social media reports from other sources, including Twitter. “Alive in Afghanistan” applied it to election monitoring in 2009 and 2010.

The lessons learned from this work fed directly into an effort to apply Ushahidi to the humanitarian operation after the 12 January 2010 earthquake in Haiti. Ushahidi@Tufts monitored 35K reports after the Haiti earthquake for the needs of the affected communities.

[others TBD, to expand]

A problem emerged from all these deployments: giving voice to the general public almost always requires recruiting and managing a smaller crowd—a team of trained volunteers who verify reports and often translate, geolocate, and categorize them for analysis, visualization, and reporting. We built most of the software to enable this invisible team.

As a result, the common perception of Ushahidi is that the platform is an SMS framework that aggregates messages from many cell phones, when its true magic happens on the back end. It is here that volunteers can collate messages from SMS/text messages from multiple services, Twitter, news feeds, and emails. It is here that those volunteers make sense of the information flows, turn them into maps, and make them available for the public.

A Great and Growing Responsibility

While there is great power in giving voice to citizens in countries where collective action drives change, there is also great responsibility around the management of crowd-submitted data, much of which is invisible to the general public. The Ushahidi SMS platform must be seen not just as a method for collecting reports from many contributors, but also (and primarily) a tool for a smaller community of committed individuals to categorize, verify, and analyze the assembled data.

As Ushahidi grew from a quick hack to a platform for general use, the developers and community of deployers had to build new features to support use cases of a growing range of organizations. We needed to confront security holes, enable easier integration of mainstream news and tweets from trusted sources, and turn all the dots on a map into a narrative that decision makers could apply to their needs.

We added software at an increasing pace. We added alerts to trigger messages when certain events happened, workflows to enable teams to track the state of any report through the verification process, and integration with social media.

All the while, code piled on code. One class overloaded another. One security patch opened vulnerabilities in another vector. Eventually, no amount of security audits or refactoring could turn an architecture that had been designed around ‘putting dots on a map’ into a the sophisticated analysis tool that the Ushahidi community needed.

We knew that the game of software whackamole had to come to an end. Our team needed to make some difficult choices. What we did turned out to be harder than we ever imagined. We rewrote Ushahidi from scratch. That story requires a bit of telling…

layout: page
title: “Chapter 2”
subtitle: “Building Your Campaign”
date: 2015-03-24 17:31:20
categories: user-guide
weight: 2

Ushahidi is a tool, not a strategy. It can help you achieve a goal, but only if you have first decided what you want to do. The decision to deploy Ushahidi must be preceded by a larger set of questions about what you want to accomplish. This section will take you through a process of building this strategy and the design of your campaign to reach your goals. While each organization will have its own approach to scoping out a project, one way to explore an Ushahidi deployment is through the following steps:

	Define your Objectives and Goals Defining what you are trying to accomplish is key to success. Understanding your group or organization’s goals and the individual objectives required to achieve them will help you define your specific activities and how the Ushahidi platform or Crowdmap can help you accomplish them.

	Identify Partners Partnerships are key to the success of your project. From local CSOs to government ministries and international organizations, partners give access to data, volunteers, local knowledge, and resources (both technical and financial).

	Understand what data are necessary to achieve your goals Take the time to think about why you are collecting data in the first place. What kind of data do you need to collect and how will a specific analyst use that data? Will the stories or reports you aggregate be used for evidence in a human rights campaign or election monitoring project, or will they be used to build situational awareness around a crisis? Is the effort a first step to putting health facilities on a map, or is your effort a means of tracking the supply chain signals necessary for keeping those hospitals stocked with a specific drug?

	Design your approach to Data Different partners may require data to be in specific formats or to adhere to certain standard. Different use cases will also necessitate different forms of data. Designing your data collection method and data model will be critical to your success. It is here when you will decide if Ushahidi is the tool for your project, or just one of several tools that you will need to reach your goals.

	Design your Team Ushahidi can provide the platform for collecting and processing data, but it is not a silver bullet. Staff and participants must be organized and managed to do the work. What kind of staffing is necessary to collect, cluster, deduplicate, translate, geolocate, verify, analyze, and visualize data from an Ushahidi deployment?

	Secure Resources No project proceeds without people, funding, and the technical resources to achieve your goals. What resources do you need to make your project a success?

	Establish Project Management Processes Timelines, volunteer schedules, technical development work plans, and terms of reference. Scheduling shifts and staff time is a critical path to success. Volunteers need structure, and data needs consistent handling.

1. Define your Objectives and Goals

Thinking about the goals and objectives of your Ushahidi project is one of the most important investments you can make to set up your team and organization for success. At Ushahidi, we differentiate goals and objectives from activities. Each activity in your deployment should be a tractable action that contributes to one or more objectives. Each objective should be a phase or thematic area of your overall project, designed to help you meet an overarching goal.

For example, during an election monitoring deployment, the primary goal may be to guarantee transparency around voting. One objective under that goal might be to capture reports of fraud. A common activity in fraud tracking is to enable citizens to report election fraud via SMS. Another activity is to map and categorize all polling stations. Another is the process of verifying reports of fraud and mapping them by polling station. Each contributes to the overall goal.

Stating your Goals

Articulating your goal outside of the technology is a good exercise. You should try to complete the following sentence: we are mobilizing (who) to do (what) so that we can (why)? The Who is your target participants. The What is one or more key objectives. The Why is one or more goals. For example: we are mobilizing women to document incidents of sexual harrassment so that we can create consciousness of how prevalent the behavior is and create data necessary to obtain donor funding around education in the effects of harrassment.

2. Building your Objectives

You may need to meet one or more objectives to meet a specific goal or goals. Break down the goal into phases so that you can state these objectives to your team. A harrassment mapping project might have as objectives:

	Document incidents of sexual harrassment in 15 neighborhoods over a period of 6 months.

	Develop a report for government ministries and local NGOs about harrassment based on the data

	Draft a funding request for donors to support additional education work in sexual harrassment’s effects targeted at men in 15 neighborhoods.

Turning Objectives into tangible actions

Each objective will need to have activities set against it. For example, the objective of “documenting incidents of sexual harrassment in 15 neighborhoods over a period of 6 months” might break down as follows:

	Recruit 30 neighborhood coordinators to educate women about the initiative and ask them to commit to

	Train neighborhood coordinators in the research methodology

	Deploy the Ushahidi platform in partnership with the local telco

	Collect observations of sexual harrassment

What is the difference between goals and objectives?
If a given project has achieved the organization’s clearly stated goal and objectives, then the project is considered successful. To make it clear, consider that the goal is achieved by accomplishing a number of objectives; objectives are achieved by producing a set of outputs; and outputs are produced by implementing a series of activities, which are concrete events or services.”- Ushahidi Blog

Sometimes, Ushahidi or Crowdmap is part of the first steps of a whole new initiative. This is exciting and spending the time to think first about your goals regardless of technology can set you up for success.

SIDEBAR: Ushahidi cannot solve all problems: it is a platform to allow a network of observers to contribute data and a network of analysts to make sense of those data. We have heard of it being considered for customer relationship management, document management, and other use cases beyond the scope of what it is capable of doing.

3. Identify Partners

Partnerships are key to the success of your project. From local CSOs to government ministries and international organizations, partners give access to data, volunteers, local knowledge, and resources (both technical and financial). The structure of many crowdsourcing efforts are also becoming multi-institutional collaborations, described by the mantra of “small pieces, loosely joined.” One group handles mapping, another translation, and a third performs data analysis.

 Uchaguzi Partnership
Before the referendum Uchaguzi partners met in Nairobi. Attendees included CRECO, SODNET, Ushahidi, Uraia, and HIVOS. Each group had unique assets and complementary strengths. For example CRECO had previous election monitoring experiences and a large trusted network of monitors. Ushahidi served as the core technical partner for the project, providing developers and convening volunteers. The collective action among all five organizations was a success. Despite many challenges and areas for future improvements a single organization would not have succeeded alone because no one group had all the necessary skills and resources.
Whether you will running an Ushahidi instance solely within one organization or as a mutli-institutional partnership, it is wise to map out the space where other organizations can contribute to your effort.

Choosing your Partners

When choosing partners, consider several factors:

	Is the organization undertaking work in a similar context?

	How trusted is the organization in the communities that you would like reach?

	What contextual knowledge would the partner provide?

	Can the partner share its resources, including workspaces and local relationships?

	How open is the partner to working in new ways and facing the challenges of learning in a collaborative dynamic?

In information insecure settings such as conflict-driven complex humanitarian crisis and human rights reporting trusted partnerships are very important; not only for the success of the project, but often for the safety of those involved.

Understanding your partner’s working environment

If you have a partnership with a CSO, community-based organization or partner in a limited digital environment plan ahead with both resources and time to ensure that they are able to join meetings and conference calls. If possible, consider arranging a meeting in their location, especially if they are linked to communities that you intend to crowdsource information with. Experiencing the reality of how a digitally limited environment will connect with your Ushahidi project. This can provide valuable design lessons going forward.

Getting to know each other and building trust

Discovering and shaping how your partners are working together takes time. During the 2010 Uchaguzi referendem, the project drew together 5 major partners. It was essential to bring them together for face-to-face meeting not only for planning, but to help each of the principles to recognize each others’ strengths and how their organizations might complement one other. Face-toface meetings were also the way that partners worked out their expectations of each other and defined (and honed) their respective roles and responsibilities.

3. Understand what data are necessary to achieve your goals

Because you are planning on using the Ushahidi platform or Crowdmap as part of your project, you will be working with information and data. Frequently projects not only collect data in many different ways, but also share data; sometime publicly or with partners. Thinking closely and working with your team members to design how your data will be collected, organized, and shared using Ushahidi or Crowdmap is key.

Take the time to think about why you are collecting data in the first place. What kind of data do you need to collect and how will a specific analyst use that data? Will the stories or reports you aggregate be used for evidence in a human rights campaign or election monitoring project, or will they be used to build situational awareness around a crisis? Is the effort a first step to putting health facilities on a map, or is your effort a means of tracking the supply chain signals necessary for keeping those hospitals stocked with a specific drug?

Understanding how the data will be used will help you define the structure of the collection, the methods of curation and verification, and your approach to sharing the data.

4. Design your Approach to Data

While the Ushahidi platform will help you collect, organize, display and (sometimes) communicate your data, it will not automatically collect data for you, nor will it magically recruit a crowd. You must first develop a strategy to engage participants to collect and curate the data that you need for the analytical challenge that you need to tackle. You must develop a crowdsourcing strategy as part of your campaign to achieve a goal.=

To build this strategy, you will need to first understand your choices around crowdsoucing methods and how crowdsourcing relies on techniques from grassroots organizing. This chapter will lead you through these decisions and then layout one process for designing an Ushahidi deployment. The output will be a document that describes your approach to your team, partners, and the communities that you wish to reach.

###Crowdsourcing: Outlining Your Choices

Over the past 8 years, Ushahidi has become synonymous with crowdsourcing. That said, this association mixes up a tool for data collection with the method of data collection. While crowdsourcing is one way in which organization collect data via Ushahidi platforms (and is often the way in which data gets analyzed), it is not the only way. Clients have used Ushahidi as a platform for collecting and curating data using only their internal staff around traditional survey methods. Some have even used Ushahidi as a platform for tracking data streams from automated sensors, with no humans directly involved.

The way you choose to use Ushahidi will depend on your goals and preferred mechanisms for handling data. While crowdsourcing information through SMS, Twitter, Facebook and other social media can have powerful results, it is not a magic bullet and requires an investment in communicating “with the crowd”. This investment may well be as expensive as traditional methods—perhaps more so on your first go round.

If you have an ongoing project and want to collect the opinions from the public over the year, this work will require a campaign strategy and resources to keep your public community informed of your project. You will need to think about how you will keep the community engaged and find creative ways to make this happen. This might include a feedback strategy, games, and even in person meetings, depending upon your environment.

Quote Crowdsourcing, the idea of soliciting information from citizens and relying on their participation to achieve certain goals is almost 10 years old. We ourselves, have been building products that allow users to collect, curate and visualize information since 2008, relying solely on the power of the masses. - David Kobia, Director of Technology Development, Ushahidi’

This section will help you decide on your method of data collection and data analysis. Either or both can be crowdsourced, or the effort can be kept entirely in house. Which option you choose will be based on the use case, available resources, and strategy for citizen engagement.

Methods of Data Collection

Ushahidi can support several modes of data collection and analysis. The four most common use cases are unbounded and bounded crowdsourcing, traditional survey and analysis methods, and automated sensors.

####Unbounded crowdsouring

For events with wide reach to the general public, Ushahidi can enable you to include anyone in the public space who is aware of the campaign and has learned how to send information via SMS, social media, email, or the Web. This approach can enable you to collect large volumes of information. However, because the general public tends to send information that is formatted in a wide variety of syntaxes, it needs cleansing before it can be used. Data collected via unbounded crowdsourcing may not be reliable.

Bounded crowdsourcing

For campaigns that require deeper training or deal with more sensitive issues, organizations often ask a bounded group of individuals or organization to send data into the Ushahidi platform. For example, during the Uchaguzi election monitoring project, trusted election monitors sent information via SMS into the Uchaguzi platform, each of which were then processed by trusted volunteers.

####Traditional Surveys

Ushahidi can support tradition survey methods, where a relatively small team of individuals can send in data using structured survey forms. These data can then be pulled into a statistical analysis tool or online package by professional analysts.

Automated Sensors

Because the new version of Ushahidi is built around an Application Programming Interface (API), it now supports the collection of new data from sensors and other automated channels, including bots and other data collection tools that have APIs.

Choosing an Approach

(checklist to build with Jennifer)

Methods of Data Curation and Analysis

Just as Ushahidi supports multiple modes of data collection, it also supports multiple modes of data curation and analysis. The two most common are to use internal, traditional analysis and to crowdsource the curation and analysis to a pool of volunteers or experts.

Internal Analysis

During most small-to-medium campaigns, an internal analyst will manage all the data curation and analysis. This approach generally uses existing staff who are assigned to the project to manage the data once it arrives in the Ushahidi platform.

####Crowdsourced Curation and Analysis

In contrast, large campaigns often require bounded crowdsourcing to handle 10,000s or 100,000s of messages. This effort requires recruiting, training, and managing an online team of volunteers who will translate, geolocate, verify, and approve each message in a workflow that you will design. This work requires an internal staff member to organize and manage this volunteer workforce. With this approach, analysis may still be done by an internal staff member or team, or it might be crowdsourced to a working group of volunteers. The choice will vary on the sensitivity of the data, proection issues, as well as the complexity of the final analytical product needed. The more complex the work (i.e., the more it requires years of experience and training), the more likely it will be to performed by an individual or team who is specifically chosen for the task, often an internal staff member or consultant hired for the project.

5. Create your Team

Ushahidi can provide the platform for collecting and processing data, but it is not a silver bullet. Staff and participants must be organized and managed to do the work. Based on your choices around data collection, curation, and analysis, you may need to create several teams composed of a mix of paid staff and volunteers. What kind of staffing is necessary to collect, cluster, deduplicate, translate, geolocate, verify, analyze, and visualize data from an Ushahidi deployment?

Operations

Running the deployment will generally entail the following positions:

	Project Manager: the person who is in charge of the overall strategy and management of the initiative.

	Volunteer Manager: the person(s) who are in charge of volunteer recruitment, training, scheduling, and retention.

	Technologist: the persons in charge of the Ushahidi platform, the server environment, and any other technology running the project.

	Analyst: the persons responsible for turning data into insights.

Data Collection

It is tempting to list the “crowd” as the key player in data collection. However, mobilizing public activity is the job of organizers, who recruit other volunteer organizers who (in turn) ask participants to commit to sending data to Ushahidi. Sometimes, advertising can work by itself (e.g., a radio spot asking people to text a certain bit of data to a shortcode or phone number). More often, someone needs to mobilize activity. This team would be responsible for this work.

If you are going to use an internal team or hire a survey firm, this work will instead be performed using staff or consultants which also require project management. There is no silver bullet.

Data Curation

Turning submitted observations into useful data usually requires a workflow that normalizes, translates, geolocates, verifies, and approves messages for use, and sometimes even a process to publish each report back to the public. Often, each of these activities requires a specially trained team of volunteers in a working group.
Exactly which activity will be needed for your deployment will depend on a range of factors.

	How many people are contributing data? Data submitted by thousands of individual contributors will be very different that thousands of reports submitted by a few trusted staff.

	How many languages are involved? If the deployment is happening in an area where the local language differs from the language in which the analysis needs to be written, or occurs in place with multiple local languages, the project management will need to decide on how to handle translation. If translation is desirable, it is something that tends to be done by crowdsourcing quickly (though there can be accuracy issues).

	What geographic accuracy is needed? Reported locations can be confusing in regions where addresses are narratives rather than municipally-assigned parcels. Turning these narratives into GPS points can be very time consuming and require local knowledge. If this level of accuracy is needed, it is likely that a geolocation working group will need to be staffed.

	What level of verification is needed? Verifying individual reports is always important. However, in cases where observations capture events which may have multiple perspectives, or where inaccurate data might be deliberately submitted, verification of each report becomes a critical activity. Management will need to decide on what level of verification is necessary to use an given report in the analysis.

	What data will be released to the public? Many Ushahidi deployments provide a public view of the data. In only rare cases are these public views of the raw reports. In most cases, each publically-available report goes through a verification process and subsequent approval for release. A team will need to be responsibile for making decisions about a) which reports can be made public, and b) what data in those reports needs to be kept private (such as a person’s name, phone number, email, or other personally identifiable information).

	How sensitive will the data be? If the data (ex: Uchaguzi)

Data Analysis

Making sense of available data tends to be performed by a relatively small group of experts. However, this need not always be the case. The collective intelligence of the crowd can be harnessed to build hypotheses as well as a technique to raise awareness about how to use the data. These approaches require staff to manage the analysis process as well as citizen engagement.
(to expand)

6. Secure Resources

No project proceeds without people, funding, and the technical resources to achieve your goals. Identifying resources do you need to make your project a success is a process that depends on scale of your project, the local context, and the technology needed to reach your goals. (Scale, Local Context, Technology).

Ushahidi may be free software, but deployments require time, resources and funding beyond the setting up technology itself. Chris Blow’s diagram provides a good starting point of how to anticipate the resources needed for your project.

Information collection (SMS, Twitter, Digital data collection)

Different information sources can have different costs structures. For example in many countries sending SMS costs money and many projects will seek in-kind donations from telecommunications companies or seek funding to provide free SMS messaging for the unbounded or bounded crowd. In these cases planning the timeline of your project is important. Do you plan a single campaign over a holiday weekend? Or a project that will use SMS and short code for three years?

Other social media outlets such as Twitter may not have direct costs like SMS but have various indirect costs, such as technical staff to link twitter feeds to the platform. (more)

With the new Ushahidi version 3 software there is an opportunity to synergize mobile digital data collection tools with the Ushahidi form functionality. At this time, this requires customization of your Ushahidi platform and technical expertise as well as data management expertise. This will likely involve staffing costs to launch and maintain this type of information flow.

The cost of championing a new idea in a traditional organization

Embarking on a crowdsourcing project in a traditional organization is often spearheaded by a champion; which may be the organization’s project manager, GIS specialist, or technical lead. Often there can be under-recognized demands that your champion may be taking on. Extra hours to create documents and host conference calls to advocate for the next steps of the Ushahid project. Evening hours to maintain relationships with volunteer groups who standby to assist with processing information on the platform. Consider reaching out to the Ushahidi community to connect with former and ongoing champions in similar organizations Seek their advice on how to estimate these costs and how to navigate any resource challenges.

What will is cost to mobilize communities? What transportation costs are associated with sending a mobilizer to a remote place? How much might SMS/text messages cost, or bandwidth

Offline Activities

Despite the fact that Ushahidi is an online tool, many project have offline activities that are crucial to the project’s success. For example face to face meetings with partners in the form of workshops should have a budget associated with it. In addition, community meetings at churches, markets, and other venues can provide the necessary feedback environments for digitally limited members of your project. While they may be messaging via short code to your core team, learning about your project, being able to ask questions and receive feedback may occur offline. Resources such as transport, food, meeting venues may require funds.

Maintaining relationships

	communities

	volunteer groups

	leadership/ head office

Costing Model

What does a typical costing model look like?

	People/Staffing

	Partnerships

	Training/Simulation

	Data Storage

	Campaigning

	Hardware

	Evaluation

7. Establish Project Management

Hiring or assigning your project manager and giving him or her the authority and resources to hire additional positions is a critical first step. The PM will then recruit, train, and manage the processes by which the deployment will unfold. Both staff and volunteers need structure, and data needs consistent handling.

Deployment Types

Organizations around the world have deployed the Ushahidi platform for many purposes: from crisis response and election monitoring to health and poverty mapping and sensor networks.

Ushahidi software has been used for a wide variety of purposes all over the world. We have over 3000 Ushahidi platform and Crowdmap deployments. If you’re thinking about what type of map to consider, read below about our common types of projects. Already have an idea for your Ushahidi deployment? Below are some examples of how they have been deployed and there are are lots of resources below to explore!

Human Rights Evidence Gathering

(more content here)Methods for both citizens and staff of human rights organizations to report evidence of human rights violation. Data is often used for advocacy or as evidence in legal proceedings.

Human Rights Evidence Gathering is an example of a long term deployment than can span months to years.

Crisis Reporting

A set of methods for collecting, geolocating, translating, verifying reports from natural disastesr and crises for situational awareness, advocacy and direct action. They are often either hot flash or slow burn deployments.

Hot flash- Hot Flash deployments such as Haiti Crisis Map, Japan Earthquake and many more are created quickly in response to large scale natural disasters such as earthquakes and floods

Slow Burn - Slow burn deployments continue for weeks to months and evening longer as they track and report on complex humanitarian crisis and disasters which are frequently due to war and conflict their end unclear. An example of a slow burn deployment is the Crowdmap Syria Tracker by volunteer-based non-profit organization Humanitarian Tracker

Citizen Journalism

Citizens are using the Internet to change their world, to give voice to issues that matter to them. Some do this in conjunction with official media organizations while others engage in their own mission. The power of Ushahidi is that anyone can locate, aggregate and provide a platform to unite many voices, many communication channels. Some examples include of citizen media projects include #OccupyMap

Our partners at Al Jazeera, Guardian, BBC, ABC Queensland, Houston Chronicle, Chicago Sun times and more have elected to engage the citizenry in their official storytelling using these tools. Occupy is an important map as they have used it to create their own community and storyline outside of the mainstream media. Their project is extensive with a global network of occupy mappers. Plus their highly customized platform includes a wiki and other tools to make it the center for all activity. This it is more than a map: it is a communications hub and platform in a starfish manner.

Election Monitoring

A set of methods for harnessing citizens to report on actions which impede free and fair elections.

Ushahidi has its roots in election monitoring and has been deployed in a number of countries for that specific purpose. Using crowdsourcing methods harnessing citizens to report on actions which impede free and fair elections. Examples of public crowdsourcing during elections include: India, Mexico, Afghanistan and Lebanon, all in 2009 and Sudan and Togo in 2010. Data collection using trained election monitors, or bounded crowdsourcing can also be done and Ushahidi was used in this way during the November 2009 elections in Namibia and during the 2010 elections in Burundi.

Health Mapping

A set of methods for mapping public health issues in a communities via crowdsourcing. Some Ushahidi maps have health facility or public health categories while some project have a primary health focus. For example the Map Liberia project gathers information about Liberia’s businesses, organizations and government agencies. Health facilities are included as well.

The Mer Swasthya Meri Aawa (My Health, My Voice) project collects information about hidden health care fees for maternal healthcare services in Uttar Pradesh,northern India. On the site you can see clinic locations and hidden costs reported at that clinic.

Poverty and Anti-Corruption Mapping

(add content here) A method for mapping poverty in communities and informal settlements.
Many organiaitons and community groups use Ushahidi and Crowdmap for anti-corruption activists.

Kuhonga’s essential insight is that crisis mapping and crowd-sourcing of data can be used to tackle the slow-motion crisis of endemic corruption…Kuhonga hopes to extend the success of social media by using Ushahidi’s crowdsourcing capabilities to tackle a different sort of social problem. (Ushahidi Blogpost-Kuhonga’s Anti-Corruption Strategy in Kenya)
More anti-corruption resources here

Sensor Tracking

(needs content, not sure john?) A method of connecting sensors directly to the Ushahidi API for periodic reports on conditions in the field.

Environmental Mapping

A set of methods for crowdsourcing environmental and climatic data. https://wiki.ushahidi.com/display/WIKI/Environmental

Resources

More examples of election monitoring
Examples of Human Rights deployments https://www.apc.org/ushahidi/ http://www.iamnirbhaya.me/ https://meetusonthestreet12.crowdmap.com/ http://harassmap.org/ http://tellmamauk.org/ https://womenundersiegesyria.crowdmap.com/

Ushahidi Product Matrix

Ushahidi offers other versions of the its platform than the server-based v3 platform. (get official language from Nat).

• Crowdmap
• v3 Platform
• Red Carpet
• Custom Solutions

layout: page
title: “User Guide”
subtitle: “A guide for deployers”
date: 2015-04-23 22:53:00
#categories: top
weight: 2

{% assign pages = (site.pages | where: “categories”, “user-guide” | where: “hideFromMenu”, false) %}

 {% for p in pages %}

 {{p.title}}

 {{p.subtitle}}

 {% endfor %}

layout: page
title: “Chapter 4”
subtitle: “Configuring the Platform”
date: 2015-04-23 22:27:00
categories: user-guide
weight: 4

This chapter provides you with a first look at the system that you have just installed. For those who have used v2 for several years, the initial load of v3 might be disorienting. The administrative interface is gone, and the new Views interface requires a little getting used to. Whenever one makes a cumbersome but familiar process easier, some will ask for the old way back. Trust us: after a year of working in the new interface on the development server, it is much easier to have everything in one place.

Accessing the new installation

Depending on how you configured the baseurl (see installation), go to the index.php page for the installation.

	Mac

	Linux

	Win

This is now the only url you need to remember; the index.php file is the controller within the new architecture; all pages are accessed via the index.php file, including any static pages (we may want to explain how to set up aliases for various static pages, especially for migrations). See the developer’s annex for a deeper explanation.

First Look

The installation will open to the initial map view with several default reports. You can see that there are tabs across the top: Map, List, Graph and Timeline. These views give you different ways to view posts in your deployment.

In the menu you can also see: Saved Searches and Collections. Each of these will show you a pre defined group of posts. Saved searches - as one expects - show posts based on some collection of filters or search tersm; Collections show a manually curated set of posts. Will dig into both of these features later on in the guide

First Steps

First things to do in v3

Site Settings

Site Name

Site Owner Name

Managing Users

An intro to users in Ushahidi. Roles and permissions. Views and exports limited by permissions, etc.

Roles and Permissions in v3

How roles and permissions work within the v3 platform.

Post Type settings

What is a post type?

Adding a new post type

Post type permissions

Adding steps

Adding custom fields

Managing Users Interface

Each user has the following attributes:

	Email

	Real Name

	Username

	Password (sha1 encrypted)

Users may have one or more roles, such as an admin or participant.

Users might also be Contacts who are sending messages via social media or email (or via an API?).

Roles: Admin, Member, Guest

Setting up admin, setting up initial team

Editing a User

Changing Roles

Deleting Users

View Settings

Map

List

etc

layout: page
title: “Chapter 1”
subtitle: “Designing a New Approach”
date: 2015-03-24 17:31:20
categories: user-guide
weight: 1

When we decided that we would embark on a complete rewrite of the code, we knew that it would be difficult. We also knew that we would get pulled to making some classic mistakes , including getting lured into over-engineering and over-designing the new architecture

To accelerate process, we commissioned the UX consulting firm SmallSurfaces to interview the community and characterize the key design challenges facing the user base. This study highlighted shortcomings that many community members had experienced and created a daunting wish-list of new features.

The study showed a few things that we already knew. From the start, we designed Ushahidi to put dots on a map. Each dot contained certain data fields about an incident or observation, and the software provided means to alert deployers when certain types of dots happened in specific places.

As happens with a successful open source project, the Ushahidi community took this election monitoring tool and applied it to a wide range of use cases which the developers had never anticipated. As a result, we confronted a truth that we had come to know through all our efforts to add features: our community was ahead of our development team. Some clients had written entire applications on top of the Ushahidi code base, enabling them to perform highly customized data collection. Others wished they had the technical ability to transcend limitations in the existing software.

The study also deepened our understanding of the complexities that our clients confront when collecting and analyzing data from a wide variety of field environments. In rough terms, these issues broke down into a few questions:

• What is a report? When we wrote Ushahidi, we assumed that a report described an event at a specific place and time. Our clients, however, often had different needs. Some needed to track observations of the state of something over time, like the stock of a particular drug or a sensor reading on the water level of a river. This need to inspect each report’s state as it changed over the course of a deployment is more than semantics: it changed both the fundamental unit of analysis and the primary mechanism for visualization (the map). Ushahidi now had to support multiple methods of collecting, categorizing, clustering, curating, and analyzing observations from people and machines and turning them into a narrative that could be used by both decision makers and other machines. We also needed to rethink how we visualized a stream of observations over both space and time.

• What is a source? Reports are not always an SMS message submitted by one person from one place. In many cases, Ushahidi teams reach out to trusted sources via social media, email, and voice calls, adding their reports to the system by hand or even via programmatic means (such as the API). Reports might not even be submitted by a human. Some might come from streams of news from the mainstream media. When reports become observations of state of a water level or drug stock over time, a source might well become a sensor or inventory management tool.

• How do reports relate to each other? Some dynamics cascade over space and time. Floods start in one locality and spread to the next, as do infectious diseases. While Ushahidi 2.0 supported the visual clustering of reports, it had no mechanism to characterize the specific relationships between two or more reports, let alone to describe the change to this relationship over time. Nor did it have a means to relate reports to more than one location.

• How do you know if a report from a given source is true? Verifying a single report in isolation has always been difficult. More often, deployers have looked at clusters of reports for signs of reinforcing observations. Some deployers even view a single report as far less meaningful than the aggregation of reports over time (e.g. disease outbreaks). Reports are more often in a network, with degrees of probability of being true. Instead of engaging in the quest to create a binary characterization of true/false for any given report, Ushahidi had to enable clients to ascertain ranges of probability around the veracity of a cluster of reports.

These questions triggered deeper design questions:

• What is the best way to show change over time? When a report is an observation of a level over time, what visualization is best? Ushahidi had started with a map, which generally represents the state of a region at a specific time. While a map can be animated, it is not the best way to visualize a stream of observations over time. What do analysts need to do with the stream of observations feeding into other tools and their data models, let alone the relationship of Ushahidi data to observations collected in other crowdsourcing platforms?

• What workflow design best supports analysis of observations over time in a given context? Ushahidi workflows were designed to enable teams to track the movement of a report from unverified to verified and approved for publication. While this process may help move a description of an event from an SMS message to the web map, it is not ideal for tracking which parts of a given observation remain true over time. Some observations may contain elements that are both true and false. A translation or geolocation may be more or less accurate. Sometimes the relevance of a report fades over time, or grows stale. What element should be verified or not? What workflow would enable teams to confront the complex challenges of verifying observations over time and place? How would our workflows capture both state and staleness?
Key Concepts in v3
Software cannot solve all problems. It can, however, catalyze a community of problem solvers to build tools to address those challenges which have a technical solution. Given the number of design challenges facing the Ushahidi team, our developers had to choose how to stage the development of a new version of the platform. We also had to decide how to make this new version more robust, reusable, and resilient against new challenges.

We are not afraid to admit that our decisions are not perfect. We learned a great deal from others who recommended refactoring not only our own code, but also working with code libraries that continued in their own rapid evolution while we were rethinking v3. Constant change to the code brought us back to revered software development principles around maintainable code.

The initial release of v3 does not address all the problems we had hoped. That said, it represents a huge leap forward for the Ushahidi community. We are excited to announce some major revisions to the design of the Ushahidi platform:
Clean Code and SOLID Principles
Building and rebuilding code in Ushahidi v2 tested the limits of our development team. One fix often led to a new bug elsewhere in the code. The PHP framework with which we had build v2—Kohana—was also losing developer support. When we hired one of Kohana’s creators—Woody Gilk—to be our lead software developer, his recommendation was to begin moving from Kohana to design principles from a luminary known as “Uncle Bob.”

In the 1980s, Robert Martin (aka Uncle Bob) had outlined a set of principles for reusable and maintainable software now known by an acronym: SOLID. While technical readers can turn to Appendix (x) for the detailed explanation, the gist of SOLID is this:

Complex software tends to introduce myriad dependencies between systems written for a particular use case and the software libraries that those systems call upon to make their development faster and easier. When a system becomes so deeply coupled, it can become difficult to add new functionality, fix bugs, and extend existing code. Software designed with SOLID principles cuts through these challenges. According to Uncle Bob, software needs to be designed in modules so that any particular element has one and only one responsibility (Single Resposibility Principle). SOLID then provides a set of practices to ensure that developers are building modules which are compatible and maintainable. Developers can substitute these modules for each other and can more easily manage the complexity of their dependencies.

For v3, the Ushahidi team built the code around SOLID principles. While the system is still delivered via the Kohana framework, Kohana is now set up to be phased out of the code.
Rethinking Data Inflows and Outflows
When the team rethought the flow of data into the Ushahidi system and back to other services, we had to develop a means to handle reports that came from a variety of sources (SMS, email, RSS feeds, web services, web forms), in a variety of formats (observations, narratives, surveys, etc) and then provide a mechanism to allow that data to flow back out to other tools, including visualization, GIS, and statistical analysis software. Our solution integrates three concepts:

	Integrated Messaging: Data flowing into the Ushahidi system from observations, reports, email messages, web forms, etc., would be simplified into two data types: structured observations would be posted into the system for visualizations as Posts, and narrative information that describes the context would arrive as Messages. For the special case where Messages also contain an observation, there would exist a means to add those data as a new Post. (Posts and Messages allow for SMS Reports, Social Media, Emails, and Web Reports to flow into common stream)

	Custom Forms: data could be collected by custom forms that reflect the data models used by clients.

	Headless API: the platform would not require the web interface for inputs or outputs, but would instead be built around a headless API, which would allow any client to customize the interface and visualization as they so choose. Ushahidi would provide one or more such interfaces, but the application would no longer be limited to the default configuration.
Unified Interface
Much of the work around a deployment is done by volunteers within the administrative interface. They often toggled between a map, a spreadsheet, and a queue of tasks. No more.

The biggest change in v3 is the unification of the administrative interface with Views of the data. There is now a single interface. Instead of all the toggling, volunteers can now work directly on the data in Views, with permissions on what any particular person can see being set by role-based Permissions. A Workspace Toolbar enables access to the messaging systems, configuration, and backend services—all without the clunky text-based administrative interface in the way. While the guide will go into a full description of each part of the interface, this introduction gives a sample of what is to come:
Views
During the development process, our development looked for a way to enable our clients to develop whatever visualization they might need, while supporting a few common default views that can be replaced or customized. In the process of building a unified interface for administrative tasks and visualizations of the data, we settled on building an interface that would ship with the default installation: a tabbed interface between a map and several types of lists of reports. Of course, these Views would only show the reports that each user was allowed to view.

For instance, while a visitor to the site may see only verified reports that have been published to the general public, volunteers might see all the posts from submitted from SMS, a media working group might see the messages from Twitter, and administrators may see everything.

With this simple change, the cumbersome administrative interface became superfluous. So we were able to factor it out of the code, simplifying life for the deploying team.
Workspace Toolbar
That said, we still needed to provide a way for authorized users to access key administrative functions and system settings. To enable authorized users to get to all the functions that the former administrative interface permitted, we created a collapsible workspace toolbar on the right of the screen. This bar has places links to all Posts, Messages, and curation functions in one place. The Workspace toolbar can also be extended to allow for custom modules, plugins, or other tools developed by the deployer.
Security and Permissions
Controlling who has access to system functions and data is a critical aspect of every crowdsourcing platform. Ushahidi v3 is arranged around a role-based security model that conveys permissions to each class of user. These permissions can be customized. The code is also written in a way that allows for clients to more easily extend certain software classes to meet their needs.

(Privacy of data…)
Simplified Installation
Installing Ushahidi v2 was difficult—often so difficult that clients chose to use the more limited Crowdmap than to run their own Ushahidi instance. While Ushahidi v3 is not yet “one-click” install, we have greatly simplified the installation process and are building the platform on a number of libraries which have package managers which enable easy updating.
Customized Design
Most clients who deploy Ushahidi require that the interface reflect the branding of their organization. Almost all deployments have custom forms that enable our clients to collect fields specific to the unique needs of their data collection campaigns.
Ushahidi v3 is far more customizable than v2.

The interface provided by v3 is only one implementation of completely customizable user experience. Clients now have a headless API on top of which they can build whatever interface the need. v3 also offers a form builder, so that a data team can build not just one form, but as many form as are needed for any particular deployment or instance.
History of Posts and Messages
In the process of turning an initial report from the field into a verified, published report, many people may touch the data. Someone may translate it, another may geolocate it, and a third may verify it against other data. Sometimes, additional information needs to get associated with the report, such as an image, document, or other set of messages.

To facilitate the aggregation and review of this network of data around the data, we built a history for every Post and Message. Your team can now add its commentary, ancillary documents to each Post and Message.
Filters and Sets
Even with histories, managing reports with categories can be a challenge. While it is easy to tag each report, finding all the reports with a particular status in the workflow or shared trait can be a challenge which requires custom database calls.

To support Views, we now provide a mechanism to create sets of messages, controlled by filters. These sets are dynamic lists of Posts and Messages that match a certain set of criteria (e.g., all Messages from Twitter that include the hashtag #fraud). These criteria are the Filters; the resulting list of Posts and Messages are the Sets.
Workflows
The management of reports through its lifecycle requires managemennt of the state of the report, especially when multiple teams are involved in moving reports from unverified, untranslated states to verified, geolocated reports. Workflows support this management.

More than 90% of the work in an Ushahidi deployments happens behind the scenes. Unsurprisingly, most of our development efforts went to supporting this (often invisible) processes.
Definitions
Types of Contributors
Collectors, reporters, contacts.

• Collectors: The public side of Ushahidi enables hundreds or thousands of individuals to report on what they see to a shared place. Some Ushahidi instances use smaller “bounded” crowds, which may be staff of the organization deploying the platform.

• Curators: behind successful Ushahidi projects are a smaller crowd of data curators: staff or volunteers who make sense of the data received from collectors. These individuals tend be highly trained and sometimes specialize in specific techniques, such as translation, geolocation, or verification.

layout: page
title: “Chapter 6”
subtitle: “Deploying the software”
date: 2015-04-23 22:53:00
categories: user-guide
weight: 6

You’ve prepared the platform. Now comes the part that requires management skills.

Launching your Ushahidi instance is more than opening the server to the public. More than 90% of the work happens during the management of the data flows into and out of the platform.

This chapter will help you prepare for this management process, develop an organizational design for your team (however small), hire and train your staff, and get data flowing into v3. The next chapter will focus on curating the content.

Preparation

Ushahidi can run on a variety of technology platforms (see Chapter on Installating). But the technology is only part of what you need to prepare to deploy an Ushahidi instance. To run Ushahidi you also need to assemble a team to keep instance running and to manage the data. This team will include technologists, analysts, and (likely) several working groups of volunteers.

Technology Preparation

When you installed your server, you may have installed the software on a temporary server to allow you to play with the tools. The deployment requires a different setup. In some remote places, you may be running Ushahidi using a Nokia 1100 to connect the platform to the cellular network. In cities, you may need to find an elastic server that can quickly deal with spikes in traffic not only of inbound data, but views from the public. If you are setting up a small network of sensors around a river bed, your loads will not be the same as an election monitoring effort that hits the national TV reports or is announced as a trending hashtag on the Twitter homepage.

You should sit down with a technologist and plan out the potential scenarios that could happen with data collection. The question you will need to ask is if you need to hire a technologist to be part of your team. Simple installations may need someone to get you started and be on call for occasional glitches and gremlins. More complex or sensitive deployments may need someone to be watching over the server, managing the inevitable string of questions and data queries from analysts, and monitoring and protecting the system from cyberattack.

Staffing Preparation

Staffing an Ushahidi instance depends on its size, complexity, and duration. Crisis response programs will start as an intense effort to collect as much data as possible, requiring outreach to the affected population as well as myriad volunteers and staff to manage the instance. Human rights campaigns have a different tempo, but also require staff and volunteers who can be trusted with information that may bring harm to those who contribute to the effort as well as communities under threat.

The typical structure of an Ushahidi deployment breaks down in working groups with a core team:

Core Team

	Project Manager: the person who is in charge of the overall strategy and management of the initiative.

	Volunteer Manager: the person(s) who are in charge of volunteer recruitment, training, scheduling, and retention.

	Technologist: the persons in charge of the Ushahidi platform, the server environment, and any other technology running the project.

	Analyst: the persons responsible for turning data into insights.

Working Groups

	Media Monitoring Team: identifies and monitors social media feeds, extracting actionable information.

	Translation Team: translates reports from local languages into the core language of the deployment, sometimes with help from groups like Translators without Borders.

	SMS Team: monitors information received through SMS

	Emergency Team: a small team designated to handle any report which requires urgent action.

	GeoLocation Team: identifies the location mentioned in each report and plots it on a map, usually with a GPS point.

	Report Team: provides first quality control monitoring: confirms that each report is correctly translated, geolocated, and is not a duplicate.

	Verification Team: assesses the veracity of each report, in close cooperation with the Media Monitoring and SMS teams.

	Technology Team: ensures that the platform and associated technologies support the efforts of the deployment.

	Analysis and Research Team: analyzes Posts and Messages and provides situation reports, often with data visualizations.

Hiring Your Team

Your team will be critical to your success.

Core Team

(can we get sample ToRs from previous deployments?)

Volunteers

Traditional wisdom says that you should find people with a passion for an issue for your volunteers. This adage remains true, but passion will not sustain volunteers through a tough campaign. They need an incentive beyond their passion to submit or process reports, day after day. It is prudent to pay them some amount, even if small, so that they know that they are valued and that work is expected each day.

Seek out volunteers who have skills that you need for your working groups. Bright, technologically curious

Training

Teaching Ushahidi to yourself and your staff

Instructing the crowd

Simulations

(Jennifer to write)

Running the Campaign with a Crowd

Getting the Word Out

Advertising

Word of Mouth

Grassroots Organizing

Bounded Crowdsourcing

Feedback Loops

Creating a Feedback Loop

Collecting information into platform is only half the battle, how will you communicate information with your audience(s)? Partners? Media?

(migrate) think about how your partners and audience communicate now? What are they comfortable using to communicate? (cell phones, sms, internet) What do they have access to and can afford? How will people see the maps? during crisis? What is the most common form of communication?
feedback and information sharing in insecure environments

Monitoring: are you reaching your goals? Linked to objectives/goals? not tech, but programmatical goals?

Jen to migrate

	Example: Media Focus on Africa “The people who Media Focus on Africa Foundation are targeting do not have Internet access - We want to bring the results back to the people using mass media.” As a result of MFAF’s goals, Internet is only one part of the larger project and campaign. This is not only true for the Unsung Peace Heroes campaign but for all of MFAF’s work. Butterfly Works uses multiple media types in their work as well so the multimedia approach for Unsung Peace Heroes was familiar to both organizations and important to achieving their goals. Butterfly Works and MFAF used a multimedia approach, including a website, newspaper ads, radio and television appearances, participation in live events and word-of-mouth. (Melissa Tully)

	think about how your audience commonly views/accesses information)- and what way they are most likely to view information during a crisis

	What it is fundamental here is that you have to decide how and if you will return the information to those who provided reports so that they can use it for decision making or program intervention, in addition to take into consideration and maximize local information sharing formats, customs, and opportunities. Anahi Iacucci

Resources

Butterfly Works Communication Assessment to help you determine the best feedback loops

 _static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/up.png

