
urbs Documentation
Release 0.7

tum-ens

Oct 29, 2019

Contents

1 Contents 3
1.1 User’s manual . 3

1.1.1 Overview . 3
1.1.2 Tutorial . 5
1.1.3 Workflow . 10

1.2 Technical documentation . 19
1.2.1 Reporting function explained . 19
1.2.2 urbs.py module description . 21
1.2.3 Mathematical Documentation . 26
1.2.4 Buy-Sell Documentation . 76
1.2.5 Demand Side Management Documentation 82
1.2.6 Decomposition . 86

2 Features 141

3 Changes 143
3.1 2017-01-13 Version 0.7 . 143
3.2 2016-08-18 Version 0.6 . 143
3.3 2016-02-16 Version 0.5 . 143
3.4 2015-07-29 Version 0.4 . 144
3.5 2014-12-05 Version 0.3 . 144

4 Screenshots 145

5 Dependencies 147

Python Module Index 149

Index 151

i

ii

urbs Documentation, Release 0.7

Maintainer Johannes Dorfner, <johannes.dorfner@tum.de>

Organization Chair of Renewable and Sustainable Energy Systems, Technical University
of Munich

Version 0.7

Date Oct 29, 2019

Copyright The model code is licensed under the GNU General Public License 3.0. This
documentation is licensed under a Creative Commons Attribution 4.0 International
license.

Contents 1

mailto:johannes.dorfner@tum.de
http://www.ens.ei.tum.de/
http://www.gnu.org/licenses/gpl-3.0
http://creativecommons.org/licenses/by/4.0/

urbs Documentation, Release 0.7

2 Contents

CHAPTER 1

Contents

1.1 User’s manual

These documents give a general overview and help you getting started from after the installation (which
is covered in the README.md file on GitHub) to you first running model.

1.1.1 Overview

urbs consists of several model entities. These are commodities, processes, transmission and storage.
Demand and intermittent commodity supply through are modelled through time series datasets.

Commodity

Commodities are goods that can be generated, stored, transmitted and consumed. By convention, they
are represented by their energy content (in MWh), but can be changed (to J, kW, t, kg) by simply using
different (consistent) units for all input data. Each commodity must be exactly one of the following four
types:

• Stock: Buyable at any time for a given price. Supply can be limited per timestep or for a whole
year. Examples are coal, gas, uranium or biomass.

• SupIm: Supply intermittent stands for fluctuating resources like solar radiation and wind energy,
which are available according to a timeseries of values, which could be derived from weather data.

• Demand: These commodities have a timeseries for the requirement associated and must be pro-
vided by output from other process or from storage. Usually, there is only one demand commodity
called electricity (abbreviated to Elec), but multiple (e.g. electricity, space heating, process heat,
space cooling) demands can be specified.

• Env: The special commodity CO2 is of this type and represents the amount (in tons) of greenhouse
gas emissions from processes. Its total amount can be limited, to investigate the effect of policies
on the model.

3

https://github.com/tum-ens/urbs/blob/master/README.md#installation

urbs Documentation, Release 0.7

Stock commodities have three numeric attributes that represent their price, total annual and per timestep
supply. Environmental commodities (i.e. CO2) have a maximum allowed quantity that may be created.

Commodities are defined over the tuple (site, commodity, type), for example (Norway,
wind, SupIm) for wind in Norway with a time series or (Iceland, electricity, Demand)
for an electricity demand time series in Iceland.

Process

Processes describe conversion technologies from one commodity to another. They can be visualised like
a black box with input(s) (commodity) and output(s) (commodity). Process input and output ratios are
the main technical parameters for processes. Fixed costs for investment and maintenance (per capacity)
and variable costs for operation (per output) are the economical parameters.

Processes are defined over two tuples. The first tuple (site, process) specifies the location of
a given process e.g. (Iceland, turbine) would locate a process turbine at site Iceland.
The second tuple (process, commodity, direction) then specifies the inputs and outputs for
that process. For example, (turbine, geothermal, In) and (turbine, electricity,
Out) describes that the process named turbine has a single input geothermal and the single
output electricity.

Transmission

Transmission allows instantaneous transportation of commodities between sites. It is charac-
terised by an efficiency and costs, just like processes. Transmission is defined over the tu-
ple (site in, site out, transmission, commodity). For example, (Iceland,
Norway, undersea cable, electricity) would represent an undersea cable for electricity
between Iceland and Norway.

Storage

Storage describes the possibility to deposit a deliberate amount of energy in the form of one commodity
at one time step; with the purpose of retrieving it later. Efficiencies for charging/discharging depict losses
during input/output. A self-discharge term is not included at the moment, but could be added trivially
(one column, one modification of the storage state equation). Storage is characterised by capacities both
for energy content (in MWh) and charge/discharge power (in MW). Both capacities have independent
sets of investment, fixed and variable cost parameters to allow for a very flexible parametrization of
various storage technologies; ranging from batteries to hot water tanks.

Storage is defined over the tuple (site, storage, stored commodity). For example,
(Norway, pump storage, electricity) represents a pump storage power plant in Norway
that can store and retrieve energy in form of electricity.

Timeseries

Demand

Each combination (site, demand commidty) may have one timeseries, describing the (average)
power demand (MWh/h) per timestep. They are a crucial input parameter, as the whole optimisation

4 Chapter 1. Contents

urbs Documentation, Release 0.7

aims to satisfy these demands with minimal costs by the given technologies (process, storage, transmis-
sion).

Intermittent Supply

Each combination (site, supim commodity) must be supplied with one timeseries, normalised
to a maximum value of 1 relative to the installed capacity of a process using this commodity as input.
For example, a wind power timeseries should reach value 1, when the wind speed exceeds the modelled
wind turbine’s design wind speed is exceeded. This implies that any non-linear behaviour of intermittent
processes can already be incorporated while preparing this timeseries.

1.1.2 Tutorial

The README file contains installation notes. This tutorial expands on the steps that follow this instal-
lation.

This tutorial is a commented walk-through through the script runme.py, which is a demonstration user
script that can serve as a good basis for one’s own script.

Initialisation

Imports

try:
import pyomo.environ
from pyomo.opt.base import SolverFactory
PYOMO3 = False

except ImportError:
import coopr.environ
from coopr.opt.base import SolverFactory
PYOMO3 = True

import os
import shutil
import urbs
from datetime import datetime

Several packages are included.

• the try-except block checks for the version of Coopr/Pyomo installed and imports

the necessary packages for the model creation and solution.

• os is a builtin Python module, included here for its os.path submodule that offers operating system
independent path manipulation routines. The following code creates the path string 'result/
foo' or 'result\\foo' (depending on the operating system), checks whether it exists and
creates the folder(s) if needed. This is used to prepare a new directory for generated result file:

result_dir = os.path.join('result', 'foo')
if not os.path.exists(result_dir):

os.makedirs(result_dir)

1.1. User’s manual 5

https://github.com/tum-ens/urbs/blob/master/README.md#installation
https://docs.python.org/2/library/os.html
https://docs.python.org/2/library/os.path.html

urbs Documentation, Release 0.7

• urbs is the module whose functions are used mainly in this script. These are read_excel(),
create_model(), report() and plot(). More functions can be found in the document
API reference.

• ‘pyomo.opt.base‘_ is a utility package by pyomo and provides the function SolverFactory
that allows creating a solver object. This objects hides the differences in input/output formats
among solvers from the user. More on that in section Solving below.

• datetime is used to append the current date and time to the result directory name (used in
prepare_result_directory())

Settings

From here on, the script is best read from the back.:

if __name__ == '__main__':
input_file = 'mimo-example.xlsx'
result_name = os.path.splitext(input_file)[0] # cut away file

→˓extension
result_dir = prepare_result_directory(result_name) # name + time stamp

(offset, length) = (4000, 5*24) # time step selection
timesteps = range(offset, offset+length+1)

Variable input_file defines the input spreadsheet, from which the optimization problem will draw
all its set/parameter data.

Variable timesteps is the list of timesteps to be simulated. Its members must be a subset of the
labels used in input_file’s sheets “Demand” and “SupIm”. It is one of the two function arguments
to create_model() and accessible directly, because one can quickly reduce the problem size by
reducing the simulation length, i.e. the number of timesteps to be optimised.

range() is used to create a list of consecutive integers. The argument +1 is needed, because
range(a,b) only includes integers from a to b-1:

>>> range(1,11)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

The following section deals with the definition of different scenarios. Starting from the same base
scenarios, defined by the data in input_file, they serve as a short way of defining the difference in
input data. If needed, completely separate input data files could be loaded as well.

In addition to defining scenarios, the scenarios list allows to select a subset to be actually run.

Scenario functions

A scenario is simply a function that takes the input data and modifies it in a certain way. with the
required argument data, the input data dict.:

SCENARIOS
def scenario_base(data):

do nothing
return data

6 Chapter 1. Contents

https://github.com/tum-ens/urbs
https://pandas.pydata.org/pandas-docs/stable/reference/index.html#api
https://software.sandia.gov/trac/coopr/wiki/Pyomo
https://docs.python.org/3/library/stdtypes.html#dict

urbs Documentation, Release 0.7

The simplest scenario does not change anything in the original input file. It usually is called “base”
scenario for that reason. All other scenarios are defined by 1 or 2 distinct changes in parameter values,
relative to this common foundation.:

def scenario_stock_prices(data):
change stock commodity prices
co = data['commodity']
stock_commodities_only = (co.index.get_level_values('Type') == 'Stock')
co.loc[stock_commodities_only, 'price'] *= 1.5
return data

For example, scenario_stock_prices() selects all stock commodities from the DataFrame
commodity, and increases their price value by 50%. See also pandas documentation Selection by
label for more information about the .loc function to access fields. Also note the use of Augmented
assignment statements (*=) to modify data in-place.:

def scenario_co2_limit(data):
change global CO2 limit
hacks = data['hacks']
hacks.loc['Global CO2 limit', 'Value'] *= 0.05
return data

Scenario scenario_co2_limit() shows the simple case of changing a single input data value. In
this case, a 95% CO2 reduction compared to the base scenario must be accomplished. This drastically
limits the amount of coal and gas that may be used by all three sites.:

def scenario_north_process_caps(data):
change maximum installable capacity
pro = data['process']
pro.loc[('North', 'Hydro plant'), 'cap-up'] *= 0.5
pro.loc[('North', 'Biomass plant'), 'cap-up'] *= 0.25
return data

Scenario scenario_north_process_caps() demonstrates accessing single values in the
process DataFrame. By reducing the amount of renewable energy conversion processes (hy-
dropower and biomass), this scenario explores the “second best” option for this region to supply its
demand.:

def scenario_all_together(data):
combine all other scenarios
data = scenario_stock_prices(data)
data = scenario_co2_limit(data)
data = scenario_north_process_caps(data)
return data

Scenario scenario_all_together() finally shows that scenarios can also be combined by chain-
ing other scenario functions, making them dependent. This way, complex scenario trees can written
with any single input change coded at a single place and then building complex composite scenarios
from those.

Scenario selection

1.1. User’s manual 7

https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#indexing-label
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#indexing-label
http://docs.python.org/2/reference/ simple_stmts.html#augmented-assignment-statements
http://docs.python.org/2/reference/ simple_stmts.html#augmented-assignment-statements
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

urbs Documentation, Release 0.7

select scenarios to be run
scenarios = [

scenario_base,
scenario_stock_prices,
scenario_co2_limit,
scenario_north_process_caps,
scenario_all_together]

scenarios = scenarios[:1] # select by slicing

In Python, functions are objects, so they can be put into data structures just like any variable could be.
In the following, the list scenarios is used to control which scenarios are being actually computed.

Run scenarios

for scenario in scenarios:
prob = run_scenario(input_file, timesteps, scenario, result_dir)

Having prepared settings, input data and scenarios, the actual computations happen in the function
run_scenario() of the script. It is executed for each of the scenarios included in the scenario
list. The following sections describe the content of function run_scenario(). In a nutshell, it reads
the input data from its argument input_file, modifies it with the supplied scenario, runs the
optimisation for the given timesteps and writes report and plots to result_dir.

Reading input

scenario name, read and modify data for scenario
sce = scenario.__name__
data = urbs.read_excel(input_file)
data = scenario(data)

Function read_excel() returns a dict data of six pandas DataFrames with hard-coded column
names that correspond to the parameters of the optimization problem (like eff for efficiency or
inv-cost-c for capacity investment costs). The row labels on the other hand may be freely cho-
sen (like site names, process identifiers or commodity names). By convention, it must contain the six
keys commodity, process, storage, transmission, demand, and supim. Each value must
be a pandas.DataFrame, whose index (row labels) and columns (column labels) conforms to the
specification given by the example dataset in the spreadsheet mimo-example.xlsx.

data is then modified by applying the scenario() function to it.

Solving

create model
prob = urbs.create_model(data, timesteps)
if PYOMO3:

prob = prob.create()

refresh time stamp string and create filename for logfile
now = prob.created
log_filename = os.path.join(result_dir, '{}.log').format(sce)

(continues on next page)

8 Chapter 1. Contents

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

urbs Documentation, Release 0.7

(continued from previous page)

solve model and read results
optim = SolverFactory('glpk') # cplex, glpk, gurobi, ...
optim = setup_solver(optim, logfile=log_filename)
result = optim.solve(prob, tee=True)
if PYOMO3:

prob.load(result)
else:

prob.solutions.load_from(result)

This section is the “work horse”, where most computation and time is spent. The optimization prob-
lem is first defined (create_model()), then filled with values (create). The SolverFactory
object is an abstract representation of the solver used. The returned object optim has a method
set_options() to set solver options (not used in this tutorial).

The remaining two lines call the solver and read the result object back into the prob object, which
is queried to for variable values in the remaining script file. Argument tee=True enables the realtime
console output for the solver. If you want less verbose output, simply set it to False or remove it.

Reporting

write report to spreadsheet
urbs.report(

prob,
os.path.join(result_dir, '{}-{}.xlsx').format(sce, now),
['Elec'], ['South', 'Mid', 'North'])

The urbs.report() function creates a spreadsheet from the main results. Summaries of costs, emis-
sions, capacities (process, transmissions, storage) are saved to one sheet each. For timeseries, each
combination of the given sites and commodities are summarised both in sum (in sheet “Energy
sums”) and as individual timeseries (in sheet “. . . timeseries”). See also Reporting function explained
for a detailed explanation of this function’s implementation.

Plotting

add or change plot colors
my_colors = {

'South': (230, 200, 200),
'Mid': (200, 230, 200),
'North': (200, 200, 230)}

for country, color in my_colors.items():
urbs.COLORS[country] = color

First, the use of the module constant COLORS for customising plot colors is demonstrated. All plot
colors are user-defineable by adding color tuple() (r, g, b) or modifying existing tuples for
commodities and plot decoration elements. Here, new colors for displaying import/export are added.
Without these, pseudo-random colors are generated in to_color().:

create timeseries plot for each demand (site, commodity) timeseries
for sit, com in prob.demand.columns:

(continues on next page)

1.1. User’s manual 9

urbs Documentation, Release 0.7

(continued from previous page)

create figure
fig = urbs.plot(prob, com, sit)

change the figure title
ax0 = fig.get_axes()[0]
nice_sce_name = sce.replace('_', ' ').title()
new_figure_title = ax0.get_title().replace(

'Energy balance of ', '{}: '.format(nice_sce_name))
ax0.set_title(new_figure_title)

save plot to files
for ext in ['png', 'pdf']:

fig_filename = os.path.join(
result_dir, '{}-{}-{}-{}.{}').format(sce, com, sit, now, ext)

fig.savefig(fig_filename, bbox_inches='tight')

Finally, for each demand commodity (only Elec in this case), a plot over the whole optimisation period
is created. If timesteps were longer, a shorter plotting period could be defined and given as an
optional argument to plot().

The paragraph “change figure title” shows exemplarily how to use matplotlib manually to modify some
aspects of a plot without having to recreate the plotting function from scratch. For more ideas for
adaptations, look into plot()’s code or the matplotlib documentation.

The last paragraph uses the savefig() method to save the figure as a pixel png (raster) and pdf
(vector) image. The bbox_inches='tight' argument eliminates whitespace around the plot.

Note: savefig() has some more interesting arguments. For example dpi=600 can be used to
create higher resolution raster output for use with printing, in case the preferable vector images cannot
be used. The filename extension or the optional format argument can be used to set the output format.
Available formats depend on the used plotting backend. Most backends support png, pdf, ps, eps and
svg.

1.1.3 Workflow

This page is a step-by-step explanation on how to get one’s own model running. For the sake of an
example, assume you want to investigate whether the (imaginary) state New Sealand with its four islands
Vled Haven, Qlyph Archipelago, Stryworf Key, and Jepid Island would benefit by linking their islands’
power systems by costly underground cables to better integrate fluctuating wind power generation.

Prerequisites

You have followed the sections installation instructions and get started in the README, i.e. you can
successfully execute an optimisation run with the example dataset mimo-example.xlsx with the
example run script runme.py. These two files will serve as a scaffold for your own investigation.

10 Chapter 1. Contents

http://matplotlib.org/contents.html
https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure.savefig
https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure.savefig
http://matplotlib.org/faq/usage_faq.html#what-is-a-backend
https://github.com/tum-ens/urbs/blob/master/README.md#installation
https://github.com/tum-ens/urbs/blob/master/README.md#get-started

urbs Documentation, Release 0.7

Create a private development branch

Using git, create and directly checkout a new branch with a topical name. Good names should tell you
the goal of a branch, so something along the lines of test1234 is no good name. For this project,
newsealand looks like a good name:

$ git checkout -b newsealand

The private branch can be used to commit your own changes, while benefitting from new features/bug
fixes that are pushed to the master branch on GitHub. Whenever you want to retreive those new changes,
execute the following commands:

$ git fetch origin
$ git rebase origin/master

A full explanation of how to use git is beyond the scope of this documentation, so please refer to the Git
book, especially chapter 1, 2, 3.

Create an input data file

Create a copy of the file mimo-example.xlsx and give it short, descriptive name newsealand.
xlsx. Open it.

Go through the sheets, either adding, deleting or modifying rows. Keep the column titles as they are,
because they are required by the model. Each title has a tooltip that explains the use of the parameter.

If you have created a development branch, this is a good time to add this file to version control:

$ git add newsealand.xlsx
$ git commit -m "added newsealand.xlsx"

Site, DSM and Buy-Sell-price

Note at the outset, that you do not have to worry about the three mentioned worksheets, since they are
not used for this tutorial. You need to keep them, however, and modify them in order to avoid problems.
First, specify the four desired Sites in Site and set all values to either NV() or inf. In the sheet
DSM enter the four islands of New Sealand as sites into the corresponding fields and set all values in the
columns cap-max-do and cap-max-up to 0. You do not need to change anything in sheet Buy-Sell-Price.

Commodity

Remove the rows with unneeded commodities, here everything except Gas, Elec, Wind, CO2, and
Slack. New Sealand only uses these for power generation. While Slack is not needed, it makes de-
bugging unexpected model behaviour much easier. Better keep it. Rename the sites to match the island
names. The file should now contain 20 rows, 5 for each island.

Let’s assume that Jepid Island does not have access to Gas, so change the parameter max and
maxperstep to 0. Island Stryworf Key does have a gas connection, but the pipeline can only deliver
50 MW worth of Gas power.

These steps result in the following table. The bolded values result from the assumptions described in the
previous paragraphs. The other values are left unchanged from the example dataset:

1.1. User’s manual 11

http://git-scm.com/book/en/v2
http://git-scm.com/book/en/v2

urbs Documentation, Release 0.7

Table 1: Sheet Commodity; empty cells correspond to =NV() (no
value) fields

Site Commodity Type price max maxperstep
Jepid Island CO2 Env inf inf
Jepid Island Elec Demand
Jepid Island Gas Stock 27.0 0.0 0.0
Jepid Island Slack Stock 999.0 inf inf
Jepid Island Wind SupIm
Qlyph Archipelago CO2 Env inf inf
Qlyph Archipelago Elec Demand
Qlyph Archipelago Gas Stock 27.0 inf inf
Qlyph Archipelago Slack Stock 999.0 inf inf
Qlyph Archipelago Wind SupIm
Stryworf Key CO2 Env inf inf
Stryworf Key Elec Demand
Stryworf Key Gas Stock 27.0 inf 50.0
Stryworf Key Slack Stock 999.0 inf inf
Stryworf Key Wind SupIm
Vled Haven CO2 Env inf inf
Vled Haven Elec Demand
Vled Haven Gas Stock 27.0 inf inf
Vled Haven Slack Stock 999.0 inf inf
Vled Haven Wind SupIm

You have done some work already. It’s time for another commit. Instead of adding every changed file
manually, you can add option -a to the commit, which adds all unstaged changes from git status
to the next commit. With that:

$ git commit -am "changed commodities to 4 islands in newsealand.xlsx"

Note: From now on, commit yourself whenever you reach a point you want to be able to go back to
later.

Process

First, remove any process from sheet Process-Commodity that consumes or produces a commodity that
is no longer mentioned in sheet Commodity. For New Sealand, this leaves us with three processes: Gas
plant, Slack powerplant, Wind park. The output ratio 0.6 of the Gas plant is the electric efficiency.

12 Chapter 1. Contents

urbs Documentation, Release 0.7

Table 2: Sheet Process-Commodity
Process Commodity Direction ratio
Gas plant CO2 Out 0.2
Gas plant Elec Out 0.6
Gas plant Gas In 1.0
Slack powerplant CO2 Out 0.0
Slack powerplant Elec Out 1.0
Slack powerplant Slack In 1.0
Wind park Elec Out 1.0
Wind park Wind In 1.0

With only these processes remaining, the sheet Process, needs some work, too. create an entry for each
process that can be built at a given site. The upper capacity limits cap-up for each process are the most
important figure. Qlyph Archipelago is known for its large areas suitable for wind parks up to 200 MW,
only surpased by the great offshore sites of Jepid Island with 250 MW potential capacity. The other
islands only have space for up to 120 MW or 80 MW. Gas plants can be built up to 100 MW on every
island, except for Vled Haven, which can house up to 80 MW only.

Slack powerplants are set to an installed capacity inst-cap higher than the peak demand in each site,
so that any residual load could always be covered. To make its use unattractive, you set the variable
costs var-cost to 9 MC/MWh. This yields the following table:

Table 3: Sheet Process
Site Process inst-

cap
cap-
lo

cap-
up

max-
grad

inv-
cost

fix-
cost

var-
cost

wacc depr.

Jepid Island Gas plant 25 0 100 5 450000 6000 1.62 0.07 30
Jepid Island Slack pow-

erplant
999 999 999 inf 0 0 9000000.00.07 1

Jepid Island Wind park 0 0 250 inf 900000 30000 0.0 0.07 25
Qlyph
Archipelago

Gas plant 0 0 100 5 450000 6000 1.62 0.07 30

Qlyph
Archipelago

Slack pow-
erplant

999 999 999 inf 0 0 9000000.00.07 1

Qlyph
Archipelago

Wind park 0 0 200 inf 900000 30000 0.0 0.07 25

Stryworf
Key

Gas plant 25 0 100 5 450000 6000 1.62 0.07 30

Stryworf
Key

Slack pow-
erplant

999 999 999 inf 0 0 9000000.00.07 1

Stryworf
Key

Wind park 0 0 120 inf 900000 30000 0.0 0.07 25

Vled Haven Gas plant 0 0 80 5 450000 6000 1.62 0.07 30
Vled Haven Slack pow-

erplant
999 999 999 inf 0 0 9000000.00.07 1

Vled Haven Wind park 0 0 80 inf 900000 30000 0.0 0.07 25

1.1. User’s manual 13

urbs Documentation, Release 0.7

Transmission

On transmission, map the network topology of New Sealand. Vled Haven is the central hub of the state,
with the other islands connected like a star shape. The investment costs are scaled according to the
air distance from the population centers of each island. So Jepid Island with 1.1 MC/MW investment
costs is more than twice as far away from Vled Haven than Ylyph Archipelago with only 0.5 MC/MW.
Stryworf Key is somewhere between with 0.8 MC/MW. All investment costs are per direction. So the
bidirectional cable costs are actually the summed inv-cost for both directions.

Table 4: Sheet Transmission
Site In Site Out Trans-

mis-
sion

Com-
mod-
ity

eff inv-
cost

fix-
cost

var-
cost

inst-
cap

cap-
lo

cap-
up

wacc depr.

Jepid Is-
land

Vled
Haven

un-
der-
sea

Elec 0.85 1100000300000 0 0 inf 0.07 30

Qlyph
Archipelago

Vled
Haven

un-
der-
sea

Elec 0.95 500000150000 0 0 inf 0.07 30

Stryworf
Key

Vled
Haven

un-
der-
sea

Elec 0.9 800000225000 0 0 inf 0.07 30

Vled
Haven

Jepid Is-
land

un-
der-
sea

Elec 0.85 1100000300000 0 0 inf 0.07 30

Vled
Haven

Qlyph
Archipelago

un-
der-
sea

Elec 0.95 500000150000 0 0 inf 0.07 30

Vled
Haven

Stryworf
Key

un-
der-
sea

Elec 0.9 800000225000 0 0 inf 0.07 30

Storage

Storing electricity is possible only on Qlyph Archipelago, using an unsepcified technology simply la-
beled gravity here. To allow for parameterising a host of technologies, costs for both storage power and
capacity can be specified independently. For most technologies, one of the costs will be dominating, so
the other value can be set simply (near) zero to reflect that. The last parameter init specifies a) how
full the storage is at the first time step and b) at least how full it must be at the final time step. That way,
a short simulation duration may not just exhaust the storage.

Table 5: Sheet Storage (1/2)
Site Stor-

age
Com-
modity

inst-
cap-c

cap-
lo-c

cap-
up-c

inst-
cap-p

cap-
lo-p

cap-
up-p

eff-
in

eff-
out

Qlyph
Archipelago

grav-
ity

Elec 0 0 inf 0 0 inf 0.95 0.95

14 Chapter 1. Contents

urbs Documentation, Release 0.7

Table 6: Sheet Storage (2/2)
Site Stor-

age
Com-
mod-
ity

inv-
cost-
p

inv-
cost-
c

fix-
cost-
p

fix-
cost-
c

var-
cost-
p

var-
cost-
c

depr. wacc init

Qlyph
Archipelago

grav-
ity

Elec 500000 5 0 0.25 0.02 0 50 0.07 0.05

Hacks

In the base scenario, no limit on CO2 emissions from Gas plants is needed. Therefore, you set the value
to inf:

Table 7: Sheet Hacks
Name Value
Global CO2 limit inf

Time series

The only commodity of type SupIm is Wind, which you defined in sheet Commodity on all four islands.
Therefore, in total 4 time series must be provided here, even if they are all zeros. As your data provider
has not kept his promise to send you the data on time, you (ab)use the mimo-example.xlsx data
once more, and simply use its time series. To get qualitatively correct results, you assign the best (3600
full load hours) to Jepid island, the second best to Vled Haven (3000 full load hours) and two copies of
the worst time series (2700 full load hours) to Qlyph Archipelago and Stryworf Key. With that, you get
the following table of capacity factors:

Table 8: Sheet SupIm
t Jepid Island.Wind Qlyph Archipelago.Wind Stryworf Key.Wind Vled Haven.Wind
0 0.0 0.0 0.0 0.0
1 0.603 0.935 0.935 0.458
2 0.585 0.942 0.942 0.453
3 0.571 0.956 0.956 0.453
4 0.561 0.956 0.956 0.461
.

You make sure that both the island names and the commodity name exactly match the identifiers used
on the other sheets.

For the demand, you also have no real data for now. But with some scaling (divide by 1000), the
example series make for a good temporary demand time series. Vled Haven has the highest peak load
with 75 MW, followed by Stryworf Key with 19 MW and the other islands with 8.2 MW each:

1.1. User’s manual 15

urbs Documentation, Release 0.7

Table 9: Sheet Demand
t Jepid Island.Elec Qlyph Archipelago.Elec Stryworf Key.Elec Vled Haven.Elec
0 0 0 0 0
1 4 4 11 43
2 4 4 10 41
3 4 4 10 40
4 4 4 10 40
.

Note: For reference, this is how newsealand.xlsx looks for me having performed the above steps.

Test-drive the input

Now that newsealand.xlsx is ready to go, start ipython in the console. Execute the following
lines, best by manually typing them in one by one. (Hint: use tab completion to avoid typing out function
or file names!)

First, load the data:

>>> import urbs
>>> input_file = 'newsealand.xlsx'
>>> data = urbs.read_excel(input_file)

data now is a standard Python dict. So data.keys() yields the worksheet names, while
data['commodity'] contains the Commodity worksheet as a DataFrame. Now create a range:

>>> offset, duration = (3500, 14*24)
>>> timesteps = range(offset, offset + duration + 1)

[3500, 3501, ..., 3836]

Now you can create the optimisation model, then convert it to an optimisation problem that can be
handed to the solver:

>>> prob = urbs.create_model(data, timesteps)

Now the only thing missing is the solver. It can be used through another object that is generated by the
SolverFactory function from the pyomo package:

>>> import pyomo.environ
>>> from pyomo.opt.base import SolverFactory
>>> optim = SolverFactory('glpk')

Ignore the deprecation warning1 for now. The solver object has a solve method, which takes the
problem as an argument and returns a solution. For bigger problems, the next step can take several hours
or even days. Therefore, you enable visible progress output by setting the option tee2. Additionally,
you can save the output to a logfile using the logfile option:

1 If you used Coopr 4.0, simply import coopr.environ before importing SolverFactory.
2 like the GNU tee output redirection tool.

16 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
http://man.cx/tee

urbs Documentation, Release 0.7

>>> result = optim.solve(prob, logfile='solver.log', tee=True)

This results in roughly the following output appearing on the console:

GLPSOL: GLPK LP/MIP Solver, v4.55
[...]
GLPK Simplex Optimizer, v4.55
26275 rows, 22558 columns, 63630 non-zeros
Preprocessing...
14793 rows, 13120 columns, 35970 non-zeros
Scaling...
A: min|aij| = 2.305e-003 max|aij| = 1.053e+000 ratio = 4.567e+002

GM: min|aij| = 3.606e-001 max|aij| = 2.773e+000 ratio = 7.691e+000
EQ: min|aij| = 1.300e-001 max|aij| = 1.000e+000 ratio = 7.691e+000
Constructing initial basis...
Size of triangular part is 14790

0: obj = 3.000000000e+005 infeas = 2.158e+004 (3)
500: obj = 2.443067336e+007 infeas = 8.024e+003 (3)
1000: obj = 3.635166806e+011 infeas = 5.311e+003 (3)

* 1379: obj = 1.688377193e+012 infeas = 0.000e+000 (3)
[...]

* 5500: obj = 3.438413434e+007 infeas = 6.221e-014 (3)

* 5822: obj = 3.419699391e+007 infeas = 7.889e-031 (3)
OPTIMAL LP SOLUTION FOUND
Time used: 3.5 secs
Memory used: 25.3 Mb (26496968 bytes)
Writing basic solution to '<temporary.glpk.raw>'...
48835 lines were written

Finally, you can load the result back into the optimisation problem oject prob:

>>> prob.solutions.load_from(result)
True

This object now contains all input data, the equations and result data. If you store this object as a file,
you can later always create new analyses from it. That’s what save() is made for:

>>> urbs.save(prob, 'newsealand-base.pgz')

This becomes especially helpful for large problems that take hours to solve. Back to the prob. To get a
quick numerical overview on the most important result numbers, use report():

>>> urbs.report(prob, 'report.xlsx',prob.com_demand,prob.sit)

By default, this report only includes total costs and capacities of process, transmission and storage. By
adding the optional third and fourth parameter, you can retreive timeseries listings of energy production
per site. For now, you are only interested in electricity in Vled Haven:

>>> urbs.report(prob, 'report-vled-haven.xlsx',
... ['Elec'], ['Vled Haven'])

Then you finally want to see how the electricity production looks like. For that you use plot():

>>> %matplotlib
>>> fig = urbs.plot(prob, 'Elec', 'Vled Haven')

1.1. User’s manual 17

urbs Documentation, Release 0.7

Depending on the plotting backend, you now either see a window with the plot (‘TkAgg’, ‘QtAgg’), or
nothing. Either way, you can save the figure to a file using:

>>> fig.savefig('newsealand-base-elec-vled-haven.png',
... dpi=300, bbox_inches='tight')

The file extension determines how the output is written. Among the supported formats are jpg, pdf, png,
svg and tif. Use png if raster images are needed and rely on pdf or svg for vector output. The dpi
option is only used for raster images. bbox_inches='tight' removes unnecessary whitespace
around the plot, making it suitable for inclusion in reports or presentations.

Create a run script

As it is quite tedious to perform the above actions by hand all the time, a script can automate these. This
is where a runme.py script becomes handy.

Create a copy of the script file runme.py and give it a suitable name, e.g. runns.py.

Modify the scenario_co2_limit function. As the base scenario now has no limit, reducing it by
95 % does not make it finite. Therefore you set a fixed hard (annual) limit of 40 million tonnes of CO2
equivalent:

def scenario_co2_limit(data):
change global CO2 limit
hacks = data['hacks']
hacks.loc['Global CO2 limit', 'Value'] = 40000
return data

Next, set adjust the plot_tuples and report_tuples by replacing North, Mid and South by the four
islands of Newsealand. Furthermore, you want to show imported/exported electricity in the plots in
custom colors. So you modify the my_colors dict like this:

my_colors = {
'Vled Haven': (230, 200, 200),
'Stryworf Key': (200, 230, 200),
'Qlyph Archipelago': (200, 200, 230),
'Jepid Island': (215,215,215)}

Finally, you head down to the if __name__ == '__main__' section that is executed when the
script is called. There, you change the input_file to your spreadsheet newsealand.xlsx and

18 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict

urbs Documentation, Release 0.7

increase the optimisation duration to 14 days (14*24 time steps). For now, you don’t need the other
scenarios, so you exclude them from the scenarios list:

if __name__ == '__main__':
input_file = 'newsealand.xlsx'
result_name = os.path.splitext(input_file)[0] # cut away file

→˓extension
result_dir = prepare_result_directory(result_name) # name + time

→˓stamp

(offset, length) = (3500, 14*24) # time step selection
timesteps = range(offset, offset+length+1)

select scenarios to be run
scenarios = [

scenario_base,
scenario_co2_limit]

for scenario in scenarios:
prob = run_scenario(input_file, timesteps, scenario, result_dir)

Note: For reference, here is how runns.py looks for me.

1.2 Technical documentation

Continue here if you want to automate the scripting further, understand the model equations or extend
the model yourself.

1.2.1 Reporting function explained

This page is a “code walkthrough” through the function report(). It shows more technical details
than the Tutorial or Workflow pages, to facilitate writing one’s own analysis scripts that directly retrieve
variables from the optimisation:

Report

So let’s start by first printing the function as a whole:

After the function header and the docstring briefly explaining its use, another function,
get_constants(), is called. Before really diving into the report function, first one of the two
Retrieve results functions is presented.

Get constants

Taking only one argument, this function retrieves all time-independent quantities from the given optimi-
sation problem object and returns them as a tuple() of DataFrame. The low-level access functions
get_entity() and get_entities() are beyond the scope of this walk through. They both yield
“raw” DataFrame objects with only minor pre-processing of index names.

1.2. Technical documentation 19

https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

urbs Documentation, Release 0.7

The second paragraph deals with the emission timeseries co2 by calculating its sum over time. The
unstack() method allows to move the time dimension (index level 0 or the first) into the column
direction. To sum over time, method sum() is called with its axis argument set to columns (1). This
yields a DataFrame indexed over the tuple (site, process, input commodity, output commodity) and the
summed emissions as value.

Get timeseries

With the arguments instance, com and sit the function :func: get_timeseries returns DataFrames
of all timeseries that are referring to the given commodity and site. This includes the derivative for
created and consumed, which is calculated and standardized by the power capacity at the end of
the function.

Write to Excel

The ExcelWriter class creates a writer object, which is then used by the to_excel() method calls to
aggregate all outputs into a single spreadsheet.

Note: to_excel() can also be called with a filename. However, this overwrites an existing file
completely, thus deleting existing sheets. For quickly saving a DataFrame, to a spreadsheet, a simple
df.to_excel('df.xlsx', 'df') is sufficient.

Constants

As written already, the individual DataFrame objects are written to individual sheets within the same
spreadsheet file by using the writer object as a target. co2 is an exception, as it starts as a Series. It
must be first converted to a DataFrame by calling to_frame().

Timeseries

Initialize an empty list() and an empty dict() for collecting the timeseries data. These are two
builtin Python data structures. energies will become a list of DataFrame objects before getting
stitched together, while timeseries becomes a dictionary of DataFrame objects, with a tuple
(commodity, site) as key.

Module function get_timeseries() is similar to get_constants(), just for time-dependent
quantities. For a given commodity and site, this function returns all DataFrames needed to create a
balance plot.

Only overproduction is calculated in place. While it should not happen for scenarios close to today’s sit-
uation, future scenarios with much excess renewable infeed, overproduction could happen for significant
duration and amount.

Using the function pandas.concat(), multiple DataFrames are glued together next to each other
(axis=1), while creating a nested column index wih custom labels (keys=...) for each of the
list argument ([...]). The resulting timeseries tableau is copied to the corresponding place in the
timeseries dictionary.

20 Chapter 1. Contents

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.unstack.html#pandas.DataFrame.unstack
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sum.html#pandas.DataFrame.sum
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-excel
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_excel.html#pandas.DataFrame.to_excel
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_excel.html#pandas.DataFrame.to_excel
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.to_frame.html#pandas.Series.to_frame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html#pandas.concat

urbs Documentation, Release 0.7

For the Energy sums sheet, all timeseries DataFrames are summed along the time axis, resulting in a
Series for each timeseries. These are then glued together on top of each other (axis=0) with a nested
row index with custom labels (keys=...) for each series type. Finally the Series is converted back to
a DataFrame, using Commodity.Site as the column title template.

Finally, the Energy sums table is assembled by stitching together the individual energy sums per com-
modity and site and filling missing values with fillna().

Finally, the timeseries tables are saved without change to individual sheets.

1.2.2 urbs.py module description

Overview

The following is a minimum “hello world” script that shows the life cycle of the optimization object
prob, and how the various urbs module functions create it, modify it and process it.:

import urbs
from pyomo.opt.base import SolverFactory

read input, create optimisation problem
data = urbs.read_excel('mimo-example.xlsx')
prob = urbs.create_model(data)

solve problem, read results
optim = SolverFactory('glpk')
result = optim.solve(prob)
prob.solutions.load_from(result)

save problem instance (incl. input and result) for later analyses
urbs.save(prob, 'mimo-example.pgz')

write report and plot timeseries
urbs.report(prob, 'report.xlsx')
urbs.plot(prob, 'Elec', 'Mid')

The following lists and describes the use of all module-level functions. They are roughly ordered from
high-level to low-level access, followed by helper functions.

Create model

urbs.read_excel(filename)

Parameters filename (str) – spreadsheet filename

Returns urbs input dict

The spreadsheet must contain 7 sheets labelled ‘Commodity’, ‘Process’, ‘Process-Commodity’,
‘Transmission’, ‘Storage’, ‘Demand’ and ‘SupIm’. It can contain 2 additional sheets called ‘Buy-
Sell-Price’ and ‘Hacks’. If present, function add_hacks() is called by create_model()
upon model creation.

Refer to the mimo-example.xlsx file for exemplary documentation of the table contents and defi-
nitions of all attributes by selecting the column titles.

1.2. Technical documentation 21

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.fillna.html#pandas.DataFrame.fillna
https://docs.python.org/3/library/stdtypes.html#str

urbs Documentation, Release 0.7

urbs.create_model(data, timesteps)
Returns a Pyomo ConcreteModel object.

Parameters

• data (dict) – input like created by read_excel()

• timesteps (list) – consecutive list of modelled timesteps

Returns urbs model object

Timestep numbers must match those of the demand and supim timeseries.

If argument data has the key 'hacks', function add_hacks() is called with
data['hacks'] as the second argument.

urbs.add_hacks(model, hacks)
Is called by create_model() to add special elements, e.g. constraints, to the model. Each
hack, if present, can trigger the creation of additional sets, parameters, variables or constraints.
Refer to the code of this function to see which hacks exists and what they do.

As of v0.3, only one hack exists: if a line “Global CO2 limit” exists in the hacks DataFrame,
its value is used as a global upper limit for a constraint that limits the annual creation of the
commodity “CO2”.

param model urbs model object (not instance!)

param hacks a DataFrame of hacks

return model the modified urbs model object

Report & plotting

These two high-level functions cover the envisioned use of the unmodified urbs model and should cover
most use cases.

urbs.plot(prob, com, sit[, timesteps=None])
Parameters

• prob – urbs model instance

• com (str) – commodity name to plot

• sit (str) – site name to plot

• timesteps (list) – timesteps to plot, default: all

Return fig matplotlib figure handle

urbs.report(prob, filename, commodities, sites)
Write optimisation result summary to spreadsheet.

Parameters

• prob – urbs model instance

• filename (str) – spreadsheet filename, will be overwritten if exists

• commodities (list) – list of commodities for which to output timeseries

• sites (list) – list sites for which to output timeseries

22 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://github.com/tum-ens/urbs/blob/master/urbs.py#L798-L824
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

urbs Documentation, Release 0.7

Retrieve results

While report() and plot() are quite flexible, custom result analysis scripts might be needed. These
can be built on top of the following two medium-level functions. They retrieve all time-dependent and
-independent quantities and return them as ready-to-use DataFrames.

urbs.get_constants(prob)
Return summary DataFrames for time-independent variables

Parameters prob – urbs model instance

Returns tuple of constants (costs, process, transmission, storage)

urbs.get_timeseries(prob, com, sit, timesteps=None)
Return DataFrames of all timeseries referring to a given commodity and site

Parameters

• prob – urbs model instance

• com (str) – commodity name

• sit (str) – site name

• timesteps (list) – timesteps, default: all modelled timesteps

Returns

tuple of timeseries (created, consumed, storage, imported, exported) tuple of
DataFrames timeseries. These are:

• created: timeseries of commodity creation, including stock source

• consumed: timeseries of commodity consumption, including demand

• storage: timeseries of commodity storage (level, stored, retrieved)

• imported: timeseries of commodity import (by site)

• exported: timeseries of commodity export (by site)

Persistence

To store valuable results for later analysis, or cross-scenario comparisons weeks after the original run,
saving a problem instance with loaded results makes it possible to use one’s comparison scripts without
having to solve the optimisation problem again. Simply load() the previously stored object using
save():

urbs.save(prob, filename)
Save rivus model instance to a gzip’ed pickle file

Pickle is the standard Python way of serializing and de-serializing Python objects. By using it,
saving any object, in case of this function a Pyomo ConcreteModel, becomes a twoliner.

GZip is a standard Python compression library that is used to transparently compress the pickle
file further.

It is used over the possibly more compact bzip2 compression due to the lower runtime. Source:
<http://stackoverflow.com/a/18475192/2375855>

Parameters

1.2. Technical documentation 23

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/2/library/pickle.html
https://docs.python.org/2/library/gzip.html
http://stackoverflow.com/a/18475192/2375855

urbs Documentation, Release 0.7

• prob – a rivus model instance

• filename (str) – pickle file to be written

Returns nothing

urbs.load(filename)
Load a rivus model instance from a gzip’ed pickle file

Parameters filename (str) – pickle file

Return prob the unpickled rivus model instance

Low-level access

If the previous functions still don’t cut it, there are three low-level functions.

urbs.list_entities(prob, entity_type)

Parameters

• prob – urbs model instance

• entity_type (str) – allowed values: set, par, var, con, obj

Returns a DataFrame with name, description and domain of entities

urbs.get_entity(prob, name)

Parameters

• prob – urbs model instance

• name (str) – name of a model entity

Returns Series with values of model entity

urbs.get_entities(prob, names)

Parameters

• prob – urbs model instance

• name (list) – list of model entity names

Returns DataFrame with values entities in columns

Only call get_entities for entities that share identical domains. This can be checked
with list_entities(). For example, variable cap_pro naturally has the same domain
as cap_pro_new.

Helper functions

urbs.annuity_factor(n, i)
Annuity factor formula.

Evaluates the annuity factor formula for depreciation duration and interest rate. Works also well
for equally sized numpy arrays as input.

Parameters

• n (int) – number of depreciation periods (years)

24 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

urbs Documentation, Release 0.7

• i (float) – interest rate (e.g. 0.06 means 6 %)

Returns value of the expression (1+𝑖)𝑛𝑖
(1+𝑖)𝑛−1

urbs.commodity_balance(m, tm, sit, com)
Calculate commodity balance at given timestep.

For a given commodity, site and timestep, calculate the balance of consumed (to pro-
cess/storage/transmission, counts positive) and provided (from process/storage/transmission,
counts negative) energy. Used as helper function in create_model() for defining constraints
on demand and stock commodities.

Parameters

• m – the ConcreteModel object

• tm – the timestep number

• sit – the site

• co – the commodity

Returns amount of consumed (positive) or provided (negative) energy

urbs.split_columns(columns[, sep=’.’])
Given a list of column labels containing a separator string (default: ‘.’), derive a MulitIndex that
is split at the separator string.

Parameters

• columns (list) – column labels, each containing the separator string

• sep (str) – the separator string (default: ‘.’)

Returns a MultiIndex corresponding to input, with levels split at separator

urbs.to_color(obj=None)
Assign a deterministic pseudo-random color to argument.

If COLORS[obj] is set, return that. Otherwise, create a deterministically random color from the
hash() of that object. For strings, this value depends only on the string content, so that identical
strings always yield the same color.

Parameters obj – any hashable object

Returns a (r,g,b) tuple if COLORS[obj] exists, otherwise a hexstring

urbs.COLORS
dict of process and site colors. Colors are stored as (r,g,b) tuples in range 0-255 each. To retrieve
a color in a form usable with matplotlib, used the helper function to_color().

This snippet from the example script runme.py shows how to add custom colors:

add or change plot colours
my_colors = {

'South': (230, 200, 200),
'Mid': (200, 230, 200),
'North': (200, 200, 230)}

for country, color in my_colors.items():
urbs.COLORS[country] = color

1.2. Technical documentation 25

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#hash
https://docs.python.org/3/library/stdtypes.html#dict

urbs Documentation, Release 0.7

1.2.3 Mathematical Documentation

In this Section, mathematical description of the model will be explained. This includes listing and
describing all relevant sets, parameters, variables and constraints using mathematical notation together
with corresponding code fragment.

Sets

Since urbs is a linear optimization model with many objects (e.g variables, parameters), it is reasonable
to use sets to define the groups of objects. With the usage of sets, many facilities are provided, such as
understanding the main concepts of the model. Many objects are represented by various sets, therefore
sets can be easily used to check whether some object has a specific characteristic or not. Additionally sets
are useful to define a hierarchy of objects. Mathematical notation of sets are expressed with uppercase
letters, and their members are usually expressed with the same lowercase letters. Main sets, tuple sets
and subsets will be introduced in this respective order.

Elementary sets

Table 10: Table: Model Sets
Set Description
𝑡 ∈ 𝑇 Timesteps
𝑡 ∈ 𝑇m Modelled Timesteps
𝑣 ∈ 𝑉 Sites
𝑐 ∈ 𝐶 Commodities
𝑞 ∈ 𝑄 Commodity Types
𝑝 ∈ 𝑃 Processes
𝑠 ∈ 𝑆 Storages
𝑓 ∈ 𝐹 Transmissions
𝑟 ∈ 𝑅 Cost Types

Time Steps

The model urbs is considered to observe a energy system model and calculate the optimal solution within
a limited span of time. This limited span of time is viewed as a discrete variable, which means values of
variables are viewed as occurring only at distinct timesteps. The set of time steps 𝑇 = {𝑡0, . . . , 𝑡𝑁} for
𝑁 in N represents Time. This set contains𝑁+1 sequential time steps with equal spaces. Each time step
represents another point in time. At the initialisation of the model this set is fixed by the user by setting
the variable timesteps in script runme.py. Duration of space between timesteps ∆𝑡 = 𝑡𝑥+1 − 𝑡𝑥,
length of simulation ∆𝑡 · 𝑁 and time interval [𝑡0, 𝑡𝑁] can be fixed to satisfy the needs of the user. In
code this set is defined by the set t and initialized by the section:

m.t = pyomo.Set(
initialize=m.timesteps,
ordered=True,
doc='Set of timesteps')

Where:

26 Chapter 1. Contents

urbs Documentation, Release 0.7

• Initialize: A function that receives the set indices and model to return the value of that set element,
initializes the set with data.

• Ordered: A boolean value that indicates whether the set is ordered.

• Doc: A string describing the set.

Modelled Timesteps

The Set, modelled timesteps, is a subset of the time steps set. The difference between modelled
timesteps set and the timesteps set is that the initial timestep 𝑡0 is not included. All other features
of the set time steps also apply to the set of modelled timesteps. This set is later required to facilitate
the definition of the storage state equation. In script urbs.py this set is defined by the set tm and
initialized by the code fragment:

m.tm = pyomo.Set(
within=m.t,
initialize=m.timesteps[1:],
ordered=True,
doc='Set of modelled timesteps')

Where:

• Within: The option that supports the validation of a set array.

• m.timesteps[1:] represents the timesteps set starting from the second element, excluding
the first timestep 𝑡0

Sites

Sites are represented by the set 𝑉 . A Site 𝑣 can be any distinct location, a place of settlement or activity
(e.g process, transmission, storage).A site is for example an individual building, region, country or even
continent. Sites can be imagined as nodes(vertices) on a graph of locations, connected by edges. Index
of this set are the descriptions of the Sites (e.g north, middle, south). In script urbs.py this set is
defined by sit and initialized by the code fragment:

m.sit = pyomo.Set(
initialize=m.commodity.index.get_level_values('Site').unique(),
doc='Set of sites')

Commodities

As explained in the Overview section, commodities are goods that can be generated, stored, transmitted
or consumed. The set of Commodities represents all goods that are relevant to the modelled energy
system, such as all energy carriers, inputs, outputs, intermediate substances. (e.g Coal, CO2, Electric,
Wind) By default, commodities are given by their energy content (MWh). Usage of some commodities
are limited by a maximum value or maximum value per timestep due to their availability or restric-
tions, also some commodities have a price that needs to be compensated..(e.g coal, wind, solar).In script
urbs.py this set is defined by com and initialized by the code fragment:

1.2. Technical documentation 27

urbs Documentation, Release 0.7

m.com = pyomo.Set(
initialize=m.commodity.index.get_level_values('Commodity').unique(),
doc='Set of commodities')

Commodity Types

Commodities differ in their usage purposes, consequently commodity types are introduced to subdivide
commodities by their features. These Types are SupIm, Stock, Demand, Env, Buy, Sell. In script
urbs.py this set is defined as com_type and initialized by the code fragment:

m.com_type = pyomo.Set(
initialize=m.commodity.index.get_level_values('Type').unique(),
doc='Set of commodity types')

Processes

One of the most important elements of an energy system is the process. A process 𝑝 can be defined
by the action of changing one or more forms of energy to others. In our modelled energy system,
processes convert input commodities into output commodities. Process technologies are represented by
the set processes 𝑃 . Different processes technologies have fixed input and output commodities. These
input and output commodities can be either single or multiple regardless of each other. Some example
members of this set can be: Wind Turbine,‘Gas Plant‘, Photovoltaics. In script urbs.py this set is
defined as pro and initialized by the code fragment:

m.pro = pyomo.Set(
initialize=m.process.index.get_level_values('Process').unique(),
doc='Set of conversion processes')

Storages

Energy Storage is provided by technical facilities that store energy to generate a commodity at a later
time for the purpose of meeting the demand. Occasionally, on-hand commodities may not be able to
satisfy the required amount of energy to meet the demand, or the available amount of energy may be
much more than required.Storage technologies play a major role in such circumstances. The Set 𝑆
represents all storage technologies.(e.g Pump storage). In script urbs.py this set is defined as sto
and initalized by the code fragment:

m.sto = pyomo.Set(
initialize=m.storage.index.get_level_values('Storage').unique(),
doc='Set of storage technologies')

Transmissions

Transmissions 𝑓 ∈ 𝐹 represent possible conveyances of commodities between sites. Transmission
process technologies can vary between different commodities, due to distinct physical attributes and
forms of commodities. Some examples for Transmission technologies are: hvac, hvdc, pipeline) In
script urbs.py this set is defined as tra and initialized by the code fragment:

28 Chapter 1. Contents

urbs Documentation, Release 0.7

m.tra = pyomo.Set(
initialize=m.transmission.index.get_level_values('Transmission').

→˓unique(),
doc='Set of transmission technologies')

Cost Types

One of the major goals of the model is to calculate the costs of a simulated energy system. There are 6
different types of costs. Each one has different features and are defined for different instances. Set of
cost types is hardcoded, which means they are not considered to be fixed or changed by the user. The
Set 𝑅 defines the Cost Types, each member 𝑟 of this set 𝑅 represents a unique cost type name. The
cost types are : Investment, Fix, Variable, Fuel, Revenue, Purchase, Startup . In script
urbs.py this set is defined as cost_type and initialized by the code fragment:

m.cost_type = pyomo.Set(
initialize=['Inv', 'Fix', 'Var', 'Fuel','Revenue','Purchase','Startup

→˓'],
doc='Set of cost types (hard-coded)')

Tuple Sets

A tuple is finite, ordered collection of elements.For example, the tuple (hat,red,large) consists
of 3 ordered elements and defines another element itself. Tuples are needed in this model to define the
combinations of elements from different sets. Defining a tuple lets us assemble related elements and use
them as a single element. As a result a collection of by the same rule defined tuples, represents a tuple
set.

Commodity Tuples

Commodity tuples represent combinations of defined commodities. These are represented by the set
𝐶𝑣𝑞. A member 𝑐𝑣𝑞 in set 𝐶𝑣𝑞 is a commodity 𝑐 of commodity type 𝑞 in site 𝑣. For example, (Mid, Elec,
Demand) is interpreted as commodity Elec of commodity type Demand in site Mid. This set is defined
as com_tuples and given by the code fragment:

m.com_tuples = pyomo.Set(
within=m.sit*m.com*m.com_type,
initialize=m.commodity.index,
doc='Combinations of defined commodities, e.g. (Mid,Elec,Demand)')

Process Tuples

Process tuples represent combinations of possible processes. These are represented by the set 𝑃𝑣. A
member 𝑝𝑣 in set 𝑃𝑣 is a process 𝑝 in site 𝑣. For example, (North, Coal Plant) is interpreted as process
Coal Plant in site North. This set is defined as pro_tuples and given by the code fragment:

m.pro_tuples = pyomo.Set(
within=m.sit*m.pro,

(continues on next page)

1.2. Technical documentation 29

urbs Documentation, Release 0.7

(continued from previous page)

initialize=m.process.index,
doc='Combinations of possible processes, e.g. (North,Coal plant)')

A subset of these process tuples pro_partial_tuples 𝑃 partial
𝑣 is formed in order to identify pro-

cesses that have partial & startup properties. Programmatically, they are identified by those pro-
cesses, which have the parameter ratio-min set for one of their input commodities in table Process-
Commodity. The tuple set is defined as:

m.pro_partial_tuples = pyomo.Set(
within=m.sit*m.pro,
initialize=[(site, process)

for (site, process) in m.pro_tuples
for (pro, _) in m.r_in_min_fraction.index
if process == pro],

doc='Processes with partial input')

A second subset is formed in order to caputure all processes that take up a certain area and are
thus subject to the area constraint at the given site. These processes are identified by the parameter
area-per-cap set in table Process, if at the same time a value for area is set in table Site. The tuple
set is defined as:

m.pro_area_tuples = pyomo.Set(
within=m.sit*m.pro,
initialize=m.proc_area.index,
doc='Processes and Sites with area Restriction')

Transmission Tuples

Transmission tuples represent combinations of possible transmissions. These are represented by the
set 𝐹𝑐𝑣out𝑣in . A member 𝑓𝑐𝑣out𝑣in in set 𝐹𝑐𝑣out𝑣in is a transmission 𝑓 ,that is directed from an origin site
𝑣out to a destination site 𝑣𝑖𝑛 and carries a commodity 𝑐. The term “directed from an origin site 𝑣out to a
destination site 𝑣in” can also be defined as an Arc 𝑎 . For example, (South, Mid, hvac, Elec) is interpreted
as transmission hvac that is directed from origin site South to destination site Mid carrying commodity
Elec. This set is defined as tra_tuples and given by the code fragment:

m.tra_tuples = pyomo.Set(
within=m.sit*m.sit*m.tra*m.com,
initialize=m.transmission.index,
doc='Combinations of possible transmission, e.g. (South,Mid,hvac,Elec)

→˓')

Additionally, Subsets 𝐹 exp
𝑣𝑐 and 𝐹 imp

𝑣𝑐 represents all exporting and importing transmissions of a commod-
ity 𝑐 in a site 𝑣. These subsets can be obtained by fixing either the origin site(for export) 𝑣out or the
destination site(for import) 𝑣in to a desired site 𝑣 in tuple set 𝐹𝑐𝑣out𝑣in .

Storage Tuples

Storage tuples represent combinations of possible storages by site. These are represented by the set
𝑆𝑣𝑐. A member 𝑠𝑣𝑐 in set 𝑆𝑣𝑐 is a storage 𝑠 of commodity 𝑐 in site 𝑣 For example, (Mid, Bat, Elec)
is interpreted as storage Bat of commodity Elec in site Mid. This set is defined as sto_tuples and
given by the code fragment:

30 Chapter 1. Contents

urbs Documentation, Release 0.7

m.sto_tuples = pyomo.Set(
within=m.sit*m.sto*m.com,
initialize=m.storage.index,
doc='Combinations of possible storage by site, e.g. (Mid,Bat,Elec)')

Process Input Tuples

Process input tuples represent commodities consumed by processes. These are represented by the set
𝐶 in
𝑣𝑝. A member 𝑐in

𝑣𝑝 in set 𝐶 in
𝑣𝑝 is a commodity 𝑐 consumed by the process 𝑝 in site 𝑣. For example,

(Mid,PV,Solar) is interpreted as commodity Solar is consumed by the process PV in the site Mid. This
set is defined as pro_input_tuples and given by the code fragment:

m.pro_input_tuples = pyomo.Set(
within=m.sit*m.pro*m.com,
initialize=[(site, process, commodity)

for (site, process) in m.pro_tuples
for (pro, commodity) in m.r_in.index
if process == pro],

doc='Commodities consumed by process by site, e.g. (Mid,PV,Solar)')

Where: r_in represents the process input ratio.

For processes in the tuple set pro_partial_tuples 𝐶
in,partial
𝑣𝑝 , the following tuple set

pro_partial_input_tuples enumerates their input commodities. It is used to index the
constraints that determine a process’ input commodity flow (i.e. def_process_input and
def_partial_process_input). It is defined by the following code fragment:

m.pro_partial_input_tuples = pyomo.Set(
within=m.sit*m.pro*m.com,
initialize=[(site, process, commodity)

for (site, process) in m.pro_partial_tuples
for (pro, commodity) in m.r_in_min_fraction.index
if process == pro],

doc='Commodities with partial input ratio, e.g. (Mid,Coal PP,Coal)')

Process Output Tuples

Process output tuples represent commodities generated by processes. These are represented by the set
𝐶out
𝑣𝑝 . A member 𝑐out

𝑣𝑝 in set 𝐶out
𝑣𝑝 is a commodity 𝑐 generated by the process 𝑝 in site 𝑣. For example,

(Mid,PV,Elec) is interpreted as the commodity Elec is generated by the process PV in the site Mid. This
set is defined as pro_output_tuples and given by the code fragment:

m.pro_output_tuples = pyomo.Set(
within=m.sit*m.pro*m.com,
initialize=[(site, process, commodity)

for (site, process) in m.pro_tuples
for (pro, commodity) in m.r_out.index
if process == pro],

doc='Commodities produced by process by site, e.g. (Mid,PV,Elec)')

Where: r_out represents the process output ratio.

1.2. Technical documentation 31

urbs Documentation, Release 0.7

Demand Side Management Tuples

There are two kinds of demand side management (DSM) tuples in the model: DSM site tuples 𝐷𝑣𝑐

and DSM down tuples 𝐷down
𝑣𝑐𝑡,𝑡𝑡. The first kind 𝐷𝑣𝑐 represents all possible combinations of site 𝑣 and

commodity 𝑐 of the DSM sheet. It is given by the code fragment:

m.dsm_site_tuples = pyomo.Set(
within=m.sit*m.com,
initialize=m.dsm.index,
doc='Combinations of possible dsm by site, e.g. (Mid, Elec)')

The second kind 𝐷down
𝑣𝑐𝑡,𝑡𝑡 refers to all possible DSM downshift possibilities. It is defined to overcome

the difficulty caused by the two time indices of the DSM downshift variable. Dependend on site 𝑣 and
commodity 𝑐 the tuples contain two time indices. For example (5001, 5003, Mid, Elec) is intepreted
as the downshift in timestep 5003, which was caused by the upshift of timestep 5001 in site Mid for
commodity Elec. The tuples are given by the following code fragment:

m.dsm_down_tuples = pyomo.Set(
within=m.tm*m.tm*m.sit*m.com,
initialize=[(t, tt, site, commodity)

for (t,tt, site, commodity) in dsm_down_time_tuples(m.
→˓timesteps[1:], m.dsm_site_tuples, m)],

doc='Combinations of possible dsm_down combinations, e.g. (5001,5003,
→˓Mid,Elec)')

Commodity Type Subsets

Commodity Type Subsets represent the commodity tuples only from a given commodity type. Com-
modity Type Subsets are subsets of the sets commodity tuples These subsets can be obtained by fixing
the commodity type 𝑞 to a desired commodity type (e.g SupIm, Stock) in the set commodity tuples 𝐶𝑣𝑞.
Since there are 6 types of commodity types, there are also 6 commodity type subsets. Commodity type
subsets are;

Supply Intermittent Commodities (SupIm): The set 𝐶sup represents all commodities 𝑐 of commodity
type SupIm. Commodities of this type have intermittent timeseries, in other words, availability of these
commodities are not constant. These commodities might have various energy content for every timestep
𝑡. For example solar radiation is contingent on many factors such as sun position, weather and varies
permanently.

Stock Commodities (Stock): The set 𝐶st represents all commodities 𝑐 of commodity type Stock.
Commodities of this type can be purchased at any time for a given price(𝑘fuel

𝑣𝑐).

Sell Commodities (Sell): The set 𝐶sell represents all commodities 𝑐 of commodity type Sell. Com-
modities that can be sold. These Commodities have a sell price (𝑘bs

𝑣𝑐𝑡) that may vary with the given
timestep 𝑡.

Buy Commodities (Buy): The set 𝐶buy represents all commodities 𝑐 of commodity type Buy. Com-
modities that can be purchased. These Commodities have a buy price (𝑘bs

𝑣𝑐) that may vary with the
given timestep 𝑡.

Demand Commodities (Demand): The set 𝐶dem represents all commodities 𝑐 of commodity type
Demand. Commodities of this type are the requested commodities of the energy system. They are
usually the end product of the model (e.g Electricity:Elec).

32 Chapter 1. Contents

urbs Documentation, Release 0.7

Environmental Commodities (Env): The set 𝐶env represents all commodities 𝑐 of commodity type
Env. Commodities of this type are usually the undesired byproducts of processes that might be harm-
ful for environment, optional maximum creation limits can be set to control the generation of these
commodities (e.g Greenhouse Gas Emissions: CO2).

Commodity Type Subsets are given by the code fragment:

m.com_supim = pyomo.Set(
within=m.com,
initialize=commodity_subset(m.com_tuples, 'SupIm'),
doc='Commodities that have intermittent (timeseries) input')

m.com_stock = pyomo.Set(
within=m.com,
initialize=commodity_subset(m.com_tuples, 'Stock'),
doc='Commodities that can be purchased at some site(s)')

m.com_sell = pyomo.Set(
within=m.com,
initialize=commodity_subset(m.com_tuples, 'Sell'),
doc='Commodities that can be sold')

m.com_buy = pyomo.Set(
within=m.com,
initialize=commodity_subset(m.com_tuples, 'Buy'),
doc='Commodities that can be purchased')

m.com_demand = pyomo.Set(
within=m.com,
initialize=commodity_subset(m.com_tuples, 'Demand'),
doc='Commodities that have a demand (implies timeseries)')

m.com_env = pyomo.Set(
within=m.com,
initialize=commodity_subset(m.com_tuples, 'Env'),
doc='Commodities that (might) have a maximum creation limit')

Where:

urbs.commodity_subset(com_tuples, type_name)
Returns the commodity names(𝑐) of the given commodity type(𝑞).

Parameters

• com_tuples – A list of tuples (site, commodity, commodity type)

• type_name – A commodity type or a list of commodity types

Returns The set (unique elements/list) of commodity names of the desired commodity
type.

Variables

All the variables that the optimization model requires to calculate an optimal solution will be listed and
defined in this section. A variable is a numerical value that is determined during optimization. Variables
can denote a single, independent value, or an array of values. Variables define the search space for
optimization. Variables of this optimization model can be seperated into sections by their area of use.
These Sections are Cost, Commodity, Process, Transmission and Storage.

1.2. Technical documentation 33

urbs Documentation, Release 0.7

Table 11: Table: Model Variables

Variable Unit Description
Cost Variables
𝜁 C/a Total System Cost
𝜁inv C/a Investment Costs
𝜁fix C/a Fix Costs
𝜁var C/a Variable Costs
𝜁fuel C/a Fuel Costs
𝜁rev C/a Revenue Costs
𝜁pur C/a Purchase Costs
𝜁startup C/a Startup Costs
Commodity Variables
𝜌𝑣𝑐𝑡 MW Stock Commodity Source Term
𝜚𝑣𝑐𝑡 MW Sell Commodity Source Term
𝜓𝑣𝑐𝑡 MW Buy Commodity Source Term
Process Variables
𝜅𝑣𝑝 MW Total Process Capacity
𝜅̂𝑣𝑝 MW New Process Capacity
𝜏𝑣𝑝𝑡 MW Process Throughput
𝜖in
𝑣𝑐𝑝𝑡 MW Process Input Commodity Flow
𝜖out
𝑣𝑐𝑝𝑡 MW Process Output Commodity Flow
𝜔𝑣𝑝𝑡 MW Process Online Capacity
𝜑𝑣𝑝𝑡 MW Process Startup Capacity
Transmission Variables
𝜅𝑎𝑓 MW Total transmission Capacity
𝜅̂𝑎𝑓 MW New Transmission Capacity
𝜋in
𝑎𝑓𝑡 MW Transmission Power Flow (Input)
𝜋out
𝑎𝑓𝑡 MW Transmission Power Flow (Output)

Storage Variables
𝜅c
𝑣𝑠 MWh Total Storage Size
𝜅̂c
𝑣𝑠 MWh New Storage Size
𝜅

p
𝑣𝑠 MW Total Storage Power
𝜅̂

p
𝑣𝑠 MW New Storage Power
𝜖in
𝑣𝑠𝑡 MW Storage Power Flow (Input)
𝜖out
𝑣𝑠𝑡 MW Storage Power Flow (Output)
𝜖con
𝑣𝑠𝑡 MWh Storage Energy Content

Demand Side Management Variables
𝛿

up
𝑣𝑐𝑡 MW DSM Upshift
𝛿down
𝑣𝑐𝑡,𝑡𝑡 MW DSM Downshift

Cost Variables

Total System Cost, 𝜁 : the variable 𝜁 represents the annual total expense incurred in reaching the
satisfaction of the given energy demand. This is calculated by the sum total of all costs by type(𝜁𝑟,
∀𝑟 ∈ 𝑅) and defined as costs by the following code fragment:

m.costs = pyomo.Var(
m.cost_type,

(continues on next page)

34 Chapter 1. Contents

urbs Documentation, Release 0.7

(continued from previous page)

within=pyomo.Reals,
doc='Costs by type (EUR/a)')

More information on calculation of this variable is available at the section Objective function.

Total System costs by type: System costs are divided into 6 cost types by their meaning and purpose. The
separation of costs by type, facilitates business planning and provides calculation accuracy As mentioned
before these cost types are hardcoded, which means they are not considered to be fixed or changed by
the user. These cost types are as following;

Investment Costs 𝜁inv: The variable 𝜁inv represents the annualised total investment costs. Costs for
required new investments on storage, process and transmission technologies.

Fix Costs 𝜁fix: The variable 𝜁fix represents the annualised total fix costs. Fix costs for all used storage,
process, and transmission technologies. Such as maintenance costs.

Variable Costs 𝜁var: The variable 𝜁var represents the annualised total variables costs. Variable costs that
are reliant on the usage amount and period of the storage, process, transmission technologies.

Fuel Costs 𝜁fuel: The variable 𝜁fuel represents the annualised total fuel costs. Fuel costs are dependent
on the usage of stock commodities(∀𝑐 ∈ 𝐶stock).

Revenue Costs 𝜁rev: The variable 𝜁rev represents the annualised total revenue costs. Revenue costs is
defined for the costs that occures by selling the sell commodities(∀𝑐 ∈ 𝐶sell). Since this variable is an
income for the system, it is either zero or has a negative value.

Purchase Costs 𝜁pur: The variable 𝜁pur represents the annualised total purchase costs. Purchase costs is
defined for the costs that occures by buying the buy commodities (∀𝑐 ∈ 𝐶buy).

Startup Costs 𝜁startup: The variable 𝜁startup represents the annualised total startup costs. Startup costs are
reliant on the yearly startup occurences of the processes.

For more information on calculation of these variables see section Objective function.

Commodity Variables

Stock Commodity Source Term, 𝜌𝑣𝑐𝑡, e_co_stock, MW : The variable 𝜌𝑣𝑐𝑡 represents the energy
amount in [MW] that is being used by the system of commodity 𝑐 from type stock (∀𝑐 ∈ 𝐶stock) in a
site 𝑣 (∀𝑣 ∈ 𝑉) at timestep 𝑡 (∀𝑡 ∈ 𝑇m). In script urbs.py this variable is defined by the variable
e_co_stock and initialized by the following code fragment:

m.e_co_stock = pyomo.Var(
m.tm, m.com_tuples,
within=pyomo.NonNegativeReals,
doc='Use of stock commodity source (MW) per timestep')

Sell Commodity Source Term, 𝜚𝑣𝑐𝑡, e_co_sell, MW : The variable 𝜚𝑣𝑐𝑡 represents the energy
amount in [MW] that is being used by the system of commodity 𝑐 from type sell (∀𝑐 ∈ 𝐶sell) in a
site 𝑣 (∀𝑣 ∈ 𝑉) at timestep 𝑡 (∀𝑡 ∈ 𝑇m). In script urbs.py this variable is defined by the variable
e_co_sell and initialized by the following code fragment:

m.e_co_sell = pyomo.Var(
m.tm, m.com_tuples,
within=pyomo.NonNegativeReals,
doc='Use of sell commodity source (MW) per timestep')

1.2. Technical documentation 35

urbs Documentation, Release 0.7

Buy Commodity Source Term, 𝜓𝑣𝑐𝑡, e_co_buy, MW : The variable 𝜓𝑣𝑐𝑡 represents the energy
amount in [MW] that is being used by the system of commodity 𝑐 from type buy (∀𝑐 ∈ 𝐶buy) in a
site 𝑣 (∀𝑣 ∈ 𝑉) at timestep 𝑡 (∀𝑡 ∈ 𝑇m). In script urbs.py this variable is defined by the variable
e_co_buy and initialized by the following code fragment:

m.e_co_buy = pyomo.Var(
m.tm, m.com_tuples,
within=pyomo.NonNegativeReals,
doc='Use of buy commodity source (MW) per timestep')

Process Variables

Total Process Capacity, 𝜅𝑣𝑝, cap_pro: The variable 𝜅𝑣𝑝 represents the total potential throughput
(capacity) of a process tuple 𝑝𝑣 (∀𝑝 ∈ 𝑃,∀𝑣 ∈ 𝑉), that is required in the energy system. The total
process capacity includes both the already installed process capacity and the additional new process
capacity that needs to be installed. Since the costs of the process technologies are mostly directly
proportional to the maximum possible output (and correspondingly to the capacity) of processes, this
variable acts as a scale factor of process technologies and helps us to calculate a more accurate cost plan.
For further information see Process Capacity Rule. This variable is expressed in the unit MW. In script
urbs.py this variable is defined by the model variable cap_pro and initialized by the following code
fragment:

m.cap_pro = pyomo.Var(
m.pro_tuples,
within=pyomo.NonNegativeReals,
doc='Total process capacity (MW)')

New Process Capacity, 𝜅̂𝑣𝑝, cap_pro_new: The variable 𝜅̂𝑣𝑝 represents the capacity of a process
tuple 𝑝𝑣 (∀𝑝 ∈ 𝑃,∀𝑣 ∈ 𝑉) that needs to be installed additionally to the energy system in order to
provide the optimal solution. This variable is expressed in the unit MW. In script urbs.py this variable
is defined by the model variable cap_pro_new and initialized by the following code fragment:

m.cap_pro_new = pyomo.Var(
m.pro_tuples,
within=pyomo.NonNegativeReals,
doc='New process capacity (MW)')

Process Throughput, 𝜏𝑣𝑝𝑡, tau_pro : The variable 𝜏𝑣𝑝𝑡 represents the measure of (energetic) activity
of a process tuple 𝑝𝑣 (∀𝑝 ∈ 𝑃,∀𝑣 ∈ 𝑉) at a timestep 𝑡 (∀𝑡 ∈ 𝑇𝑚). By default, process throughput is
represented by the major input commodity flow of the process (e.g. ‘Gas’ for ‘Gas plant’, ‘Wind’ for
‘Wind park’). Based on the process throughput amount in a given timestep of a process, flow amounts
of the process’ input and output commodities at that timestep can be calculated by scaling the process
throughput with corresponding process input and output ratios. For further information see Process
Input Ratio and Process Output Ratio. This variable is expressed in the unit MW. In script urbs.py
this variable is defined by the model variable tau_pro and initialized by the following code fragment:

m.tau_pro = pyomo.Var(
m.tm, m.pro_tuples,
within=pyomo.NonNegativeReals,
doc='Activity (MW) through process')

Process Input Commodity Flow, 𝜖in
𝑣𝑐𝑝𝑡, e_pro_in: The variable 𝜖in

𝑣𝑐𝑝𝑡 represents the flow input into a
process tuple 𝑝𝑣 (∀𝑝 ∈ 𝑃,∀𝑣 ∈ 𝑉) caused by an input commodity 𝑐 (∀𝑐 ∈ 𝐶) at a timestep 𝑡 (∀𝑡 ∈ 𝑇𝑚).

36 Chapter 1. Contents

urbs Documentation, Release 0.7

This variable is generally expressed in the unit MW. In script urbs.py this variable is defined by the
model variable e_pro_in and initialized by the following code fragment:

m.e_pro_in = pyomo.Var(
m.tm, m.pro_tuples, m.com,
within=pyomo.NonNegativeReals,
doc='Flow of commodity into process per timestep')

Process Output Commodity Flow, 𝜖out
𝑣𝑐𝑝𝑡, e_pro_out: The variable 𝜖out

𝑣𝑐𝑝𝑡 represents the flow output
out of a process tuple 𝑝𝑣 (∀𝑝 ∈ 𝑃,∀𝑣 ∈ 𝑉) caused by an output commodity 𝑐 (∀𝑐 ∈ 𝐶) at a timestep 𝑡
(∀𝑡 ∈ 𝑇𝑚). This variable is generally expressed in the unit MW (or tonnes e.g. for the environmental
commodity ‘CO2’). In script urbs.py this variable is defined by the model variable e_pro_out and
initialized by the following code fragment:

m.e_pro_out = pyomo.Var(
m.tm, m.pro_tuples, m.com,
within=pyomo.NonNegativeReals,
doc='Flow of commodity out of process per timestep')

Process Online Capacity, 𝜔𝑣𝑝𝑡, cap_online: This variable is the time-dependent version of the usual
process capacity 𝜅𝑣𝑝. It is defined for partial process tuples, i.e. those processes that have the parameter
input ratio ratio-min set. of a process tuple 𝑝𝑣 (∀𝑝 ∈ 𝑃,∀𝑣 ∈ 𝑉) at a timestep 𝑡 (∀𝑡 ∈ 𝑇). In
script urbs.py this variable is defined by the model variable onlinestatus and initialized by the
following code fragment:

m.cap_online = pyomo.Var(
m.t, m.pro_partial_tuples,
within=pyomo.NonNegativeReals,
doc='Online capacity (MW) of process per timestep')

Process Startup Capacity, 𝜑′𝑣𝑝𝑡, startup_pro: This variable indicates every rise in the process
online capacity. This indicator is then used to determine startup costs for all partial process tuples. The
variable is defined by the following code fragment:

m.startup_pro = pyomo.Var(
m.tm, m.pro_partial_tuples,
within=pyomo.NonNegativeReals,
doc='Started capacity (MW) of process per timestep')

Transmission Variables

Total Transmission Capacity, 𝜅𝑎𝑓 , cap_tra: The variable 𝜅𝑎𝑓 represents the total potential transfer
power of a transmission tuple 𝑓𝑐𝑎, where 𝑎 represents the arc from an origin site 𝑣out to a destination
site 𝑣in. The total transmission capacity includes both the already installed transmission capacity and
the additional new transmission capacity that needs to be installed. This variable is expressed in the unit
MW. In script urbs.py this variable is defined by the model variable cap_tra and initialized by the
following code fragment:

m.cap_tra = pyomo.Var(
m.tra_tuples,
within=pyomo.NonNegativeReals,
doc='Total transmission capacity (MW)')

1.2. Technical documentation 37

urbs Documentation, Release 0.7

New Transmission Capacity, 𝜅̂𝑎𝑓 , cap_tra_new: The variable 𝜅̂𝑎𝑓 represents the additional capac-
ity, that needs to be installed, of a transmission tuple 𝑓𝑐𝑎, where 𝑎 represents the arc from an origin site
𝑣out to a destination site 𝑣in. This variable is expressed in the unit MW. In script urbs.py this variable
is defined by the model variable cap_tra_new and initialized by the following code fragment:

m.cap_tra_new = pyomo.Var(
m.tra_tuples,
within=pyomo.NonNegativeReals,
doc='New transmission capacity (MW)')

Transmission Power Flow (Input), 𝜋in
𝑎𝑓𝑡, e_tra_in: The variable 𝜋in

𝑎𝑓𝑡 represents the power flow
input into a transmission tuple 𝑓𝑐𝑎 at a timestep 𝑡, where 𝑎 represents the arc from an origin site 𝑣out
to a destination site 𝑣in. This variable is expressed in the unit MW. In script urbs.py this variable is
defined by the model variable e_tra_in and initialized by the following code fragment:

m.e_tra_in = pyomo.Var(
m.tm, m.tra_tuples,
within=pyomo.NonNegativeReals,
doc='Power flow into transmission line (MW) per timestep')

Transmission Power Flow (Output), 𝜋out
𝑎𝑓𝑡, e_tra_out: The variable 𝜋out

𝑎𝑓𝑡 represents the power flow
output out of a transmission tuple 𝑓𝑐𝑎 at a timestep 𝑡, where 𝑎 represents the arc from an origin site 𝑣out
to a destination site 𝑣in. This variable is expressed in the unit MW. In script urbs.py this variable is
defined by the model variable e_tra_out and initialized by the following code fragment:

m.e_tra_out = pyomo.Var(
m.tm, m.tra_tuples,
within=pyomo.NonNegativeReals,
doc='Power flow out of transmission line (MW) per timestep')

Storage Variables

Total Storage Size, 𝜅c
𝑣𝑠, cap_sto_c: The variable 𝜅c

𝑣𝑠 represents the total load capacity of a storage
tuple 𝑠𝑣𝑐. The total storage load capacity includes both the already installed storage load capacity and
the additional new storage load capacity that needs to be installed. This variable is expressed in unit
MWh. In script urbs.py this variable is defined by the model variable cap_sto_c and initialized by
the following code fragment:

m.cap_sto_c = pyomo.Var(
m.sto_tuples,
within=pyomo.NonNegativeReals,
doc='Total storage size (MWh)')

New Storage Size, 𝜅̂c
𝑣𝑠, cap_sto_c_new: The variable 𝜅̂c

𝑣𝑠 represents the additional storage load
capacity of a storage tuple 𝑠𝑣𝑐 that needs to be installed to the energy system in order to provide the
optimal solution. This variable is expressed in the unit MWh. In script urbs.py this variable is
defined by the model variable cap_sto_c_new and initialized by the following code fragment:

m.cap_sto_c_new = pyomo.Var(
m.sto_tuples,
within=pyomo.NonNegativeReals,
doc='New storage size (MWh)')

38 Chapter 1. Contents

urbs Documentation, Release 0.7

Total Storage Power, 𝜅p
𝑣𝑠, cap_sto_p: The variable 𝜅p

𝑣𝑠 represents the total potential discharge power
of a storage tuple 𝑠𝑣𝑐. The total storage power includes both the already installed storage power and the
additional new storage power that needs to be installed. This variable is expressed in the unit MW.
In script urbs.py this variable is defined by the model variable cap_sto_p and initialized by the
following code fragment:

m.cap_sto_p = pyomo.Var(
m.sto_tuples,
within=pyomo.NonNegativeReals,
doc='Total storage power (MW)')

New Storage Power, 𝜅̂p
𝑣𝑠, cap_sto_p_new: The variable 𝜅̂p

𝑣𝑠 represents the additional potential
discharge power of a storage tuple 𝑠𝑣𝑐 that needs to be installed to the energy system in order to provide
the optimal solution. This variable is expressed in the unit MW. In script urbs.py this variable is
defined by the model variable cap_sto_p_new and initialized by the following code fragment:

m.cap_sto_p_new = pyomo.Var(
m.sto_tuples,
within=pyomo.NonNegativeReals,
doc='New storage power (MW)')

Storage Power Flow (Input), 𝜖in
𝑣𝑠𝑡, e_sto_in: The variable 𝜖in

𝑣𝑠𝑡 represents the input power flow into
a storage tuple 𝑠𝑣𝑐 at a timestep 𝑡. Input power flow into a storage tuple can also be defined as the charge
of a storage tuple. This variable is expressed in the unit MW. In script urbs.py this variable is defined
by the model variable e_sto_in and initialized by the following code fragment:

m.e_sto_in = pyomo.Var(
m.tm, m.sto_tuples,
within=pyomo.NonNegativeReals,
doc='Power flow into storage (MW) per timestep')

Storage Power Flow (Output), 𝜖out
𝑣𝑠𝑡, e_sto_out: The variable 𝜖out

𝑣𝑠𝑡 represents the output power flow
out of a storage tuple 𝑠𝑣𝑐 at a timestep 𝑡. Output power flow out of a storage tuple can also be defined
as the discharge of a storage tuple. This variable is expressed in the unit MW. In script urbs.py this
variable is defined by the model variable e_sto_out and initialized by the following code fragment:

m.e_sto_out = pyomo.Var(
m.tm, m.sto_tuples,
within=pyomo.NonNegativeReals,
doc='Power flow out of storage (MW) per timestep')

Storage Energy Content, 𝜖con
𝑣𝑠𝑡, e_sto_con: The variable 𝜖con

𝑣𝑠𝑡 represents the energy amount that is
loaded in a storage tuple 𝑠𝑣𝑐 at a timestep 𝑡. This variable is expressed in the unit MWh. In script
urbs.py this variable is defined by the model variable e_sto_out and initialized by the following
code fragment:

m.e_sto_con = pyomo.Var(
m.t, m.sto_tuples,
within=pyomo.NonNegativeReals,
doc='Energy content of storage (MWh) in timestep')

1.2. Technical documentation 39

urbs Documentation, Release 0.7

Demand Side Management Variables

DSM Upshift, 𝛿up
𝑣𝑐𝑡, dsm_up, MW: The variable 𝛿up

𝑣𝑐𝑡 represents the DSM upshift in time step 𝑡 in site 𝑣
for commodity 𝑐. It is only defined for all dsm_site_tuples. The following code fragment shows
the definition of the variable:

m.dsm_up = pyomo.Var(
m.tm, m.dsm_site_tuples,
within=pyomo.NonNegativeReals,
doc='DSM upshift')

DSM Downshift, 𝛿down
𝑣𝑐𝑡,𝑡𝑡, dsm_down, MW: The variable 𝛿down

𝑣𝑐𝑡,𝑡𝑡 represents the DSM downshift in
timestepp 𝑡𝑡 caused by the upshift in time 𝑡 in site 𝑣 for commodity 𝑐. The special combinations of
timesteps 𝑡 and 𝑡𝑡 for each site and commodity combination is created by the dsm_down_tuples.
The definition of the variable is shown in the code fragment:

m.dsm_down = pyomo.Var(
m.dsm_down_tuples,
within=pyomo.NonNegativeReals,
doc='DSM downshift')

Parameters

All the parameters that the optimization model requires to calculate an optimal solution will be listed
and defined in this section. A parameter is a data, that is provided by the user before the optimization
simulation starts. These parameters are the values that define the specifications of the modelled energy
system. Parameters of this optimization model can be seperated into two main parts, these are Technical
and Economical Parameters.

Technical Parameters

Table 12: Table: Technical Model Parameters

Parameter Unit Description
General Technical Parameters
𝑤 _ Weight
∆𝑡 h Timestep Duration
Commodity Technical Parameters
𝑑𝑣𝑐𝑡 MW Demand for Commodity
𝑠𝑣𝑐𝑡 _ Intermittent Supply Capacity Factor
𝑙𝑣𝑐 MW Maximum Stock Supply Limit Per Time Step
𝐿𝑣𝑐 MW Maximum Annual Stock Supply Limit Per Vertex
𝑚𝑣𝑐 t Maximum Environmental Output Per Time Step
𝑀𝑣𝑐 t Maximum Annual Environmental Output
𝑔𝑣𝑐 MW Maximum Sell Limit Per Time Step
𝐺𝑣𝑐 MW Maximum Annual Sell Limit
𝑏𝑣𝑐 MW Maximum Buy Limit Per Time Step
𝐵𝑣𝑐 MW Maximum Annual Buy Limit
𝐿𝐶𝑂2 t Maximum Global Annual CO2 Emission Limit

Continued on next page

40 Chapter 1. Contents

urbs Documentation, Release 0.7

Table 12 – continued from previous page
Parameter Unit Description
Process Technical Parameters
𝐾𝑣𝑝 MW Process Capacity Lower Bound
𝐾𝑣𝑝 MW Process Capacity Installed
𝐾𝑣𝑝 MW Process Capacity Upper Bound
𝑃𝐺𝑣𝑝 1/h Process Maximal Power Gradient (relative)
𝑃 𝑣𝑝 _ Process Minimum Part Load Fraction
𝑟in
𝑝𝑐 _ Process Input Ratio
𝑟in
𝑝𝑐 _ Process Partial Input Ratio
𝑟out
𝑝𝑐 _ Process Output Ratio

Storage Technical Parameters
𝐼𝑣𝑠 1 Initial and Final State of Charge
𝑒in
𝑣𝑠 _ Storage Efficiency During Charge
𝑒out
𝑣𝑠 _ Storage Efficiency During Discharge
𝐾c

𝑣𝑠 MWh Storage Content Lower Bound
𝐾c

𝑣𝑠 MWh Storage Content Installed
𝐾

c
𝑣𝑠 MWh Storage Content Upper Bound

𝐾p
𝑣𝑠 MW Storage Power Lower Bound

𝐾
p
𝑣𝑠 MW Storage Power Installed

𝐾
p
𝑣𝑠 MW Storage Power Upper Bound

Transmission Technical Parameters
𝑒𝑎𝑓 _ Transmission Efficiency
𝐾𝑎𝑓 MW Tranmission Capacity Lower Bound
𝐾𝑎𝑓 MW Tranmission Capacity Installed
𝐾𝑎𝑓 MW Tranmission Capacity Upper Bound
Demand Side Management Parameters
𝑒𝑣𝑐 _ DSM Efficiency
𝑦𝑣𝑐 _ DSM Delay Time
𝑜𝑣𝑐 _ DSM Recovery Time
𝐾

up
𝑣𝑐 MW DSM Maximal Upshift Capacity

𝐾
down
𝑣𝑐 MW DSM Maximal Downshift Capacity

General Technical Parameters

Weight, 𝑤, weight: The variable 𝑤 helps to scale variable costs and emissions from the length of
simulation, that the energy system model is being observed, to an annual result. This variable represents
the rate of a year (8760 hours) to the observed time span. The observed time span is calculated by the
product of number of time steps of the set 𝑇 and the time step duration. In script urbs.py this variable
is defined by the model variable weight and initialized by the following code fragment:

m.weight = pyomo.Param(
initialize=float(8760) / (len(m.tm) * dt),
doc='Pre-factor for variable costs and emissions for an annual result')

Timestep Duration, ∆𝑡, dt: The variable ∆𝑡 represents the duration between two sequential timesteps
𝑡𝑥 and 𝑡𝑥+1. This is calculated by the subtraction of smaller one from the bigger of the two sequential
timesteps ∆𝑡 = 𝑡𝑥+1 − 𝑡𝑥. This variable is the unit of time for the optimization model This variable is
expressed in the unit h and by default the value is set to 1. In script urbs.py this variable is defined
by the model variable dt and initialized by the following code fragment:

1.2. Technical documentation 41

urbs Documentation, Release 0.7

m.dt = pyomo.Param(
initialize=dt,
doc='Time step duration (in hours), default: 1')

Commodity Technical Parameters

Demand for Commodity, 𝑑𝑣𝑐𝑡, m.demand.loc[tm][sit, com]: The parameter represents the
energy amount of a demand commodity tuple 𝑐𝑣𝑞 required at a timestep 𝑡 (∀𝑣 ∈ 𝑉, 𝑞 = ”𝐷𝑒𝑚𝑎𝑛𝑑”, ∀𝑡 ∈
𝑇𝑚). The unit of this parameter is MW. This data is to be provided by the user and to be entered
in the spreadsheet. The related section for this parameter in the spreadsheet can be found under the
“Demand” sheet. Here each row represents another timestep 𝑡 and each column represent a commodity
tuple 𝑐𝑣𝑞. Rows are named after the timestep number 𝑛 of timesteps 𝑡𝑛. Columns are named after the
combination of site name 𝑣 and commodity name 𝑐 respecting the order and seperated by a period(.).
For example (Mid, Elec) represents the commodity Elec in site Mid. Commodity Type 𝑞 is omitted
in column declarations, because every commodity of this parameter has to be from commodity type
Demand in any case.

Intermittent Supply Capacity Factor, 𝑠𝑣𝑐𝑡, m.supim.loc[tm][sit, com]: The parameter 𝑠𝑣𝑐𝑡
represents the normalized availability of a supply intermittent commodity 𝑐 (∀𝑐 ∈ 𝐶sup) in a site 𝑣 at a
timestep 𝑡. In other words this parameter gives the ratio of current available energy amount to maximum
potential energy amount of a supply intermittent commodity. This data is to be provided by the user and
to be entered in the spreadsheet. The related section for this parameter in the spreadsheet can be found
under the “SupIm” sheet. Here each row represents another timestep 𝑡 and each column represent a
commodity tuple 𝑐𝑣𝑞. Rows are named after the timestep number 𝑛 of timesteps 𝑡𝑛. Columns are named
after the combination of site name 𝑣 and commodity name 𝑐, in this respective order and seperated by
a period(.). For example (Mid.Elec) represents the commodity Elec in site Mid. Commodity Type 𝑞 is
omitted in column declarations, because every commodity of this parameter has to be from commodity
type SupIm in any case.

Maximum Stock Supply Limit Per Time Step, 𝑙𝑣𝑐, m.commodity.loc[sit, com,
com_type]['maxperstep']: The parameter 𝑙𝑣𝑐 represents the maximum energy amount of a stock
commodity tuple 𝑐𝑣𝑞 (∀𝑣 ∈ 𝑉, 𝑞 = ”𝑆𝑡𝑜𝑐𝑘”) that energy model is allowed to use per time step. The unit
of this parameter is MW. This parameter applies to every timestep and does not vary for each timestep 𝑡.
This parameter is to be provided by the user and to be entered in spreadsheet. The related section for this
parameter in the spreadsheet can be found under the Commodity sheet. Here each row represents an-
other commodity tuple 𝑐𝑣𝑞 and the sixth column of stock commodity tuples in this sheet with the header
label “maxperstep” represents the parameter 𝑙𝑣𝑐. If there is no desired restriction of a stock commodity
tuple usage per timestep, the corresponding cell can be set to “inf” to ignore this parameter.

Maximum Annual Stock Supply Limit Per Vertex, 𝐿𝑣𝑐, m.commodity.loc[sit, com,
com_type]['max']: The parameter 𝐿𝑣𝑐 represents the maximum energy amount of a stock com-
modity tuple 𝑐𝑣𝑞 (∀𝑣 ∈ 𝑉, 𝑞 = ”𝑆𝑡𝑜𝑐𝑘”) that energy model is allowed to use annually. The unit of this
parameter is MW. This parameter is to be provided by the user and to be entered in spreadsheet. The
related section for this parameter in the spreadsheet can be found under the Commodity sheet. Here
each row represents another commodity tuple 𝑐𝑣𝑞 and the fifth column of stock commodity tuples in
this sheet with the header label “max” represents the parameter 𝐿𝑣𝑐. If there is no desired restriction
of a stock commodity tuple usage per timestep, the corresponding cell can be set to “inf” to ignore this
parameter.

Maximum Environmental Output Per Time Step, 𝑚𝑣𝑐, m.commodity.loc[sit, com,
com_type]['maxperstep']: The parameter 𝑚𝑣𝑐 represents the maximum energy amount of an
environmental commodity tuple 𝑐𝑣𝑞 (∀𝑣 ∈ 𝑉, 𝑞 = ”𝐸𝑛𝑣”) that energy model is allowed to produce and

42 Chapter 1. Contents

urbs Documentation, Release 0.7

release to environment per time step. This parameter applies to every timestep and does not vary for each
timestep 𝑡. This parameter is to be provided by the user and to be entered in spreadsheet. The related
section for this parameter in the spreadsheet can be found under the Commodity sheet. Here each row
represents another commodity tuple 𝑐𝑣𝑞 and the sixth column of enviromental commodity tuples in this
sheet with the header label “maxperstep” represents the parameter 𝑚𝑣𝑐. If there is no desired restriction
of an enviromental commodity tuple usage per timestep, the corresponding cell can be set to “inf” to
ignore this parameter.

Maximum Annual Environmental Output, 𝑀𝑣𝑐, m.commodity.loc[sit, com,
com_type]['max']: The parameter 𝑀𝑣𝑐 represents the maximum energy amount of an envi-
ronmental commodity tuple 𝑐𝑣𝑞 (∀𝑣 ∈ 𝑉, 𝑞 = ”𝐸𝑛𝑣”) that energy model is allowed to produce
and release to environment annually. This parameter is to be provided by the user and to be entered
in spreadsheet. The related section for this parameter in the spreadsheet can be found under the
Commodity sheet. Here each row represents another commodity tuple 𝑐𝑣𝑞 and the fifth column of
an environmental commodity tuples in this sheet with the header label “max” represents the parameter
𝑀𝑣𝑐. If there is no desired restriction of a stock commodity tuple usage per timestep, the corresponding
cell can be set to “inf” to ignore this parameter.

Maximum Sell Limit Per Time Step, 𝑔𝑣𝑐, m.commodity.loc[sit, com,
com_type][`maxperstep`]: The parameter 𝑔𝑣𝑐 represents the maximum energy amount of
a sell commodity tuple 𝑐𝑣𝑞 (∀𝑣 ∈ 𝑉, 𝑞 = ”𝑆𝑒𝑙𝑙”) that energy model is allowed to sell per time step.
The unit of this parameter is MW. This parameter applies to every timestep and does not vary for each
timestep 𝑡. This parameter is to be provided by the user and to be entered in spreadsheet. The related
section for this parameter in the spreadsheet can be found under the Commodity sheet. Here each row
represents another commodity tuple 𝑐𝑣𝑞 and the sixth column of sell commodity tuples in this sheet with
the header label “maxperstep” represents the parameter 𝑔𝑣𝑐. If there is no desired restriction of a sell
commodity tuple usage per timestep, the corresponding cell can be set to “inf” to ignore this parameter.

Maximum Annual Sell Limit, 𝐺𝑣𝑐, m.commodity.loc[sit, com, com_type][`max`]:
The parameter 𝐺𝑣𝑐 represents the maximum energy amount of a sell commodity tuple 𝑐𝑣𝑞 (∀𝑣 ∈ 𝑉, 𝑞 =
”𝑆𝑒𝑙𝑙”) that energy model is allowed to sell annually. The unit of this parameter is MW. This parameter
is to be provided by the user and to be entered in spreadsheet. The related section for this parame-
ter in the spreadsheet can be found under the Commodity sheet. Here each row represents another
commodity tuple 𝑐𝑣𝑞 and the fifth column of sell commodity tuples in this sheet with the header label
“max” represents the parameter 𝐺𝑣𝑐. If there is no desired restriction of a sell commodity tuple usage
per timestep, the corresponding cell can be set to “inf” to ignore this parameter.

Maximum Buy Limit Per Time Step, 𝑏𝑣𝑐, m.commodity.loc[sit, com,
com_type][`maxperstep`]: The parameter 𝑏𝑣𝑐 represents the maximum energy amount of
a buy commodity tuple 𝑐𝑣𝑞 (∀𝑣 ∈ 𝑉, 𝑞 = ”𝐵𝑢𝑦”) that energy model is allowed to buy per time step.
The unit of this parameter is MW. This parameter applies to every timestep and does not vary for each
timestep 𝑡. This parameter is to be provided by the user and to be entered in spreadsheet. The related
section for this parameter in the spreadsheet can be found under the Commodity sheet. Here each row
represents another commodity tuple 𝑐𝑣𝑞 and the sixth column of buy commodity tuples in this sheet with
the header label “maxperstep” represents the parameter 𝑏𝑣𝑐. If there is no desired restriction of a sell
commodity tuple usage per timestep, the corresponding cell can be set to “inf” to ignore this parameter.

Maximum Annual Buy Limit, 𝐵𝑣𝑐, m.commodity.loc[sit, com, com_type][`max`]:
The parameter 𝐵𝑣𝑐 represents the maximum energy amount of a buy commodity tuple 𝑐𝑣𝑞 (∀𝑣 ∈ 𝑉, 𝑞 =
”𝐵𝑢𝑦”) that energy model is allowed to buy annually. The unit of this parameter is MW. This parameter
is to be provided by the user and to be entered in spreadsheet. The related section for this parameter
in the spreadsheet can be found under the Commodity sheet. Here each row represents another com-
modity tuple 𝑐𝑣𝑞 and the fifth column of buy commodity tuples in this sheet with the header label “max”
represents the parameter 𝐵𝑣𝑐. If there is no desired restriction of a buy commodity tuple usage per

1.2. Technical documentation 43

urbs Documentation, Release 0.7

timestep, the corresponding cell can be set to “inf” to ignore this parameter.

Maximum Global Annual CO2 Emission Limit, 𝐿𝐶𝑂2 , m.hack.loc['Global CO2 Limit',
'Value']: The parameter 𝐿𝐶𝑂2 represents the maximum total energy amount of all environmental
commodities that energy model is allowed to produce and release to environment annually. This param-
eter is optional. If the user desires to set a maximum annual limit to total 𝐶𝑂2 emission of the whole
energy model, this can be done by entering the desired value to the related spreadsheet. The related sec-
tion for this parameter can be found under the sheet “hacks”. Here the the cell where the “Global CO2
limit” row and “value” column intersects stands for the parameter 𝐿𝐶𝑂2 . If the user wants to disable this
parameter and restriction it provides, this cell can be set to “inf” or simply be deleted.

Process Technical Parameters

Process Capacity Lower Bound, 𝐾𝑣𝑝, m.process.loc[sit, pro]['cap-lo']: The param-
eter 𝐾𝑣𝑝 represents the minimum amount of power output capacity of a process 𝑝 at a site 𝑣, that energy
model is allowed to have. The unit of this parameter is MW. The related section for this parameter in the
spreadsheet can be found under the “Process” sheet. Here each row represents another process 𝑝 in a site
𝑣 and the fourth column with the header label “cap-lo” represents the parameters 𝐾𝑣𝑝 belonging to the
corresponding process 𝑝 and site 𝑣 combinations. If there is no desired minimum limit for the process
capacities, this parameter can be simply set to “0”, to ignore this parameter.

Process Capacity Installed, 𝐾𝑣𝑝, m.process.loc[sit, pro]['inst-cap']: The parameter
𝐾𝑣𝑝 represents the amount of power output capacity of a process 𝑝 in a site 𝑣, that is already installed
to the energy system at the beginning of the simulation. The unit of this parameter is MW. The related
section for this parameter in the spreadsheet can be found under the “Process” sheet. Here each row
represents another process 𝑝 in a site 𝑣 and the third column with the header label “inst-cap” represents
the parameters 𝐾𝑣𝑝 belonging to the corresponding process 𝑝 and site 𝑣 combinations.

Process Capacity Upper Bound, 𝐾𝑣𝑝, m.process.loc[sit, pro]['cap-up']: The param-
eter𝐾𝑣𝑝 represents the maximum amount of power output capacity of a process 𝑝 at a site 𝑣, that energy
model is allowed to have. The unit of this parameter is MW. The related section for this parameter in
the spreadsheet can be found under the “Process” sheet. Here each row represents another process 𝑝
in a site 𝑣 and the fifth column with the header label “cap-up” represents the parameters 𝐾𝑣𝑝 of the
corresponding process 𝑝 and site 𝑣 combinations. Alternatively, 𝐾𝑣𝑝 is determined by the column with
the label “area-per-cap”, whenever the value in “cap-up” times the value “area-per-cap” is larger than
the value in column “area” in sheet “Site” for site 𝑣. If there is no desired maximum limit for the process
capacities, both input parameters can be simply set to an unrealistic high value, to ignore this parameter.

Process Maximal Gradient, 𝑃𝐺𝑣𝑝, m.process.loc[sit, pro]['max-grad']: The param-
eter 𝑃𝐺𝑣𝑝 represents the maximal power gradient of a process 𝑝 at a site 𝑣, that energy model is allowed
to have. The unit of this parameter is 1/h. The related section for this parameter in the spreadsheet can
be found under the “Process” sheet. Here each row represents another process 𝑝 in a site 𝑣 and the sixth
column with the header label “max-grad” represents the parameters 𝑃𝐺𝑣𝑝 of the corresponding process
𝑝 and site 𝑣 combinations. If there is no desired maximum limit for the process power gradient, this
parameter can be simply set to an unrealistic high value, to ignore this parameter.

Process Minimum Part Load Fraction, 𝑃 𝑣𝑝, m.process.loc[sit, pro]['partial']: The
parameter 𝑃 𝑣𝑝 represents the minimum allowable part load of a process 𝑝 at a site 𝑣 as a fraction of
the total process capacity. The related section for this parameter in the spreadsheet can be found under
the “Process” sheet. Here each row represents another process 𝑝 in a site 𝑣 and the twelfth column
with the header label “partial” represents the parameters 𝑃 𝑣𝑝 of the corresponding process 𝑝 and site 𝑣
combinations.

44 Chapter 1. Contents

urbs Documentation, Release 0.7

Process Input Ratio, 𝑟in
𝑝𝑐, m.r_in.loc[pro, co]: The parameter 𝑟in

𝑝𝑐 represents the ratio of the
input amount of a commodity 𝑐 in a process 𝑝, relative to the process throughput at a given timestep.
The related section for this parameter in the spreadsheet can be found under the “Process-Comodity”
sheet. Here each row represents another commodity 𝑐 that either goes in to or comes out of a process 𝑝.
The fourth column with the header label “ratio” represents the parameters of the corresponding process
𝑝, commodity 𝑐 and direction (In,Out) combinations.

Process Partial Input Ratio, 𝑟in
𝑝𝑐, m.r_in_partial.loc[pro, co]: The parameter 𝑟in

𝑝𝑐 repre-
sents the ratio of the amount of input commodity 𝑐 a process 𝑝 consumes if it is at its minimum allowable
partial operation. More precisely, when its throughput 𝜏𝑣𝑝𝑡 has the minimum value 𝜔𝑣𝑝𝑡𝑃 𝑣𝑝.

Process Output Ratio, 𝑟out
𝑝𝑐 , m.r_out.loc[pro, co]: The parameter 𝑟out

𝑝𝑐 represents the ratio of
the output amount of a commodity 𝑐 in a process 𝑝, relative to the process throughput at a given timestep.
The related section for this parameter in the spreadsheet can be found under the “Process-Comodity”
sheet. Here each row represents another commodity 𝑐 that either goes in to or comes out of a process 𝑝.
The fourth column with the header label “ratio” represents the parameters of the corresponding process
𝑝, commodity 𝑐 and direction (In,Out) combinations.

Process input and output ratios are, in general, dimensionless since the majority of output and input
commodities are represented in MW. Exceptionally, some process input and output ratios can be assigned
units e.g. the environmental commodity (Env) ‘CO2 could have a process output ratio with the unit of
𝑀𝑡/𝑀𝑊ℎ.

Since process input and output ratios take the process throughput 𝜏𝑣𝑝𝑡 as the reference in order to calcu-
late the input and output commodity flows, the process input (or output) ratio of “1” is assigned to the
commodity which represents the throughput. By default, the major input commodity flow of the process
(e.g. ‘Gas’ for ‘Gas plant’, ‘Wind’ for ‘Wind park’) represents the process throughput so those com-
modities have the process input (or output) ratio of “1”; but the “throughput” selection can be arbitrarily
shifted to other commodities (e.g. power output of the process) by scaling all of the process input and
output ratios by an appropriate factor.

Storage Technical Parameters

Initial and Final State of Charge (relative), 𝐼𝑣𝑠, m.storage.loc[sit, sto,
com]['init']: The parameter 𝐼𝑣𝑠 represents the initial load factor of a storage 𝑠 in a site 𝑣.
This parameter shows, as a percentage, how much of a storage is loaded at the beginning of the
simulation. The same value should be preserved at the end of the simulation, to make sure that the
optimization model doesn’t consume the whole storage content at once and leave it empty at the end,
otherwise this would disrupt the continuity of the optimization. The value of this parameter is expressed
as a normalized percentage, where “1” represents a fully loaded storage and “0” represents an empty
storage. The related section for this parameter in the spreadsheet can be found under the “Storage”
sheet. Here each row represents a storage technology 𝑠 in a site 𝑣 that stores a commodity 𝑐. The
twentieth column with the header label “init” represents the parameters for corresponding storage 𝑠, site
𝑣, commodity 𝑐 combinations.

Storage Efficiency During Charge, 𝑒in
𝑣𝑠, m.storage.loc[sit, sto, com]['eff-in']:

The parameter 𝑒in
𝑣𝑠 represents the charge efficiency of a storage 𝑠 in a site 𝑣 that stores a commodity

𝑐. The charge efficiency shows, how much of a desired energy and accordingly power can be succes-
fully stored into a storage. The value of this parameter is expressed as a normalized percentage, where
“1” represents a charge with no power or energy loss and “0” represents that storage technology con-
sumes whole enery during charge. The related section for this parameter in the spreadsheet can be found
under the “Storage” sheet. Here each row represents a storage technology 𝑠 in a site 𝑣 that stores a com-
modity 𝑐. The tenth column with the header label “eff-in” represents the parameters for corresponding

1.2. Technical documentation 45

urbs Documentation, Release 0.7

storage 𝑠, site 𝑣, commodity 𝑐 combinations.

Storage Efficiency During Discharge, 𝑒out
𝑣𝑠 , m.storage.loc[sit, sto,

com]['eff-out']: The parameter 𝑒out
𝑣𝑠 represents the discharge efficiency of a storage 𝑠 in a

site 𝑣 that stores a commodity 𝑐. The discharge efficiency shows, how much of a desired energy and
accordingly power can be succesfully retrieved out of a storage. The value of this parameter is expressed
as a normalized efipercentage, where “1” represents a discharge with no power or energy loss and “0”
represents that storage technology consumes whole enery during discharge. The related section for
this parameter in the spreadsheet can be found under the “Storage” sheet. Here each row represents a
storage technology 𝑠 in a site 𝑣 that stores a commodity 𝑐. The eleventh column with the header label
“eff-out” represents the parameters for corresponding storage 𝑠, site 𝑣, commodity 𝑐 combinations.

Storage Content Lower Bound, 𝐾c
𝑣𝑠, m.storage.loc[sit, sto, com]['cap-lo-c']:

The parameter 𝐾c
𝑣𝑠 represents the minimum amount of energy content capacity allowed of a storage

𝑠 storing a commodity 𝑐 in a site 𝑣, that the energy system model is allowed to have. The unit of this
parameter is MWh. The related section for this parameter in the spreadsheet can be found under the
“Storage” sheet. Here each row represents a storage technology 𝑠 in a site 𝑣 that stores a commodity 𝑐.
The fifth column with the header label “cap-lo-c” represents the parameters for corresponding storage 𝑠,
site 𝑣, commodity 𝑐 combinations. If there is no desired minimum limit for the storage energy content
capacities, this parameter can be simply set to “0”, to ignore this parameter.

Storage Content Installed, 𝐾c
𝑣𝑠, m.storage.loc[sit, sto, com]['inst-cap-c']: The

parameter 𝐾c
𝑣𝑠 represents the amount of energy content capacity of a storage 𝑠 storing commodity 𝑐 in

a site 𝑣, that is already installed to the energy system at the beginning of the simulation. The unit of
this parameter is MWh. The related section for this parameter in the spreadsheet can be found under the
“Storage” sheet. Here each row represents a storage technology 𝑠 in a site 𝑣 that stores a commodity
𝑐. The fourth column with the header label “inst-cap-c” represents the parameters for corresponding
storage 𝑠, site 𝑣, commodity 𝑐 combinations.

Storage Content Upper Bound, 𝐾c
𝑣𝑠, m.storage.loc[sit, sto, com]['cap-up-c']:

The parameter 𝐾c
𝑣𝑠 represents the maximum amount of energy content capacity allowed of a storage

𝑠 storing a commodity 𝑐 in a site 𝑣, that the energy system model is allowed to have. The unit of this
parameter is MWh. The related section for this parameter in the spreadsheet can be found under the
“Storage” sheet. Here each row represents a storage technology 𝑠 in a site 𝑣 that stores a commodity 𝑐.
The sixth column with the header label “cap-up-c” represents the parameters for corresponding storage
𝑠, site 𝑣, commodity 𝑐 combinations. If there is no desired maximum limit for the storage energy con-
tent capacitites, this parameter can be simply set to “”inf”” or an unrealistic high value, to ignore this
parameter.

Storage Power Lower Bound, 𝐾p
𝑣𝑠, m.storage.loc[sit, sto, com]['cap-lo-p']: The

parameter 𝐾p
𝑣𝑠 represents the minimum amount of power output capacity of a storage 𝑠 storing com-

modity 𝑐 in a site 𝑣, that energy system model is allowed to have. The unit of this parameter is MW. The
related section for this parameter in the spreadsheet can be found under the “Storage” sheet. Here each
row represents a storage technology 𝑠 in a site 𝑣 that stores a commodity 𝑐. The eighth column with the
header label “cap-lo-p” represents the parameters for corresponding storage 𝑠, site 𝑣, commodity 𝑐 com-
binations. If there is no desired minimum limit for the storage energy content capacities, this parameter
can be simply set to “0”, to ignore this parameter.

Storage Power Installed, 𝐾p
𝑣𝑠, m.storage.loc[sit, sto, com]['inst-cap-p']: The

parameter 𝐾c
𝑣𝑠 represents the amount of power output capacity of a storage 𝑠 storing commodity 𝑐

in a site 𝑣, that is already installed to the energy system at the beginning of the simulation. The unit of
this parameter is MW. The related section for this parameter in the spreadsheet can be found under the
“Storage” sheet. Here each row represents a storage technology 𝑠 in a site 𝑣 that stores a commodity
𝑐. The seventh column with the header label “inst-cap-p” represents the parameters for corresponding

46 Chapter 1. Contents

urbs Documentation, Release 0.7

storage 𝑠, site 𝑣, commodity 𝑐 combinations.

Storage Power Upper Bound, 𝐾p
𝑣𝑠, m.storage.loc[sit, sto, com]['cap-up-p']: The

parameter 𝐾p
𝑣𝑠 represents the maximum amount of power output capacity allowed of a storage 𝑠 storing

a commodity 𝑐 in a site 𝑣, that the energy system model is allowed to have. The unit of this parameter is
MW. The related section for this parameter in the spreadsheet can be found under the “Storage” sheet.
Here each row represents a storage technology 𝑠 in a site 𝑣 that stores a commodity 𝑐. The sixth column
with the header label “cap-up-p” represents the parameters for corresponding storage 𝑠, site 𝑣, commod-
ity 𝑐 combinations. If there is no desired maximum limit for the storage energy content capacitites, this
parameter can be simply set to “”inf”” or an unrealistic high value, to ignore this parameter.

Transmission Technical Parameters

Transmission Efficiency, 𝑒𝑎𝑓 , m.transmission.loc[sin, sout, tra, com]['eff']:
The parameter 𝑒𝑎𝑓 represents the energy efficiency of a transmission 𝑓 that transfers a commodity 𝑐
through an arc 𝑎. Here an arc 𝑎 defines the connection line from an origin site 𝑣out to a destination
site 𝑣in. The ratio of the output energy amount to input energy amount, gives the energy efficiency of a
transmission process. The related section for this parameter in the spreadsheet can be found under the
“Transmission” sheet. Here each row represents another transmission,site in, site out, commodity com-
bination. The fifth column with the header label “eff” represents the parameters 𝑒𝑎𝑓 of the corresponding
combinations.

Transmission Capacity Lower Bound, 𝐾𝑎𝑓 , m.transmission.loc[sin, sout, tra,
com]['cap-lo']: The parameter 𝐾𝑎𝑓 represents the minimum power output capacity of a trans-
mission 𝑓 transferring a commodity 𝑐 through an arc 𝑎, that the energy system model is allowed to
have. Here an arc 𝑎 defines the connection line from an origin site 𝑣out to a destination site 𝑣in. The unit
of this parameter is MW. The related section for this parameter in the spreadsheet can be found under
the “Transmission” sheet. Here each row represents another transmission,site in, site out, commodity
combination. The tenth column with the header label “cap-lo” represents the parameters 𝐾𝑎𝑓 of the
corresponding combinations.

Transmission Capacity Installed, 𝐾𝑎𝑓 , m.transmission.loc[sin, sout, tra,
com]['inst-cap']: The parameter 𝐾𝑎𝑓 represents the amount of power output capacity of
a transmission 𝑓 transferring a commodity 𝑐 through an arc 𝑎, that is already installed to the energy
system at the beginning of the simulation. The unit of this parameter is MW. The related section for this
parameter in the spreadsheet can be found under the “Transmission” sheet. Here each row represents
another transmission,site in, site out, commodity combination. The tenth column with the header label
“inst-cap” represents the parameters 𝐾𝑎𝑓 of the corresponding combinations.

Transmission Capacity Upper Bound, 𝐾𝑎𝑓 , m.transmission.loc[sin, sout, tra,
com]['cap-up']: The parameter 𝐾𝑎𝑓 represents the maximum power output capacity of a trans-
mission 𝑓 transferring a commodity 𝑐 through an arc 𝑎, that the energy system model is allowed to
have. Here an arc 𝑎 defines the connection line from an origin site 𝑣out to a destination site 𝑣in. The unit
of this parameter is MW. The related section for this parameter in the spreadsheet can be found under
the “Transmission” sheet. Here each row represents another transmission, site in, site out, commodity
combination. The tenth column with the header label “cap-up” represents the parameters 𝐾𝑎𝑓 of the
corresponding combinations.

1.2. Technical documentation 47

urbs Documentation, Release 0.7

Demand Side Management Technical Parameters

DSM Efficiency, 𝑒𝑣𝑐, m.dsm.loc[sit, com]['eff']: The parameter 𝑒𝑣𝑐 represents the effi-
ciency of the DSM upshift process. Which means losses of the DSM up- or downshift have to be taken
into account by this factor.

DSM Delay Time, 𝑦𝑣𝑐, m.dsm.loc[sit, com]['delay']: The delay time 𝑦𝑣𝑐 restricts how
long the time delta between an upshift and its corresponding downshifts may be.

DSM Recovery Time, 𝑜𝑣𝑐, m.dsm.loc[sit, com]['recov']: The recovery time 𝑜𝑣𝑐 prevents
the DSM system to continously shift demand. During the recovery time, all upshifts may not exceed a
predfined value.

DSM Maximal Upshift Capacity, 𝐾up
𝑣𝑐, MW, m.dsm.loc[sit, com]['cap-max-up']: The

DSM upshift capacity 𝐾up
𝑣𝑐 limits the total upshift in one time step.

DSM Maximal Downshift Capacity, 𝐾
down
𝑣𝑐 , MW, m.dsm.loc[sit,

com]['cap-max-down']: Correspondingly, the DSM downshift capacity 𝐾
down
𝑣𝑐 limits the

total downshift in one time step.

48 Chapter 1. Contents

urbs Documentation, Release 0.7

Economical Parameters

Table 13: Table: Economical Model Parameters
Parameter Unit Description
𝐴𝐹 _ Annuity factor
Commodity Economical Parameters
𝑘fuel
𝑣𝑐 C/MWh Stock Commodity Fuel Costs
𝑘env
𝑣𝑐 C/MWh Environmental Commodity Costs
𝑘bs
𝑣𝑐𝑡 C/MWh Buy/Sell Commodity Buy/Sell Costs

Process Economical Parameters
𝑖𝑣𝑝 _ Weighted Average Cost of Capital for Process
𝑧𝑣𝑝 _ Process Depreciation Period
𝑘inv
𝑣𝑝 C/(MW a) Annualised Process Capacity Investment Costs
𝑘fix
𝑣𝑝 C/(MW a) Process Capacity Fixed Costs
𝑘var
𝑣𝑝 C/MWh Process Variable Costs
𝑘st
𝑣𝑝 C Process Startup Costs

Storage Economical Parameters
𝑖𝑣𝑠 _ Weighted Average Cost of Capital for Storage
𝑧𝑣𝑠 _ Storage Depreciation Period
𝑘

p,inv
𝑣𝑠 C/(MWh a) Annualised Storage Power Investment Costs
𝑘

p,fix
𝑣𝑠 C/(MW a) Annual Storage Power Fixed Costs
𝑘

p,var
𝑣𝑠 C/MWh Storage Power Variable Costs
𝑘c,inv
𝑣𝑠 C/(MWh a) Annualised Storage Size Investment Costs
𝑘c,fix
𝑣𝑠 C/(MWh a) Annual Storage Size Fixed Costs
𝑘c,var
𝑣𝑠 C/MWh Storage Usage Variable Costs

Transmission Economical Parameters
𝑖𝑣𝑓 _ Weighted Average Cost of Capital for Transmission
𝑧𝑎𝑓 _ Tranmission Depreciation Period
𝑘inv
𝑎𝑓 C/(MW a) Annualised Transmission Capacity Investment Costs
𝑘fix
𝑎𝑓 C/(MWh a) Annual Transmission Capacity Fixed Costs
𝑘var
𝑎𝑓 C/MWh Tranmission Usage Variable Costs

Annuity factor, 𝐴𝐹 (𝑛, 𝑖),: Annuity factor 𝐴𝐹 is used to calculate the present value of future fixed an-
nuities. The parameter annuity factor is the only parameter that is not given as an input by the user. This
parameter is derived from the parameters WACC 𝑖 (Weighted average cost of capital) and Depreciation
𝑧 by the annuity factor formula. The value of this parameter is expressed with the following equation.

𝐴𝐹 =
(1 + 𝑖)𝑛𝑖

(1 + 𝑖)𝑛 − 1

where;

• n represents the depreciation period 𝑧.

• i represents the weighted average cost of capital(wacc) 𝑖.

This derived parameter is calculated by the helper function annuity factor() and defined by the
following code fragment.

derive annuity factor from WACC and depreciation periods
process['annuity-factor'] = annuity_factor(

(continues on next page)

1.2. Technical documentation 49

urbs Documentation, Release 0.7

(continued from previous page)

process['depreciation'], process['wacc'])
transmission['annuity-factor'] = annuity_factor(

transmission['depreciation'], transmission['wacc'])
storage['annuity-factor'] = annuity_factor(

storage['depreciation'], storage['wacc'])

urbs.annuity_factor()
Annuity factor formula.

Evaluates the annuity factor formula for depreciation duration and interest rate. Works also well
for equally sized numpy arrays as input.

Parameters

• n (int) – number of depreciation periods (years)

• i (float) – interest rate (e.g. 0.06 means 6 %)

Returns value of the expression (1+𝑖)𝑛𝑖
(1+𝑖)𝑛−1

Commodity Economical Parameters

Stock Commodity Fuel Costs, 𝑘fuel
𝑣𝑐 , m.commodity.loc[c]['price']: The parameter 𝑘fuel

𝑣𝑐 rep-
resents the purchase cost for purchasing one unit (1 MWh) of a stock commodity 𝑐 (∀𝑐 ∈ 𝐶stock) in a
site 𝑣 (∀𝑣 ∈ 𝑉). The unit of this parameter is C/MWh. The related section for this parameter in the
spreadsheet can be found under the “Commodity” sheet. Here each row represents another commodity
tuple 𝑐𝑣𝑞 and the fourth column of stock commodity tuples (∀𝑞 = ”𝑆𝑡𝑜𝑐𝑘”) in this sheet with the header
label “price” represents the corresponding parameter 𝑘fuel

𝑣𝑐 .

Environmental Commodity Costs, 𝑘env
𝑣𝑐 , m.commodity.loc[c]['price']: The parameter 𝑘env

𝑣𝑐

represents the cost for producing/emitting one unit (1 t, 1 kg, . . .) of an environmentcal commodity 𝑐
(∀𝑐 ∈ 𝐶env) in a site 𝑣 (∀𝑣 ∈ 𝑉). The unit of this parameter is C/t (i.e. per unit of output). The related
section for this parameter in the spreadsheet is the “Commodity” sheet. Here, each row represents a
commodity tuple 𝑐𝑣𝑞 and the fourth column of environmental commodity tuples (∀𝑞 = ”𝐸𝑛𝑣”) in this
sheet with the header label “price” represents the corresponding parameter 𝑘env

𝑣𝑐 .

Buy/Sell Commodity Buy/Sell Costs, 𝑘bs
𝑣𝑐𝑡, com_prices[c].loc[tm]: The parameter 𝑘bs

𝑣𝑐𝑡 rep-
resents the purchase/buy cost for purchasing/selling one unit(1 MWh) of a buy/sell commodity 𝑐
(∀𝑐 ∈ 𝐶buy)/(∀𝑐 ∈ 𝐶sell) in a site 𝑣 (∀𝑣 ∈ 𝑉) at a timestep 𝑡 (∀𝑡 ∈ 𝑇𝑚). The unit of this parameter is
C/MWh. The related section for this parameter in the spreadsheet can be found under the “Commodity”
sheet. Here each row represents another commodity tuple 𝑐𝑣𝑞 and the fourth column of buy/sell com-
modity tuples (∀𝑞 = ”𝐵𝑢𝑦”)/(∀𝑞 = ”𝑆𝑒𝑙𝑙”) in this sheet with the header label “price” represents how
the parameter 𝑘bs

𝑣𝑐𝑡 will be defined. There are two options for this parameter. This parameter will either be
a fix value for the whole simulation duration or will vary with the timesteps 𝑡. For the first option, if the
buy/sell price of a buy/sell commodity is a fix value for the whole simulation duration, this value can be
entered directly into the corresponding cell with the unit C/MWh. For the second option, if the buy/sell
price of a buy/sell commodity depends on time, accordingly on timesteps, a string (a linear sequence of
characters, words, or other data) should be written in the corresponding cell. An example string looks
like this: “1,25xBuy” where the first numbers (1,25) represent a coefficient for the price. This value is
than multiplied by values from another list given with timeseries. Here the word “Buy” refers to a time-
series located in “”Buy-Sell-Price”” sheet with commodity names, types and timesteps. This timeseries
should be filled with time dependent buy/sell price variables. The parameter 𝑘bs

𝑣𝑐𝑡 is then calculated by

50 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

urbs Documentation, Release 0.7

the product of the price coefficient and the related time variable for a given timestep 𝑡. This calculation
and the decision for one of the two options is executed by the helper function get_com_price().

urbs.get_com_price(instance, tuples)

Parameters

• instance (str) – a Pyomo ConcreteModel instance

• tuples (list) – a list of (site, commodity, commodity type) tuples

Returns a Pandas DataFrame with entities as columns and timesteps as index

Calculate commodity prices for each modelled timestep. Checks whether the input is a float. If it
is a float it gets the input value as a fix value for commodity price. Otherwise if the input value
is not a float, but a string, it extracts the price coefficient from the string and multiplies it with a
timeseries of commodity price variables.

Process Economical Parameters

Weighted Average Cost of Capital for Process, 𝑖𝑣𝑝, : The parameter 𝑖𝑣𝑝 represents the weighted
average cost of capital for a process technology 𝑝 in a site 𝑣. The weighted average cost of capital
gives the interest rate (%) of costs for capital after taxes. The related section for this parameter in the
spreadsheet can be found under the “Process” sheet. Here each row represents another process 𝑝 in a site
𝑣 and the tenth column with the header label “wacc” represents the parameters 𝑖𝑣𝑝 of the corresponding
process 𝑝 and site 𝑣 combinations. The parameter is given as a percentage, where “0,07” means 7%

Process Depreciation Period, 𝑧𝑣𝑝, (a): The parameter 𝑧𝑣𝑝 represents the depreciation period of a pro-
cess 𝑝 in a site 𝑣. The depreciation period gives the economic lifetime (more conservative than technical
lifetime) of a process investment. The unit of this parameter is “a”, where “a” represents a year of 8760
hours. The related section for this parameter in the spreadsheet can be found under the “Process” sheet.
Here each row represents another process 𝑝 in a site 𝑣 and the eleventh column with the header label
“depreciation” represents the parameters 𝑧𝑣𝑝 of the corresponding process 𝑝 and site 𝑣 combinations.

Annualised Process Capacity Investment Costs, 𝑘inv
𝑣𝑝 , m.process.loc[p]['inv-cost'] *

m.process.loc[p]['annuity-factor']: The parameter 𝑘inv
𝑣𝑝 represents the annualised in-

vestment cost for adding one unit new capacity of a process technology 𝑝 in a site 𝑣. The unit of this
parameter is C/(MW a). This parameter is derived by the product of annuity factor 𝐴𝐹 and the process
capacity investment cost for a given process tuple. The process capacity investment cost is to be given
as an input by the user. The related section for the process capacity investment cost in the spreadsheet
can be found under the “Process” sheet. Here each row represents another process 𝑝 in a site 𝑣 and the
seventh column with the header label “inv-cost” represents the process capacity investment costs of the
corresponding process 𝑝 and site 𝑣 combinations.

Process Capacity Fixed Costs, 𝑘fix
𝑣𝑝, m.process.loc[p]['fix-cost']: The parameter 𝑘fix

𝑣𝑝 rep-
resents the fix cost per one unit capacity 𝜅𝑣𝑝 of a process technology 𝑝 in a site 𝑣, that is charged annually.
The unit of this parameter is C/(MW a). The related section for this parameter in the spreadsheet can be
found under the “Process” sheet. Here each row represents another process 𝑝 in a site 𝑣 and the eighth
column with the header label “fix-cost” represents the parameters 𝑘fix

𝑣𝑝 of the corresponding process 𝑝
and site 𝑣 combinations.

Process Variable Costs, 𝑘var
𝑣𝑝 , m.process.loc[p]['var-cost']: The parameter 𝑘var

𝑣𝑝 represents
the variable cost per one unit energy throughput 𝜏𝑣𝑝𝑡 through a process technology 𝑝 in a site 𝑣. The
unit of this parameter is C/MWh. The related section for this parameter in the spreadsheet can be found
under the “Process” sheet. Here each row represents another process 𝑝 in a site 𝑣 and the ninth column

1.2. Technical documentation 51

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

urbs Documentation, Release 0.7

with the header label “var-cost” represents the parameters 𝑘var
𝑣𝑝 of the corresponding process 𝑝 and site 𝑣

combinations.

Process Startup Costs, 𝑘st
𝑣𝑝, m.process.loc[p]['startup']: The parameter 𝑘st

𝑣𝑝 represents the
startup cost per “startup occurence” of a process technology 𝑝 in a site 𝑣. The unit of this parameter is
C. The related section for this parameter in the spreadsheet can be found under the “Process” sheet.
Here each row represents another process 𝑝 in a site 𝑣 and the thirteenth column with the header label
“startup” represents the parameters 𝑘st

𝑣𝑝 of the corresponding process 𝑝 and site 𝑣 combinations.

Storage Economical Parameters

Weighted Average Cost of Capital for Storage, 𝑖𝑣𝑠, : The parameter 𝑖𝑣𝑠 represents the weighted
average cost of capital for a storage technology 𝑠 in a site 𝑣. The weighted average cost of capital
gives the interest rate(%) of costs for capital after taxes. The related section for this parameter in the
spreadsheet can be found under the “Storage” sheet. Here each row represents another storage 𝑠 in
a site 𝑣 and the nineteenth column with the header label “wacc” represents the parameters 𝑖𝑣𝑠 of the
corresponding storage 𝑠 and site 𝑣 combinations. The parameter is given as a percentage, where “0,07”
means 7%.

Storage Depreciation Period, 𝑧𝑣𝑠, (a): The parameter 𝑧𝑣𝑠 represents the depreciation period of a storage
𝑠 in a site 𝑣. The depreciation period gives the economic lifetime (more conservative than technical
lifetime) of a storage investment. The related section for this parameter in the spreadsheet can be found
under the “Storage” sheet. Here each row represents another storage 𝑠 in a site 𝑣 and the eighteenth
column with the header label “depreciation” represents the parameters 𝑧𝑣𝑠 of the corresponding storage
𝑠 and site 𝑣 combinations.

Annualised Storage Power Investment Costs, 𝑘p,inv
𝑣𝑠 , m.storage.loc[s]['inv-cost-p'] *

m.storage.loc[s]['annuity-factor']: The parameter 𝑘p,inv
𝑣𝑠 represents the annualised in-

vestment cost for adding one unit new power output capacity of a storage technology 𝑠 in a site 𝑣. The
unit of this parameter is C/(MWh a). This parameter is derived by the product of annuity factor 𝐴𝐹
and the investment cost for one unit of new power output capacity of a storage 𝑠 in a site 𝑣, which is
to be given as an input parameter by the user. The related section for the storage power output capacity
investment cost in the spreadsheet can be found under the “Storage” sheet. Here each row represents
another storage 𝑠 in a site 𝑣 and the twelfth column with the header label “inv-cost-p” represents the
storage power output capacity investment cost of the corresponding storage 𝑠 and site 𝑣 combinations.

Annual Storage Power Fixed Costs, 𝑘p,fix
𝑣𝑠 , m.storage.loc[s]['fix-cost-p']: The parame-

ter 𝑘p,fix
𝑣𝑠 represents the fix cost per one unit power output capacity of a storage technology 𝑠 in a site 𝑣,

that is charged annually. The unit of this parameter is C/(MW a). The related section for this parameter
in the spreadsheet can be found under the “Storage” sheet. Here each row represents another storage 𝑠
in a site 𝑣 and the fourteenth column with the header label “fix-cost-p” represents the parameters 𝑘p,fix

𝑣𝑠

of the corresponding storage 𝑠 and site 𝑣 combinations.

Storage Power Variable Costs, 𝑘p,var
𝑣𝑠 , m.storage.loc[s]['var-cost-p']: The parameter

𝑘
p,var
𝑣𝑠 represents the variable cost per unit energy, that is stored in or retrieved from a storage technology
𝑠 in a site 𝑣. The unit of this parameter is C/MWh. The related section for this parameter in the
spreadsheet can be found under the “Storage” sheet. Here each row represents another storage 𝑠 in a
site 𝑣 and the sixteenth column with the header label “var-cost-p” represents the parameters 𝑘p,var

𝑣𝑠 of the
corresponding storage 𝑠 and site 𝑣 combinations.

Annualised Storage Size Investment Costs, 𝑘c,inv
𝑣𝑠 , m.storage.loc[s]['inv-cost-c'] *

m.storage.loc[s]['annuity-factor']: The parameter 𝑘c,inv
𝑣𝑠 represents the annualised in-

vestment cost for adding one unit new storage capacity to a storage technology 𝑠 in a site 𝑣. The unit

52 Chapter 1. Contents

urbs Documentation, Release 0.7

of this parameter is C/(MWh a). This parameter is derived by the product of annuity factor 𝐴𝐹 and the
investment cost for one unit of new storage capacity of a storage 𝑠 in a site 𝑣, which is to be given as an
input parameter by the user. The related section for the storage content capacity investment cost in the
spreadsheet can be found under the “Storage” sheet. Here each row represents another storage 𝑠 in a site
𝑣 and the thirteenth column with the header label “inv-cost-c” represents the storage content capacity
investment cost of the corresponding storage 𝑠 and site 𝑣 combinations.

Annual Storage Size Fixed Costs, 𝑘c,fix
𝑣𝑠 , m.storage.loc[s]['fix-cost-c']: The parameter

𝑘c,fix
𝑣𝑠 represents the fix cost per one unit storage content capacity of a storage technology 𝑠 in a site 𝑣,

that is charged annually. The unit of this parameter is C/(MWh a). The related section for this parameter
in the spreadsheet can be found under the “Storage” sheet. Here each row represents another storage 𝑠
in a site 𝑣 and the fifteenth column with the header label “fix-cost-c” represents the parameters 𝑘c,fix

𝑣𝑠 of
the corresponding storage 𝑠 and site 𝑣 combinations.

Storage Usage Variable Costs, 𝑘c,var
𝑣𝑠 , m.storage.loc[s]['var-cost-c']: The parameter

𝑘
p,var
𝑣𝑠 represents the variable cost per unit energy, that is conserved in a storage technology 𝑠 in a site 𝑣.

The unit of this parameter is C/MWh. The related section for this parameter in the spreadsheet can be
found under the “Storage” sheet. Here each row represents another storage 𝑠 in a site 𝑣 and the seven-
teenth column with the header label “var-cost-c” represents the parameters 𝑘c,var

𝑣𝑠 of the corresponding
storage 𝑠 and site 𝑣 combinations. The value of this parameter is usually set to zero, but the parameter
can be taken advantage of if the storage has a short term usage or has an increased devaluation due to
usage, compared to amount of energy stored.

Transmission Economical Parameters

Weighted Average Cost of Capital for Transmission, 𝑖𝑣𝑓 , : The parameter 𝑖𝑣𝑓 represents the weighted
average cost of capital for a transmission 𝑓 transferring commodities through an arc 𝑎. The weighted
average cost of capital gives the interest rate(%) of costs for capital after taxes. The related section for
this parameter in the spreadsheet can be found under the “Transmission” sheet. Here each row represents
another transmission 𝑓 transferring commodities through an arc 𝑎 and the twelfth column with the header
label “wacc” represents the parameters 𝑖𝑣𝑓 of the corresponding transmission 𝑓 and arc 𝑎 combinations.
The parameter is given as a percentage, where “0,07” means 7%.

Transmission Depreciation Period, 𝑧𝑎𝑓 , (a): The parameter 𝑧𝑎𝑓 represents the depreciation period
of a transmission 𝑓 transferring commodities through an arc 𝑎. The depreciation period of gives the
economic lifetime (more conservative than technical lifetime) of a transmission investment. The unit of
this parameter is C/ (MW a). The related section for this parameter in the spreadsheet can be found under
the “Transmission” sheet. Here each row represents another transmission 𝑓 transferring commodities
through an arc 𝑎 and the thirteenth column with the header label “depreciation” represents the parameters
𝑧𝑎𝑓 of the corresponding transmission 𝑓 and arc 𝑎 combinations.

Annualised Transmission Capacity Investment Costs, 𝑘inv
𝑎𝑓 , m.transmission.

loc[t]['inv-cost'] * m.transmission.loc[t]['annuity-factor']: The
parameter 𝑘inv

𝑎𝑓 represents the annualised investment cost for adding one unit new transmission capacity
to a transmission 𝑓 transferring commodities through an arc 𝑎. This parameter is derived by the
product of annuity factor 𝐴𝐹 and the investment cost for one unit of new transmission capacity of a
transmission 𝑓 running through an arc 𝑎, which is to be given as an input parameter by the user. The
unit of this parameter is C/(MW a). The related section for the transmission capacity investment cost
in the spreadsheet can be found under the “Transmission” sheet. Here each row represents another
transmission 𝑓 transferring commodities through an arc 𝑎 and the sixth column with the header label
“inv-cost” represents the transmission capacity investment cost of the corresponding transmission 𝑓 and
arc 𝑎 combinations.

1.2. Technical documentation 53

urbs Documentation, Release 0.7

Annual Transmission Capacity Fixed Costs, 𝑘fix
𝑎𝑓 , m.transmission.loc[t]['fix-cost']:

The parameter 𝑘fix
𝑎𝑓 represents the fix cost per one unit capacity of a transmission 𝑓 transferring com-

modities through an arc 𝑎, that is charged annually. The unit of this parameter is C/(MWh a). The
related section for this parameter in the spreadsheet can be found under the “Transmission” sheet. Here
each row represents another transmission 𝑓 transferring commodities through an arc 𝑎 and the seventh
column with the header label “fix-cost” represents the parameters 𝑘fix

𝑎𝑓 of the corresponding transmission
𝑓 and arc 𝑎 combinations.

Transmission Usage Variable Costs, 𝑘var
𝑎𝑓 , m.transmission.loc[t]['var-cost']: The pa-

rameter 𝑘var
𝑎𝑓 represents the variable cost per unit energy, that is transferred with a transmissiom 𝑓 through

an arc 𝑎. The unit of this parameter is C/ MWh. The related section for this parameter in the spreadsheet
can be found under the “Transmission” sheet. Here each row represents another transmission 𝑓 trans-
ferring commodities through an arc 𝑎 and the eighth column with the header label “var-cost” represents
the parameters 𝑘var

𝑎𝑓 of the corresponding transmission 𝑓 and arc 𝑎 combinations.

Equations

Objective function

The variable total system cost 𝜁 is calculated by the cost function. The cost function is the objective
function of the optimization model. Minimizing the value of the variable total system cost would give
the most reasonable solution for the modelled energy system The formula of the cost function expressed
in mathematical notation is as following:

𝜁 = 𝜁inv + 𝜁fix + 𝜁var + 𝜁fuel + 𝜁rev + 𝜁pur + 𝜁startup

The calculation of the variable total system cost is given in urbs.py by the following code fragment.

The variable total system cost 𝜁 is basically calculated by the summation of every type of total costs. As
previously mentioned in section Cost Types, these cost types are : Investment, Fix, Variable,
Fuel, Revenue, Purchase. The calculation of each single cost types are listed below.

Investment Costs

The variable investment costs 𝜁inv represent the required annual expenses made, in the hope of future
benefits. These expenses are made on every new investment. The possible investments of an energy
system in this model are:

1. Additional throughput capacity for process technologies.

2. Additional power capacity for storage technologies and additional storage content capacity for
storage technologies.

3. Additional power capacity for transmission technologies.

The calculation of total annual investment cost 𝜁inv is expressed by the formula:

𝜁inv =
∑︁
𝑣∈𝑉
𝑝∈𝑃

𝜅̂𝑣𝑝𝑘
inv
𝑝 +

∑︁
𝑣∈𝑉
𝑠∈𝑆

(︀
𝜅̂c
𝑣𝑠𝑘

c,inv
𝑣𝑠 + 𝜅̂p

𝑣𝑠𝑘
p,inv
𝑣𝑠

)︀
+

∑︁
𝑎∈𝐴
𝑓∈𝐹

𝜅̂𝑎𝑓𝑘
inv
𝑎𝑓

Total annual investment cost is calculated by the sum of three main summands, these are the investment
costs for processes, storages, and transmissions.

54 Chapter 1. Contents

urbs Documentation, Release 0.7

1. The first summand of the formula calculates the required annual investment expenses to install the
additional process capacity for every member of the set process tuples ∀𝑝𝑣 ∈ 𝑃𝑣. Total process in-
vestment cost for all process tuples is defined by the sum of all possible annual process investment
costs, which are calculated seperately for each process tuple (𝑝𝑣, m.pro_tuples) consisting
of process 𝑝 in site 𝑣. Annual process investment cost for a given process tuple 𝑝𝑣 is calculated
by the product of the variable new process capacity (𝜅̂𝑣𝑝,‘‘m.cap_pro_new‘‘) and the parameter
annualised process capacity investment cost (𝑘inv

𝑣𝑝 , m.process.loc[p]['inv-cost'] *
m.process.loc[p]['annuity-factor']). In mathematical notation this summand is
expressed as: ∑︁

𝑣∈𝑉
𝑝∈𝑃

𝜅̂𝑣𝑝𝑘
inv
𝑝

2. The second summand of the formula calculates the required investment expenses to install ad-
ditional power output capacity and storage content capacity to storage technologies for every
member of the set storage tuples (∀𝑠𝑣𝑐 ∈ 𝑆𝑣𝑐). This summand consists of two products:

• The first product calculates the required annual investment expenses to in-
stall an additional storage content capacity to a given storage tuple .
This is calculated by the product of the variable new storage size (
𝜅̂c
𝑣𝑠, cap_sto_c_new) and the parameter annualised storage size invest-

ment costs (𝑘c,inv
𝑣𝑠 , m.storage.loc[s]['inv-cost-c'] * m.storage.

loc[s]['annuity-factor']).

• The second product calculates the required annual investment expenses to in-
stall an additional power output capacity to a given storage tuple. This
is calculated by the product of the variable new storage power (𝜅̂

p
𝑣𝑠,

cap_sto_p_new) and the parameter annualised storage power investment
costs (𝑘

p,inv
𝑣𝑠 , m.storage.loc[s]['inv-cost-p'] * m.storage.

loc[s]['annuity-factor']).

These two products for a given storage tuple are than added up. The calculation of in-
vestment costs for a given storage tuple is than repeated for every single storage tuple and
summed up to calculate the total investment costs for storage technologies. In mathematical
notation this summand is expressed as:∑︁

𝑣∈𝑉
𝑠∈𝑆

(𝜅̂c
𝑣𝑠𝑘

c,inv
𝑣𝑠 + 𝜅̂p

𝑣𝑠𝑘
p,inv
𝑣𝑠)

3. The third and the last summand of the formula calculates the required investment expenses
to install additional power capacity to transmission technologies for every member of the set
transmission tuples ∀𝑓𝑐𝑎 ∈ 𝐹𝑐𝑎. Total transmission investment cost for all transmission tu-
ples is defined by the sum of all possible annual transmission investment costs, which are
calculated seperately for each transmission tuple (𝑓𝑐𝑎). Annual transmission investment cost
for a given transmission tuple is calculated by the product of the variable new transmission
capacity (𝜅̂𝑎𝑓 , cap_tra_new) and the parameter annualised transmission capacity invest-
ment costs (𝑘inv

𝑎𝑓 , m.transmission.loc[t]['inv-cost'] * m.transmission.
loc[t]['annuity-factor']) for the given transmission tuple. In mathematical notation
this summand is expressed as: ∑︁

𝑎∈𝐴
𝑓∈𝐹

𝜅̂𝑎𝑓𝑘
inv
𝑎𝑓

As mentioned above the variable investment costs 𝜁inv is calculated by the sum of these 3 summands.

1.2. Technical documentation 55

urbs Documentation, Release 0.7

In script urbs.py the value of the total investment cost is calculated by the following code fragment:

if cost_type == 'Invest':
return m.costs[cost_type] == \

sum(m.cap_pro_new[p] *
m.process.loc[p]['inv-cost'] *
m.process.loc[p]['annuity-factor']
for p in m.pro_tuples) + \

sum(m.cap_tra_new[t] *
m.transmission.loc[t]['inv-cost'] *
m.transmission.loc[t]['annuity-factor']
for t in m.tra_tuples) + \

sum(m.cap_sto_p_new[s] *
m.storage.loc[s]['inv-cost-p'] *
m.storage.loc[s]['annuity-factor'] +
m.cap_sto_c_new[s] *
m.storage.loc[s]['inv-cost-c'] *
m.storage.loc[s]['annuity-factor']
for s in m.sto_tuples)

Fix Costs

The variable fix costs 𝜁fix represents the total annual fixed costs for all used storage, process and trans-
mission technologies. The possible fix costs of an energy system in this model can be divided into
sections, these are:

1. Fix costs for process technologies

2. Fix costs for storage technologies

3. Fix costs for transmission technologies.

The calculation of total annual fix cost 𝜁fix is expressed by the formula:

𝜁fix =
∑︁
𝑣∈𝑉
𝑝∈𝑃

𝜅𝑣𝑝𝑘
fix
𝑣𝑝 +

∑︁
𝑣∈𝑉
𝑠∈𝑆

(︀
𝜅c
𝑣𝑠𝑘

c,fix
𝑣𝑠 + 𝜅p

𝑣𝑠𝑘
p,fix
𝑣𝑠

)︀
+

∑︁
𝑎∈𝐴
𝑓∈𝐹

𝜅𝑎𝑓𝑘
fix
𝑎𝑓

Total annual fix cost 𝜁fix is calculated by the sum of three main summands, these are the fix costs for
process, storage and transmission technologies.

1. The first summand of the formula calculates the required annual fix cost to keep all the process
technologies maintained. This is calculated for every member of the set process tuples ∀𝑝𝑣 ∈ 𝑃𝑣.
Total process fix cost for all process tuples is defined by the sum of all possible annual process fix
costs, which are calculated seperately for each process tuple (𝑝𝑣, m.pro_tuples) consisting of
process 𝑝 in site 𝑣. Annual process fix cost for a given process tuple is calculated by the product
of the variable total process capacity (𝜅𝑣𝑝, cap_pro) and process capacity fixed cost (𝑘fix

𝑣𝑝,
m.process.loc[p]['fix-cost']). In mathematical notation this summand is expressed
as: ∑︁

𝑣∈𝑉
𝑝∈𝑃

𝜅𝑣𝑝𝑘
fix
𝑣𝑝

2. The second summand of the formula calculates the required fix expenses to keep the power ca-
pacity and storage content capacity of storage technologies maintained. The present storage tech-
nologies comprise the members of the set storage tuples ∀𝑠𝑣𝑐 ∈ 𝑆𝑣𝑐. This summand consists of
two products:

56 Chapter 1. Contents

urbs Documentation, Release 0.7

• The first product calculates the required annual fix expenses to keep the storage content
capacity of a given storage tuple maintained. This is calculated by the product of the
variable total storage size (𝜅c

𝑣𝑠, cap_sto_c) and the parameter annual storage size
fixed costs (𝑘c,fix

𝑣𝑠 , m.storage.loc[s]['fix-cost-c']).

• The second product calculates the required annual fix expenses to keep the power
capacity of a given storage tuple maintained. This is calculated by the product of the
variable total storage power (𝜅p

𝑣𝑠, cap_sto_p) and the parameter annual storage
power fixed costs (𝑘p,fix

𝑣𝑠 , m.storage.loc[s]['fix-cost-p']).

These two products for a given storage tuple are than added up. The calculation of fix
costs for a storage tuple is then repeated for every single storage tuple and summed up to
calculate the total fix costs for storage technologies. In mathematical notation this summand
is expressed as: ∑︁

𝑣∈𝑉
𝑠∈𝑆

(𝜅c
𝑣𝑠𝑘

c,fix
𝑣𝑠 + 𝜅p

𝑣𝑠𝑘
p,fix
𝑣𝑠)

3. The third and the last summand of the formula calculates the required fix expenses to keep the
power capacity of transmission technologies maintained. The transmission technologies com-
prise the members of the set transmission tuples ∀𝑓𝑐𝑎 ∈ 𝐹𝑐𝑎. Total transmission fix cost for all
transmission tuples is defined by the sum of all possible annual transmission fix costs, which
are calculated seperately for each transmission tuple 𝑓𝑐𝑎. Annual transmission fix cost for a
given transmission tuple is calculated by the product of the variable total transmission capac-
ity (𝜅𝑎𝑓 , cap_tra) and the parameter annual transmission capacity fixed costs (𝑘fix

𝑎𝑓 , m.
transmission.loc[t]['fix-cost']) for the given transmission tuple 𝑓𝑐𝑎. In mathe-
matical notation this summand is expressed as:∑︁

𝑎∈𝐴
𝑓∈𝐹

𝜅𝑎𝑓𝑘
fix
𝑎𝑓

As mentioned above, the fix costs 𝜁fix are calculated by the sum of these 3 summands.

In script urbs.py the value of the total fix cost is calculated by the following code fragment:

elif cost_type == 'Fixed':
return m.costs[cost_type] == \

sum(m.cap_pro[p] * m.process.loc[p]['fix-cost']
for p in m.pro_tuples) + \

sum(m.cap_tra[t] * m.transmission.loc[t]['fix-cost']
for t in m.tra_tuples) + \

sum(m.cap_sto_p[s] * m.storage.loc[s]['fix-cost-p'] +
m.cap_sto_c[s] * m.storage.loc[s]['fix-cost-c']
for s in m.sto_tuples)

1.2. Technical documentation 57

urbs Documentation, Release 0.7

Variable Costs

𝜁var = 𝑤
∑︁
𝑡∈𝑇m

⎛⎜⎜⎝∑︁
𝑣∈𝑉
𝑝∈𝑃

𝜏𝑣𝑝𝑡𝑘
var
𝑣𝑝 ∆𝑡+

∑︁
𝑎∈𝑎
𝑓∈𝐹

𝜋in
𝑎𝑓𝑘

var
𝑎𝑓 ∆𝑡+

∑︁
𝑣∈𝑉
𝑠∈𝑆

[︀
𝜖con
𝑣𝑠𝑡𝑘

c,var
𝑣𝑠 +

(︀
𝜖in
𝑣𝑠𝑡 + 𝜖out

𝑣𝑠𝑡

)︀
𝑘p,var
𝑣𝑠 ∆𝑡

]︀⎞⎟⎠
elif cost_type == 'Variable':

return m.costs[cost_type] == \
sum(m.tau_pro[(tm,) + p] * m.dt *

m.process.loc[p]['var-cost'] *
m.weight
for tm in m.tm
for p in m.pro_tuples) + \

sum(m.e_tra_in[(tm,) + t] * m.dt *
m.transmission.loc[t]['var-cost'] *
m.weight
for tm in m.tm
for t in m.tra_tuples) + \

sum(m.e_sto_con[(tm,) + s] *
m.storage.loc[s]['var-cost-c'] * m.weight +
(m.e_sto_in[(tm,) + s] + m.e_sto_out[(tm,) + s]) * m.dt *
m.storage.loc[s]['var-cost-p'] * m.weight
for tm in m.tm
for s in m.sto_tuples)

Fuel Costs

The variable fuel costs 𝜁fuel represents the total annual expenses that are required to be made to buy stock
commodities 𝑐 ∈ 𝐶stock. The calculation of the variable total annual fuel cost 𝜁fuel is expressed by the
following mathematical notation:

𝜁fuel = 𝑤
∑︁
𝑡∈𝑇m

∑︁
𝑣∈𝑉

∑︁
𝑐∈𝐶stock

𝜌𝑣𝑐𝑡𝑘
fuel
𝑣𝑐 ∆𝑡

The variable 𝜁fuel is calculated by the sum of all possible annual fuel costs, defined by the combinations
of commodity tuples of commodity type ‘Stock’(∀𝑐𝑣𝑞 ∈ 𝐶𝑣𝑞 ∧ 𝑞 = ’Stock’) and timesteps(∀𝑡 ∈ 𝑇𝑚).
These annual fuel costs are calculated by the product of the following elements:

• The parameter stock commodity fuel cost for a given stock commodity 𝑐 in a site 𝑣.(𝑘fuel
𝑣𝑐 , m.

commodity.loc[c]['price'])

• The variable stock commodity source term for a given stock commodity 𝑐 in a site 𝑣 at a timestep
𝑡.(𝜌𝑣𝑐𝑡, e_co_stock)

• The variable timestep duration.(∆𝑡, dt)

• The variable weight.(𝑤, weight)

In script urbs.py the value of the total fuel cost is calculated by the following code fragment:

58 Chapter 1. Contents

urbs Documentation, Release 0.7

elif cost_type == 'Fuel':
return m.costs[cost_type] == sum(

m.e_co_stock[(tm,) + c] * m.dt *
m.commodity.loc[c]['price'] *
m.weight
for tm in m.tm for c in m.com_tuples
if c[1] in m.com_stock)

Revenue Costs

The variable revenue costs 𝜁rev represents the total annual expenses that are required to be made to sell
sell commodities 𝑐 ∈ 𝐶sell. The calculation of the variable total annual revenue cost 𝜁rev is expressed by
the following mathematical notation:

𝜁rev = −𝑤
∑︁
𝑡∈𝑇m

∑︁
𝑣∈𝑉

∑︁
𝑐∈𝐶sell

𝜚𝑣𝑐𝑡𝑘
bs
𝑣𝑐𝑡∆𝑡

The variable 𝜁rev is calculated by the sum of all possible annual revenue costs, defined by the combina-
tions of commodity tuples of commodity type ‘Sell’(∀𝑐𝑣𝑞 ∈ 𝐶𝑣𝑞 ∧ 𝑞 = ’Sell’) and timesteps (∀𝑡 ∈ 𝑇𝑚).
These annual revenue costs are calculated by the product of the following elements:

• The parameter sell commodity sell cost for given sell commodity 𝑐 in a site 𝑣.(𝑘bs
𝑣𝑐𝑡,

com_prices[c].loc[tm])

• The variable sell commodity source term for a given sell commodity 𝑐 in a site 𝑣 at a timestep 𝑡.(
𝜚𝑣𝑐𝑡, e_co_sell)

• The variable timestep duration.(∆𝑡, dt)

• The variable weight.(𝑤, weight)

• Coefficient [-1].

Since this variable is an income for the energy system, it is multiplied by the value -1 to be able to
express it in the cost function as a summand. In script urbs.py the value of the total revenue cost is
calculated by the following code fragment:

elif cost_type == 'Revenue':
sell_tuples = commodity_subset(m.com_tuples, m.com_sell)
com_prices = get_com_price(m, sell_tuples)

return m.costs[cost_type] == -sum(
m.e_co_sell[(tm,) + c] *
com_prices[c].loc[tm] *
m.weight * m.dt
for tm in m.tm
for c in sell_tuples)

Purchase Costs

The variable purchase costs 𝜁pur represents the total annual expenses that are required to be made to
purchase buy commodities 𝑐 ∈ 𝐶buy. The calculation of the variable total annual purchase cost 𝜁pur is

1.2. Technical documentation 59

urbs Documentation, Release 0.7

expressed by the following mathematical notation:

𝜁pur = 𝑤
∑︁
𝑡∈𝑇m

∑︁
𝑣∈𝑉

∑︁
𝑐∈𝐶buy

𝜓𝑣𝑐𝑡𝑘
bs
𝑣𝑐𝑡∆𝑡

The variable 𝜁pur is calculated by the sum of all possible annual purchase costs, defined by the combina-
tions of commodity tuples of commodity type ‘Buy’(∀𝑐𝑣𝑞 ∈ 𝐶𝑣𝑞∧𝑞 = ’Buy’) and timesteps (∀𝑡 ∈ 𝑇𝑚).
These annual purchase costs are calculated by the product of the following elements:

• The parameter buy commodity buy cost for a given buy commodity 𝑐 in a site 𝑣. (𝑘bs
𝑣𝑐𝑡,

com_prices[c].loc[tm])

• The variable buy commodity source term for a given buy commodity 𝑐 in a site 𝑣 at a timestep 𝑡.(
𝜓𝑣𝑐𝑡, e_co_buy)

• The variable timestep duration.(∆𝑡, dt)

• The variable weight.(𝑤, weight)

In script urbs.py the value of the total purchase cost is calculated by the following code fragment:

elif cost_type == 'Purchase':
buy_tuples = commodity_subset(m.com_tuples, m.com_buy)
com_prices = get_com_price(m, buy_tuples)

return m.costs[cost_type] == sum(
m.e_co_buy[(tm,) + c] *
com_prices[c].loc[tm] *
m.weight * m.dt
for tm in m.tm
for c in buy_tuples)

Startup Costs

The variable startup costs 𝜁startup represents the total annual expenses that are required for the startup
occurences of processes with the partial & startup feature activated. The calculation of the total annual
startup costs is expressed by the following mathematical notation:

𝜁startup = 𝑤
∑︁
𝑡∈𝑇m

∑︁
𝑣∈𝑉

∑︁
𝑝∈𝑃

𝜑𝑣𝑝𝑡𝑘
st
𝑣𝑝∆𝑡

In script urbs.py the value of the total startup cost is calculated by the following code fragment:

elif cost_type == 'Startup':
return m.costs[cost_type] == sum(

m.startup_pro[(tm,) + p] *
m.process.loc[p]['startup-cost'] *
m.weight * m.dt
for tm in m.tm
for p in m.pro_partial_tuples)

Environmental Costs

Environmental costs 𝜁env represent the total annual taxes for created emissions/pollutions in form of
environmental commodities. The total annual costs are calculated by summing the negative commodity

60 Chapter 1. Contents

urbs Documentation, Release 0.7

balance CB of all environmental commodities, multiplied by their respective price

𝜁env = −𝑤
∑︁
𝑡∈𝑇m

∑︁
𝑣∈𝑉

∑︁
𝑐∈𝐶env

CB(𝑣, 𝑐, 𝑡)∆𝑡

In script urbs.py the value of the total environmental cost is calculated by the following code frag-
ment:

elif cost_type == 'Environmental':
return m.costs[cost_type] == sum(

- commodity_balance(m, tm, sit, com) *
m.weight * m.dt *
m.commodity.loc[sit, com, com_type]['price']
for tm in m.tm
for sit, com, com_type in m.com_tuples
if com in m.com_env)

Constraints

Commodity Constraints

Commodity Balance The function commodity balance calculates the balance of a commodity 𝑐 in a
site 𝑣 at a timestep 𝑡. Commodity balance function facilitates the formulation of commodity constraints.
The formula for commodity balance is expressed in mathematical notation as:

CB(𝑣, 𝑐, 𝑡) =
∑︁

𝑝|𝑐∈𝐶 in
𝑣𝑝

𝜖in
𝑣𝑐𝑝𝑡 −

∑︁
𝑝|𝑐∈𝐶out

𝑣𝑝

𝜖out
𝑣𝑐𝑝𝑡 +

∑︁
𝑠∈𝑆𝑣𝑐

(︀
𝜖in
𝑣𝑠𝑡 − 𝜖out

𝑣𝑠𝑡

)︀
+

∑︁
𝑎∈𝐴s

𝑣

𝑓∈𝐹 exp
𝑣𝑐

𝜋in
𝑎𝑓𝑡 −

∑︁
𝑎∈𝐴p

𝑣

𝑓∈𝐹 imp
𝑣𝑐

𝜋out
𝑎𝑓𝑡

This function sums up for a given commodity 𝑐, site 𝑣 and timestep 𝑡;

• the consumption: Process input commodity flow 𝜖in
𝑣𝑐𝑝𝑡 of all process tuples using the commodity

𝑐 in the site 𝑣 at the timestep 𝑡.

• the export: Input transmission power flow 𝜋in
𝑎𝑓𝑡 of all transmission tuples exporting the commodity

𝑐 from the origin site 𝑣 at the timestep 𝑡.

• the storage input: Input power flow 𝜖in
𝑣𝑠𝑡 of all storage tuples storing the commodity 𝑐 in the site 𝑣

at the timestep 𝑡.

and subtracts for the same given commodity 𝑐, site 𝑣 and timestep 𝑡;

• the creation: Process output commodity flow 𝜖out
𝑣𝑐𝑝𝑡 of all process tuples using the commodity 𝑐 in

the site 𝑣 at the timestep 𝑡.

• the import: Output transmission power flow 𝜋out
𝑎𝑓𝑡 of all transmission tuples importing the com-

modity math:c to the destination site 𝑣 at the timestep 𝑡.

• the storage output: Output power flow 𝜖out
𝑣𝑠𝑡 of all storage tuples storing the commodity 𝑐 in the site

𝑣 at the timestep 𝑡.

The value of the function CB being greater than zero CB > 0 means that the presence of the commodity
𝑐 in the site 𝑣 at the timestep 𝑡 is getting less than before by the technologies given above. Correspond-
ingly, the value of the function being less than zero means that the presence of the commodity in the site
at the timestep is getting more than before by the technologies given above.

1.2. Technical documentation 61

urbs Documentation, Release 0.7

In script urbs.py the value of the commodity balance function CB(𝑣, 𝑐, 𝑡) is calculated by the follow-
ing code fragment:

Vertex Rule: Vertex rule is the main constraint that has to be satisfied for every commodity. This
constraint is defined differently for each commodity type. The inequality requires, that any imbalance
(CB>0, CB<0) of a commodity 𝑐 in a site 𝑣 at a timestep 𝑡 to be balanced by a corresponding source
term or demand.

• Environmental commodities 𝐶env: this constraint is not defined for environmental commodities.

• Suppy intermittent commodities 𝐶sup: this constraint is not defined for supply intermittent com-
modities.

• Stock commodities 𝐶st: For stock commodities, the possible imbalance of the commodity must
be supplied by the stock commodity purchases. In other words, commodity balance CB(𝑣, 𝑐, 𝑡)
subtracted from the variable stock commodity source term 𝜌𝑣𝑐𝑡 must be greater than or equal to 0
to satisfy this constraint. In mathematical notation this is expressed as:

∀𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶st, 𝑡 ∈ 𝑇𝑚 : − CB(𝑣, 𝑐, 𝑡) + 𝜌𝑣𝑐𝑡 ≥ 0

• Sell commodities 𝐶sell: For sell commodities, the possible imbalance of the commodity must be
supplied by the sell commodity trades. In other words, commodity balance CB(𝑣, 𝑐, 𝑡) subtracted
from minus the variable sell commodity source term 𝜚𝑣𝑐𝑡 must be greater than or equal to 0 to
satisfy this constraint. In mathematical notation this is expressed as:

∀𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶sell, 𝑡 ∈ 𝑇𝑚 : − CB(𝑣, 𝑐, 𝑡) − 𝜚𝑣𝑐𝑡 ≥ 0

• Buy commodities 𝐶buy: For buy commodities, the possible imbalance of the commodity must
be supplied by the buy commodity purchases. In other words, commodity balance CB(𝑣, 𝑐, 𝑡)
subtracted from the variable buy commodity source term 𝜓𝑣𝑐𝑡 must be greater than or equal to 0
to satisfy this constraint. In mathematical notation this is expressed as:

∀𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶buy, 𝑡 ∈ 𝑇𝑚 : − CB(𝑣, 𝑐, 𝑡) + 𝜓𝑣𝑐𝑡 ≥ 0

• Demand commodities 𝐶dem: For demand commodities, the possible imbalance of the commodity
must supply the demand 𝑑𝑣𝑐𝑡 of demand commodities 𝑐 ∈ 𝐶dem. In other words, the parameter
demand for commodity subtracted 𝑑𝑣𝑐𝑡 from the minus commodity balance −CB(𝑣, 𝑐, 𝑡) must be
greater than or equal to 0 to satisfy this constraint. In mathematical notation this is expressed as:

∀𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶dem, 𝑡 ∈ 𝑇𝑚 : − CB(𝑣, 𝑐, 𝑡) − 𝑑𝑣𝑐𝑡 ≥ 0

• Demand Side Management commodities and sites: For any combination of commodity and site
for which demand side management is defined, the upshift is substracted and the downshift added
to the negative commodity balance −CB(𝑣, 𝑐, 𝑡).

∀(𝑣, 𝑐)𝑖𝑛𝐷𝑣𝑐, 𝑡 ∈ 𝑇𝑚 : − CB(𝑣, 𝑐, 𝑡) − 𝛿
up
𝑣𝑐𝑡‘ +

∑︁
𝑡𝑡∈𝐷down

𝑣𝑐𝑡,𝑡𝑡

𝛿down
𝑣𝑐𝑡,𝑡𝑡‘ ≥ 0

In script urbs.py the constraint vertex rule is defined and calculated by the following code fragments:

m.res_vertex = pyomo.Constraint(
m.tm, m.com_tuples,
rule=res_vertex_rule,
doc='storage + transmission + process + source + buy - sell ==

→˓demand')

Stock Per Step Rule: The constraint stock per step rule applies only for commodities of type “Stock”
(𝑐 ∈ 𝐶st). This constraint limits the amount of stock commodity 𝑐 ∈ 𝐶st, that can be used by the

62 Chapter 1. Contents

urbs Documentation, Release 0.7

energy system in the site 𝑣 at the timestep 𝑡. The limited amount is defined by the parameter maximum
stock supply limit per time step 𝑙𝑣𝑐. To satisfy this constraint, the value of the variable stock commodity
source term 𝜌𝑣𝑐𝑡 must be less than or equal to the value of the parameter maximum stock supply limit
per time step 𝑙𝑣𝑐. In mathematical notation this is expressed as:

∀𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶st, 𝑡 ∈ 𝑇𝑚 : 𝜌𝑣𝑐𝑡 ≤ 𝑙𝑣𝑐

In script urbs.py the constraint stock per step rule is defined and calculated by the following code
fragment:

m.res_stock_step = pyomo.Constraint(
m.tm, m.com_tuples,
rule=res_stock_step_rule,
doc='stock commodity input per step <= commodity.maxperstep')

Total Stock Rule: The constraint total stock rule applies only for commodities of type “Stock” (𝑐 ∈ 𝐶st).
This constraint limits the amount of stock commodity 𝑐 ∈ 𝐶st, that can be used annually by the energy
system in the site 𝑣. The limited amount is defined by the parameter maximum annual stock supply limit
per vertex 𝐿𝑣𝑐. To satisfy this constraint, the annual usage of stock commodity must be less than or equal
to the value of the parameter stock supply limit per vertex 𝐿𝑣𝑐. The annual usage of stock commodity
is calculated by the sum of the products of the parameter weight 𝑤, the parameter timestep duration
∆𝑡 and the parameter stock commodity source term 𝜌𝑣𝑐𝑡 for every timestep 𝑡 ∈ 𝑇𝑚. In mathematical
notation this is expressed as:

∀𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶st : 𝑤
∑︁
𝑡∈𝑇𝑚

∆𝑡 𝜌𝑣𝑐𝑡 ≤ 𝐿𝑣𝑐

In script urbs.py the constraint total stock rule is defined and calculated by the following code frag-
ment:

m.res_stock_total = pyomo.Constraint(
m.com_tuples,
rule=res_stock_total_rule,
doc='total stock commodity input <= commodity.max')

Sell Per Step Rule: The constraint sell per step rule applies only for commodities of type “Sell” (
𝑐 ∈ 𝐶sell). This constraint limits the amount of sell commodity 𝑐 ∈ 𝐶sell, that can be sold by the energy
system in the site 𝑣 at the timestep 𝑡. The limited amount is defined by the parameter maximum sell
supply limit per time step 𝑔𝑣𝑐. To satisfy this constraint, the value of the variable sell commodity source
term 𝜚𝑣𝑐𝑡 must be less than or equal to the value of the parameter maximum sell supply limit per time
step 𝑔𝑣𝑐. In mathematical notation this is expressed as:

∀𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶sell, 𝑡 ∈ 𝑇𝑚 : 𝜚𝑣𝑐𝑡 ≤ 𝑔𝑣𝑐

In script urbs.py the constraint sell per step rule is defined and calculated by the following code
fragment:

m.res_sell_step = pyomo.Constraint(
m.tm, m.com_tuples,
rule=res_sell_step_rule,
doc='sell commodity output per step <= commodity.maxperstep')

Total Sell Rule: The constraint total sell rule applies only for commodities of type “Sell” (𝑐 ∈ 𝐶sell).
This constraint limits the amount of sell commodity 𝑐 ∈ 𝐶sell, that can be sold annually by the energy
system in the site 𝑣. The limited amount is defined by the parameter maximum annual sell supply limit

1.2. Technical documentation 63

urbs Documentation, Release 0.7

per vertex 𝐺𝑣𝑐. To satisfy this constraint, the annual usage of sell commodity must be less than or equal
to the value of the parameter sell supply limit per vertex 𝐺𝑣𝑐. The annual usage of sell commodity is
calculated by the sum of the products of the parameter weight 𝑤, the parameter timestep duration ∆𝑡
and the parameter sell commodity source term 𝜚𝑣𝑐𝑡 for every timestep 𝑡 ∈ 𝑇𝑚. In mathematical notation
this is expressed as:

∀𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶sell : 𝑤
∑︁
𝑡∈𝑇𝑚

∆𝑡 𝜚𝑣𝑐𝑡 ≤ 𝐺𝑣𝑐

In script urbs.py the constraint total sell rule is defined and calculated by the following code fragment:

m.res_sell_total = pyomo.Constraint(
m.com_tuples,
rule=res_sell_total_rule,
doc='total sell commodity output <= commodity.max')

Buy Per Step Rule: The constraint buy per step rule applies only for commodities of type “Buy” (
𝑐 ∈ 𝐶buy). This constraint limits the amount of buy commodity 𝑐 ∈ 𝐶buy, that can be bought by the
energy system in the site 𝑣 at the timestep 𝑡. The limited amount is defined by the parameter maximum
buy supply limit per time step 𝑏𝑣𝑐. To satisfy this constraint, the value of the variable buy commodity
source term 𝜓𝑣𝑐𝑡 must be less than or equal to the value of the parameter maximum buy supply limit per
time step 𝑏𝑣𝑐. In mathematical notation this is expressed as:

∀𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶buy, 𝑡 ∈ 𝑇𝑚 : 𝜓𝑣𝑐𝑡 ≤ 𝑏𝑣𝑐

In script urbs.py the constraint buy per step rule is defined and calculated by the following code
fragment:

m.res_buy_step = pyomo.Constraint(
m.tm, m.com_tuples,
rule=res_buy_step_rule,
doc='buy commodity output per step <= commodity.maxperstep')

Total Buy Rule: The constraint total buy rule applies only for commodities of type “Buy” (𝑐 ∈ 𝐶buy).
This constraint limits the amount of buy commodity 𝑐 ∈ 𝐶buy, that can be bought annually by the energy
system in the site 𝑣. The limited amount is defined by the parameter maximum annual buy supply limit
per vertex 𝐵𝑣𝑐. To satisfy this constraint, the annual usage of buy commodity must be less than or equal
to the value of the parameter buy supply limit per vertex 𝐵𝑣𝑐. The annual usage of buy commodity is
calculated by the sum of the products of the parameter weight 𝑤, the parameter timestep duration ∆𝑡
and the parameter buy commodity source term 𝜓𝑣𝑐𝑡 for every timestep 𝑡 ∈ 𝑇𝑚. In mathematical notation
this is expressed as:

∀𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶buy : 𝑤
∑︁
𝑡∈𝑇𝑚

∆𝑡 𝜓𝑣𝑐𝑡 ≤ 𝐵𝑣𝑐

In script urbs.py the constraint total buy rule is defined and calculated by the following code fragment:

m.res_buy_total = pyomo.Constraint(
m.com_tuples,
rule=res_buy_total_rule,
doc='total buy commodity output <= commodity.max')

Environmental Output Per Step Rule: The constraint environmental output per step rule applies only
for commodities of type “Env” (𝑐 ∈ 𝐶env). This constraint limits the amount of environmental com-
modity 𝑐 ∈ 𝐶env, that can be released to environment by the energy system in the site 𝑣 at the timestep 𝑡.

64 Chapter 1. Contents

urbs Documentation, Release 0.7

The limited amount is defined by the parameter maximum environmental output per time step 𝑚𝑣𝑐. To
satisfy this constraint, the negative value of the commodity balance for the given environmental com-
modity 𝑐 ∈ 𝐶env must be less than or equal to the value of the parameter maximum environmental output
per time step 𝑚𝑣𝑐. In mathematical notation this is expressed as:

∀𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶env, 𝑡 ∈ 𝑇𝑚 : − CB(𝑣, 𝑐, 𝑡) ≤ 𝑚𝑣𝑐

In script urbs.py the constraint environmental output per step rule is defined and calculated by the
following code fragment:

m.res_env_step = pyomo.Constraint(
m.tm, m.com_tuples,
rule=res_env_step_rule,
doc='environmental output per step <= commodity.maxperstep')

Total Environmental Output Rule: The constraint total environmental output rule applies only for
commodities of type “Env” (𝑐 ∈ 𝐶env). This constraint limits the amount of environmental commodity
𝑐 ∈ 𝐶env, that can be released to environment annually by the energy system in the site 𝑣. The limited
amount is defined by the parameter maximum annual environmental output limit per vertex 𝑀𝑣𝑐. To
satisfy this constraint, the annual release of environmental commodity must be less than or equal to the
value of the parameter maximum annual environmental output 𝑀𝑣𝑐. The annual release of environ-
mental commodity is calculated by the sum of the products of the parameter weight 𝑤, the parameter
timestep duration ∆𝑡 and the negative value of commodity balance function, for every timestep 𝑡 ∈ 𝑇𝑚.
In mathematical notation this is expressed as:

∀𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶env : − 𝑤
∑︁
𝑡∈𝑇𝑚

∆𝑡CB(𝑣, 𝑐, 𝑡) ≤𝑀𝑣𝑐

In script urbs.py the constraint total environmental output rule is defined and calculated by the fol-
lowing code fragment:

m.res_env_total = pyomo.Constraint(
m.com_tuples,
rule=res_env_total_rule,
doc='total environmental commodity output <= commodity.max')

In script urbs.py the constraint total environmental output rule is defined and calculated by the fol-
lowing code fragment:

Demand Side Management Constraints

The DSM equations are taken from the Paper of Zerrahn and Schill “On the representation of demand-
side management in power system models”, DOI: 10.1016/j.energy.2015.03.037.

DSM Variables Rule: The DSM variables rule defines the relation between upshift and downshift. An
upshift 𝛿up

𝑣𝑐𝑡 in site 𝑣 of commodity 𝑐 in time step 𝑡 can be compensated during a certain time interval
[𝑡 − 𝑦𝑣𝑐, 𝑡 + 𝑦𝑣𝑐] by multiple downshifts 𝛿down

𝑣𝑐𝑡,𝑡𝑡. Depending on the efficiency 𝑒𝑣𝑐, less downshifts have
to be made. This is given by:

∀(𝑣, 𝑐) ∈ 𝐷𝑣𝑐, 𝑡 ∈ 𝑇 : 𝛿
up
𝑣𝑐𝑡𝑒𝑣𝑐 =

𝑡+𝑦𝑣𝑐∑︁
𝑡𝑡=𝑡−𝑦𝑣𝑐

𝛿down
𝑣𝑐𝑡,𝑡𝑡

The definition of the constraint and its corresponding rule is defined by the following code:

1.2. Technical documentation 65

http://dx.doi.org/10.1016/j.energy.2015.03.037

urbs Documentation, Release 0.7

m.def_dsm_variables = pyomo.Constraint(
m.tm, m.dsm_site_tuples,
rule=def_dsm_variables_rule,
doc='DSMup == DSMdo * efficiency factor n')

DSM Upward Rule: The DSM upshift 𝛿up
𝑣𝑐𝑡 in site 𝑣 of commodity 𝑐 in time step 𝑡 is limited by the

maximal upshift capacity 𝐾up
𝑣𝑐. In mathematical terms, this is written as:

∀(𝑣, 𝑐) ∈ 𝐷𝑣𝑐, 𝑡 ∈ 𝑇 : 𝛿
up
𝑣𝑐𝑡 ≤ 𝐾

up
𝑣𝑐

The definition of the constraint and its corresponding rule is defined by the following code:

m.res_dsm_upward = pyomo.Constraint(
m.tm, m.dsm_site_tuples,
rule=res_dsm_upward_rule,
doc='DSMup <= Cup (threshold capacity of DSMup)')

DSM Downward Rule: The DSM downshift 𝛿up
𝑣𝑐𝑡 in site 𝑣 of commodity 𝑐 in time step 𝑡 is limited by

the maximal upshift capacity 𝐾up
𝑣𝑐. In mathematical terms, this is written as:

∀(𝑣, 𝑐) ∈ 𝐷𝑣𝑐, 𝑡𝑡 ∈ 𝑇 :

𝑡𝑡+𝑦∑︁
𝑡=𝑡𝑡−𝑦

𝛿down
𝑣𝑐𝑡,𝑡𝑡 ≤ 𝐾

down
𝑣𝑐

The definition of the constraint and its corresponding rule is defined by the following code:

m.res_dsm_downward = pyomo.Constraint(
m.tm, m.dsm_site_tuples,
rule=res_dsm_downward_rule,
doc='DSMdo <= Cdo (threshold capacity of DSMdo)')

DSM Maximum Rule: The DSM maximum rule limits the shift of one DSM unit in site 𝑣 of commodity
𝑐 in time step 𝑡. In mathematical terms, this is written as:

∀(𝑣, 𝑐) ∈ 𝐷𝑣𝑐, 𝑡𝑡 ∈ 𝑇 : 𝛿
up
𝑣𝑐𝑡 +

𝑡𝑡+𝑦∑︁
𝑡=𝑡𝑡−𝑦

𝛿down
𝑣𝑐𝑡,𝑡𝑡 ≤ max

{︁
𝐾

up
𝑣𝑐,𝐾

down
𝑣𝑐

}︁
The definition of the constraint and its corresponding rule is defined by the following code:

m.res_dsm_maximum = pyomo.Constraint(
m.tm, m.dsm_site_tuples,
rule=res_dsm_maximum_rule,
doc='DSMup + DSMdo <= max(Cup,Cdo)')

DSM Recovery Rule: The DSM recovery rule limits the upshift in site 𝑣 of commodity 𝑐 during a set
recovery period 𝑜𝑣𝑐. In mathematical terms, this is written as:

∀(𝑣, 𝑐) ∈ 𝐷𝑣𝑐, 𝑡 ∈ 𝑇 :

𝑡+𝑜𝑣𝑐−1∑︁
𝑡𝑡=𝑡

𝛿
up
𝑣𝑐𝑡𝑡 ≤ 𝐾

up
𝑣𝑐𝑦

The definition of the constraint and its corresponding rule is defined by the following code:

m.res_dsm_recovery = pyomo.Constraint(
m.tm, m.dsm_site_tuples,
rule=res_dsm_recovery_rule,
doc='DSMup(t, t + recovery time R) <= Cup * delay time L')

66 Chapter 1. Contents

urbs Documentation, Release 0.7

Global Environmental Constraint

Global CO2 Limit Rule: The constraint global CO2 limit rule applies to the whole energy system, that
is to say it applies to every site and timestep in general. This constraints restricts the energy model from
releasing more environmental commodities, namely CO2 to environment than allowed. The constraint
states that the sum of released environmental commodities for every site 𝑣 and every timestep 𝑡 must
be less than or equal to the parameter maximum global annual CO2 emission limit 𝐿𝐶𝑂2 , where the
amount of released enviromental commodites in a single site 𝑣 at a single timestep 𝑡 is calculated by the
product of commodity balance of enviromental commodities CB(𝑣, 𝐶𝑂2, 𝑡) and the parameter weight
𝑤. This constraint is skipped if the value of the parameter 𝐿𝐶𝑂2 is set to inf. In mathematical notation
this constraint is expressed as:

𝑤
∑︁
𝑡∈𝑇m

∑︁
𝑣∈𝑉

−CB(𝑣, 𝐶𝑂2, 𝑡) ≤ 𝐿𝐶𝑂2

In script urbs.py the constraint global CO2 limit rule is defined and calculated by the following code
fragment:

Process Constraints

Process Capacity Rule: The constraint process capacity rule defines the variable total process capacity
𝜅𝑣𝑝. The variable total process capacity is defined by the constraint as the sum of the parameter process
capacity installed 𝐾𝑣𝑝 and the variable new process capacity 𝜅̂𝑣𝑝. In mathematical notation this is
expressed as:

∀𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃 : 𝜅𝑣𝑝 = 𝐾𝑣𝑝 + 𝜅̂𝑣𝑝

In script urbs.py the constraint process capacity rule is defined and calculated by the following code
fragment:

m.def_process_capacity = pyomo.Constraint(
m.pro_tuples,
rule=def_process_capacity_rule,
doc='total process capacity = inst-cap + new capacity')

Process Input Rule: The constraint process input rule defines the variable process input commodity
flow 𝜖in

𝑣𝑐𝑝𝑡. The variable process input commodity flow is defined by the constraint as the product of the
variable process throughput 𝜏𝑣𝑝𝑡 and the parameter process input ratio 𝑟in

𝑝𝑐. In mathematical notation this
is expressed as:

∀𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇𝑚 : 𝜖in
𝑣𝑐𝑝𝑡 = 𝜏𝑣𝑝𝑡𝑟

in
𝑝𝑐

In script urbs.py the constraint process input rule is defined and calculated by the following code
fragment:

m.def_process_input = pyomo.Constraint(
m.tm, m.pro_input_tuples - m.pro_partial_input_tuples,
rule=def_process_input_rule,
doc='process input = process throughput * input ratio')

Process Output Rule: The constraint process output rule defines the variable process output commodity
flow 𝜖out

𝑣𝑐𝑝𝑡. The variable process output commodity flow is defined by the constraint as the product of the

1.2. Technical documentation 67

urbs Documentation, Release 0.7

variable process throughput 𝜏𝑣𝑝𝑡 and the parameter process output ratio 𝑟out
𝑝𝑐 . In mathematical notation

this is expressed as:

∀𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇𝑚 : 𝜖out
𝑣𝑝𝑐𝑡 = 𝜏𝑣𝑝𝑡𝑟

out
𝑝𝑐

In script urbs.py the constraint process output rule is defined and calculated by the following code
fragment:

m.def_process_output = pyomo.Constraint(
m.tm, m.pro_output_tuples,
rule=def_process_output_rule,
doc='process output = process throughput * output ratio')

Intermittent Supply Rule: The constraint intermittent supply rule defines the variable process input
commodity flow 𝜖in

𝑣𝑐𝑝𝑡 for processes 𝑝 that use a supply intermittent commodity 𝑐 ∈ 𝐶sup as input.
Therefore this constraint only applies if a commodity is an intermittent supply commodity 𝑐 ∈ 𝐶sup.
The variable process input commodity flow is defined by the constraint as the product of the variable
total process capacity 𝜅𝑣𝑝 and the parameter intermittent supply capacity factor 𝑠𝑣𝑐𝑡. In mathematical
notation this is expressed as:

∀𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃, 𝑐 ∈ 𝐶sup, 𝑡 ∈ 𝑇𝑚 : 𝜖in
𝑣𝑝𝑐𝑡 = 𝜅𝑣𝑝𝑠𝑣𝑐𝑡

In script urbs.py the constraint intermittent supply rule is defined and calculated by the following
code fragment:

m.def_intermittent_supply = pyomo.Constraint(
m.tm, m.pro_input_tuples,
rule=def_intermittent_supply_rule,
doc='process output = process capacity * supim timeseries')

Process Throughput By Capacity Rule: The constraint process throughput by capacity rule limits the
variable process throughput 𝜏𝑣𝑝𝑡. This constraint prevents processes from exceeding their capacity. The
constraint states that the variable process throughput must be less than or equal to the variable total
process capacity 𝜅𝑣𝑝. In mathematical notation this is expressed as:

∀𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇𝑚 : 𝜏𝑣𝑝𝑡 ≤ 𝜅𝑣𝑝

In script urbs.py the constraint process throughput by capacity rule is defined and calculated by the
following code fragment:

m.res_process_throughput_by_capacity = pyomo.Constraint(
m.tm, m.pro_tuples,
rule=res_process_throughput_by_capacity_rule,
doc='process throughput <= total process capacity')

Process Throughput Gradient Rule: The constraint process throughput gradient rule limits the pro-
cess power gradient

⃒⃒
𝜏𝑣𝑝𝑡 − 𝜏𝑣𝑝(𝑡−1)

⃒⃒
. This constraint prevents processes from exceeding their maximal

possible change in activity from one time step to the next. The constraint states that absolute power
gradient must be less than or equal to the maximal power gradient 𝑃𝐺𝑣𝑝 parameter (scaled to capacity
and by time step duration). In mathematical notation this is expressed as:

∀𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇𝑚 :
⃒⃒
𝜏𝑣𝑝𝑡 − 𝜏𝑣𝑝(𝑡−1)

⃒⃒
≤ 𝜅𝑣𝑝𝑃𝐺𝑣𝑝∆𝑡

In script urbs.py the constraint process throughput gradient rule is defined and calculated by the
following code fragment:

68 Chapter 1. Contents

urbs Documentation, Release 0.7

m.res_process_throughput_gradient = pyomo.Constraint(
m.tm, m.pro_tuples,
rule=res_process_throughput_gradient_rule,
doc='process throughput gradient <= maximal gradient')

Process Capacity Limit Rule: The constraint process capacity limit rule limits the variable total process
capacity 𝜅𝑣𝑝. This constraint restricts a process 𝑝 in a site 𝑣 from having more total capacity than an
upper bound and having less than a lower bound. The constraint states that the variable total process
capacity 𝜅𝑣𝑝 must be greater than or equal to the parameter process capacity lower bound 𝐾𝑣𝑝 and
less than or equal to the parameter process capacity upper bound 𝐾𝑣𝑝. In mathematical notation this is
expressed as:

∀𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃 : 𝐾𝑣𝑝 ≤ 𝜅𝑣𝑝 ≤ 𝐾𝑣𝑝

In script urbs.py the constraint process capacity limit rule is defined and calculated by the following
code fragment:

m.res_process_capacity = pyomo.Constraint(
m.pro_tuples,
rule=res_process_capacity_rule,
doc='process.cap-lo <= total process capacity <= process.cap-up')

Sell Buy Symmetry Rule: The constraint sell buy symmetry rule defines the total process capacity 𝜅𝑣𝑝
of a process 𝑝 in a site 𝑣 that uses either sell or buy commodities (𝑐 ∈ 𝐶sell ∨ 𝐶buy), therefore this
constraint only applies to processes that use sell or buy commodities. The constraint states that the total
process capacities 𝜅𝑣𝑝 of processes that use complementary buy and sell commodities must be equal.
Buy and sell commodities are complementary, when a commodity 𝑐 is an output of a process where the
buy commodity is an input, and at the same time the commodity 𝑐 is an input commodity of a process
where the sell commodity is an output.

In script urbs.py the constraint sell buy symmetry rule is defined and calculated by the following code
fragment:

m.res_sell_buy_symmetry = pyomo.Constraint(
m.pro_input_tuples,
rule=res_sell_buy_symmetry_rule,
doc='total power connection capacity must be symmetric in both

→˓directions')

Partial & Startup Process Constraints

It is important to understand that this partial load formulation can only work if its accompanied by a
sensible value for both the minimum partial load fraction 𝑃 𝑣𝑝 and the startup cost 𝑘startup

𝑣𝑝 . Otherwise,
the optimal solution yields identical operation and performance like a regular, fully proportional process
with constant/flat input ratios.

Throughput by Online Capacity Min Rule

The new variable online capacity forces the process throughput to always stay above its value times
the minium partial load fraction. But note that there is no constraint that stops 𝜔𝑣𝑝𝑡 from assuming
arbitrarily small values. This is only softly prohibited by the startup cost term, which acts as kind of a
soft friction term that punishes too dynamic of an operation strategy.

∀𝑡 ∈ 𝑇m, (𝑣, 𝑝) ∈ 𝑃 partial
𝑣 : 𝜏𝑣𝑝𝑡 ≥ 𝜔𝑣𝑝𝑡𝑃 𝑣𝑝

1.2. Technical documentation 69

urbs Documentation, Release 0.7

And here as code:

m.res_throughput_by_online_capacity_min = pyomo.Constraint(
m.tm, m.pro_partial_tuples,
rule=res_throughput_by_online_capacity_min_rule,
doc='cap_online * min-fraction <= tau_pro')

Throughput by Online Capacity Max Rule

On the other side, the online capacity is an upper cap on the process throughput.

∀𝑡 ∈ 𝑇m, (𝑣, 𝑝) ∈ 𝑃 partial
𝑣 : 𝜏𝑣𝑝𝑡 ≤ 𝜔𝑣𝑝𝑡

And the code:

m.res_throughput_by_online_capacity_max = pyomo.Constraint(
m.tm, m.pro_partial_tuples,
rule=res_throughput_by_online_capacity_max_rule,
doc='tau_pro <= cap_online')

Partial Process Input Rule: In energy system modelling, the simplest way to represent an energy
conversion process is to assume a linear input-output relationship with a flat efficiency parameter 𝜂:

𝜖𝑜𝑢𝑡 = 𝜖𝑖𝑛 · 𝜂

Which means there is only one efficiency 𝜂 during the whole process, i.e. it remains constant during the
electricity production. But in fact, most of the powerplants do not operate at a certain efficiency and the
operation load varies along time. Therefore the regular single efficiency 𝜂 will be replaced by a set of
input ratios (𝑟in) and output ratios (𝑟out) in urbs. And both ratios relate to the process activity 𝜏 :

𝜖in
𝑝𝑐𝑡 = 𝜏𝑝𝑡𝑟

in
𝑝𝑐

𝜖out
𝑝𝑐𝑡 = 𝜏𝑝𝑡𝑟

out
𝑝𝑐

In order to simplify the mathematical calculation, the output ratios are set to 1 so that the process output
(𝜖out

𝑝𝑐𝑡) is equal to the process throughput (𝜏). Then, the process efficiency 𝜂 can be represented as follows:

𝜂 =
𝜖out
𝑝𝑐𝑡

𝜖in
𝑝𝑐𝑡

=
𝜏

𝜖in
𝑝𝑐𝑡

Assume now a process, it has a lower input ratio 𝑟in
𝑝𝑐, a upper input ratio 𝑟in

𝑝𝑐, the process minimum part
load fraction 𝑃 𝑣𝑝 and the corresponding start-up costs. The 𝜏 will be bounded by 𝑃 𝑣𝑝 and the online
capacity 𝜔𝑣𝑝𝑡, which means the throughput can only vary between 𝑃 𝑣𝑝 ·𝜔𝑣𝑝𝑡 and 𝜔𝑣𝑝𝑡. When all the start-
up costs are equal to zero, the relation between the process input and the process throughout is nothing
else but a straight line across the original point, which exists almost only theoretically. Practically, every
powerplant has a start-up cost, which has a big influence on the effeiciency of the process.

To research the influence of the start-up costs, a continouous start-up variable 𝜒𝑝𝑡 ∈ [0, 𝜅𝑝] is introduced
and defines as follows:

𝜏𝑝𝑡 ≤ 𝜔𝑝𝑡

𝜒𝑝𝑡 ≥ 𝜔𝑝𝑡 − 𝜔𝑝(𝑡−1)

𝜁var +=
∑︁
𝑡∈𝑇

∑︁
𝑝∈𝑃

𝑘startup
𝑝 𝜒𝑝𝑡

70 Chapter 1. Contents

urbs Documentation, Release 0.7

Where the 𝜔𝑝𝑡 is also a new introduced variable, represents the start-up capacity (or the idle consump-
tion). With these two variables, the urbs can detect the energy consumption of a process at the starting
point and put a start-up costs on it to obtain the variable costs.

∀𝑡 ∈ 𝑇m, (𝑣, 𝑝, 𝑐) ∈ 𝐶 in,partial
𝑣𝑝 : 𝜖in

𝑣𝑝𝑐𝑡 = 𝜔𝑣𝑝𝑡 ·
𝑟in
𝑝𝑐 − 𝑟in

𝑝𝑐

1 − 𝑃 𝑣𝑝

· 𝑃 𝑣𝑝 + 𝜏𝑣𝑝𝑡 ·
𝑟in
𝑝𝑐 − 𝑃 𝑣𝑝𝑟

in
𝑝𝑐

1 − 𝑃 𝑣𝑝

As it is not immediately clear what this expression accomplishes, here is visual example. It plots the
value off the expression 𝜏𝑣𝑝𝑡/𝜖in

𝑣𝑝𝑐𝑡 for a process with 𝑃 𝑣𝑝 = 0.35, 𝑟in
𝑝𝑐 = 3.33 and 𝑟in

𝑝𝑐 = 2.5 and a
hypothetical capacity of 1𝑀𝑊 . When operating at its maximum, it yields an input efficiecny of 40%,
whereas in partial load this drops to 30%.

ω = capacity online

0.0
0.2

0.4
0.6

0.8
1.0

τ = throughput
0.0

0.2
0.4

0.6
0.8

1.0

τ/ε
in = efficiency

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

r>R: throughput=capacity online best eff; capacity online=1 best approx

More discussion and a visualisation of the reverse case (partial load more efficient than full load opera-
tion) is shown in a dedicated IPython notebook.

m.def_partial_process_input = pyomo.Constraint(
m.tm, m.pro_partial_input_tuples,
rule=def_partial_process_input_rule,
doc='e_pro_in = cap_online * min_fraction * (r - R) / (1 - min_

→˓fraction)'
'+ tau_pro * (R - min_fraction * r) / (1 - min_

→˓fraction)')

Online Capacity By Process Capacity Rule limits the value of the online capacity 𝜔𝑣𝑝𝑡 by the total
installed process capacity 𝜅𝑣𝑝:

∀(𝑣, 𝑝) ∈ 𝑃 partial
𝑣 , 𝑡 ∈ 𝑇m : 𝜔𝑣𝑝𝑡 ≤ 𝜅𝑣𝑝

m.res_cap_online_by_cap_pro = pyomo.Constraint(
m.tm, m.pro_partial_tuples,
rule=res_cap_online_by_cap_pro_rule,
doc='online capacity <= process capacity')

1.2. Technical documentation 71

http://nbviewer.jupyter.org/gist/ojdo/a8d26dc6abc9d22faf77d7cd2623dddc/startup-partial-ratios.ipynb

urbs Documentation, Release 0.7

Startup Capacity Rule determines the value of the startup capacity indicator variable 𝜑𝑣𝑝𝑡, by limiting
its value to at least the positive difference of subsequent online capacity states 𝜔𝑣𝑝𝑡 and 𝜔𝑣𝑝(𝑡−1). In
other words: whenever the onlince capacity increases, startup capacity 𝜑𝑣𝑝𝑡 assumes a non-zero value.

∀(𝑣, 𝑝) ∈ 𝑃 partial
𝑣 , 𝑡 ∈ 𝑇m : 𝜑𝑣𝑝𝑡 ≥ 𝜔𝑣𝑝𝑡 − 𝜔𝑣𝑝(𝑡−1)

Code declaration and definition:

m.def_startup_capacity = pyomo.Constraint(
m.tm, m.pro_partial_tuples,
rule=def_startup_capacity_rule,
doc='startup_capacity[t] >= cap_online[t] - cap_online[t-1]')

Transmission Constraints

Transmission Capacity Rule: The constraint transmission capacity rule defines the variable total trans-
mission capacity 𝜅𝑎𝑓 . The variable total transmission capacity is defined by the constraint as the sum
of the variable transmission capacity installed 𝐾𝑎𝑓 and the variable new transmission capacity 𝜅̂𝑎𝑓 . In
mathematical notation this is expressed as:

∀𝑎 ∈ 𝐴, 𝑓 ∈ 𝐹 : 𝜅𝑎𝑓 = 𝐾𝑎𝑓 + 𝜅̂𝑎𝑓

In script urbs.py the constraint transmission capacity rule is defined and calculated by the following
code fragment:

m.def_transmission_capacity = pyomo.Constraint(
m.tra_tuples,
rule=def_transmission_capacity_rule,
doc='total transmission capacity = inst-cap + new capacity')

Transmission Output Rule: The constraint transmission output rule defines the variable transmission
power flow (output) 𝜋out

𝑎𝑓𝑡. The variable transmission power flow (output) is defined by the constraint
as the product of the variable transmission power flow (input) 𝜋in

𝑎𝑓𝑡 and the parameter transmission
efficiency 𝑒𝑎𝑓 . In mathematical notation this is expressed as:

∀𝑎 ∈ 𝐴, 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇𝑚 : 𝜋out
𝑎𝑓𝑡 = 𝜋in

𝑎𝑓𝑡𝑒𝑎𝑓

In script urbs.py the constraint transmission output rule is defined and calculated by the following
code fragment:

m.def_transmission_output = pyomo.Constraint(
m.tm, m.tra_tuples,
rule=def_transmission_output_rule,
doc='transmission output = transmission input * efficiency')

Transmission Input By Capacity Rule: The constraint transmission input by capacity rule limits the
variable transmission power flow (input) 𝜋in

𝑎𝑓𝑡. This constraint prevents transmissions from exceeding
their possible power input capacity. The constraint states that the variable transmission power flow
(input) 𝜋in

𝑎𝑓𝑡 must be less than or equal to the variable total transmission capacity 𝜅𝑎𝑓 . In mathematical
notation this is expressed as:

∀𝑎 ∈ 𝐴, 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇𝑚 : 𝜋in
𝑎𝑓𝑡 ≤ 𝜅𝑎𝑓

In script urbs.py the constraint transmission input by capacity rule is defined and calculated by the
following code fragment:

72 Chapter 1. Contents

urbs Documentation, Release 0.7

m.res_transmission_input_by_capacity = pyomo.Constraint(
m.tm, m.tra_tuples,
rule=res_transmission_input_by_capacity_rule,
doc='transmission input <= total transmission capacity')

Transmission Capacity Limit Rule: The constraint transmission capacity limit rule limits the variable
total transmission capacity 𝜅𝑎𝑓 . This constraint restricts a transmission 𝑓 through an arc 𝑎 from having
more total power output capacity than an upper bound and having less than a lower bound. The constraint
states that the variable total transmission capacity 𝜅𝑎𝑓 must be greater than or equal to the parameter
transmission capacity lower bound 𝐾𝑎𝑓 and less than or equal to the parameter transmission capacity
upper bound 𝐾𝑎𝑓 . In mathematical notation this is expressed as:

∀𝑎 ∈ 𝐴, 𝑓 ∈ 𝐹 : 𝐾𝑎𝑓 ≤ 𝜅𝑎𝑓 ≤ 𝐾𝑎𝑓

In script urbs.py the constraint transmission capacity limit rule is defined and calculated by the fol-
lowing code fragment:

m.res_transmission_capacity = pyomo.Constraint(
m.tra_tuples,
rule=res_transmission_capacity_rule,
doc='transmission.cap-lo <= total transmission capacity <= '

'transmission.cap-up')

Transmission Symmetry Rule: The constraint transmission symmetry rule defines the power output
capacities of incoming and outgoing arcs 𝑎, 𝑎′ of a transmission 𝑓 . The constraint states that the power
output capacities 𝜅𝑎𝑓 of the incoming arc 𝑎 and the complementary outgoing arc 𝑎′ between two sites
must be equal. In mathematical notation this is expressed as:

∀𝑎 ∈ 𝐴, 𝑓 ∈ 𝐹 : 𝜅𝑎𝑓 = 𝜅𝑎′𝑓

In script urbs.py the constraint transmission symmetry rule is defined and calculated by the following
code fragment:

m.res_transmission_symmetry = pyomo.Constraint(
m.tra_tuples,
rule=res_transmission_symmetry_rule,
doc='total transmission capacity must be symmetric in both directions')

Storage Constraints

Storage State Rule: The constraint storage state rule is the main storage constraint and it defines the
storage energy content of a storage 𝑠 in a site 𝑣 at a timestep 𝑡. This constraint calculates the storage
energy content at a timestep 𝑡 by adding or subtracting differences, such as ingoing and outgoing en-
ergy, to/from a storage energy content at a previous timestep 𝑡 − 1. Here ingoing energy is given by
the product of the variable input storage power flow 𝜖in

𝑣𝑠𝑡, the parameter timestep duration ∆𝑡 and the
parameter storage efficiency during charge 𝑒in

𝑣𝑠. Outgoing energy is given by the product of the variable
output storage power flow 𝜖out

𝑣𝑠𝑡 and the parameter timestep duration ∆𝑡 divided by the parameter storage
efficiency during discharge 𝑒out

𝑣𝑠 . In mathematical notation this is expressed as:

∀𝑣 ∈ 𝑉,∀𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇m : 𝜖con
𝑣𝑠𝑡 = 𝜖con

𝑣𝑠(𝑡−1) + 𝜖in
𝑣𝑠𝑡 · 𝑒in

𝑣𝑠 − 𝜖out
𝑣𝑠𝑡/𝑒

out
𝑣𝑠

In script urbs.py the constraint storage state rule is defined and calculated by the following code
fragment:

1.2. Technical documentation 73

urbs Documentation, Release 0.7

m.def_storage_state = pyomo.Constraint(
m.tm, m.sto_tuples,
rule=def_storage_state_rule,
doc='storage[t] = storage[t-1] + input - output')

Storage Power Rule: The constraint storage power rule defines the variable total storage power 𝜅p
𝑣𝑠.

The variable total storage power is defined by the constraint as the sum of the parameter storage power
installed 𝐾p

𝑣𝑠 and the variable new storage power 𝜅̂p
𝑣𝑠. In mathematical notation this is expressed as:

∀𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆 : 𝜅p
𝑣𝑠 = 𝐾p

𝑣𝑠 + 𝜅̂p
𝑣𝑠

In script urbs.py the constraint storage power rule is defined and calculated by the following code
fragment:

m.def_storage_power = pyomo.Constraint(
m.sto_tuples,
rule=def_storage_power_rule,
doc='storage power = inst-cap + new power')

Storage Capacity Rule: The constraint storage capacity rule defines the variable total storage size 𝜅c
𝑣𝑠.

The variable total storage size is defined by the constraint as the sum of the parameter storage content
installed 𝐾c

𝑣𝑠 and the variable new storage size 𝜅̂c
𝑣𝑠. In mathematical notation this is expressed as:

∀𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆 : 𝜅c
𝑣𝑠 = 𝐾c

𝑣𝑠 + 𝜅̂c
𝑣𝑠

In script urbs.py the constraint storage capacity rule is defined and calculated by the following code
fragment:

m.def_storage_capacity = pyomo.Constraint(
m.sto_tuples,
rule=def_storage_capacity_rule,
doc='storage capacity = inst-cap + new capacity')

Storage Input By Power Rule: The constraint storage input by power rule limits the variable storage
input power flow 𝜖in

𝑣𝑠𝑡. This constraint restricts a storage 𝑠 in a site 𝑣 at a timestep 𝑡 from having more
input power than the storage power capacity. The constraint states that the variable 𝜖in

𝑣𝑠𝑡 must be less
than or equal to the variable total storage power 𝜅p

𝑣𝑠. In mathematical notation this is expressed as:

∀𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇𝑚 : 𝜖in
𝑣𝑠𝑡 ≤ 𝜅p

𝑣𝑠

In script urbs.py the constraint storage input by power rule is defined and calculated by the following
code fragment:

m.res_storage_input_by_power = pyomo.Constraint(
m.tm, m.sto_tuples,
rule=res_storage_input_by_power_rule,
doc='storage input <= storage power')

Storage Output By Power Rule: The constraint storage output by power rule limits the variable storage
output power flow 𝜖out

𝑣𝑠𝑡. This constraint restricts a storage 𝑠 in a site 𝑣 at a timestep 𝑡 from having more
output power than the storage power capacity. The constraint states that the variable 𝜖out

𝑣𝑠𝑡 must be less
than or equal to the variable total storage power 𝜅p

𝑣𝑠. In mathematical notation this is expressed as:

∀𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 : 𝜖out
𝑣𝑠𝑡 ≤ 𝜅p

𝑣𝑠

In script urbs.py the constraint storage output by power rule is defined and calculated by the following
code fragment:

74 Chapter 1. Contents

urbs Documentation, Release 0.7

m.res_storage_output_by_power = pyomo.Constraint(
m.tm, m.sto_tuples,
rule=res_storage_output_by_power_rule,
doc='storage output <= storage power')

Storage State By Capacity Rule: The constraint storage state by capacity rule limits the variable storage
energy content 𝜖con

𝑣𝑠𝑡. This constraint restricts a storage 𝑠 in a site 𝑣 at a timestep 𝑡 from having more
storage content than the storage content capacity. The constraint states that the variable 𝜖con

𝑣𝑠𝑡 must be less
than or equal to the variable total storage size 𝜅c

𝑣𝑠. In mathematical notation this is expressed as:

∀𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 : 𝜖con
𝑣𝑠𝑡 ≤ 𝜅c

𝑣𝑠

In script urbs.py the constraint storage state by capacity rule is defined and calculated by the following
code fragment.

m.res_storage_state_by_capacity = pyomo.Constraint(
m.t, m.sto_tuples,
rule=res_storage_state_by_capacity_rule,
doc='storage content <= storage capacity')

Storage Power Limit Rule: The constraint storage power limit rule limits the variable total storage
power 𝜅p

𝑣𝑠. This contraint restricts a storage 𝑠 in a site 𝑣 from having more total power output capacity
than an upper bound and having less than a lower bound. The constraint states that the variable total
storage power 𝜅p

𝑣𝑠 must be greater than or equal to the parameter storage power lower bound 𝐾p
𝑣𝑠 and

less than or equal to the parameter storage power upper bound 𝐾p
𝑣𝑠. In mathematical notation this is

expressed as:

∀𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆 : 𝐾p
𝑣𝑠 ≤ 𝜅p

𝑣𝑠 ≤ 𝐾
p
𝑣𝑠

In script urbs.py the constraint storage power limit rule is defined and calculated by the following
code fragment:

m.res_storage_power = pyomo.Constraint(
m.sto_tuples,
rule=res_storage_power_rule,
doc='storage.cap-lo-p <= storage power <= storage.cap-up-p')

Storage Capacity Limit Rule: The constraint storage capacity limit rule limits the variable total storage
size 𝜅c

𝑣𝑠. This contraint restricts a storage 𝑠 in a site 𝑣 from having more total storage content capacity
than an upper bound and having less than a lower bound. The constraint states that the variable total
storage size 𝜅c

𝑣𝑠 must be greater than or equal to the parameter storage content lower bound 𝐾c
𝑣𝑠 and

less than or equal to the parameter storage content upper bound 𝐾c
𝑣𝑠. In mathematical notation this is

expressed as:

∀𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆 : 𝐾c
𝑣𝑠 ≤ 𝜅c

𝑣𝑠 ≤ 𝐾
c
𝑣𝑠

In script urbs.py the constraint storage capacity limit rule is defined and calculated by the following
code fragment:

m.res_storage_capacity = pyomo.Constraint(
m.sto_tuples,
rule=res_storage_capacity_rule,
doc='storage.cap-lo-c <= storage capacity <= storage.cap-up-c')

1.2. Technical documentation 75

urbs Documentation, Release 0.7

Initial And Final Storage State Rule: The constraint initial and final storage state rule defines and
restricts the variable storage energy content 𝜖con

𝑣𝑠𝑡 of a storage 𝑠 in a site 𝑣 at the initial timestep 𝑡1 and at
the final timestep 𝑡𝑁 .

Initial Storage: Initial storage represents how much energy is installed in a storage at the beginning
of the simulation. The variable storage energy content 𝜖con

𝑣𝑠𝑡 at the initial timestep 𝑡1 is defined by this
constraint. The constraint states that the variable 𝜖con

𝑣𝑠𝑡1 must be equal to the product of the parameters
storage content installed 𝐾c

𝑣𝑠 and initial and final state of charge 𝐼𝑣𝑠. In mathematical notation this is
expressed as:

∀𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆 : 𝜖con
𝑣𝑠𝑡1 = 𝜅c

𝑣𝑠𝐼𝑣𝑠

Final Storage: Final storage represents how much energy is installed in a storage at the end of the sim-
ulation. The variable storage energy content 𝜖con

𝑣𝑠𝑡 at the final timestep 𝑡𝑁 is restricted by this constraint.
The constraint states that the variable 𝜖con

𝑣𝑠𝑡𝑁
must be greater than or equal to the product of the parameters

storage content installed 𝐾c
𝑣𝑠 and initial and final state of charge 𝐼𝑣𝑠. In mathematical notation this is

expressed as:

∀𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆 : 𝜖con
𝑣𝑠𝑡𝑁

≥ 𝜅c
𝑣𝑠𝐼𝑣𝑠

In script urbs.py the constraint initial and final storage state rule is defined and calculated by the
following code fragment:

m.res_initial_and_final_storage_state = pyomo.Constraint(
m.t, m.sto_tuples,
rule=res_initial_and_final_storage_state_rule,
doc='storage content initial == and final >= storage.init * capacity')

1.2.4 Buy-Sell Documentation

This documentation explains the buy-sell-price feature of urbs. With it one can model time variant
electricity prices from energy exchanges.

Introduction

The prices are independent of the amount of electricity purchased and fed in as there is no feedback. The
size of the modelled market has to be considered small relative to the surrounding market. To use this
feature your excel input file needs an additional Buy-Sell-Price sheet with the columns t containing the
timesteps and the columns Elec buy and Elec sell containing the buy and sell prices by default
in hourly C per MWh. In the Commodity sheet the price for Elec at a Site has to be changed from
a number to a string Buy or Sell or a multiple of it for example 1,25xBuy. For a more detailed
description of the implementation have a look at the Mathematical Documentation.

Exemplification

This section contains prototypical scenarios illustrating the system behaviour with time variant prices.
Electricity can be moved locally with transmission losses and temporally with storage losses.

76 Chapter 1. Contents

urbs Documentation, Release 0.7

Fix Capacities - Fix Prices

All process, transmission and storage capacities and prices are predetermined and constant.

When is electricity purchased?

• if it is necessary that is the demand is greater than the total output capacity it is bought at every
price

• if it is profitable that is if the buy price is lesser than the variable costs of the most expensive
needed process

When is electricity fed-in?

• if it is possible and profitable that is if the demand is lesser than the total output capacity and the
sell price greater than the cheapest currently not needed process

The following scenario illustrates the energy balance of the island Paradiso. It has a demand of 500-1000
MW that is supplied by a 1500 MW nuclear plant, a 1000 MW gas plant and a 1000 MW transmission
cable, that connects the island grid with the continental grid. Both capacities and prices are fix.

Table 14: Scenario Fix Cap Fix Prices
Process eff inst-cap inst-cap-out fuel-cost var-cost total-var-cost
Nuclear plant 0.33 1500 500 5 5 10
Gas plant 0.50 1000 500 25 5 30
Purchase 1.00 1000 1000 15/45/75 0 15/45/75
Feed-in 1.00 1000 1000 15/45/75 0 15/45/75

The modelled timespan is 6 weeks with different fix prices each. In week 1 on the fourth day energy
is purchased, because it is neccessary to cover the demand. In week 2 the sell price is higher than the
variable costs of the nuclear plant, but lower than the variable costs of the cheapest not needed power
plant: the gas plant. In week 3 the sell price excels even those costs making the production and selling
of additional energy profitable. In week 4 buy prices are too high for purchase and sell prices to low for
feed-in. In week 5 buy prices have dropped enough for purchased energy to replace energy produced by
the gas plant. In week 6 they further dropped enough to even replace energy produced by the nuclear
plant.

1.2. Technical documentation 77

urbs Documentation, Release 0.7

Fix Capacities - Variable Prices

All process, transmission and storage capacities are predetermined and constant, prices are varying over
the modelled timespan.

When is electricity purchased?

• if it is necessary that is the demand is greater than the total output capacity it is bought at every
price

• if it is profitable that is if the buy price is lesser than the current variable costs of the most expensive
needed process or including storage costs lesser than future variable costs of the most expensive
needed process

When is electricity fed-in?

• if it is possible and profitable that is if the demand is lesser than the total output capacity and the
sell price greater than the cheapest currently not needed process

For the second scenario half of the gas plant is replaced by a coal plant. Additionally there is a new
power limited energy storage with variable storage costs of 5 C/MWh. The load curve stays the same.
Capacities are fix and prices are varying.

Table 15: Scenario Fix Cap Var Prices
Process eff inst-cap inst-cap-out fuel-cost var-cost total-var-cost
Nuclear plant 0.33 1500 500 5 5 10
Coal Plant 0.40 625 250 11 5 16
Gas plant 0.50 500 250 25 5 30
Storage 1.00 125 125 2.5 5
Purchase 1.00 1000 1000 50-75 0 50-75
Feed-in 1.00 1000 1000 35-65 0 35-65

The modelled timespan is 7 days. The buy price varies around the variable costs of the gas plant. But
except for day 3 purchase is only a profitable substitute for energy from the gas plant at timesteps it
is not needed. The sell price varies around the variable costs of the coal plant. But similar to the buy
price except for day 5 it only allows production of energy for selling at timesteps it required to cover
the demand instead. Producing and storing energy from the coal plant at timesteps with a low demand
limited only by the storage power capacity is profitable, because it has total variable costs of 45 C/MWh
and substitutes ebergy from the gas plant costing 60 C/MWh. At day 5 at noon the sell price exceeds the
purchase price 12 hours before by 15 C/MWh. Even discounting storage costs of 5 C/MWh it would
allow infinite arbitrage. But since the storage capacities are limited the opportunity costs of 15 C/MWh
of substituting energy from the gas plant are higher than the 10 C/MWh profit margin it is not done.

78 Chapter 1. Contents

urbs Documentation, Release 0.7

Note: For trial e.g. of the result of greater storage capacities this paradiso_2.xlsx is the input file
used for this scenario.

Variable Capacities - Variable Prices

All process, transmission and storage capacities are variable and determined at optimal total cost, prices
are varying over the modelled timespan.

When is electricity purchased?

• if it is necessary that is the demand is greater than the total output capacity it is bought at every
price

• if it is profitable that is if the buy price is lesser than the current variable costs of the most expensive
needed process or including storage costs lesser than future variable costs of the most expensive
needed process or it reduces the peak load allowing the capacity investments to be reduced in a
way that overcompensates the additional costs in summary

When is electricity fed-in?

• if it is possible and profitable that is if the demand is lesser than the total output capacity and the
sell price greater than the cheapest currently not needed process and does not prevent a total costs
decrease by reduction of the capacity investments

The next scenario is very similar to the previous one, only that this time all capacities are initially 0 and
investment in new capacities is done in a cost optimal way. The ascencing order of variable prices is
still nuclear plant - coal plant - gas plan. The ascending order of fix costs, the sum of annual fix costs
fix-cost and annualized depreciations calculated from the investment costs inv-cost, weighted
average cost of capital wacc and economic life time depreciation is the opposite: gas plant - coal
plant - nuclear plant.

1.2. Technical documentation 79

urbs Documentation, Release 0.7

Table 16: Scenario Var Cap Var Prices (1)
Process eff inst-cap inst-cap-out fuel-cost var-cost total-var-cost
Nuclear plant 0.33 0 0 5 5 10
Coal Plant 0.40 0 0 11 5 16
Gas plant 0.50 0 0 25 5 30
Storage 1.00 0 0 2.5 5
Purchase 1.00 0 0 150-250 0 150-250
Feed-in 1.00 0 0 30-50 0 30-50

This scenario should demonstrate a typical composition of power plants. This is the result of each power
plant being cost optimal for a certain range of full load hours per year leading nuclear energy to cover
the base load and gas energy to cover the peak load. It should also demonstrate, why the purchase of
energy that at the moment exceeds variable costs of power plants can be economically worthwhile as it
reduces peak loads and decreases overall costs.

Table 17: Scenario Var Cap Var Prices (2)
Process fix-cost inv-costs wacc depreciation anf annuity total-fix-cost
Gas plant 2000 2250000 0.07 30 0.08 181319 183319
Purchase 0 0 0.07 0 0

The variable peak costs of purchased energy of 250 C/MWh clearly exceed the variable costs of the
gas plant of 60 C/MWh. However the necessary transmission cables for purchasing energy are already
needed anyways and do not require additional fix costs in this scenario while the gas plant has total
annual fix costs of 183.319 C/MW throughput power and 362.639 C/MW output power. Focussing
on one week reducing the needed output capacity by 1MW would save 6.955 C. As showed by the
following diagramms this justifies the additional costs of 250 C - 60 C = 190 C per purchased MWh to
an amount that reduces the peak load by 73 MW.

Note: For trial e.g. of the result of different storage capacities this paradiso_3.xlsx is the input
file used for this scenario.

80 Chapter 1. Contents

urbs Documentation, Release 0.7

System support by variable prices

Making the prices a function proportional to demand and inversely proportional to intermittent supply
is both a good approximation and can demonstrate the system support of such prices. Especially in case
of photovoltaics it limits the installed capacity to a reasonable amount and/or encourages investment in
storages. This leads to lower peak loads decreasing stress on the grid and a smoother residual demand
increasing stability and autarky. Without variable prices storages will run a greedy operation strategy
instead of peak shaving and put even more stress on the grid with large power gradients.

Table 18: Scenario Var Cap Sup Im
Process eff inst-cap inst-cap-out fuel-cost var-cost total-var-cost
Nuclear plant 0.33 0 0 5 5 10
Coal Plant 0.40 0 0 11 5 16
Gas plant 0.50 0 0 25 5 30
Photovoltaics 1.00 0 0 0 0 0
Storage 1.00 0 0 0 2.5 5
Purchase 1.00 0 0 150-250 0 ~200
Feed-in 1.00 0 0 30-50 0 ~40

The price function for the scenario was chosen as:

Buy price = 100 + 100 * Demand / mean(Demand) * (1.5 - SupIm)

Sell price = Buy Price / 5

The result is both more realistic and protective of the grid.

Arbitrage

Arbitrage is the profitable buying and selling of commodities exploiting price differences. For urbs this
can be at one timestep or with storages between two different timesteps. It can lead the model to be
unbounded, if the buy price at one time step is lower than the sell price or if the price difference between

1.2. Technical documentation 81

urbs Documentation, Release 0.7

two different timesteps is large enough to finance storage investments. A simple solution to avoid that
possibility is to add a large finite upper limit for storage capacities.

1.2.5 Demand Side Management Documentation

This documentation explains the Demand Side Management feature of urbs. With it, one can model
time variant Demand Side Management Up/Downshift in a concrete energy system, for example, smart
grid of a city.

Introduction

The DSM up/downshifts are closely related to commodities, which are given by default in the urbs with
their energy content (MWh). The size of the modelled market has to be considered small relative to the
surrounding market. To use this feature, the excel input file needs an additional Demand Side Man-
agement sheet with the five parameters containing the columns delay, eff, recov, cap-max-do
and cap-max-up, which are used in DSM constraints as technical parameters. For a more detailed
description of the implementation have a look at the mathematical definitions in the Mathematical Doc-
umentation, section Demand Side Management Constraints.

Exemplification

This section contains prototypical scenarios illustrating the system behaviour with time variant DSM
up/downshifts. In this part there is an island as an example named Greenland, which composed of
three sites Mid, North, and South. Between the three sites most of the electricity from South has to
be transported to supply Mid. The electricity of North is relatively independent of the other two sites.

When do the electricity DSM downshifts appear in the process?

• it is necessary to constraint the whole system with DSM downshifts, if the demand is greater than
the total output capacity.

• it is profitable to constraint the whole system with DSM downshifts, if the commodity begin to
show upward trend till the peak value.

When appears the electricity DSM upshifts in the process?

• it is possible and profitable to constraint the whole system with DSM upshifts, if the demand is
lesser than the total output capacity and the commodity begin to show downward trend till the
valley value.

High Maximal Up/Downshift Capacity

All process, transmission and storage capacities are predetermined and constant.

The following scenario illustrates the energy balance of the South of greenland. It has a demand of
50-100 GW that is supplied by a 50 GW photovoltaics plant and a 50 GW wind plant. In addition a 50
GW transmission cable exports electricity, which connects the Mid of island with the grid of South.
Both capacities and prices are fix. Because of the meteorological effects on Photovoltaics plants, the
timesteps began at the 3000th hour of the year, which was also the beginning of the summer.

82 Chapter 1. Contents

urbs Documentation, Release 0.7

Table 19: Scenario All Together: Elec in South
Process eff inst-cap inst-cap-out fuel-cost var-cost total-var-cost
Photovoltaics 1.00 0 50000 0 0 0
Wind plant 1.00 0 100000 0 0 0
Purchase 1.00 0 1500 15/45/75 0 15/45/75
Feed-in 1.00 0 1500 15/45/75 0 15/45/75

Table 20: DSM in South
Site Commodity delay eff recov cap-max-do cap-max-up
South Elec 16 0.90 1 2000 2000

The modelled timesplan lasts 7 days with five parameters from DSM sheet in greenland-south.
xlsx. In the first ten hours of day 1 the electricity power is at a high level, because the supply is
much less than the demand. So the DSM begins with downshifts. But the situation will change into
opposite direction over time. After the supply exceeds, the demand the DSM upshifts appears to take
place of downshifts. How much electricity can the photovoltaics plants and awind plants generate all
depending on the weather conditions. The wind plants works the whole day 24 hours, as long as the
wind blows strongly enough. But photovoltaics plants generates electricity only in the daytime, that is
why the parameter delay is set to 16 hours. It just coincides the time in one day, that is covered by
the sunshine. Before the second day the wind blows strongly enough, so that the surplus of wind plant
generated electricity is converted into storage. From the 3rd day the wind production decreases, and the
electricity of storage has to be taken out to meet the demand. At the midnight of the 5th day electricity
capacity come to the lowest point of all, and the output and input keep nearly in balance. Not only the
frequency of scenario_base up/downshifts, but also the amount of times of up/downshifts will decrease
correspondingly. There is relative more volatility of electricity capacity in the seven days simulation
than it without DSM.

If the commodity stock prices, global CO2 limit and maximum installable capacity in runme.py
are not changed, and just only consider the scenario_base, it will be more clearly to show how the

1.2. Technical documentation 83

urbs Documentation, Release 0.7

DSM affects the electricity commodities.

Note: For trial e.g. of the result of higher Demand Side Management this greenland-south.xlsx
is the input file used for this scenario.

Low Maximal Up/Downshift Capacity

All process, transmission and storage capacities are predetermined and constant.

For the second scenario, the North of greenland will replaced the South. Compared to the South,
the electricity supply of North is relatively simple and independent. It has a demand of 10000-15000
MW, and the supply is dominated by wind plants. Additionally there is about 2500 MW needed to be
provided by Purchase.

Table 21: Scenario All Together: Elec in North
Process eff inst-cap inst-cap-out fuel-cost var-cost total-var-cost
Photovoltaics 1.00 0 3000 0 0 0
Wind plant 1.00 0 15000 0 0 0
Gas plant 0.60 0 0 27 1.60 28.60
Purchase 1.00 1500 1500 15/45/75 0 15/45/75
Feed-in 1.00 2500 2500 15/45/75 0 15/45/75

Table 22: DSM in North
Site Commodity delay eff recov cap-max-do cap-max-up
North Elec 8 1.00 1 500 500

The modelled timesplan lasts also 7 days with five parameters from DSM sheet in

84 Chapter 1. Contents

urbs Documentation, Release 0.7

greenland-north.xlsx. The electricity supply of North is dominated by wind plants.
The wind plants works for 24 hours in one whole day, and the wind power strong or weak has nothing
to do with the change of time. So the parameter delay is set to 8 hours. Because the peak value of
the output of North is just close to 15 GW, the cap-max-do and cap-max-up are set to 500 MW,
which is a quarter of South’s. The electricity in the first four days, which is generated by wind plants,
keeps at a higher level. That is why the up/downshifts appear frequently, regularly, and alternately
during this time. But in the last three days the wind power gets lower, and the electricity of storage has
to be taken out to meet the demand. Then during the three days downshifts dominate in most case. With
DSM up/downshifts intelligent allocation of electricity resources is required to avoid the shortage of
electricity supply during peak hours and the overcapacity in the usual time.

Note: For trial e.g. of the result of lower Demand Side Management this greenland-north.xlsx
is the input file used for this scenario.

No Maximal Up/Downshift Capacity

All process, transmission and storage capacities are predetermined and constant.

The last scenario illustrates the energy balance of the Mid of greenland. It has a demand of 50-70
GW that is mostly supplied by a 50 GW transmission, which come from South. In addition, a 13 GW
wind plant and 16 GW Photovoltaics plant has made a contribution to the whole electricity system of
Mid.

1.2. Technical documentation 85

urbs Documentation, Release 0.7

Table 23: Scenario All Together: Elec in Mid
Process eff inst-cap inst-cap-out fuel-cost var-cost total-var-cost
Photovoltaics 1.00 15000 16000 0 0 0.00
Wind plant 1.00 0 13000 0 0 0.00
Gas plant 0.60 0 8000 27 1.60 28.60
Hydro plant 1.00 0 1400 6 1.40 7.40
Lignite plant 0.40 0 60000 0 0.60 0.60
Biomass plant 0.35 0 5000 6 1.40 7.40

Table 24: DSM in Mid
Site Commodity delay eff recov cap-max-do cap-max-up
Mid Elec 0 1.00 1 0 0

The Mid gets so adequate electricity import from the South, that commodity of the Mid per unit
time is far greater than maximal up/downshifts capacity. That means it is meaningless for the setting
of DSM faced with so enormous commodity, which is far beyond the controllable range. Supposed
that the Mid is the city center, the largest energy customer, not the energy producer, and then there is
huge infrastructure inside, such as public traffic, hospital, and communication system, which have to be
supplied for 24 hours one day. That’s why the parameters delay, cap-max-do and cap-max-up
are set to 0. It means that there was no more DSM in the electricity system of Mid to constraint the
commodities.

Note: For trial e.g. of the result of no Demand Side Management this greenland-mid.xlsx is the
input file used for this scenario.

1.2.6 Decomposition

86 Chapter 1. Contents

urbs Documentation, Release 0.7

Overview

How to use the documentation

You should start with this overview which explains the underlying ideas of decomposition in general
and the decomposition methods that are used. To fully comprehend the documentation you should be
familiar with the urbs model already (see Overview of the urbs documentation). Usually, when some
content directly builds on a topic of the urbs documentation, this part of the documentation is explicitly
referenced.

The Tutorial provides a detailed walkthrough of runme.py and explains how to use decomposition for
a model. It also explains the Benders loop for each method in detail. After the overview you should
continue with the tutorial to understand how to apply the code.

If you want to understand how the decomposition methods work in more detail you should next look
at the Model Class Structure. This section explains the basic structure of the code and implementation
details which are the same for all methods.

The specifics of each decomposition methods model are explained in the sections Divide Timesteps
Model, Regional Model and SDDP Model. Refer to these sections to understand where the models differ
from the model without decomposition and from each other.

Finally the Developers Guide gives ideas on how to improve, use, or extend the code, and on how to
unify it with the urbs master branch.

Decomposition

First the concepts of decomposition are introduced. The idea of decomposition is that a large model
might not fit into working memory, so it is desirable to split it into several smaller models that are
independent to a certain degree. These models are called sub models. As the sub models are not truly
independent there is a master model which coordinates the communication of the sub models.

We use three different decomposition methods:

1. Divide Timesteps: Splits the original problem into several time intervals.

2. Regional: Splits the original problem into several regions.

3. SDDP: Splits the original problem into several time intervals, but additionally considers different
scenarios for uncertain inputs (e.g. the wind speed).

Benders Decomposition

The idea behind Benders Decomposition is to partition a Linear Program (LP) or Mixed Integer Program
(MIP) into several smaller optimization problems.

The LP has the form:

𝑚𝑖𝑛 𝑐𝑇0 𝜒0 + 𝑐𝑇1 𝜒1

𝑠.𝑡. 𝐴0𝜒0 ≥ 𝑏0

𝐸0𝜒0 +𝐴1𝜒1 ≥ 𝑏1

𝜒0, 𝜒1 ≥ 0

1.2. Technical documentation 87

urbs Documentation, Release 0.7

This is done by having a subset of the variables (lets call them 𝜒0) in a master problem which before the
first iteration only contains the constraints depending exclusively on the 𝜒0 variables. The remaining
variable (lets call them 𝜒1) are given by an unknown future cost function 𝜂(𝜒0), which is assumed to be
constant. The master problem thus looks like this:

𝑚𝑖𝑛 𝑐𝑇0 𝜒0 + 𝜂(𝑥)

𝑠.𝑡. 𝐴0𝜒0 ≥ 𝑏0

𝜒0 ≥ 0

This problem is solved and thus gives an optimal solution on 𝜒0. This solution at the same time gives a
lower bound on the optimal objective value (because in later iterations constraints can only be added not
removed). The 𝜒1 variables are optimized in one or several sub problems, which include the constraints
on the 𝜒0 and 𝜒1 variables. As an example consider two sub problems which split the 𝜒1 variables into
𝜒11 and 𝜒12. This in turn splits the set of constraints 𝐴1 into 𝐴11 and 𝐴12 as well as the set 𝐸0 into 𝐸01

and 𝐸02. The sub problems then have the form:

𝑚𝑖𝑛 𝜒0 + 𝜒11

𝑠.𝑡. 𝐴11𝜒11 ≥ 𝑏1 − 𝐸01𝜒0

𝜒1 ≥ 0

and

𝑚𝑖𝑛 𝜒0 + 𝜒12

𝑠.𝑡. 𝐴12𝜒12 ≥ 𝑏1 − 𝐸02𝜒0

𝜒1 ≥ 0

where 𝜒0 is fixed. Solving the sub problems gives an upper bound on the optimal solution simply by
taking the best feasible solution calculated so far in any iteration. Additionally we get a cut we add to
the master problem. The cut is a linear function which confines the region of feasible solutions of the
master problem. The master problem is then solved again with the cuts as additional constraints. Then
the sub problems are solved again using the new optimal values for 𝜒0. This is repeated until the gap
between lower and upper bound gets below a certain threshold.

Divide Timesteps

Splits the original problem into several time intervals at so called support steps.

One sub problem includes the time steps from one support step to the next, including the first support
step and excluding the next. The sub instances contain all time dependent variables (all process, trans-
mission and storage variables except capacity). They calculate the optimal value for their variables given
restrictions on the capacities by the master problem and in return generate a cut for the master problem.

The master problem contains only the support time steps and optimizes the variables which are time
independent (only capacities). It computes an optimal solution based on the cuts given by the sub
problems. Using the solution it generates restrictions for the sub problems.

Regional

Splits the original problem into several regions. Here each sub problem consists of one region and
contains all the variables and constraints of the original problem in this region. The master problem
controls the transmissions between the regions and contains the respective transmission variables.

88 Chapter 1. Contents

urbs Documentation, Release 0.7

Additionally a sub problem can be split into regions itself. This can be modelled by passing a separate
input file for the sub region. The master problem is oblivious to these sub sub regions and treats the sub
region as one. On the other hand this means that the sub problem has to manage its own transmissions
including transmissions between its sub sub regions, but also making sure that the transmissions (outgo-
ing, ingoing, and capacities) from the sub sub regions to neighbouring sub regions add up to the same
value that the master problem assigned as transmission between the neighbouring sub region and the sub
region with the input file. There are some modelling caveats when working with a separate input file.
These are explained in Modelling a region with input file. The use case for modeling some sub problems
with their own file is that for these region additional data is available. If more data is available for all
regions it makes sense to have only one input file with a higher resolution, considering the modeling
caveats.

SDDP

Splits the original problem into several time intervals, but additionally considers different scenarios for
uncertain inputs (e.g. the wind speed). The idea of SDDP is very similar to Divide Timesteps, although
the master problem only contains the first time steps for SDDP and not all the support steps. This means
that unlike in Divide Timesteps the constraints for the next sub problem are set by the previous problem
and not always by the master problem. Likewise the cut is generated for the previous problem.

For each sub problem there are different scenarios (e.g. low wind speed, high wind speed, etc.) called
realizations. Each realization is associated with a probability. After the master problem is solved, for
each time step a realization is chosen at random and this realization is solved. This gives an optimal
solution for one realized path.

This path is used to calculate an upper bound for the objective. As it is unclear if this is indeed a good
upper bound due to the uncertainty, we no longer use the difference between upper and lower bound for
the convergence criterion, but the difference between the average of the last ten upper bounds plus their
standard deviation and the lower bound. This should be a good trade off between using the worst case
scenario (e.g. assuming always low wind) which is too pessimistic and using a too low upper bound due
to being lucky in choosing a good path.

After the upper bound calculation, a cut is generated for the master problem and for each sub problem
except the last. This is done by taking the weighted average of the three cuts generated by the possible
realizations in the next sub problem.

Tutorial

This tutorial is a commented walk-through through the script runme.py, which is a demonstration user
script that can serve as a good basis for ones own script.

In doing this it explains how to apply the decomposition methods and also explains the Benders loop of
each decomposition method in detail.

Imports

import os
import sys # save terminal output to file
import time
import numpy as np

(continues on next page)

1.2. Technical documentation 89

urbs Documentation, Release 0.7

(continued from previous page)

import pandas as pd
import pyomo.environ
import shutil
import urbs
from urbs import urbsType
from urbs import parallelization as parallel
from pyomo.opt.base import SolverFactory

We use the same imports as normal urbs described in Imports. PYOMO3 support is not yet included for
decomposition. Also we need some additional imports:

• sys is a standard python module which we use to redirect the terminal output to a file if desired.

• time is used to measure the time for hardware tracking.

• numpy and panda are python modules which enable fast and convenient handling of data.

• from urbs we explicitly import urbsType which is used to create different models depending
on the decomposition method used and the type of the model (master, sub, sub with input file
or normal). urbs.parallelization makes it possible to solve several pyomo models in
parallel (see Parallelization) using the python module Pyro4.

Input Settings

We continue with the main function of the script which is the last method in the code.

The script starts with the specification of the input file, which is to be located in the same folder as script
runme.py:

Choose input file
input_file = 'mimo-example.xlsx'

result_name = os.path.splitext(input_file)[0] # cut away file extension
result_dir = urbs.prepare_result_directory(result_name) # name + time
→˓stamp

copy input file to result directory
shutil.copyfile(input_file, os.path.join(result_dir, input_file))
copy runme.py to result directory
shutil.copy(__file__, result_dir)
copy current version of scenario functions
shutil.copy('urbs/scenarios.py', result_dir)

Variable input_file defines the input spreadsheet, from which the optimization problem will draw
all its set/parameter data. The input file and the script runme.py are automatically copied into the
result folder.

Next the decomposition method is chosen:

Choose decomposition method (divide-timesteps , regional , sddp or None)
decomposition_method = 'divide-timesteps'
Check if valid decomposition method is chosen
if decomposition_method not in ['divide-timesteps', 'regional', 'sddp',
→˓None]:

raise Exception('Invalid decomposition method. Please choose \'divide-
→˓timesteps\' or \'regional\' or \'sddp\' or None') (continues on next page)

90 Chapter 1. Contents

urbs Documentation, Release 0.7

(continued from previous page)

Next the desired solver is specified:

choose solver(cplex, glpk, gurobi, ...)
solver = 'glpk'

The solver has to be licensed for the specific user, where the open source solver “glpk” is used as the
standard if the solver is not specified.

The model parameters are finalized with a specification of time step length and modeled time horizon:

simulation timesteps
(offset, length) = (0, 20) # time step selection
timesteps = range(offset, offset + length + 1)

Variable timesteps is the list of time steps to be simulated. Its members must be a subset of the
labels used in input_file’s sheets “Demand” and “SupIm”. It is one of the function arguments to
create_model() and accessible directly, so that one can quickly reduce the problem size by reducing
the simulation length, i.e. the number of time steps to be optimised.

range() is used to create a list of consecutive integers. The argument +1 is needed, because
range(a,b) only includes integers from a to b-1:

>>> range(1,11)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

In the next step parameters only specified for certain decomposition methods can be set.

settings for sddp and divide-timesteps
if decomposition_method in ['divide-timesteps', 'sddp']:

support_steps = [0, 10, 20]

if decomposition_method == 'regional':
sub_input_files = {'Bavaria': 'bavaria.xlsx'}

In Divide Timesteps and SDDP we have to set the support steps which determine at which time steps
the problem is split into sub problems. In Divide Timesteps the support steps must include the first
and the last time step fpr the method to work correctly. If you don’t include them they are added in
automatically. In SDDP the last time step is also added automatically to the support steps, but you can
choose to omit the first time step. This then means that the input data up to the first support step is
considered to be certain and this part is optimized in the master problem. The uncertainty only starts
after the first support step. In Regional we can optionally pass a sub input file for any site in a dict of the
form {'site1': 'file1','site2': 'file2'}.

Scenarios

The scenarios list in the end of the runme file allows to select the scenarios to be actually run. How
the scenarios are defined and how new ones can be created is explained in Scenario functions.

scenarios = [
urbs.scenario_base,
urbs.scenario_stock_prices,

(continues on next page)

1.2. Technical documentation 91

urbs Documentation, Release 0.7

(continued from previous page)

urbs.scenario_co2_limit,
urbs.scenario_co2_tax_mid,
urbs.scenario_no_dsm,
urbs.scenario_north_process_caps,
urbs.scenario_all_together]

Run scenarios

for scenario in scenarios
result = run_scenario_decomposition(input_file, timesteps, scenario,

→˓result_dir,
solver=solver,
decomposition_

→˓method=decomposition_method,
support_steps=support_steps,

→˓# only for divide-timesteps and sddp
sub_input_files={}, # only

→˓for regional
plot_tuples=plot_tuples,
plot_periods=plot_periods,
report_tuples=report_tuples,
plot_sites_name=plot_sites_

→˓name,
report_sites_name=report_sites_

→˓name,
plot_and_report=False,
write_lp_files=False,
write_lp_files_every_x_

→˓iterations=None,
numeric_focus=False,
save_terminal_output=False,
readable_cuts=False, # only

→˓for divide-timesteps
save_hardware_usage=False,
print_omega=False, # only for

→˓regional
run_normal=False,
parallel_solving=False,
number_of_workers=None,
save_h5_every_x_

→˓iterations=None)

Having prepared settings, input data and scenarios, the actual computations happen in the
function run_scenario_decomposition(). It is executed for each of the scenar-
ios included in the scenario list. The following sections describe the content of function
run_scenario_decomposition(). In a nutshell, it reads the input data from its argu-
ment input_file, modifies it with the supplied scenario, runs the optimisation for the given
timesteps and writes results and plots to result_dir.

92 Chapter 1. Contents

urbs Documentation, Release 0.7

Options of Run Scenario Decomposition

This sub section gives a complete list of the options of run_scenario_decomposition() and
how to use them.

solver=solver,

Sets the solver to be used, if None, “glpk” is used.

decomposition_method=decomposition_method,

Determines the decomposition method. If None, no decomposition is done.

support_steps=support_steps, # only for divide-timesteps and sddp

The support steps determine at which points in the time series the original problem is split into sub
problems for Divide Timesteps and SDDP.

sub_input_files={}, #only for regional

In regional it is possible to specify separate input files for sub regions. They are passed in a dict by this
option.

plot_tuples=plot_tuples,
plot_periods=plot_periods,
report_tuples=report_tuples,
plot_sites_name=plot_sites_name,
report_sites_name=report_sites_name,
plot_and_report=False,

All these options except plot_and_report are explained in the sections Plotting and Reporting. If
plot_and_report is True plotting and reporting is done, if not it is skipped.

write_lp_files=False,
write_lp_files_every_x_iterations=None,

Debug Feature: If write_lp_files is True, the .lp files of the models (contain all information
about the model) are saved in a subdirectory of the result directory at the end of the benders loop. If
write_lp_files_every_x_iterations is set to a natural number, additional .lp files are saved
every x iterations. If it is None it is ignored.

numeric_focus=False,

If numeric_focus is True, the solver calculates more carefully. This usually leads to better conver-
gence, but more time spent on solving. The convergence improves especially if the parameters values
differ in several orders of magnitude. Therefore it is recommended to use numeric_focus whenever
convergence is slow.

save_terminal_output=False,

If True the terminal output is saved to a file inside the result directory.

readable_cuts=False, # only for divide-timesteps

1.2. Technical documentation 93

urbs Documentation, Release 0.7

Debug Feature: If True, the cuts are represented in a way which makes their mathematical interpretation
more clear, but might lead to numerical problems as a multiplication with a number happens which is
potentially very close to zero (see Cut Generation). Only works for Divide Timesteps.

save_hardware_usage=False,

Debug/Performance Feature: If True the time and computing resources taken up by the program are
saved to a file in the result directory after every iteration of the benders loop.

print_omega=False, # only for regional

If True, in the output of each benders iteration of Regional the sum of the omegas is printed. This is in
so far interesting as when omega is zero (every 5 iterations) the sub problems are forced to not violate
any constraints given by the master problem except the cost constraint. This leads to a faster estimation
of an upper bound.

run_normal=False,

Debug Feature: If True the problem is additionally run without decomposition for comparison.

parallel_solving=False,
number_of_workers=None,

If parallel_solving is True, subproblems are solved in parallel using Pyro where it is possible. In
number_of_workers the number of Pyro solver servers (MIP servers) can be specified. If it is None
the numbers of servers is set to the number of cores by default.

Warning: If you set parallel_solving to True make sure that no other programs using Pyro
are running, because this could lead to unexpected behaviour or crashes (see Parallelization).

save_h5_every_x_iterations=None

Debug Feature: The solved models are always saved in .h5 files (these contain the models without
equations and can be loaded with urbs.load()) after convergence of the benders loop. If this option
is not None, the models are additionally saved every x iterations.

Complete Walkthrough of Run Scenario Decomposition

This is done as the first thing to get the pyro servers running, so that
→˓another program can detect another pyro program is running
if parallel_solving:

start pyro servers
servers = parallel.start_pyro_servers(number_of_workers)

If parallel_solving is True, first the Pyro servers are started up. This is done first, to avoid
problems with several Pyro programs running at the same time (see Parallelization).

check for valid decomposition method
if decomposition_method not in ['divide-timesteps', 'regional', 'sddp',
→˓None]:

raise Exception('Invalid decomposition method. Please choose \'divide-
→˓timesteps\' or \'regional\' or \'sddp\' or None') (continues on next page)

94 Chapter 1. Contents

https://pythonhosted.org/Pyro4/

urbs Documentation, Release 0.7

(continued from previous page)

Check if decomposition method is valid.

scenario name, read and modify data for scenario
sce = scenario.__name__
data = urbs.read_excel(input_file)
drop source lines added in Excel
for key in data:

data[key].drop('Source', axis=0, inplace=True, errors='ignore')
data = scenario(data)
urbs.validate_input(data)

Function read_excel() returns a dict data of up to 12 pandas DataFrames with hard-coded col-
umn names that correspond to the parameters of the optimization problem (like eff for efficiency or
inv-cost-c for capacity investment costs). The row labels on the other hand may be freely cho-
sen (like site names, process identifiers or commodity names). By convention, it must contain the six
keys commodity, process, storage, transmission, demand, and supim. Each value must
be a pandas.DataFrame, whose index (row labels) and columns (column labels) conforms to the
specification given by the example dataset in the spreadsheet mimo-example.xlsx.

data is then modified by applying the scenario() function to it. To then rule out a list of known
errors, that accumulate through growing user experience, a variety of validation functions specified in
script validate.py in subfolder urbs is run on the dict data.

start saving terminal output to file
if save_terminal_output:

save original terminal output to restore later
write_to_terminal = sys.stdout
terminal_output_file = open(os.path.join(result_dir, 'terminal-{}.out'.

→˓format(sce)), 'w')
This class allows to write to the Terminal and to any number of

→˓files at the same time
sys.stdout = urbs.TerminalAndFileWriter(sys.stdout, terminal_output_

→˓file)

The class TerminalAndFileWriter in output.py redirects the terminal output to both the ter-
minal output and a file. The old value of sys.stdout is saved in write_to_terminal to be
restored later.

refresh time stamp string and create filename for logfile
log_filename = os.path.join(result_dir, '{}.log').format(sce)

setup solver
optim = setup_solver(solver, numeric_focus, logfile=log_filename)

Set up the solver.

if save_hardware_usage:
start_time for hardware tracking
start_time = time.time()

create normal
if run_normal or decomposition_method is None:

prob = urbs.Normal(data, timesteps)
(continues on next page)

1.2. Technical documentation 95

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

urbs Documentation, Release 0.7

(continued from previous page)

solve normal
if run_normal or decomposition_method is None:

result_prob = optim.solve(prob, tee=False)
print('Original problem objective: ' + str(prob.obj()))

save original problem solution (and input data) to HDF5 file
if run_normal or decomposition_method is None:

save models (and input data) to HDF5 file
h5_dir = os.path.join(result_dir, 'h5_files')
if not os.path.exists(h5_dir):

os.makedirs(h5_dir)
urbs.save(prob, os.path.join(h5_dir, 'original-{}.h5'.format(sce)))

if write_lp_files:
lp_dir = os.path.join(result_dir, 'lp_files')
if not os.path.exists(lp_dir):

os.makedirs(lp_dir)
prob.write(os.path.join(lp_dir, 'original' + '-{}.lp'.format(sce)),

io_options={'symbolic_solver_labels': True})

if save_hardware_usage:
track_file = os.path.join(result_dir, scenario.__name__ + '-tracking.

→˓txt')
process = urbs.create_tracking_file(track_file,start_time)

If no decomposition method is chosen or run_normal is True, solve the original problem and save the
solution to a .h5 file.

First the original problem is created by the constructor call to Normal(). Argument tee=True
enables the realtime console output for the solver. If you want less verbose output, simply set it to
False or remove it. If write lp_files is True, the .lp file is saved. If save_hardware_usage
is True, the time taken to solve the original problem is measured.

set up models
set up parameters for divide-timesteps
if decomposition_method == 'divide-timesteps':

support time steps
supportsteps = [i for i in support_steps if i <= max(timesteps)]
the support timesteps need to include the max timestep for the

→˓method to correctly work.
if not max(timesteps) in supportsteps:

supportsteps.append(max(timesteps))
the support timesteps need to include the min timestep for the

→˓method to correctly work.
if not min(timesteps) in supportsteps:

supportsteps.insert(0,min(timesteps))

create models
master = urbs.DivideTimestepsMaster(data, supportsteps)

sub = {}
for inst in range(0, len(supportsteps) - 1):

sub[supportsteps[inst]+1] = urbs.DivideTimestepsSub(data,
→˓range(supportsteps[inst], supportsteps[inst + 1] + 1),

supportsteps)

(continues on next page)

96 Chapter 1. Contents

urbs Documentation, Release 0.7

(continued from previous page)

output template
urbs.create_benders_output_table(print_omega=print_omega)

Set up the models and variables specific to the decomposition method Divide Timesteps: First make
sure max and min time steps are included in support steps (this is necessary for the method to work
correctly). Then create master and sub instances and set up the output table.

set up parameters for regional
elif decomposition_method == 'regional':

if 'test_timesteps' is stored in data dict, replace the timesteps
→˓parameter with that value

timesteps = data.pop('test_timesteps', timesteps)

subproblem data
sub_data = {}
for item in sub_input_files:

sub_data[item] = urbs.read_excel(sub_input_files[item])
drop source lines added in Excel
for key in sub_data[item]:

sub_data[item][key].drop('Source', axis=0, inplace=True,
→˓errors='ignore')

sub_data[item] = scenario(sub_data[item])
if 'test_timesteps' is stored in data dict, replace the

→˓timesteps parameter with that value
timesteps = sub_data[item].pop('test_timesteps', timesteps)

create models
master = urbs.RegionalMaster(data, timesteps)
master_sites = urbs.get_entity(master, 'sit')
master_sites = master_sites.index.values.tolist()

sub = {}
for sit in master_sites:

if sit in sub_input_files:
sub[sit] = urbs.RegionalSub(sub_data[sit], timesteps, model_

→˓type=urbsType.subwfile,
site=sit, msites=master_sites)

else:
sub[sit] = urbs.RegionalSub(data, timesteps, model_

→˓type=urbsType.sub,
site=sit, msites=master_sites)

output template
urbs.create_benders_output_table(print_omega=print_omega)

Similar the models for regional are set up. If separate input files are specified for sub problems they are
read into working memory. If only a certain amount of time steps is used for testing, this can be included
in the scenario as test_timesteps.

set up parameters for sddp
elif decomposition_method == 'sddp':

support time steps
supportsteps = [i for i in support_steps if i <= max(timesteps)]
the support timesteps need to include the max timestep for the

→˓method to correctly work. (continues on next page)

1.2. Technical documentation 97

urbs Documentation, Release 0.7

(continued from previous page)

if not max(timesteps) in supportsteps:
supportsteps.append(max(timesteps))

uncertainty factors
wind_scenarios = {'low': 0, 'mid': 0, 'high': 0}
realizations = [key for key in wind_scenarios]
probabilities = {'low': 0.2, 'mid': 0.5, 'high': 0.3}

create models
master = urbs.SddpMaster(data, range(timesteps[0], supportsteps[0] +

→˓1), supportsteps, first_timestep=timesteps[0])

sub = {}
for inst in range(0, len(supportsteps) - 1):

for wind_sce in wind_scenarios:
sub[(supportsteps[inst], wind_sce)] = urbs.SddpSub(data,

→˓range(supportsteps[inst], supportsteps[inst + 1] + 1),
supportsteps, uncertainty_factor=wind_scenarios[wind_sce],

→˓first_timestep=timesteps[0])

avg = np.inf
stddev = np.inf
upper_bounds = []

#output template
urbs.create_benders_output_table_sddp()

Set up parameters for SDDP. The support steps need to include the last time step for the method to
work correctly, but not the first, because the master is allowed to do some of the resource planning.
This makes sense, because the time series in the near future can still be considered to be certain, with
the uncertainty starting only after some amount of time. wind_scenarios are different scenarios on
wind speed. probabilities give the probability with which a scenario is happening. avg, stddev
are the average and standard deviation of the last ten upper bounds and are used later for the convergence
criterion of SDDP. upper_bounds is just a list of the calculated upper bounds.

if decomposition_method is not None:
set up benders loop parameters
lower_bound = -np.inf
upper_bound = np.inf
gap = np.inf
maxit = 1000
tol = 1e-6

save information for every iteration to plot in the end
iterations = []
plot_lower_bounds = []
plot_upper_bounds = []
normal = []

Set up parameters common to all decomposition methods. These are the initial lower and upper bound
and the gap between them, the maximum number of iterations, the tolerance which determines when
the Benders loop converges as well as lists of the lower bounds, upper bounds, original objective and
iterations for the convergence plot.

98 Chapter 1. Contents

urbs Documentation, Release 0.7

call benders loop if a decomposition method is selected
if decomposition_method is not None:

for i in range(1, maxit):
master problem solution
result_master = optim.solve(master, tee=False)

Start of the benders loop (only if decomposition is not None). The loop runs until convergence or until
maxit is reached. First thing in the loop the current master problem is solved.

if decomposition_method == 'divide-timesteps':
master, sub, lower_bound, upper_bound, gap = benders_loop_divide_

→˓timesteps(master, sub, lower_bound, upper_bound, gap, optim, readable_
→˓cuts, parallel_solving=parallel_solving)

output information about the iteration
urbs.update_benders_output_table(i, master, sum(master.eta[t]() for t

→˓in master.tm), sub, lower_bound, upper_bound, gap, print_omega=print_
→˓omega)

elif decomposition_method == 'regional':
master, sub, lower_bound, upper_bound, gap = benders_loop_

→˓regional(master, sub, sub_input_files,
lower_bound,

→˓ upper_bound, gap, optim, i,parallel_solving=parallel_solving)

output information about the iteration
urbs.update_benders_output_table(i, master, sum(master.eta[sit]() for

→˓sit in master.sit), sub, lower_bound, upper_bound, gap,
print_omega=print_omega)

elif decomposition_method == 'sddp':
master, sub, lower_bound, upper_bound, gap, avg, stddev, upper_bounds

→˓= benders_loop_sddp(master, sub, lower_bound, upper_bound, gap,avg,
→˓stddev,upper_bounds,supportsteps,

realizations,
→˓probabilities, optim, data, first_timestep=timesteps[0], parallel_
→˓solving=parallel_solving)

output information about the iteration
urbs.update_benders_output_table_sddp(i, master, lower_bound, upper_

→˓bound, avg, stddev, gap, master.obj())

The actual loop is different for each decomposition method. The respective functions are explained
further down in detail. After the function call, information about the current iteration is printed using
the functions update_benders_output_table(_sddp)().

if save_hardware_usage:
save memory usage
urbs.update_tracking_file(track_file,i,start_time, process)

save information for convergence plot
iterations.append(i)
plot_lower_bounds.append(master.obj())
plot_upper_bounds.append(upper_bound)
if run_normal:

normal.append(prob.obj())

If save_hardware_usage is True, information about performance of the iteration is saved to the

1.2. Technical documentation 99

urbs Documentation, Release 0.7

tracking file. The list for the plots are extended by the iteration, the current lower bound, the current
upper bound and the original objective (if run_normal is True) respectively.

if gap < tol * lower_bound:
#create an excel file which summarizes the results of the benders loop
if run_normal:

difference = prob.obj() - master.obj()
print('\n', 'Difference =', prob.obj() - master.obj())

else:
difference = 'Not calculated'

df = pd.DataFrame([[scenario.__name__, difference, gap, i]],
columns=['Scenario', 'Difference', 'gap', 'Iterations

→˓'],
index=[0])

urbs.append_df_to_excel(os.path.join(result_dir, 'scenario_comparison.
→˓xlsx'), df)

break

The benders loop converges if the gap is smaller than the tolerance times the lower bound. After
convergence the difference to the original is calculated if the original was solved. An excel sheet
scenario_comparison.xlsx is created which contains concise information about the benders
convergence for all calculated scenarios.

if i % 50 == 0:
if decomposition_method in ['regional','divide-timesteps']:

urbs.create_benders_output_table(print_omega=print_omega)
elif decomposition_method == 'sddp':

urbs.create_benders_output_table_sddp()

For better comprehension of the output table the headline of the output table is repeated every 50 itera-
tions.

if save_h5_every_x_iterations is not None and i%save_h5_every_x_iterations
→˓== 0:

save models (and input data) to HDF5 file
h5_dir=os.path.join(result_dir,'h5_files')
if not os.path.exists(h5_dir):

os.makedirs(h5_dir)
urbs.save(master, os.path.join(h5_dir, 'master' + '-iteration-{}'.

→˓format(i) + '-{}.h5'.format(sce)))

save subproblems to .h5 files
for inst in sub:

urbs.save(sub[inst], os.path.join(h5_dir, 'sub' + str(inst) + '-
→˓iteration-{}'.format(i) + '-{}.h5'.format(sce)))

if write_lp_files and write_lp_files_every_x_iterations is not None and i
→˓%write_lp_files_every_x_iterations==0:

save models to lp files
lp_dir = os.path.join(result_dir, 'lp_files')
if not os.path.exists(lp_dir):

os.makedirs(lp_dir)
master.write(os.path.join(lp_dir, 'master' + '-iteration-{}'.format(i)

→˓+ '-{}.lp'.format(sce)),
io_options={'symbolic_solver_labels': True})

for inst in sub:

(continues on next page)

100 Chapter 1. Contents

urbs Documentation, Release 0.7

(continued from previous page)

sub[inst].write(os.path.join(lp_dir, 'sub' + str(inst) + '-
→˓iteration-{}'.format(i) + '-{}.lp'.format(sce)),

io_options={'symbolic_solver_labels': True})

If the options to save to .h5 or .lp every x iterations are set they are saved in this part of the code. End of
benders loop.

if parallel_solving:
Shut down pyro servers
parallel.shutdown_pyro_servers(servers)

close terminal to file stream
if save_terminal_output:

sys.stdout = write_to_terminal

if plot_and_report:
write report to spreadsheet
urbs.report(

prob,
os.path.join(result_dir, '{}.xlsx').format(sce),
report_tuples=report_tuples, report_sites_name=report_sites_name)

result plots
urbs.result_figures(

prob,
os.path.join(result_dir, '{}'.format(sce)),
timesteps,
plot_title_prefix=sce.replace('_', ' '),
plot_tuples=plot_tuples,
plot_sites_name=plot_sites_name,
periods=plot_periods,
figure_size=(24, 9))

After the benders loop the Pyro servers are shutdown again (in case of parallel_solving) and the
terminal output stream is restored (in case of save_terminal_output). If plot_and_report
is True, Plotting and Reporting is done.

Warning: Plotting and Reporting is so far only supported for the original problem (no decomposi-
ton method). If the option plot_and_report is True, the decomposition method is not None, and
run_normal is True, Plotting and Reporting will be done for the normal (not decomposed) prob-
lem. If plot_and_report is True, the decomposition method is not None, and run_normal is
False, the program will crash!

if decomposition_method is None:
return prob

else:
show plot
urbs.plot_convergence(iterations, plot_lower_bounds, plot_upper_bounds,

→˓ result_dir, sce, run_normal=run_normal, normal=normal)

save lp files
if write_lp_files:

(continues on next page)

1.2. Technical documentation 101

urbs Documentation, Release 0.7

(continued from previous page)

save models to lp files
lp_dir = os.path.join(result_dir, 'lp_files')
if not os.path.exists(lp_dir):

os.makedirs(lp_dir)
master.write(os.path.join(lp_dir, 'master' + '-{}.lp'.format(sce)),

io_options={'symbolic_solver_labels': True})
for inst in sub:

sub[inst].write(
os.path.join(lp_dir, 'sub' + str(inst) + '-{}.lp'.

→˓format(sce)),
io_options={'symbolic_solver_labels': True})

save models (and input data) to HDF5 file
h5_dir = os.path.join(result_dir, 'h5_files')
if not os.path.exists(h5_dir):

os.makedirs(h5_dir)
urbs.save(master, os.path.join(h5_dir, 'master' + '-{}.h5'.

→˓format(sce)))

save subproblems to .h5 files
for inst in sub:

urbs.save(sub[inst],
os.path.join(h5_dir, 'sub' + str(inst) + '-{}.h5'.

→˓format(sce)))

return sub, master

If no decomposition method is used the solved instance of the normal model is returned. Otherwise the
convergence of the benders loop is shown in a plot and the models solutions are saved in .h5 files and .lp
files (only if write_lp_files is True). Finally the (solved) sub instances and the master instance
are returned.

Walkthrough of Benders Loop Divide Timesteps

def benders_loop_divide_timesteps(master, sub, upper_bound, gap, optim,
→˓readable_cuts, parallel_solving=False):

"""
Calculates one iteration of the benders loop for divide timesteps

Args:
master: instance of the master problem
sub: sub problem instances
upper_bound: current upper bound of benders decomposition
gap: gap between upper and lower bound
optim: solver for the problem
readable_cuts: scale cuts to make them easier to read (may cause

→˓numerical issues)

Returns:
updated values for master, sub, lower_bound, upper_bound, gap

"""

for inst in sub:

(continues on next page)

102 Chapter 1. Contents

urbs Documentation, Release 0.7

(continued from previous page)

restrictions of sub problem
sub[inst].set_boundaries(master, 'cap_pro', 'pro_inst')
sub[inst].set_boundaries(master, 'cap_tra', 'tra_inst')
sub[inst].set_boundaries(master, 'cap_sto_c', 'sto_c_inst')
sub[inst].set_boundaries(master, 'cap_sto_p', 'sto_p_inst')
sub[inst].set_boundaries(master, 'e_sto_con', 'e_sto_state')

sub[inst].eta_res[sub[inst].tm[-1]].expr = master.eta[sub[inst].
→˓tm[-1]]()

for com in master.com_tuples:
sub[inst].e_co_stock_res[com].expr = master.e_co_

→˓stock[sub[inst].tm[-1], com]()

First the boundaries of the sub problems are set such that they need to fulfill constraints given by the mas-
ter problem. Specifically the capacity variables of the sub problem (ending on inst) are set to the capacity
given by the master problem, the storage state of the first and last time step of the sub problem are set to
the storage content in the corresponding time steps in the master problem, the costs of the sub problem
are limited with eta_res and the usage of stock commodities is limited by e_co_stock_res.

if parallel_solving:
subproblem solution
result_sub = parallel.solve_parallel(sub, optim)

else:
result_sub={}
for inst in sub:

subproblem solution
result_sub[inst] = optim.solve(sub[inst], tee=False)

Next the sub problems are solved. If parallel_solving is set, they are passed by the function
solve_parallel to the running pyro workers (see Parallelization). Else they are solved sequentially.

serial cut generation
for inst in sub:

cut generation
master.add_cut(sub[inst], readable_cuts)

The cuts are generated and added for each sub problem by a function in the master instance. See Cut
Generation.

lower_bound = master.obj()

The optimal solution has to cost at least as much as the current objective of the master problem for the
following reasons:

• The master problem objective consists of the costs of a part of the variables (the capacities) which
it can optimize and a cost term given by the sub problems which is treated as constant.

• The cost term the master problem can optimize can only get higher in later iterations, because
more constraints can be added to the master problem, but no constraints can be removed.

• The costs given by the sub problems can only get higher, because the bounds the sub problems
receive from the master problem can only get tighter as the master problem acquires more cuts.

1.2. Technical documentation 103

urbs Documentation, Release 0.7

try:
Check feasibility of subproblems with respect to constraints for

→˓which additional cost cannot be computed
for inst in sub:

for ct in sub[inst].com_tuples:
if sub[inst].commodity.loc[ct, 'max'] < np.inf:

if sum(sub[inst].e_co_stock[(tm,) + ct]() for tm in
→˓sub[inst].tm) - sub[inst].e_co_stock_res[ct]() > 0.001:

raise ValueError("Subproblem violates stock commodity
→˓constraints!")

for sit, sto, com in sub[inst].sto_tuples:
for t in sub[inst].tm:

if t == sub[inst].ts[1]:
if (sub[inst].e_sto_con[t, sit, sto, com]() -

sub[inst].e_sto_state[t, sit, sto, com]() > 0.
→˓001):

raise ValueError("Subproblem violates storage
→˓content constraints!")

if t == sub[inst].ts[2]:
if (sub[inst].e_sto_con[t, sit, sto, com]() -

sub[inst].e_sto_state[t, sit, sto, com]() < -0.
→˓001):

raise ValueError("Subproblem violates storage
→˓content constraints!")

if sub[inst].dt * sub[inst].weight * sum(- urbs.modelhelper.
→˓commodity_balance(sub[inst], tm, sit, 'CO2')()

for tm in sub[inst].tm
for sit in sub[inst].sit) \

- sum(sub[inst].e_co_stock_res[sit, 'CO2', 'Env']() for
→˓sit in sub[inst].sit) > 0.001:

raise ValueError("Subproblem violates CO2 constraints!")

Try if any of the sub problems violates any of the following constraints:

• Stock commodity constraints: Violated if the sub problems uses more of a commodity than it is
given by the master problem.

• Storage content constraints: Violated if any of the sub problems storages is greater than the storage
assigned to it by the master problem in the first time step or lower than the storage it needs to have
left in the last time step.

• CO2 constraints: Violated if the maximum allowed threshold for CO2 is passed.

If one of the constraints is violated, the sub problem is infeasible. In this case we cannot compute an
upper bound in this iteration.

determining the costs of units' production between iterations
cost_pro = urbs.get_production_cost(master, sub, 'cap_pro', 'pro')
cost_sto_c = urbs.get_production_cost(master, sub, 'cap_sto_c', 'sto_c')
cost_sto_p = urbs.get_production_cost(master, sub, 'cap_sto_p', 'sto_p')

cost_tra = 0.0

for sin, sout, type, com in master.tra_tuples:
max_tra = max(max(sub[inst].e_tra_in[(tm, sin, sout, type, com)]()

(continues on next page)

104 Chapter 1. Contents

urbs Documentation, Release 0.7

(continued from previous page)

for inst in sub
for tm in sub[inst].tm),

max(sub[inst].e_tra_in[(tm, sout, sin, type, com)]()
for inst in sub
for tm in sub[inst].tm))

tra = (sin, sout, type, com)
if max_tra > master.cap_tra[tra]():

cost_tra += ((max_tra - master.cap_tra[tra]()) *
master.transmission.loc[tra]['inv-cost'] *
master.transmission.loc[tra]['annuity-factor'])

costs = cost_pro + cost_tra + cost_sto_c + cost_sto_p

Check if for any process, storage, or transmission variable in the sub problems the capacity is higher
than the capacity installed in the master problem. If this happens the master problem needs to in-
stall the maximum capacity needed for that variable in any sub problem (This is done by the function
get_production_cost(). See Benders Functions). The cost of this installation is accumulated in
costs.

convergence check
gap, lower_bound, upper_bound = urbs.convergence_check(master, sub, upper_
→˓bound, costs, 'divide-timesteps')

Calculate the new upper bound and gap (see Benders Functions).

except ValueError as err:
print("Upper bound not updated because subproblem constraints were

→˓violated! (" + str(err) + ")")
return master, sub, lower_bound, upper_bound, gap

Except the ValueError if no upper bound was calculated and return the updated models and values.

Walkthrough of Benders Loop Regional

def benders_loop_regional(master, sub, sub_input_files, lower_bound, upper_
→˓bound, gap, optim, i, parallel_solving=False):

"""
Calculates one iteration of the benders loop for regional

Args:
master: instance of the master problem
sub: sub problem instances
sub_input_files: list of filenames to Excel spread sheets for sub

→˓regions, can be set for regional method
lower_bound: current lower bound of benders decomposition
upper_bound: current upper bound of benders decomposition
gap: gap between upper and lower bound
optim: solver for the problem
i: number of the current iteration
parallel_solving: If true sub instances are solved in parallel

→˓with pyro

Returns:

(continues on next page)

1.2. Technical documentation 105

urbs Documentation, Release 0.7

(continued from previous page)

updated values for master, sub, lower_bound, upper_bound, gap,
→˓track_file

"""
if i % 5 == 0:

for inst in sub:
getattr(sub[inst], 'omega').set_value(0)

else:
for inst in sub:

getattr(sub[inst], 'omega').set_value(1)

Every five iterations omega is set to zero. As a consequence the sub problems are forced to not violate
any constraints given by the master problem except the cost constraint. This leads to a faster estimation
of an upper bound, because the sub problem becomes feasible as no constraints can be violated.

subproblem restrictions
for inst in sub:

subproblem with input file
if inst in sub_input_files:

e_co_stock
for tm in master.tm:

sub[inst].e_co_stock_res[tm] = master.e_co_stock[tm, sub[inst].
→˓sub_site[1], 'CO2', 'Env']()

cap_tra
for tra in master.tra_tuples:

if tra[0] == sub[inst].sub_site[1]:
sub[inst].hvac[tra[1]] = master.cap_tra[tra]()

else:
continue

e_tra
for tm in master.tm:

for tra in master.tra_tuples:
if tra[0] == sub[inst].sub_site[1]:

sub[inst].e_export_res[tm, tra[1]] = master.e_tra_
→˓out[tm, tra]()

elif tra[1] == sub[inst].sub_site[1]:
sub[inst].e_import_res[tm, tra[0]] = master.e_tra_

→˓in[tm, tra]()
else:

continue
eta
sub[inst].eta_res[sub[inst].sub_site[1]] = master.eta[sub[inst].

→˓sub_site[1]]()
else:

sub[inst].set_boundaries(master, 'e_co_stock', 'e_co_stock_res')
sub[inst].set_boundaries(master, 'e_tra_out', 'e_tra_out_res')
sub[inst].set_boundaries(master, 'e_tra_in', 'e_tra_in_res')
sub[inst].set_boundaries(master, 'eta', 'eta_res')

Set the boundaries of the sub problems to fulfill constraints given by the master problem. For both sub
problems with and without input files we set the restrictions on the cost eta_res to the cost given by
the master problem and the stock commodity restriction e_co_stock_res (only relevant for CO2).
In case of sub with input file we need to set everything using sub_site[1] which just represents the
name of the site in the master problem.

For a sub problem without input file only we set the restriction on the in- and outgoing transmissions
e_tra_in_res and e_tra_out_res.

106 Chapter 1. Contents

urbs Documentation, Release 0.7

For a sub problem with input file we need to explicitly set the boundaries on transmission capac-
ity (hvac), import and export. For hvac and export we take all transmissions tuples that originate
in the sub problem (tra[0] == sub[inst].sub_site[1]) and set hvac to the capacity and
e_export_res to the outgoing transmission. For e_import_res we do the same as for export, but
checking for incoming transmissions (tra[1] == sub[inst].sub_site[1]).

sub problem solution
if parallel_solving:

result_sub = parallel.solve_parallel(sub, optim)
else:

result_sub={}
for inst in sub:

result_sub[inst] = optim.solve(sub[inst], tee=False)

Next the sub problems are solved. If parallel_solving is set, they are passed by the function
solve_parallel() to the running Pyro workers (see Parallelization). Else they are solved sequen-
tially.

serial cut generation
for inst in sub:

cut generation
if inst in sub_input_files:

master.add_cut(sub[inst],sub_in_input_files=True)
else:

master.add_cut(sub[inst], sub_in_input_files=False)

The cuts are generated and added to the master for each sub problem by a function in the master instance
(see Cut Generation).

convergence check
if i % 5 == 0:

gap, lower_bound, upper_bound = urbs.convergence_check(master, sub,
→˓upper_bound, 0, 'regional')

return master, sub, lower_bound, upper_bound, gap

Update lower and upper bound and return (see Benders Functions).

Walkthrough of Benders Loop SDDP

def benders_loop_sddp(master, sub, lower_bound, upper_bound, gap, avg,
→˓stddev,upper_bounds, supportsteps, realizations, probabilities,

optim, data, first_timestep=0, parallel_solving=False):
"""
Calculates one iteration of the benders loop for regional

Args:
master: instance of the master problem
sub: sub problem instances
lower_bound: current lower bound of the benders decomposition
upper_bound: current upper bound of the benders decomposition
gap: gap between lower and upper bound
avg: average of the last 10 upper bounds
stddev: standard deviation within the last 10 upper bounds

(continues on next page)

1.2. Technical documentation 107

urbs Documentation, Release 0.7

(continued from previous page)

upper_bounds: list of upper bounds
supportsteps: a list of timesteps for the master problem, can be

→˓set for divide-timesteps method
realizations: dict of possible realizations of sub problems (e.g.

→˓'high', 'mid', 'low')
probabilities: probabilities of the realizations
optim: solver for the problem
data: The data given by the input file.
parallel_solving: If true, the possible realizations in the

→˓backward iteration are solved in parallel
first_timestep: The timestep at which the non decomposed problem

→˓starts. This is needed to calculate the weight parameter correctly. The
→˓default is set to 0.

Returns:
updated values for master, sub, lower_bound, upper_bound, gap

"""

dict for realized instances of sub
realize={}
Forward recursion
for inst in range(0, len(supportsteps) - 1):

realize[inst] = np.random.choice(realizations, p=[value for value
→˓in probabilities.values()])

save current problem
cur_prob = sub[(supportsteps[inst], realize[inst])]

if previous problem is the master problem
if inst == 0:

set previous problem
prev_prob = master

else:
prev_prob = sub[(supportsteps[inst - 1], realize[inst - 1])]

In the forward recursion we pick a realization of each sub problem at random and set the previous
problem to the realized instance of the previous sub problem or to the master problem in case of the first
subproblem.

exchange variables between time steps
cur_prob.set_boundaries(prev_prob, 'cap_pro', 'pro_inst')
cur_prob.set_boundaries(prev_prob, 'cap_tra', 'tra_inst')
cur_prob.set_boundaries(prev_prob, 'cap_sto_c', 'sto_c_inst')
cur_prob.set_boundaries(prev_prob, 'cap_sto_p', 'sto_p_inst')
cur_prob.set_boundaries(prev_prob, 'e_sto_con', 'e_sto_con_res')
cur_prob.set_boundaries(prev_prob, 'e_co_stock_state', 'e_co_stock_state_
→˓res')

if inst > 0:
cur_prob.eta_res.expr = prev_prob.eta()

solve problem
optim.solve(cur_prob, tee=False)

Set the constraints on the capacities, the storage content and the stock reserves to the values passed by

108 Chapter 1. Contents

urbs Documentation, Release 0.7

the previous problem. Also set the constraint on the costs (eta_res) to the value given by the previous
sub problem. In case of the first sub problem we do not need to set this constraint, because the master
problem contains only the zero-th time step and thus does not contribute any cost restriction.

Then the sub problem is solved. End of the forward recursion.

update upper bound
try:

Check feasibility of subproblems with respect to constraints for
→˓which additional cost cannot be computed

max_value = {}
violation = {}
violation_factor = 0.0001

for sub_inst in [sub[(supportsteps[inst], realize[inst])] for inst in
→˓range(0, len(supportsteps) - 1)]:

for (sit, com, com_type) in sub_inst.com_max_tuples:
try:

max_value[(sit, com, com_type)] += sub_inst.e_co_stock_
→˓state[

sub_inst.t[-1], sit,
→˓ com, com_type]() \

- sub_inst.e_co_stock_
→˓state[

sub_inst.t[1], sit,
→˓com, com_type]()

except KeyError:
max_value[(sit, com, com_type)] = sub_inst.e_co_stock_

→˓state[
sub_inst.t[-1], sit,

→˓ com, com_type]() \
- sub_inst.e_co_stock_

→˓state[
sub_inst.t[1], sit,

→˓com, com_type]()

Calculate the maximum used value of all commodities in all sites. The value is simply calculated by
taking the sum of what each sub problem uses of the commodity in the site. How much the sub problem
needs is calculated by taking the commodity stock at the last time step minus the commodity stock in
the first time step.

weight = master.weight()
max_output_ratio_elec_co2 = (master.r_out.xs('Elec', level=1) / master.r_
→˓out.xs('CO2', level=1).loc[master.r_out.xs('CO2', level=1) != 0]).
→˓replace(np.inf,np.nan).max()
costs_co2_violation = 0
violation_bound = violation_factor * data['commodity'].loc[sit, com, com_
→˓type]['max']
for (sit, com, com_type) in max_value.keys():

violation[(sit, com, com_type)] = max_value[(sit, com, com_type)] *
→˓weight - \

data['commodity'].loc[sit, com, com_
→˓type]['max']

if violation[(sit, com, com_type)] > violation_bound:
raise ValueError(f"Path violates maximum commodity constraint! (

→˓{violation[(sit, com, com_type)]})")
(continues on next page)

1.2. Technical documentation 109

urbs Documentation, Release 0.7

(continued from previous page)

elif violation[(sit, com, com_type)] > violation_bound*0.01:
determining violation costs for commodity violation in case of

→˓co2
if com == 'CO2':

co2_costs = max_output_ratio_elec_co2 * violation[(sit, com,
→˓com_type)] * \

master.commodity.loc[sit, 'Slack', 'Stock']['price
→˓'] * weight

costs_co2_violation += co2_costs
else:

raise ValueError(f"Path violates maximum commodity constraint!"
f"({violation[(sit, com, com_type)]})")

violation_bound = violation_factor * data['global_prop'].loc['CO2 limit',
→˓'value']
if sum(max_value[(sit, com, com_type)] for (sit, com, com_type) in max_
→˓value.keys() if

com_type == 'Env') * weight - data['global_prop'].loc['CO2 limit',
→˓'value'] > violation_bound:

raise ValueError(f"Path violates global environmental rule!"
f" ({sum(max_value[(sit, com, 'Env')] for (sit, com,

→˓com_type) in max_value.keys()) * weight}")

Try if any of the sub problems violates any of the following constraints.

• Constraint 1: Check if the maximum used value of any commodity is more than 0.01 times the
violation bound greater than the maximum allowed amount of that commodity. For all commodi-
ties except CO2 this triggers an exception. In case of CO2 the exception is only triggered if the
violation is more than the violation bound. If it is between the violation bound and 0.01 times the
violation bound we compute a violation cost which is taken to be as high as the cost of producing
Slack “energy”. The idea of this is to get a faster estimate of an upper bound, because the CO2
constraint is often violated. To estimate a cost for the CO2 violation we replace a power plant that
produces the most electricity per CO2 (max_output_ratio_elec_co2) and replace it with
an expensive Slack power plant that doesn’t produce CO2.

• Constraint 2: Check if the sum of environmental commodities exceeds the allowed CO2 limit by
more than the violation bound.

determining violation costs for storage content
costs_sto_violation = 0

for sub_inst in [sub[(supportsteps[inst], realize[inst])] for inst in
→˓range(0, len(supportsteps) - 1)]:

for sit, sto, com in sub_inst.sto_tuples:
for t in sub_inst.ts:

if t == sub_inst.ts[1]:
if (sub_inst.e_sto_con[t, sit, sto, com]() -

sub_inst.e_sto_con_res[t, sit, sto, com]() > 1):
raise ValueError(f"Subproblem violates storage content

→˓constraints!"
f"{sub_inst.e_sto_con[t, sit, sto,

→˓com]() - sub_inst.e_sto_con_res[t, sit, sto, com]()}")
elif (sub_inst.e_sto_con[t, sit, sto, com]() -

sub_inst.e_sto_con_res[t, sit, sto, com]() > 0.01):
costs_sto_violation += (sub_inst.e_sto_con[t, sit, sto,

→˓ com]() - sub_inst.e_sto_con_res[t, sit, sto, com]()) \ (continues on next page)

110 Chapter 1. Contents

urbs Documentation, Release 0.7

(continued from previous page)

* sub_inst.commodity.loc[sit,
→˓'Slack', 'Stock']['price'] * weight

sub_inst = sub[(supportsteps[-2], realize[len(supportsteps) - 2])]
t_end = sub_inst.t[-1]
t_start = master.t[1]
start_end_difference = master.e_sto_con[t_start, sit, sto, com]() - sub_
→˓inst.e_sto_con[t_end, sit, sto, com]()
violation_bound = violation_factor * master.e_sto_con[t_start, sit, sto,
→˓com]()
for sit, sto, com in sub_inst.sto_tuples:

if start_end_difference > violation_bound:
raise ValueError(

f"Subproblem violates storage content start end constraints!"
f"{start_end_difference}")

elif (start_end_difference > violation_bound*0.1):
costs_sto_violation += start_end_difference \

* sub_inst.commodity.loc[sit, 'Slack',
→˓'Stock']['price'] * weight

Next we calculate the costs for storage violations: First we check for every sub problem whether it fulfills
its storage usage constraint. In case it exceeds its limitation by more than one we throw an error. In case
it exceeds it by more than 0.01 we assume the cost of producing the energy deficit as Slack energy. Next
we have to check whether the storage content in the first time step is bigger than the storage content in
the last time step (“storage content start end constraints”). As we require our problem to leave as much
energy in the storage as it started with this throws an error.

determining the costs of units' production between iterations
worst_case_realization = 'low'

additional_costs = {}
cost_types = ['pro', 'sto_c', 'sto_p']

for ctype in cost_types:
additional_costs[ctype] = max(urbs.get_production_cost(master,

{(supportsteps[inst], worst_case_
→˓realization): sub[

(supportsteps[inst], worst_
→˓case_realization)] for inst in

range(0, len(supportsteps) - 1)},
f'cap_{ctype}', ctype),

urbs.get_production_cost(master,
{(supportsteps[inst],

→˓realize[inst]): sub[
(supportsteps[inst],

→˓realize[inst])] for inst in
range(0, len(supportsteps) - 1)},

f'cap_{ctype}', ctype)
)

cost_tra = 0.0

for sin, sout, type, com in master.tra_tuples:
max_tra = max(max(sub_inst.e_tra_in[(tm, sin, sout, type, com)]()

for sub_inst in
(continues on next page)

1.2. Technical documentation 111

urbs Documentation, Release 0.7

(continued from previous page)

[sub[(supportsteps[inst], realize[inst])] for inst
→˓in range(0, len(supportsteps) - 1)]

for tm in sub_inst.tm),
max(sub_inst.e_tra_in[(tm, sout, sin, type, com)]()

for sub_inst in
[sub[(supportsteps[inst], realize[inst])] for inst

→˓in range(0, len(supportsteps) - 1)]
for tm in sub_inst.tm))

tra = (sin, sout, type, com)
if max_tra > master.cap_tra[tra]():

cost_tra += ((max_tra - master.cap_tra[tra]()) *
master.transmission.loc[tra]['inv-cost'] *
master.transmission.loc[tra]['annuity-factor'])

sum up all additional costs
costs = cost_tra + costs_sto_violation + costs_co2_violation +
→˓sum(additional_costs.values())

We also need to check whether the sub problems use more of any capacity than the master problem has
installed. If so we need to add the cost of installing the needed capacities. This cost can be calculated
for the process and storage variables using the function get_production_cost() (see Benders
Functions). The transmission cost is calculated slightly different. We then add up all costs.

upper_bound = (master.obj() - master.eta() + costs
+ sum(sub[(supportsteps[inst], realize[inst])].costs[cost_

→˓type]()
for cost_type in ["Variable", "Fuel", "Environmental"]
for inst in range(0, len(supportsteps) - 1)))

upper_bounds.append(upper_bound)

We update the current upper bound by summing up the master cost (master.obj()) minus the old
costs of the subproblems (master.eta()) plus the additional investment costs accumulated in costs
plus the new costs of the sub problems. The new upper bound is appended to the list of upper bounds.

if len(upper_bounds) > 10:
bounds = upper_bounds[-10:]
avg = np.mean(bounds)
stddev = np.std(bounds)
gap = avg + 1 * stddev - lower_bound

If more than ten upper bounds have been calculated, we take the average and the standard deviation of
the last ten and use this to calculate the new gap by taking the average plus the standard deviation minus
the lower bound (see overview of SDDP).

except ValueError as err:
print("Upper bound not updated because subproblem constraints were

→˓violated! (" + str(err) + ")")

If no upper bound was calculated print which constraint was violated.

Backward recursion
for inst in range(len(supportsteps) - 2, -1, -1):

if previous problem is the master problem

(continues on next page)

112 Chapter 1. Contents

urbs Documentation, Release 0.7

(continued from previous page)

if inst == 0:
set previous problem
prev_prob = master

else:
prev_prob = sub[(supportsteps[inst - 1], realize[inst - 1])]

cur_probs = {}
for cur_real in realizations:

cur_prob = sub[(supportsteps[inst], cur_real)]

exchange variables between time steps
cur_prob.set_boundaries(prev_prob, 'cap_pro', 'pro_inst')
cur_prob.set_boundaries(prev_prob, 'cap_tra', 'tra_inst')
cur_prob.set_boundaries(prev_prob, 'cap_sto_c', 'sto_c_inst')
cur_prob.set_boundaries(prev_prob, 'cap_sto_p', 'sto_p_inst')
cur_prob.set_boundaries(prev_prob, 'e_sto_con', 'e_sto_con_res')
cur_prob.set_boundaries(prev_prob, 'e_co_stock_state', 'e_co_stock_

→˓state_res')

cur_prob.eta_res.expr = prev_prob.eta()

cur_probs[(supportsteps[inst],cur_real)] = cur_prob

In the backward recursion we calculate a cut for the master problem and for all realizations of all sub
problem except the ones in the last time step (outer for-loop). To do this we take the weighted (by the
scenario probability) average of the cuts generated by the realizations of the next sub problem. As we so
far only solved one realization, we now have to solve all realizations of all sub problems. To do this we
first set the boundaries like in the forward iteration, but for all realizations. We append all realizations
of one sub problem to the dict cur_probs.

solve realizations
if parallel_solving:

subproblem solution
parallel.solve_parallel(cur_probs, optim)

else:
for cur_prob in cur_probs:

subproblem solution
optim.solve(cur_probs[cur_prob], tee=False)

Solve the realizations in cur_probs. The problems can be solved in parallel (see Parallelization).

cut generation
cut_generating_problems = {}
for cur_real in realizations:

cut_generating_problems[cur_real] = sub[supportsteps[inst], cur_real]
if inst == 0: # prev_prob is the master problem

prev_prob_realize = master
prev_prob = master
prev_prob.add_cut(realizations, cut_generating_problems, prev_prob_

→˓realize, probabilities)

else:
prev_prob_realize = sub[supportsteps[inst - 1], realize[inst - 1]]
for prev_real in realizations:

prev_prob = sub[supportsteps[inst - 1], prev_real]

(continues on next page)

1.2. Technical documentation 113

urbs Documentation, Release 0.7

(continued from previous page)

prev_prob.add_cut(realizations, cut_generating_problems, prev_prob_
→˓realize, probabilities)

To every possible realization of the current instance we add a weighted cut using the function
add_cut(). The weighted cut consists of one cut for each realization in the next time step
(cut_generating_problems) weighted by their probability. See SDDP Cut Generation. End
of the backward iteration.

lower_bound = master.obj()

Update the lower bound. The optimal solution has to cost at least as much as the current objective of the
master problem for the following reasons:

• The master problem objective consists of the costs of a part of the variables (the capacities) which
it can optimize and a cost term given by the sub problems which is treated as constant.

• The cost term the master problem can optimize can only get higher in later iterations, because
more constraints can be added to the master problem, but no constraints can be removed.

• The costs given by the sub problems can only get higher, because the bounds the sub problems
receive from the master problem can only get tighter as the master problem acquires more cuts.

return master, sub, lower_bound, upper_bound, gap, avg, stddev, upper_
→˓bounds

Return the updated problem instances and bounds.

Output

All functions related to output are in the file output.py in the urbs directory. All outputs are saved to
the result directory which is created by the function prepare_result_directory().

Terminal Output

The terminal output consists of information about which models are created, the normal’s objective (if
the normal is run) and information about each iteration of the bender’s loop (if decomposition is run).
If both are run, it also contains the difference between the normal’s and the master’s objective. The
functions to output information about the benders loop are:

• create_benders_output_table() and create_benders_output_table_sddp()
to write the headline

• update_benders_output_table() and update_benders_output_table_sddp()
to output the information about the iteration.

The terminal output can be saved to a file terminal-scenario_name.out by setting the option
save_terminal_output to True.

114 Chapter 1. Contents

urbs Documentation, Release 0.7

Here you can see the terminal output of Divide Timesteps. Information is printed about the masters
future costs (Master Eta), the sum of the sub problems Lambda (Sub Lambda), the lower and upper
bound, the gap between them, and the master objective which is equal to the lower bound. Additionally
the output informs you if the upper bound is not updated and what constraint was violated.

This is the terminal output of Regional where the option print_omega is set to True. If this option is
set, the sum of the sub problems omega variable is printed. You can see that it is set to zero every five
iterations. Otherwise the output is equal to the output of Divide Timesteps.

Also you can see that the terminal output informs you if cuts are skipped for any sub problems which is
a sign that it gets close to convergence.

Finally, this is the terminal output of SDDP, which is slightly different as it gives information about the

1.2. Technical documentation 115

urbs Documentation, Release 0.7

average and the standard deviation of the last ten upper bounds which are relevant for the convergence
of SDDP.

.h5 files

The .h5 files contain all information about the pyomo models except the equations. They are saved in
the sub directory h5_files and they can be inspected in python using the function urbs.load().
Additionally one can choose to save .h5 files of intermediate steps every x iterations by using the option
save_h5_every_x_iterations.

.lp files

If the option save_lp_files is set to True, the .lp files are saved in the sub directory lp_files.
This feature is meant for debugging only, because it incurs a large overhead in terms of working memory
and a smaller overhead in terms of run time. The .lp files, similar to the .h5 files, contain information
about the model, but including the equations. They can be opened in a standard text editor or can directly
be used by a solver (e.g. gurobi). Additionally one can choose to save .lp files of intermediate steps every
x iterations by using the option save_h5_every_x_iterations.

Convergence Plot

If decomposition is done, the convergence of the upper and lower bound is shown in the file
bounds-scenario_name.png. This plot is created with the function plot_convergence().

Scenario Comparison Excel

The file scenario-comparison.xlsx contains concise information about the benders loop con-
vergence for each scenario. The data for one scenario is appended to the excel with the function
append_df_to_excel().

Tracking file

If the option save_hardware usage is set to True, the file scenario_name-tracking.txt
contains information about the memory and CPU percentage currently used and about the CPU time and
real time used so far. This information is saved after solving the original problem and after each iteration
of the benders loop. The tracking file is created with the method create_tracking_file() and
updated with the method update_tracking_file().

Log Files

The log file of the solver for each scenario is saved in the file scenario_name.log.

116 Chapter 1. Contents

urbs Documentation, Release 0.7

Plotting and Reporting

If the option plot_and_report is set to True, reporting (implemented in report.py) creates an
excel output file and plotting (implemented in plot.py) a standard graph. Refer to the sections Plotting
and Reporting.

Warning: Plotting and Reporting is so far only supported for the original problem (no decomposi-
ton method). If the option plot_and_report is True, the decomposition method is not None, and
run_normal is True, Plotting and Reporting will be done for the normal (not decomposed) prob-
lem. If plot_and_report is True, the decomposition method is not None, and run_normal is
False, the program will crash!

Benders Functions

The file benders.py contains two helper functions for the Benders loop:

• get_production_cost() calculates the cost of the capacity that needs to be installed addi-
tionally to the already installed capacities in the master problem to satisfy the maximal demand in
all sub problems (used in Divide Timesteps and SDDP).

• convergence_check() updates the lower bound and the upper bound of the benders loop:

def convergence_check(master, subs, upper_bound, costs, decomposition_
→˓method):

""" Convergence Check

Args:
master: a Pyomo ConcreteModel Master instance
subs: a Pyomo ConcreteModel Sub instances dict
upper_bound: previously defined upper bound
costs: extra costs calculated by get_production_cost()
decomposition_method: The decomposition method which is used.

→˓Must be in ['divide-timesteps', 'regional', 'sddp']

Returns:
GAP = Dual Gap of the Bender's Decomposition
Zdo = Lower Bound
Zup = Upper Bound

Example:
>>> upper_bound = float('Inf')
>>> master_inst = create_model(data, range(1,25), type=2)
>>> sub_inst = create_model(data, range(1,25), type=1)
>>> costs = get_production_cost(...)
>>> convergence_check(master_inst, sub_inst, Zup, costs)

"""
lower_bound = master.obj()

First the lower bound is set to the current master objective. The optimal solution has to cost at
least as much as the current objective for the following reasons:

– The master problem objective consists of the costs of a part of the variables (the capacities)
which it can optimize and a cost term given by the sub problems which is treated as constant.

1.2. Technical documentation 117

urbs Documentation, Release 0.7

– The cost term the master problem can optimize can only get higher in later iterations, because
more constraints can be added to the master problem, but no constraints can be removed.

– The costs given by the sub problems can only get higher, because the bounds the sub prob-
lems receive from the master problem can only get tighter as the master problem acquires
more cuts.

new_upper_bound = 0.0

for inst in subs:
new_upper_bound += sum(subs[inst].costs[ct]() for ct in master.

→˓cost_type)

if decomposition_method in ['divide-timesteps','sddp']:
new_upper_bound += master.obj() - sum(master.eta[t]() for t in

→˓master.tm) + costs
elif decomposition_method == 'regional':

new_upper_bound += master.obj() - sum(master.eta[s]() for s in
→˓master.sit) + costs
else:

raise Exception('Invalid decomposition Method')

A solution is calculated for the current iteration in new_upper_bound. This solution is the sum
of the sub problems costs, the costs (these are the costs of the capacity the master has to install to
satisfy the maximum capacity needed by any sub problem) and the master objective minus the eta
variables of the master objective which are the sub problem costs of the previous iteration.

upper_bound = min(upper_bound, new_upper_bound)

The upper bound is calculated by taking the current best solution (the minimum between the old
best solution (upper_bound) and the new solution (new_upper_bound)). Obviously the
best solution is at least as good as the best solution known so far.

gap = upper_bound - lower_bound

return gap, lower_bound, upper_bound

Update the gap and return the new values for lower bound, upper bound and gap.

Parallelization

The module urbs.parallelization allows to solve several sub problems in parallel using the
python module Pyro. This section explains its main functions.

def start_pyro_servers(number_of_workers=None, verbose=False, run_
→˓safe=True):

"""
Starts all servers necessary to solve instances with Pyro. All servers

→˓are started as daemons, s.t. if the main thread terminates or aborts,
→˓the servers also shutdown.

Args:
number_of_workers: number of workers which are started. Default

→˓value is the number of cores.
verbose: If False output of the servers is suppressed. This is

→˓usually desirable to avoid spamming the console window. (continues on next page)

118 Chapter 1. Contents

urbs Documentation, Release 0.7

(continued from previous page)

run_safe: If True a safety check is performed which ensures no
→˓other program using pyro is running.

Returns: list of processes which have been started so that they can
→˓later be shut down again

"""
from multiprocessing import Process
safety check to ensure no program using pyro is currently running
if run_safe:

pyro_safety_abort(run_safe=run_safe)
launch servers from code
process_list = []
name server
p = Process(target=start_name_server,kwargs={'verbose':verbose})
p.daemon = True
process_list.append(p)
p.start()
dispatch server
p = Process(target=start_dispatch_server,kwargs={'verbose':verbose})
p.daemon = True
process_list.append(p)
p.start()
workers
if number_of_workers is None:

from multiprocessing import cpu_count
number_of_workers = cpu_count()

for i in range(0, number_of_workers):
p = Process(target=start_pyro_mip_server,kwargs={'verbose':verbose}

→˓)
p.daemon = True
process_list.append(p)
p.start()

wait shortly to give servers time to start
time.sleep(5)
return process_list

The function start_pyro_servers() starts up all required servers (name sever, dispatch server
and workers). It does this by creating a daemon process (process automatically terminates when main
program terminates) for each server and starting it using the functions start_name_server(),
start_dispatch_server() and start_pyro_mip_server(). It then returns a list of all
processes started by these functions. All these functions are pretty simple and are not discussed in
detail. With the parameter number_of_workers we can pass how many worker servers we desire.
If it is not specified it is set to the number of cores by default. The option verbose is False by default,
as it is usually desirable to keep the console clear of the servers output which makes the output a bit
obscure. If the option run_safe is set to True, the function pyro_safety_abort() is run.

def pyro_safety_abort():
"""
Check if there is a pyro name server running, which indicates that

→˓another program using pyro might be running.
This might lead to unexpected behaviour, unexpected shutdowns of some

→˓of the servers or unexpected crashes in any of the programs.
To avoid problems the program which called this function fails with an

→˓Exception.
"""

(continues on next page)

1.2. Technical documentation 119

urbs Documentation, Release 0.7

(continued from previous page)

import Pyro4
try:

Pyro4.locateNS()
except:

return
raise Exception(

'A Pyro4 name server is already running,'
' this indicates that other programs using Pyro are already

→˓running,'
' which might lead to crashes in any of the programs.'
' To avoid this, this program is aborted.'
' If you want to run anyway, put run_safe to False and run

→˓again.')

This function is a simple check if other programs are running which also use Pyro by checking if a
pyro name server is already up. If another program is indeed using Pyro this could lead to unexpected
behaviour or crashes. If you are sure no other program is using Pyro, but a name server is running
anyway, you can either try to shutdown the nameserver or set the option run_safe to False. The last
option is not recommended.

The function solve_parallel() needs to be called to solve several sub problems in parallel:

def solve_parallel(instances, solver, verbose=False):
"""
Solves pyomo model instances in parallel using pyro

Args:
instances: instances dict
solver: solver to be used for the problems
verbose: If False output of the clients is suppressed. This is

→˓usually desirable to avoid spamming the console window.

Returns:
A list of the solver results

"""
if not verbose:

create a text trap and redirect stdout
oldstdout = sys.stdout
text_trap = io.StringIO()
sys.stdout = text_trap

from pyomo.opt.parallel import SolverManagerFactory

solver_manager = SolverManagerFactory('pyro')
if solver_manager is None:

print("Failed to create solver manager.")
sys.exit(1)

action_handle_map = {} # maps action handles to instances
for i, inst in enumerate(instances):

action_handle = solver_manager.queue(instances[inst], opt=solver,
→˓tee=False)

action_handle_map[action_handle] = "inst_{}".format(i)

retrieve the solutions

(continues on next page)

120 Chapter 1. Contents

urbs Documentation, Release 0.7

(continued from previous page)

results = []
for i in range(0, len(instances)): # we know there are two instances

this_action_handle = solver_manager.wait_any()
results.append(solver_manager.get_results(this_action_handle))

if not verbose:
now restore stdout function
sys.stdout = oldstdout

return results

The function works by setting up the SolverManagerFactory using Pyro. It then associates
each instance with an action handle which it needs to retrieve the results after solving. The function
returns the solved instances. The option verbose is set to False by default, because the output of the
SolverManagerFactory is usually not relevant.

def shutdown_pyro_servers(process_list):
"""
Terminates all processes in process_list

Args:
process_list: processes to be terminated

"""
shutdown servers
for p in process_list:

p.terminate()

Finally the method shutdown_pyro_servers() shuts down the servers if given the process list
returned by start_pyro_servers() as input.

Model Class Structure

This section explains how the models are grouped into different classes in the decomposition branch. It
also highlights the differences between the decomposition models and the original model. To understand
this section you should be familiar with the original model. If this does not apply to you, you should
have a look at the sections Overview and perhaps Mathematical Documentation first.

Depending on which of the decomposition methods is used, the models look slightly different.

This is organized in a class structure as follows:

1.2. Technical documentation 121

urbs Documentation, Release 0.7

This graphic shows the classes and their inheritance. Classes in a lower level inherit from the classes in
the level above if they are connected by an arrow.

• ModelSuper: Abstract class which unifies the model parts and constraint rules which are the same
for all models. It inherits from pyomo.ConcreteModel.

• Normal: The urbs model if no decomposition method is used.

• DivideTimestepsSuper, RegionalSuper, SddpSuper: Abstract classes which contain the model
parts which are the same for master and sub problems of the respective decomposition method.

• DivideTimestepsMaster, RegionalMaster, SddpMaster: The models for the master instance of the
respective decomposition method.

• DivideTimestepsSub, RegionalSub, SddpSub: The models for the sub instances of the respective
decomposition method.

It is possible to create instances of the master, sub and normal classes. Instances of the super classes
make no sense by themselves and therefore the classes are abstract.

General Model Structure

For an overview over what kind of sets, variables, parameters and equations can be set in the model see
Overview and Mathematical Documentation for more in depth explanations. Buy/Sell, Startup and de-
mand site management features are not supported in the decomposition branch as of now. The modelling
ideas which are common to all decomposition methods (and different or new compared to the normal
model) are explained in the following sections. To understand what the specifics of each decomposition
method are, key differences between them and the normal model are explained in the sections Divide
Timesteps Model, Regional Model and SDDP Model.

Common concepts of decomposition methods

This section explains the parts of decomposition which are the same for all three methods, but differ-
ent from the normal. In brief, all decomposition methods have a master problem which optimizes the
overall costs. The master problem outsources some of its variables and therefore costs (eta or future
costs) to the sub problems and imposes constraints on these problems. The goal of each sub problem
is to minimize the violation of these constraints to eventually bring them down to zero. The constraint
violation is given by the term Lambda times omega. This, at the same time, optimizes the costs of
the sub problems, because one of the constraints given by the master problem is on the sub problems
costs. If the sub problem cannot fulfill the constraints given by the master problem, it generates a cut
for the master problem, which “informs” the master problem that the constraints are too tight. In the
next iteration the master problem calculates a new solution with new constraints that consider the new
information given by the cuts.

Sets, Variables, Parameters and Expressions

• Master objective: The master objective is to minimize the costs of the master problem, which are
equal to the overall costs.

• Sub and master costs: The costs of the sub problems and the master problem are slightly different
for each decomposition method, depending on which costs incur in which problem.

122 Chapter 1. Contents

urbs Documentation, Release 0.7

• eta/future costs: The variable eta in the master describes the future cost for each sub problem
(the cost that the subproblem is expected to have). The sub problems have a variable eta_res
(restriction on eta) which is equal to the variable eta from the same iteration in the master. SDDP
is an exception here, because the master problem can only communicate with the first sub problem,
so every sub problem has its own eta variable which sets the restriction eta_res for the next
sub problem.

• Lambda: The master problem imposes constraints on the sub problems. The Lambda variable
of the sub problem is the maximal violation of any such constraints. The sub problems objective
is to minimize Lambda. If Lambda is zero, this means that the sub problem does not violate any
constraints from the master problem. This also means that the sub problem does not contribute a
new cut to the master problem. If Lambda is zero for all sub problems, no further cuts are added
to the master problem, so the feasible region of the master problem is known and an optimal
solution can be found.

• omega: (𝜔, 𝜔0)
𝑇 is called the cost vector. The constraint on the costs of the sub problem may be

violated by no more than omegazero times Lambda, while a constraint on any other variable
may be violated by no more than omega times Lambda. This approach allows the sub problems
to generate cuts which are close (facet cuts) to the feasible solution area of the master problem
and thus lead to relatively fast convergence. For Divide Timesteps and SDDP we fix both omega
and omegazero to one which leads to promising results. For regional we also choose both to
be one, but every five iterations, we set omega to zero. This has the effect that the sub problems
are forced to not make relaxing assumptions which in turn leads to the sub problems using the
expensive slack power plants and not assumed transmissions from other sites. This results in a
faster estimation of an upper bound.

• dual: If dual is true, the dual variable of the pyomo model is set such that the dual variables
are saved.

• Capacity rules and parameters: The capacity constraints have a special form: 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 <=
𝑐𝑎𝑝𝑛𝑒𝑤 + 𝑐𝑎𝑝𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 + 𝑐𝑎𝑝𝑟𝑒𝑙𝑎𝑥. The advantage of these constraints are that they can be used in
the normal, master and sub models by setting the involved parameters and expressions correctly.
E.g. for the normal model cap_relax is zero, so that the capacity is equal to the installed ca-
pacity plus the new capacity. To be more exact this holds for all models which are allowed to
expand the capacities. These are the normal model as well as all master models and the regional
sub models. In sub problems of Divide Timesteps and SDDP on the other hand, the new capacity
and the installed capacity are set to the values of the master problem as only the master prob-
lem is allowed to expand capacities. The parameter cap_relax though is set to omega times
Lambda, because the sub problems are allowed to violate constraints by this amount.

Rules

• Objective Rules: The objective rules are the same for all decomposition methods. The master
optimizes its cost and the sub problem optimize their Lambda variable.

• def_capacity_rules: Explained in detail in Sets, Variables, Parameters and Expressions

• def_capacity_l_rule: The lower capacity rule is used in Divide Timesteps and SDDP and
forces sub problems to have at least a certain amount of capacity in the beginning. Although this
rule seems not intuitive, it is necessary, because even if the sub problem does not need the capacity
for itself it still needs to pay the running costs if it is installed.

1.2. Technical documentation 123

urbs Documentation, Release 0.7

Functions

• Cut generation: The sub problems generate cuts for the master problem (Divide Timesteps, Re-
gional) or the previous problem (SDDP). Cut generation is different for each of the methods.

• Set boundaries: The method set_boundaries() is used to set a restriction variable in the sub
problem (e.g. eta_res) to the corresponding value in the master problem (e.g. eta).

• Wrapper methods: There are a couple of methods that provide a wrapper for the underlying
pyomo.ConcreteModel: get_attribute(), get_attribute_at(), get_cost()
and get_duals() which are pretty self explanatory from the doc strings. There’s also a method
solve() which can be called in the way model.solve(solver).

Divide Timesteps Model

This part of the documentation explains the parts of the Divide Timesteps model which are different to
the normal model.

Sets, Variables, Parameters and Expressions

• support_timesteps: The support time steps are defined as a set in both the master and the
sub problems, and give the time steps at which the original problem is split into sub problems.

• e_co_stock_res defines the restrictions on the stock commodity for the sub problems.

Rules

• def_costs_rule:

– The costs of the master problem are the investment costs and fix costs for all capacity vari-
ables plus the sum of costs of all sub problems, which are stored in FutureCosts.

– The costs of the sub problem consists of the three cost types not accounted for in the master
problem. These are variable costs, which are costs varying with the usage of commodities,
fuel costs, which depend on the use of stock commodities, and environmental costs, which
depend on the use of taxed environmental commodities. Also compare with Cost Variables
(though not all cost variables of the master branch are supported yet).

• res_storage_state_by_capacity_rule: This rule is the same as in the normal, except
that the constraints for the support steps in the sub problems are skipped, because they are also
included in the master problem and the constraint is enforced there.

• res_co2_generation_rule/res_global_co2_limit_rule: Make sure that the
master and the sub problems respectively don’t pass the global CO2 limit.

• sub_costs_rule: Assures that the costs of the sub problems cannot be higher than the restric-
tion on costs given by the master problem plus omega times Lambda.

• sub_commodity_source: This rule enforces that the sub problems cannot use more of a
stock commodity than allowed by the restriction e_co_stock_res plus the relaxing expression
omega times Lambda.

124 Chapter 1. Contents

urbs Documentation, Release 0.7

Functions

Cut Generation

This section explains the function add_cut() in the Divide Timesteps Master in detail.

def add_cut(self, cut_generating_problem, readable_cuts=False):
"""
Adds a cut to the master problem, which is generated by a sub problem

Args:
cut_generating_problem: sub problem which generates the cut
readable_cuts: scale cuts to make them easier to read (may cause

→˓numerical issues)
"""
if cut_generating_problem.Lambda() < 0.000001:

print('Cut skipped for subproblem ' + str(cut_generating_problem)
→˓+ ' (Lambda = ' + str(

cut_generating_problem.Lambda()) + ')')
return

First, check if Lambda is very close to zero. If Lambda is zero, this means that the sub problem does
not violate any constraints passed to it by the master problem. This in turn means that the sub problem
yields a feasible solution and does not add a new constraint to the master problem. In this case we don’t
add a cut and simply return.

dual variables
multi_index = pd.MultiIndex.from_tuples([(t,) + sto

for t in self.t
for sto in self.sto_tuples],

names=['t', 'sit', 'sto', 'com'])
dual_sto = pd.Series(0, index=multi_index)
dual_sto_help = get_entity(cut_generating_problem, 'res_initial_and_final_
→˓storage_state')
dual_sto = dual_sto.add(-abs(dual_sto_help.loc[[cut_generating_problem.
→˓ts[1]]]), fill_value=0)
dual_sto = dual_sto.add(abs(dual_sto_help.loc[[cut_generating_problem.ts[-
→˓1]]]), fill_value=0)

Next, we initialize the dual variables. For every constraint the corresponding dual variable states how
much the objective would change if the constraint is changed by one. Note that this means the duals are
not really variables (in the mathematical sense), but rather fixed rational numbers. The storage constraint
dual is made negative for the first time step of the cut generating (sub) problem, because increasing the
storage available in the beginning would decrease the objective function. Similar the dual is made
positive for the last time step of the cut generating problem, because increasing the storage which needs
to be left at the end of the cut generating problem would increase the objective function.

dual_pro = get_entity(cut_generating_problem, 'def_process_capacity')
dual_tra = get_entity(cut_generating_problem, 'def_transmission_capacity')
dual_sto_cap = get_entity(cut_generating_problem, 'def_storage_capacity')
dual_sto_capl = get_entity(cut_generating_problem, 'def_storage_capacity_l
→˓')
dual_sto_pow = get_entity(cut_generating_problem, 'def_storage_power')
dual_com_src = get_entity(cut_generating_problem, 'sub_commodity_source')
dual_env = get_entity(cut_generating_problem, 'res_global_co2_limit')

(continues on next page)

1.2. Technical documentation 125

urbs Documentation, Release 0.7

(continued from previous page)

dual_zero = cut_generating_problem.dual[cut_generating_problem.sub_costs]
Lambda = cut_generating_problem.Lambda()

Next, we initialize all other dual variables. For every constraint there is exactly one dual. Note that
one rule can describe more than one constraint and in turn the corresponding dual variable is actually
a vector of dual variables. As an example consider def_process_capacity. This rule defines
a constraint for each process which means dual_pro contains one dual variable for every one of
these constraints. In Divide Timesteps there are the capacity constraints, the commodity constraint
(sub_commodity_source), the CO2 constraint (res_global_co2_limit) and the cost con-
straint. To generate the cut we also need the value of Lambda for the cut generating problem.

cut_expression = - 1 * (sum(dual_pro[pro] * self.cap_pro[pro] for pro in
→˓self.pro_tuples) +

sum(dual_tra[tra] * self.cap_tra[tra] for
→˓tra in self.tra_tuples) +

sum((dual_sto_cap[sto] - dual_sto_
→˓capl[sto]) * self.cap_sto_c[sto] for sto in self.sto_tuples) +

sum(dual_sto_pow[sto] * self.cap_sto_
→˓p[sto] for sto in self.sto_tuples) +

sum([dual_sto[(t,) + sto] * self.e_sto_
→˓con[(t,) + sto]

for t in self.t
for sto in self.sto_tuples]) +

sum([dual_com_src[com] * self.e_co_
→˓stock[(cut_generating_problem.tm[-1],) + com]

for com in self.com_tuples if
com[1] in self.com_stock
and not math.isinf(self.commodity.

→˓loc[com]['max'])]) +
sum([dual_env[0] * self.e_co_stock[(cut_

→˓generating_problem.tm[-1],) + com]
for com in self.com_tuples
if com[1] in self.com_env]) +

dual_zero * self.eta[cut_generating_
→˓problem.tm[-1]])

With the dual variables we can generate the cut expression: The cut expression is the sum of all dual
variables times the corresponding variables in the master instance. This reflects that by increasing one
variable in the master instance (e.g. a process: cap_pro[pro]) the objective function of the sub
problem would change by the corresponding dual (e.g. dual_pro[pro]). As increasing the capacity
would decrease the objective function and decreasing it would increase the objective function we have
to multiply by minus one. The same holds for the constraints on commodities, CO2 and costs (allowing
for more commodities/CO2/costs, decreases the objective function).

cut generation
if readable_cuts and dual_zero != 0:

cut = 1 / (-dual_zero) * cut_expression >= 1 / (-dual_zero) * (Lambda
→˓+ cut_expression())
else:

cut = cut_expression >= Lambda + cut_expression()
self.Cut_Defn.add(cut)

The cut expression can be evaluated (with cut_expression()) for the current variables in the master
problem. We know that using the current values of the master variables the sub problem cannot be solved

126 Chapter 1. Contents

urbs Documentation, Release 0.7

without violating at least one constraint by Lambda (because the sub problem minimizes Lambda).
This implies that in future iterations the cut expression has to be at least the evaluated cut expression
plus Lambda for the sub problem to become feasible (Lambda is (almost) zero). This is the cut we add
to the master problem.

If readable_cuts is True we multiply both sides by one divided through minus dual_zero, which
corresponds to down scaling both sides with the negative of the dual of the sub problem costs. This
gives a different representation of the cuts which is helpful to their mathematical interpretation. On the
other hand it can lead to numerical problems, because a multiplication with a very small number could
happen,so the feature is turned off by default.

Regional Model

This part of the documentation explains the parts of the regional model which are different to the normal
model. A special case within the regional model is a sub problem with its own specified file. This
sub problem then has its own sub sub problems for which it can set restrictions. Also the sub problem
with input file has to handle the problem of managing its transmissions, because the master problem is
oblivious to the different regions.

Modelling a region with input file

When modelling one or even several of the regions with their own input file, the transmission efficien-
cies 𝑒𝑎𝑓 have to be set carefully to avoid discrepancies in the model. The source of discrepancies is that
the master model M has an efficiency between two sub regions A and B. Now, if A and/or B have their
own input file, they can assign efficiencies between their sub sites (a1, a2, b1, b2,. . .) and other regions
(A,B,C,. . .) as well. When we look at one single transmission line, arithmetic operations with the effi-
ciency happens at three points (also compare with Rules). The variables e_tra_in and e_tra_out
are abbreviated with their mathematical symbols 𝜋model,in

𝑎𝑓𝑡 and 𝜋model,out
𝑎𝑓𝑡 (compare Mathematical Docu-

mentation) in the following.

1. In the region the transmission line starts (lets say A), the res_export_rule (or
sub_e_tra_rule if A does not have its own input file) uses e_tra_out which is an implicit
multiplication with the efficiency 𝑒A

𝑎𝑓 given in A (by the transmission_output_rule) as:

𝜋A,out
𝑎𝑓𝑡 = 𝜋A,in

𝑎𝑓𝑡 · 𝑒A
𝑎𝑓

2. The very same rule compares e_tra_out with e_tra_out_res (𝜋A,out,res
𝑎𝑓𝑡) which implies a

division through the efficiency given in the master problem 𝑒M
𝑎𝑓 , because e_tra_out_res is

passed by the master problem, where it is calculated from e_tra_in. We can consider this as a
division, because:

𝜋A,out
𝑎𝑓𝑡 ≥ 𝜋A,out,res

𝑎𝑓𝑡 + 𝜆𝜔

𝜋A,out
𝑎𝑓𝑡 ≥ 𝜋M,out

𝑎𝑓𝑡 + 𝜆𝜔

𝜋A,out
𝑎𝑓𝑡 ≥ 𝜋M,in

𝑎𝑓𝑡 · 𝑒M
𝑎𝑓 + 𝜆𝜔

𝜋A,out
𝑎𝑓𝑡

𝑒M
𝑎𝑓

≥ 𝜋M,in
𝑎𝑓𝑡 +

𝜆𝜔

𝑒M
𝑎𝑓

3. Finally at the end of the transmission line (in B), a multiplication with the efficiency 𝑒B
𝑎𝑓 given in

B happens by the transmission_output_rule:

𝜋B,out
𝑎𝑓𝑡 = 𝜋B,in

𝑎𝑓𝑡 · 𝑒
B
𝑎𝑓

1.2. Technical documentation 127

urbs Documentation, Release 0.7

and further, because e_tra_in in B comes from e_tra_in_res in B which is passed by the
master considering the res_import_rule (or sub_e_tra_rule if B does not have its own
input file):

𝜋B,out
𝑎𝑓𝑡 = 𝜋B,in

𝑎𝑓𝑡 · 𝑒
B
𝑎𝑓

𝜋B,out
𝑎𝑓𝑡 ≤ (𝜋B,in,res

𝑎𝑓𝑡 + 𝜆𝜔) · 𝑒B
𝑎𝑓

𝜋B,out
𝑎𝑓𝑡 ≤ (𝜋M,in

𝑎𝑓𝑡 + 𝜆𝜔) · 𝑒B
𝑎𝑓

Considering the equations after convergence of the benders loop, Lambda is zero and the inequalities
are equalities. Combining the equations from 1. and 2. and 3. gives:

𝜋B,out
𝑎𝑓𝑡 = 𝜋A,in

𝑎𝑓𝑡 ·
𝑒A
𝑎𝑓 · 𝑒B

𝑎𝑓

𝑒M
𝑎𝑓

When modeling with sub input files this equation should be kept in mind. Also keep in mind that the
sub problems without input file have the same efficiency as the master problem and the fraction can be
reduced.

Sets, Variables, Parameters and Expressions

• e_co_stock_res defines the restrictions on the stock commodity for the sub problems. In
regional this is only relevant for the CO2 restriction.

• e_tra_in_res defines the restrictions on incoming transmissions for the sub problems.

• e_tra_out_res defines the restrictions on outgoing transmissions for the sub problems.

• hvac: This parameter gives the current capacity of ingoing transmissions from one site to another.
It is needed for the res_hvac_rule for sub problems with input files (see Rules).

• Sub with input file:

– e_import_res, e_export_res: The restrictions on import and export for the sub
problem.

– cap_tra, cap_tra_new: Like the master problem the sub problem needs to be able to
install transmission lines between its own sub problems.

Rules

• def_costs_rule

– Master: The costs of the master problem consist of the transmission costs (Investment, Fixed
and Variable) and the sum of the sub problems costs, which are stored in FutureCosts.

– Sub without file: The sub problems cost consist of all costs except transmission within its
site. This includes Investment, Fixed, Variable, Fuel and Environmental costs.

– Sub with file: If the sub has a specified input file it has the same costs as a sub problem with-
out input file, but in addition it has the Investment, Fixed and Variable costs for transmissions
between its own sub sites.

• sub_costs_rule: Assures that the costs of the sub problem cannot be higher than the restric-
tion on costs given by the master problem plus omega times Lambda.

128 Chapter 1. Contents

urbs Documentation, Release 0.7

• res_global_co2_limit_rule:

– Master problem: Makes sure that global CO2 limit is not violated.

– Sub problems: Assure that sub problems can only violate their CO2 restriction given by the
master by at most omega times Lambda

• hvac_rule: Initializes the parameter hvac.

• Sub without file only:

– sub_e_tra_rule: Assures that the sub problem can not import more than the restriction
given by the master problem plus omega times Lambda. Also assures that the problem has
to export at least as much as given by the master problem minus omega times Lambda.

• Sub with file only:

– res_hvac_rule: Makes sure that the sum of transmission capacities going out from the
sub sites of the current sub problem C to another sub problems site S are not more than the
transmission capacity between C and S in the master problem plus omega times Lambda.

– res_export_rule, res_import_rule: Similar to res_hvac_rule, these rules
make sure that the sum of export/import from the sub sites of the current sub problem C
to another sub problem site S match the export/import between C and S determined in the
master problem. They are allowed to vary by a factor of omega times Lambda.

Functions

Cut Generation

This section explains the function add_cut() in the Regional Master in detail.

def add_cut(self, cut_generating_problem, sub_in_input_files):
"""Adds a cut, which is generated by a subproblem, to the master

→˓problem

Args:
cut_generating_problem: sub problem instance which generates the

→˓cut
sub_in_input_files: If true, the cut generating problem is in the

→˓list of filenames to Excel spread sheets for sub regions
"""
if cut_generating_problem.Lambda() < 0.000001:

print('Cut skipped for subproblem ' + cut_generating_problem.sub_
→˓site[1] +

' (Lambda = ' + str(cut_generating_problem.Lambda()) + ')')
return

First, check if Lambda is very close to zero. If Lambda is zero, this means that the sub problem does
not violate any constraints passed to it by the master problem. This in turn means that the sub problem
yields a feasible solution and does not add a new constraint to the master problem. In this case we don’t
add a cut and simply return.

subproblem with input file
if sub_in_input_files:

dual variables

(continues on next page)

1.2. Technical documentation 129

urbs Documentation, Release 0.7

(continued from previous page)

dual_imp = get_entity(cut_generating_problem, 'res_import')
dual_exp = get_entity(cut_generating_problem, 'res_export')
dual_cap = get_entity(cut_generating_problem, 'res_hvac')
dual_env = get_entity(cut_generating_problem, 'res_global_co2_limit')
dual_zero = cut_generating_problem.dual[cut_generating_problem.sub_

→˓costs]
Lambda = cut_generating_problem.Lambda()

The cuts look different depending on whether the cut generating problem has its own input file. First, we
look at the case of the problem having its own input file. We initialize the dual variables, which say how
much the objective function changes when a constraint changes. For every constraint there is exactly
one dual. Note that one rule can describe more than one constraint and in turn the corresponding dual
variable is actually a vector of dual variables. As an example consider res_import. This rule defines
a constraint for each transmission line which means dual_imp contains one dual variable for every
one of these constraints. In the case of a sub problem with its own input file there are constraints on the
import, export, transmission capacity (res_hvac), CO2 and the costs. We also need the sub problems
variable Lambda.

cut_expression = - 1 * (sum([dual_imp[tm, tra[0]] * self.e_tra_in[(tm,) +
→˓tra]

for tm in self.tm
for tra in self.tra_tuples
if tra[1] == cut_generating_problem.sub_

→˓site[1]]) -
sum([dual_exp[tm, tra[1]] * self.e_tra_out[(tm,

→˓) + tra]
for tm in self.tm
for tra in self.tra_tuples
if tra[0] == cut_generating_problem.sub_

→˓site[1]]) +
sum([dual_cap[tra[0]] * self.cap_tra[tra]

for tra in self.tra_tuples
if tra[1] == cut_generating_problem.sub_

→˓site[1]]) +
sum([dual_env[0] * self.e_co_stock[(tm,) + com]

for tm in self.tm
for com in self.com_tuples
if com[0] == cut_generating_problem.sub_

→˓site[1] and com[1] in self.com_env]) +
dual_zero * self.eta[cut_generating_problem.

→˓sub_site[1]])

With the dual variables we can generate the cut expression: The cut expression is the sum of all dual
variables times the corresponding variables in the master instance. This reflects that by increasing one
variable in the master instance (e.g. the incoming transmission at a timestep: e_tra_in[(tm,)
+ tra]) the objective function of the sub problem would change by the corresponding dual (e.g.
[dual_imp[tm, tra[0]]). As increasing the incoming transmission would decrease the objec-
tive function and decreasing it would increase the objective function we have to multiply by minus one.
The same holds for the constraints on transmission capacity, CO2 and costs. On the other hand if we
increase export, the objective function increases, hence the minus before the sum over all exports.

else:
dual variables
dual_tra = get_entity(cut_generating_problem, 'sub_e_tra')

(continues on next page)

130 Chapter 1. Contents

urbs Documentation, Release 0.7

(continued from previous page)

dual_env = get_entity(cut_generating_problem, 'res_global_co2_limit')
dual_zero = cut_generating_problem.dual[cut_generating_problem.sub_

→˓costs]
Lambda = cut_generating_problem.Lambda()

If the cut generating sub problem has no input file, we only have constraints on transmissions (in- and
outgoing transmissions are both in the rule sub_e_tra), CO2 and costs.

cut generation
cut_expression = - 1 * (sum([dual_tra[(tm,) + tra] * self.e_tra_in[(tm,) +
→˓tra]

for tm in cut_generating_problem.tm
for tra in cut_generating_problem.tra_tuples
if tra[1] in cut_generating_problem.sub_

→˓site]) -
sum([dual_tra[(tm,) + tra] * self.e_tra_out[(tm,)

→˓+ tra]
for tm in cut_generating_problem.tm
for tra in cut_generating_problem.tra_tuples
if tra[0] in cut_generating_problem.sub_

→˓site]) +
sum([dual_env[0] * self.e_co_stock[(tm,) + com]

for tm in cut_generating_problem.tm
for com in cut_generating_problem.com_tuples
if com[1] in cut_generating_problem.com_env])

→˓+
dual_zero * self.eta[cut_generating_problem.sub_

→˓site[1]])

Like before, we use this to generate the cut expression. Note that e_tra_in is split into import and
export, where import needs to be multiplied by minus one, while export is not.

cut = cut_expression >= Lambda + cut_expression()
self.Cut_Defn.add(cut)

The cut expression can be evaluated (with cut_expression()) for the current variables in the master
problem. We know that using the current values of the master variables the sub problem cannot be solved
without violating at least one constraint by Lambda (because the sub problem minimizes Lambda).
This implies that in future iterations the cut expression has to be at least the evaluated cut expression
plus Lambda for the sub problem to become feasible (Lambda is (almost) zero). This is the cut we add
to the master problem.

SDDP Model

This model explains the differences between the SDDP model and the normal model and also emphasizes
key differences to the Divide Timesteps model which is very similar to SDDP.

Sets, Variables, Parameters and Expressions

• support_timesteps: Determine at which time steps the original problem is split into sub
problems.

1.2. Technical documentation 131

urbs Documentation, Release 0.7

• com_max_tuples: A set of all stock and environmental variables which have a maximum
allowed usage amount.

• e_co_stock_state: This variable gives the usage of a stock commodity up to a time step.

• e_co_stock_state_res: This variable is a constraint on the state of a stock commodity at
the beginning of a sub problem given by the previous problem.

Rules

There are some additional or different rules in SDDP compared to Divide Timesteps. These rules are
there, to ensure the sub problems combined do not cross global restrictions on stock or CO2 , or other
constraints that cannot be enforced in the master problem like in Divide Timesteps where the master has
access to all support steps, but rather must be passed from sub problem to sub problem.

• def_costs_rule:

– Master: The master costs includes the investment and fixed costs for all capacity variables,
which can only be expanded in the master problem. If the first support step is not equal to
the first time step, the master problem also has to carry the variable costs, fuel costs and
environmental costs which occur in the time steps before the first support step. The cost of
the first sub instance is added in the future costs (this means the master also includes all sub
problem costs, because the first subproblems costs includes the costs of the second, the costs
of the second the costs of the third and so on).

– Subs: The costs of the sub problem consists of the three time dependent cost types. These
are variable costs, which are costs varying with the usage of commodities, fuel costs, which
depend on the use of stock commodities, and environmental costs, which depend on the use
of taxed environmental commodities. Also compare with Cost Variables (though not all cost
variables of the master branch are supported yet). Additionally it contains the cost of the
next sub problem in its future costs.

• res_storage_state_by_capacity_rule: Like in the original problem, except that in
the sub problems the constraint need not be enforced for the first time step, because the first
timestep is set by the previous problem.

• res_initial_storage_state_rule: Unlike the rule
res_initial_and_final_storage_state_rule in Divide Timesteps this rule is
only included in the master instance and makes sure that the initial storage state is correct.

• final_storage_state_rule: This rule makes sure that the final storage state is correct.

• sub_storage_content_rule: This rules assures that the storage content in the first
timestep of a sub problem obeys the storage content restriction given by the previous problem
up to a deviation of omega times Lambda.

• sub_com_generation_rule: This rule asserts that the stock state (e_co_stock_state,
the amount of stock used so far) is at least the stock state restriction minus omega times Lambda.

• com_total_rule: Asserts that the Env/Stock generation per site limitation is obeyed.

• com_state_rule: This rule asserts that the stock state in time step t is equal to the stock state
in time step t-1 plus the stock used in timestep t.

• global_co2_limit_rule: Asserts that the global CO2 limit is not exceeded.

132 Chapter 1. Contents

urbs Documentation, Release 0.7

• sub_costs_rule: Assures that the costs of the sub problem cannot be higher than the restric-
tion on costs given by the master problem plus omega times Lambda.

Functions

Cut Generation

There are two methods in SDDP for cut generation:

• add_cut() calculates the weighted cut between the cuts of the possible realizations.

def add_cut(self, realizations, cut_generating_problems, current_
→˓realized, probabilities):
"""
Adds a cut to this problem (in Sddp cuts can be added to both master
→˓and sub problems)

Args:
realizations: possible realizations (e.g. "low", "mid", "high")

→˓of the following supportsteps problem (= cut generating problems)
cut_generating_problems: the realizations of the sub problem in

→˓the next timestep which generate the cut
current_realized: realized instance of current problem
probabilities: probabilities of realizations

"""
cur_probs = {}
for cur_real in realizations:

if cut_generating_problems[cur_real].Lambda() > 0.0000001:
cur_probs[cur_real] = cut_generating_problems[cur_real]

else:
print('Cut skipped for subproblem ' + '(' + str(cut_

→˓generating_problems[cur_real].ts[1]) + ', ' + cur_real +
'), Lambda = ' + str(cut_generating_problems[cur_real].

→˓Lambda()))

First, we check if Lambda is very close to zero for any cut generating problem. If Lambda is
zero, this means that the realization of the sub problem does not violate any constraints passed to
it by the previous problem. This in turn means that the realization yields a feasible solution and
does not contribute to the weighted cut for the previous problem.

if len(cur_probs) > 0:
self.Cut_Defn.add(

sum(probabilities[cur_real] * self.get_cut_expression(cur_
→˓probs[cur_real])

for cur_real in cur_probs)
>= sum(probabilities[cur_real] *

(cur_probs[cur_real].Lambda() + current_realized.get_
→˓cut_expression(cur_probs[cur_real])())

for cur_real in cur_probs))

If there is at least one cut which has not been skipped, we generate the weighted cut for the current
problem. To obtain one cut we take the cut expression generated by get_cut_expression()
for each possible realization of the next timestep. We know that using the current values of the
current problems variables the problem in the next time step cannot be solved without violating
at least one constraint by Lambda (because the sub problem minimizes Lambda). This implies

1.2. Technical documentation 133

urbs Documentation, Release 0.7

that in future iterations the cut expression has to be at least the evaluated cut expression plus
Lambda for the sub problem to become feasible (Lambda is (almost) zero). Because we can only
evaluate the cut expression for the realized instance (we only know the values for the variables
of the instance we solved in the forward recursion), we use its cut expression as an approximate
substitute for all the realizations. To obtain the weighted cut we multiply each generated cut with
the realization’s probability on both sides and take their sum.

• get_cut_expression() creates the cut expression for the current realization generated by
one possible realization in the next time step.

def get_cut_expression(self, cut_generating_problem):
"""
Calculates the cut expression for one realization

Args:
cut_generating problem: the realization which generates the

→˓cut

Returns:
the generated cut expression

"""
multi_index = pd.MultiIndex.from_tuples([(t,) + sto

for t in cut_generating_
→˓problem.t

for sto in cut_
→˓generating_problem.sto_tuples],

names=['t', 'sit', 'sto',
→˓'com'])

dual_sto = pd.Series(0, index=multi_index)

dual_sto_help = get_entity(cut_generating_problem, 'sub_storage_
→˓content')

dual_sto = dual_sto.add(-abs(dual_sto_help.loc[[cut_generating_
→˓problem.ts[1]]]), fill_value=0)

We start with initializing the dual variables. For every constraint the corresponding dual variables
states how much the objective would change if the constraint is changed by one. Note that this
means the duals are not really variables (in the mathematical sense), but rather fixed rational
numbers. The storage constraint dual is made negative for the first time step of the cut generating
problem, because increasing the storage available in the beginning would decrease the objective
function. Unlike Divide Timesteps there is no constraint on the last time step of a sub problem,
because the master problem has no access to that time step.

dual_pro = get_entity(cut_generating_problem, 'def_process_capacity')
dual_tra = get_entity(cut_generating_problem, 'def_transmission_
→˓capacity')
dual_sto_cap = get_entity(cut_generating_problem, 'def_storage_
→˓capacity')
dual_sto_capl = get_entity(cut_generating_problem, 'def_storage_
→˓capacity_l')
dual_sto_pow = get_entity(cut_generating_problem, 'def_storage_power')
dual_com = get_entity(cut_generating_problem, 'sub_com_generation')
dual_zero = cut_generating_problem.dual[cut_generating_problem.sub_
→˓costs]

Next, we initialize all other dual variables. For every constraint there is exactly one dual. Note

134 Chapter 1. Contents

urbs Documentation, Release 0.7

that one rule can describe more than one constraint and in turn the corresponding dual variable is
actually a vector of dual variables. As an example consider def_process_capacity. This
rule defines a constraint for each process which means dual_pro contains one dual variable for
every one of these constraints. In SDDP there are the capacity constraints, the generation con-
straint (sub_com_generation), which unifies the commodity and environmental constraints,
and the cost constraint. To generate the cut we also need the value of Lambda for the cut gener-
ating problem.

cut_expression = - 1 * (sum(dual_pro[pro] * self.cap_pro[pro]
for pro in self.pro_tuples) +

sum(dual_tra[tra] * self.cap_tra[tra]
for tra in self.tra_tuples) +

sum((dual_sto_cap[sto] - dual_sto_capl[sto]) * self.
→˓cap_sto_c[sto]

for sto in self.sto_tuples) +
sum(dual_sto_pow[sto] * self.cap_sto_p[sto]

for sto in self.sto_tuples) +
dual_zero * self.eta)

cut_expression += -1 * (sum([dual_sto[(self.t[-1],) + sto] * self.e_
→˓sto_con[(self.t[-1],) + sto]

for sto in self.sto_tuples]) -
sum([dual_com[(self.t[-1],) + com] * self.e_co_

→˓stock_state[
(self.t[-1],) + com]
for com in self.com_tuples if com in self.com_

→˓max_tuples])
)

With the dual variables we can generate the cut expression: The cut expression is the sum of
all dual variables times the corresponding variables in the current instance. This reflects that by
increasing one variable in the current instance (e.g. a process: cap_pro[pro]) the objective
function of the sub problem would change by the corresponding dual (e.g. dual_pro[pro]).
As increasing the capacity would decrease the objective function and decreasing it would increase
the objective function we have to multiply by minus one. The same holds for the cost constraint,
while the generation constraint is not multiplied by minus one (or to be more precise in the im-
plementation it is subtracted and then multiplied by minus one, which is equivalent). This makes
sense, because the generation constraint says how much of the commodity has already been gener-
ated in the case of CO2 or used in the case of stock commodities. If the amount of CO2 generated
or stock commodities used increases the objective function increases.

return cut_expression

Return the generated cut expression.

Create Uncertainty

To introduce uncertainty in the data we use the function create_uncertainty_data() which
itself uses the function create_uncertainty_supim().

def create_uncertainty_data(self, data, factor):
"""
Change dataframe to include modified uncertain time series

(continues on next page)

1.2. Technical documentation 135

urbs Documentation, Release 0.7

(continued from previous page)

Args:
data: pandas DataFrame with original data
factor: float, between -1 and 1, which corresponds to the

→˓realization of the uncertainty

Returns:
pandas DataFrame with modified data

"""

get supim sheet
supim = data['supim']
new_data = data.copy()
new_supim = supim.copy(deep=True)
wind_supim = new_supim.xs('Wind', axis=1, level=1)
help_df = self.create_uncertainty_supim(wind_supim, factor)
help_df.columns = pd.MultiIndex.from_product([help_df.columns, ['Wind

→˓']])
new_supim.loc[:, (slice(None), 'Wind')] = help_df
new_data['supim'] = new_supim

return new_data

The uncertainty data is created by copying the old data, then introducing uncertainty using the func-
tion create_uncertainty_supim() for all desired supim time series (in this case only done for
wind). The in this way newly created supim data is inserted back into the data. How much uncertainty is
introduced is controlled by the passed factor and is passed on to create_uncertainty_supim().

def create_uncertainty_supim(self, supim, factor):
"""
create convex combination of supim time series for different scenarios

Args:
supim: pandas Series or DataFrame of supim time series of a

→˓specific commodity
factor: float, between -1 and 1, which corresponds to the

→˓realization of the uncertainty

Returns:
pandas Series or DataFrame with convex combination

"""
if factor < 0:

supim_convex = (1 - abs(factor)) * supim
elif factor > 0:

supim_convex = abs(factor) + (1 - abs(factor)) * supim
else:

supim_convex = supim

return supim_convex

This function manipulates a supim time series by taking a convex combination of the minimum or
maximum possible value depending on whether factor is negative or positive respectively. The minimum
value for any supim series is 0 and the maximum value is 1. The value of the factor is fixed for the entire
time series.

136 Chapter 1. Contents

urbs Documentation, Release 0.7

Developers Guide

This guide makes suggestions on how to improve, use, and extend the code as well as how to unify it
with the urbs master branch.

Improving the code

• Create dedicated SDDP scenarios: Currently the supim data series that is changed in the SDDP
branch is hardcoded to be wind in create_uncertainty_data in the file sddp_sub. Like-
wise the possible realizations and their probabilities are hardcoded in runme.py. It would be
nice to be able to create a SDDP scenario which defines which supim series is modified and then to
define realizations and their probabilities. In this way it should be possible to vary several supim
series at once (e.g. you could then have a realization ‘wind high, sun low’). Also it should easily
be possible to vary the demand series as well as it is usually uncertain (e.g. realization ‘Volcanic
Winter’ which implies higher heating costs).

• Enable plotting and reporting for decomposition methods: Currently the functions Plotting and
Reporting are only defined for the original problem (without decomposition). It would be good to
include that functionality for each decomposition method as well.

– For Regional it should be straight forward to reuse the functionality from the original to do
plotting and reporting for the sub regions. The master problem then just needs to add up the
values from the sub problems.

– For Divide Timesteps it would be necessary to patch the sub problems together to obtain a
plot for the overall problem.

– For SDDP plotting is more complex, because additionally to patching the sub problems
together one needs to think about which path of realizations (or even some combination of
paths) to plot.

Using the code for different models

There are several ways in which one could insert its own model or use parts of the code.

Create your own input file and use it with the urbs model

This is straightforward. Just take one of the existing input files and modify it by adding or removing
sites, processes, commodities, transmissions, storage, demands, or supim commodities and setting their
values. You need to make sure that you don’t remove or add whole features, because the features and
corresponding constraints are hardcoded in the models, so that would need to be changed (see further
down).

Creating realizations for SDDP

If you want to create your own realizations which add uncertainty you need to modify the files runme.
py and sddp_sub. When setting the SDDP parameters you can set a dict of probabilities and a list of
factors for each scenario. The probabilities determine how likely a scenario is while the factor determines
the changes to the supim series. In create_uncertainty_data() in sddp_sub this factor is
used to modify the wind supim series. To create your own scenarios you can easily change the supim

1.2. Technical documentation 137

urbs Documentation, Release 0.7

series to be modified or add several series by passing several numbers in the factor. This requires only
small changes in the code of create_uncertainty_data().

Use one of the decomposition methods but not for the urbs model

This would require major restructuring of the code, because it can only be used partly. All the parts
which can be used are in the file runme.py. You can reuse the structure of this file for your own
model. Basically you can use the main function and the function run_scenario_decomposition
by making only relatively small changes. You’d need to modify all parts (or possibly just removing
some) which are connected to input and output (reading data, loading and saving models, plotting and
reporting) and create own master and sub instances instead of the urbs instances. For this you’d need
do provide your own master and sub models for the corresponding decomposition method. The models
must provide methods for cut generation and boundary setting. For an idea on how to split the model
variables you can orient yourself at the existing decomposition methods:

• Divide Timesteps: In this method the master contains all variables which are independent of time
and the subs all other variables.

• Regional decomposition: In this method the master contains all transmission variables while each
sub problem contains all variables in its region.

• SDDP: This method works like Divide Timesteps but additionally introduces uncertainty on the
supim time series.

If you are reusing one of the existing method it is possible to reuse the benders loop of the corresponding
method. You then need to adjust the setting of boundaries and the upper bound calculation for your own
variables. Also you can use the existing cut generation and adjust it for your own model.

Extend or delete a feature from the urbs model

If you want to extend the model by a feature you have to be careful to include it in all relevant parts of
the code. Likewise you have to delete it in all relevant parts in case of deletion. Because of the similarity,
only extension is explained. The relevant parts are:

• The input file

• In the model:

– In the model preparation, at the start of create_model() in super.py.

– In the model itself: For each decomposition method you need to choose whether the feature
is included in the master model, the sub models or both. You then need to add the feature in
the appropriate location (see Extending the model structure).

– In the cut generation: If the feature includes a constraint in the sub models, the dual of the
constraint needs to be taken into account for the cut generation.

• In runme.py

– In boundary settings: If the feature include a variable in the master problem that imposes a
restriction on the sub problems.

– In upper bound calculations: If the feature introduces a new constraint or costs that are
relevant for the upper bound calculation.

138 Chapter 1. Contents

urbs Documentation, Release 0.7

Extending the model structure

This section explains, in which class to put changes to the model structure.

• If adding something which is the same for all decomposition methods and the same for Master
and Sub: add in super.py.

• If adding something specific to the Normal model: in normal.py.

• If adding something specific to a certain decomposition method and equivalent for Master and
Subs: in divide_timesteps_super.py or regional_super.py or sddp_super.
py.

• If adding something specific to the Master instance of a certain decomposition method: in
divide_timesteps_master.py or regional_master.py or sddp_master.py.

• If adding something specific to the Sub instances of a certain decomposition method: in
divide_timesteps_sub.py or regional_sub.py or sddp_sub.py.

Although this seems pretty simple, the disadvantage is when adding something which is e.g. the same
for all master instances it has to be added in all 3 classes. This could be avoided by adding an additional
class which summarizes all master classes, but then likewise a class would be necessary that summarizes
all sub classes, then perhaps one that summarizes the subs and the normal and so on. This would become
quite confusing. For this reason the classes were chosen like this, because it allowed for a maximum
reduction in code duplicates (at least for the models at the time of creation) while keeping the class
structure reasonably simple.

Perhaps it would be possible to further reduce duplicates while keeping the structure simple by creating
a block structure, where features are encapsulated in small blocks of code that can then be added to the
models as needed. In this case there would be no super classes, but a file which contains all these blocks.
This though would be a big change to the code and probably be challenging.

Creating a new decomposition method

The current structure is somewhat ill suited to include a new decomposition method. It would be de-
sirable to make the new decomposition method have the same structure as the other methods, that is, a
master and a sub class which inherit from a super class which itself inherits from ModelSuper. The
problem is that this would make restructuring of the code necessary in the following way: If there is a
feature in the new decomposition method which is not included in both master and sub class but is in-
cluded in ModelSuper, this feature would need to be removed from ModelSuper. Because the other
decomposition methods still need to use that feature it would need to be passed down to all other classes
which are next in the model hierarchy (e.g. to DivideTimestepsSuper and to RegionalSuper
and to SddpSuper and to Normal).

Unification with urbs master branch

Differences to the urbs master branch

Compared to the urbs master branch there are some features missing in decomposition:

• Buy/Sell

• Demand Side Management

1.2. Technical documentation 139

urbs Documentation, Release 0.7

• Startup

One other big difference is the modularization of parts of the model:

Ideas how to combine decomposition models with modular urbs

The urbs master branch is using modular features that means the features are added in separate files
which are called while creating the model. The big challenge to use this modularization for the de-
composition branch as well will be that some features will look slightly different depending on the
decomposition method and whether the model is a sub, a master or a normal problem.

As an example consider the feature transmission.py. In Regional the sub problem will not have
the transmission capacity variables while the master problem will have them.

To resolve this it would be necessary to distinguish between different decomposition methods and model
types within the features. This approach would be straight forward but quite cumbersome. Perhaps a
more elegant approach would be to have a rule that could prohibit the use of certain variables within the
feature. Then the feature could be called from any model by passing a list of the prohibited variables.
This for example can already be realized for the capacity constraints (see Sets, Variables, Parameters
and Expressions last bullet point) by setting the expressions and relax parameters correctly. Maybe this
can be done for other constraints as well.

140 Chapter 1. Contents

CHAPTER 2

Features

• urbs is a linear programming model for multi-commodity energy systems with a focus on optimal
storage sizing and use.

• It finds the minimum cost energy system to satisfy given demand timeseries for possibly multiple
commodities (e.g. electricity).

• By default, operates on hourly-spaced timesteps (configurable).

• Thanks to pandas, complex data analysis code is short and extensible.

• The model itself is quite small thanks to relying on the Pyomo package.

• urbs includes reporting and plotting functions for rapid scenario development.

141

https://github.com/tum-ens/urbs
http://pandas.pydata.org
http://www.pyomo.org

urbs Documentation, Release 0.7

142 Chapter 2. Features

CHAPTER 3

Changes

3.1 2017-01-13 Version 0.7

• Maintenance: Model file urbs.py split into subfiles in folder urbs

• Feature: Usable area in site implemented as possible constraint

• Feature: Plot function (and get_timeseries) now support grouping of multiple sites

• Feature: Environmental commodity costs (e.g. emission taxes or other pollution externalities)

• Bugfix: column Overproduction in report sheet did not respect DSM

3.2 2016-08-18 Version 0.6

• Demand Side Management Constraints added

• Partial & Startup Process Constraints added

• Various fixes in examples, docs and tutorials for Pyomo 4/Python 3 changes

3.3 2016-02-16 Version 0.5

• Support for Python 3 added

• Support for Pyomo 4 added, while maintaining Pyomo 3 support. Upgrading to Pyomo 4 is
advised, as support while be dropped with the next release to support new features.

• New feature: maximal power gradient for conversion processes

• Documentation: Buy-Sell Documentation long explanation for Buy and Sell commodity types

• Documentation: Mathematical Documentation full listing of sets, parameter, variables, objective
function and constraints in mathematical notation and textual expanation

143

urbs Documentation, Release 0.7

• Documentation: updated installation notes in README.md

• Plotting: automatic sorting of time series by variance makes it easier to read stacked plots with
many technologies

3.4 2015-07-29 Version 0.4

• Additional commodity types Buy and Sell, which support time-dependent prices.

• Persistence functions load and save, based on pickle, allow saving and retrieving input data and
problem instances including results, for later re-plotting or re-analysis without having to solve
them again.

• Documenation: Workflow tutorial added with example “Newsealand”

3.5 2014-12-05 Version 0.3

• Processes now support multiple inputs and multiple output commodities.

• As a consequence plot() now plots commodity balance by processes, not input commodities.

• urbs now supports input files with only a single site; simply delete all entries from the ‘Transmis-
sion’ spreadsheet and only use a single site name throughout your input.

• Moved hard-coded ‘Global CO2 limit’ constraint to dedicated “Hacks” spreadsheet, while the
constraint is add_hacks().

• More docstrings and comments in the main file urbs.py.

144 Chapter 3. Changes

https://github.com/tum-ens/urbs/blob/master/README.md#installation

CHAPTER 4

Screenshots

This is a typical result plot created by urbs.plot(), showing electricity generation and storage levels
in one site over 10 days (240 time steps):

-40,000

-20,000

0

20,000

40,000

60,000

80,000

100,000

120,000

Po
w

er
 (M

W
)

Scenario All Together: Elec in North, Mid, South

Photovoltaics
Storage
Wind park
Purchase
Hydro plant
Lignite plant
Biomass plant
Feed-in

0

500,000

1,000,000

1,500,000

2,000,000

En
er

gy
 (M

W
h)

5000 5024 5048 5072 5096 5120 5144
Time in year (h)

-3,000

-2,000

-1,000

0

1,000

2,000

3,000

En
er

gy
 (M

W
h)

An exemplary comparison script comp.py shows how one can create automated cross-scenario analy-
ses with very few lines of pandas code. This resulting figure shows system costs and generated electricity
by energy source over five scenarios:

145

http://pandas.pydata.org

urbs Documentation, Release 0.7

-5 0 5 10 15 20 25 30 35 40
Total costs (billion EUR/a)

stock prices

north process caps

no dsm

co2 tax mid

co2 limit

all together

base

Environmental
Fixed

Fuel
Invest

Purchase
Startup

Variable
Revenue

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000
Total energy produced (GWh)

Biomass plant
Coal plant

Gas plant
Hydro plant

Lignite plant
Photovoltaics

Purchase
Wind park

146 Chapter 4. Screenshots

CHAPTER 5

Dependencies

• Python versions 2.7 or 3.x are both supported.

• pyomo for model equations and as the interface to optimisation solvers (CPLEX, GLPK, Gurobi,
. . .). Version 4 recommended, as version 3 support (a.k.a. as coopr.pyomo) will be dropped soon.

• matplotlib for plotting due to its capability to customise everything.

• pandas for input and result data handling, report generation

• Any solver supported by pyomo; suggestion: GLPK

147

https://www.python.org/
http://www.pyomo.org
http://matplotlib.org
http://pandas.pydata.org
https://www.gnu.org/software/glpk/

urbs Documentation, Release 0.7

148 Chapter 5. Dependencies

Python Module Index

u
urbs, 33

149

urbs Documentation, Release 0.7

150 Python Module Index

Index

A
add_hacks() (in module urbs), 22
annuity_factor() (in module urbs), 24, 50

C
COLORS (in module urbs), 25
commodity_balance() (in module urbs), 25
commodity_subset() (in module urbs), 33
create_model() (in module urbs), 21

G
get_com_price() (in module urbs), 51
get_constants() (in module urbs), 23
get_entities() (in module urbs), 24
get_entity() (in module urbs), 24
get_timeseries() (in module urbs), 23

L
list_entities() (in module urbs), 24
load() (in module urbs), 24

P
plot() (in module urbs), 22

R
read_excel() (in module urbs), 21
report() (in module urbs), 22

S
save() (in module urbs), 23
split_columns() (in module urbs), 25

T
to_color() (in module urbs), 25

U
urbs (module), 1, 21, 25, 26, 33, 40, 48, 54, 76,

82

151

	Contents
	User’s manual
	Overview
	Tutorial
	Workflow

	Technical documentation
	Reporting function explained
	urbs.py module description
	Mathematical Documentation
	Buy-Sell Documentation
	Demand Side Management Documentation
	Decomposition

	Features
	Changes
	2017-01-13 Version 0.7
	2016-08-18 Version 0.6
	2016-02-16 Version 0.5
	2015-07-29 Version 0.4
	2014-12-05 Version 0.3

	Screenshots
	Dependencies
	Python Module Index
	Index

