

    
      Navigation

      
        	
          index

        	
          next |

        	UPlan4 0.1 documentation 
 
      

    


    
      
          
            
  
Welcome to UPlan4’s Documentation!



	Introduction to UPlan
	Goals

	History of UPlan





	Development Plans
	Timeline

	Git Repository

	Overview of the UPlan Process

	Technologies

	Survey Response

	User Interface

	Operational Code

	Supporting Utilities





	User Manual
	General Description

	Terms

	Quick Guide

	Detailed Discussion





	Installation
	Introduction

	Installing Numpy and Pandas





	Meeting Notes
	May 27, 2015, 1pm

	April 28, 2015, 11am

	February 26, 2015

	January 14, 2015





	Progress Reports
	First Quarter 2015





	Code Documentation
	UPConfig













          

      

      

    


    
         Copyright 2015, Nathaniel Roth.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	UPlan4 0.1 documentation 
 
      

    


    
      
          
            
  
Introduction to UPlan


Goals

UPlan is a simple urban growth model. The goals are to allow for the rapid development and implementation of a GIS based model projecting urban growth for a small region. Inputs should be able to be locally derived, and be available to most regions with modest data preparation.

This goal precludes the some forms of complex tools and limits our ability to handle complex economic interactions. If addressing complex, interregional interactions are a priority, UPlan is not the appropriate tool, and I encourage you to look at PECAS, UrbanSim 2, MUSSA II, or other models more able to handle those factors.




History of UPlan


Version 1

Circa 2000-2003

Bob Johnston, David Shabazian, Shengyi Gao, Eric Lehmer, Chad Shook

Written in: ArcView Avenue

This version was used for several early applications of UPlan including work in and around Los Alamos following the fire and planning for reconstruction, the Merced Model Improvement Program, and the Deleware Valley.




Version 2.X

2003-2015

Bob Johnston, David Shabazian, Shengyi Gao, Eric Lehmer, Nathaniel Roth

Written in: VBA (ArcObjects)

Version 2.X received much wider use across more than twenty counties in the state of California as part of the San Joaquin Valley Partnership, San Joaquin Valley Blueprint, the Regional Blueprint projects (non-MPO RTPAs), several smaller specific projects within the state, across the US, and internationally. Additionally this version was extended to develop direct connections to several travel demand models (TransCAD, and EMME) and remains in use by several county level organizations in California.




Version 3

2012

Written in: VBA (ArcObjects)

This version had very little use. It remains fully operational, but was written just as ESRI announced the discontinuation of support for VBA and so little emphasis was placed on it’s use.




Version 4

2015

Written in: Python (Arcpy)

Version 4 is currently being written as an update to UPlan to preserve it’s functionality into a next generation of code for ArcGIS.









          

      

      

    


    
         Copyright 2015, Nathaniel Roth.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	UPlan4 0.1 documentation 
 
      

    


    
      
          
            
  
Development Plans


Timeline

Phase 1

2014:


	December: Project start





	Task 3.1.1: Prototyping and Development Planning






2015:


	January





	Task 3.1.1: Prototyping and Development Planning







	February:





	Task 3.1.1: Development Planning Documentation

	Task 3.1.2: Development







	February-August:





	Task 3.1.2: Development

	Task 3.1.3: Documentation









Git Repository

All code and documentation will be maintained in a git repository.

https://bitbucket.org/nathanielroth/uplan

If you would like access to the code or documentation in its rawest form, please contact Nathaniel Roth at neroth@ucdavis.edu for instructions. On completion of this project the repository will be made publicly accessible.




Overview of the UPlan Process


	Prepare the Base Geometry (parcel layer, grid, or other polygon layer)





	Topology (no overlaps)

	(Optional) Pseudoparcels

	Make centroid dataset

	Calculate the portion of the polygons already developed

	(Optional) Specify polygons to be available for redevelopment







	Calculate the distance from each attractor to the centroid of each polygon

	For each time step and subarea





	Available space for each land use in each polygon





	Union all constraint layers, calculate the area of each primary polygon in each unique combination of constraints

	Sum the constraint levels for each constraint to get the reduction factor, and multiply times the proportion of the acreage in each constraint type to get a developable space for each land use.

	GP is also a constraint for each land use







	Calculate attractions for each polygon for each land use





	Specify distance and weights, interpolate weights between each point.

	Select and apply weights for each attractor to each primary polygon for each layer

	Sum weights

	Sort by weights for each land use







	Allocate





	By land use priority

	Iterate down list to select highest weighted parcels





	Redevelopment processing

	Mixed use













	Report, Analyze, and Visualize





	Report on model success and allocation (or under allocation). This would include reporting on UPlan settings.

	Analyze results





	Export to TAZ

	Zonal Summaries







	Display Maps






[image: _images/ProcessFlow.png]

Land Use Demand Calculation Options


Method 1

Example Spreadsheet: LUDemandCalc_Method1.xlsx

LU Method 1

(Updated 4/17 to demonstrate subarea functions and some guidance for table construction.)

Is an expansion on the existing method.


	Population and Employment are divided into subarea by proportion

	Population is converted into households

	Households are divided into density types

	Households by density type are multiplied by acreage to get total acrage of residential type in the subarea

	Employees are divided by percentage into type

	Multiplied by SF/Employee

	Divided by FAR

	Converted to total area for employment type

	Expanded Features:





	Support for vacant residential housing units

	Support for Other space accounted for within the land use as a % of the area.









Method 2

Example Spreadsheet: LUDemandCalc_Method2.xlsx

LU Method 2

This method expands slightly on method 1 in calculating the households. At its core, this method switches from using population as the primary variable to households. This could also be done as a HU with the addition of a # vacant by HU type. Employment is calculated identically to Method 1.


	a total proportion of new HU for each subarea is calculated

	Each HH has a population per HH

	Each subarea has a proportion of new HU by type

	Each subarea has a proportion vacant for each HU type

	A factor is calculated that represents the proportion of the population represented by each of the HU types, and consequently what percentage of the population that represents.

	This factor is then used to calculate the number of new households and housing units (accounting for HU vacancy) these represent

	And is multiplied by the acres per HU to get a total number of acres






Method 3

This method is more complex and requires human interaction. However, it allows for mixed use, variable population per household, vacant unit rates, vacant land rates.

Example Spreadsheet: LUDemandCalc_Method3.xlsx

LU Method 3


	Land use values are established (for each LU type): HU per net acre, PPHH, UnitVacancy rate, % of each employment type, SF/Emp for each emp type, Employment FAR, and % vacant land.

	From this the building space, ave. SF/emp, Gross Emp/ac, Gross du/ac, Gross occ unit/ac, gross pop/ac, gross emp (by type) per acre are calculated

	Given targets for population growth and employment growth, a human specifies the ratio of land area across all land uses to achieve the targeted population and employment growth. Note, that there is unlikely to be a single perfect answer to this ratio. These calculations are largely based on accommodating the population and adjusting the land use mixture to match the employment target as closely as possible.








Time Steps:

A UPlan run may be divided into multiple time steps. These will represent specified “break points” between the start date for the UPlan run, and the final end date. For example instead of running UPlan from 2015-2050 in a single step, it could be broken into 2015-2025, 2025-2035, and 2035-2050. Each of these time steps will have potentially independent general plans, constraints, and attracters in addition to the independent demand for each land use. It will be possible to have independent settings for each land use in each time step, though this should be approached with caution.




Subareas:

The use of subareas will allow the application of control totals to subdivide the total growth into geographic areas within the study area boundary. Within each time step a distinct distribution of each land use into each subarea will be specifiable. For example “Subarea 1” could be forced to accommodate 50% of the new residential units, while “Subarea 2” receives 30% and “Subarea 3” gets 20%.




General Plans:

Each time step can have an independent general plan layer.




Constraints:

Each constraint layer (a replacement for the masks used in prior versions of UPlan), will have a % constraint for each land use. The constraints will be unioned and the percent constraint for each land use will be summed for each resulting polygon. These will then be unioned back to the primary layer the amount of space available in each polygon will be recalculated. The developable space will be calculated as (1-%constraint)*acres where the % constraint is the sum of all constraints for that land use in that polygon. A 100% constraint is the equivalent of the current mask.

For example: given a 1 acre parcel, with two constraint (one with at 50% constraint, and the other with 25%) layers that over lap it so that 25% of the original polygon has both constraints overlapping it, 25% has only the 50% constraint, 25% of it has only the 25% constraint, and 25% has no constraint.

There will then be a quarter acre with no constraint, quarter acre with a 25% constraint(0.1875 Developable Acres (dac)), a quarter acre with 50% constraint( 0.125 dac), and a quarter acre with a 75% constraint (0.0625 dac) meaning that the original polygon has 0.625 developable acres.




Attracters:

Attraction layers can be specified for each land use in each time step. For each attracter a series of distances and weights (called weight points for simplicity) are specified. For example, at a distance of 0 miles from the attracter (hypothetically a city limit) the weight may be 20, at a distance of 1 miles the weight might be 10, and at a distance of 5 miles the weight would be 0. These weight points create a series of distance ranges and allow for the interpolation of weights between each pair of sequential points.

Attracter weights can be negative values replicating the function of discouragers without needing to duplicate code or input effort.

The process of calculating a net attraction of a polygon for a land use (in a time step) is as follows:


	Calculate the distance from the centroid of the polygon (BaseGeom_cent) to the nearest feature in each attracting layer. These results are assembled into a table containing one row for each polygon, and columns/fields that identify the polygon, and the shortest distance to each attraction layer.

	Each sequential set of weight points are reformulated to create a linear function of the weight with respect to the distance. i.e. for all polygons between 0 and 1 mile from the city limit the weight would be: weight = -10*(distance) + 20

	These functions are applied to the distances to generate a weight provided by each attracter for each land use to each polygon.

	The attracters are summed for each land use to create a net attraction.






Allocation Process:

The following will occur simultaneously for each land use:

Allocation:
1. Calculate the attraction weight for each polygon with developable space.
2. Sort in descending order.
3. Loop through the polygons adding up the available space until the next polygon goes over the needed space.
4. Then update all of the earlier polygons to show 100% development and apply the needed percentage to the polygon that makes up the last to achieve the correct acreage.
5. If all available space is exhausted, mark all available polygons as 100% developed and report the unallocatable space.

Evaluation:
Following the allocation of each land use, all of the results are collected, then on a polygon by polygon basis the land uses allocated to it are evaluated for conflicts accounting for allowed mixed uses. Any conflicts are resolved by removing the lowest priority land uses until a permitted combination is allowed. The acres that are removed from each land use are added to a list of land use demand that requires reallocation and following the evaluation of all polygons, another iteration of the allocation is run using an updated list of available space for each polygon.

The Allocate-Evaluate loop continues until either all land use demand has been allocated, or all available space for each land use has been consumed.




Random Allocation:

Random allocation will be similar to the existing UPlan where the development will be limited by contstraints and general plan, but attractions will be ignored infavor of a random allocation mechanism.




Weighted Random Allocation:

Convert the weights to a -10 to 10 scale (which we’ll use informally as its Utility) with configurable mean and standard deviation, then apply a binomial logit function to each polygon’s Utility. This is an application of the logistic function (http://en.wikipedia.org/wiki/Logistic_regression) in which the probability of an event occurring can be related a function that determines its Utility. In this case, the “event” will be that polygon getting developed by the land use.

See the table below for the probabilities associated with each level of utility.

[image: _images/LogitProbabilities.png]

Logit Probabilities
  
    
    
    User Manual
    
    

    

 

















  
  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	UPlan4 0.1 documentation 
 
      

    


    
      
          
            
  
User Manual


General Description

UPlan 4 converts UPlan from a raster to a vector GIS model. The concepts that it uses to project where growth are largely unchanged, though many have been refined.

UPlan 4 is written primary in Python using Esri’s ArcPy tools. Additionally, UPlan4 uses the Pandas library for Python to extend Python’s capabilities. At the moment, pandas is an additional (free) installation, though Esri has stated that it will likely be including pandas in future Python installations for ArcGIS.




Terms

UPlan Geodatabase (UPGDB): An Esri file Geodatabase that has had the UPlan tracking tables added to it. This geodatabase will be a self-contained record of all of the inputs and settings for a UPlan scenario. The geodatabase can be updated and a new allocation run, but this will overwrite your prior results.

Base Geometry or BaseGeom: This polygon feature class provides the minimum mapping units that UPlan will track. These may be derived from parcels, a grid (also known as a Fishnet), voronoi polygons, or any other set of polygons that you wish to use provided that they are sufficiently small in size to represent the level of detail you wish to achieve. Some tools will be provided to assist with preparing the base geometry layer. Each feature in the BaseGeom must have a unique integer id assigned to it. We’ve been using ‘pclid’ as the field name, but any alternative may be used. When importing the BaseGeom into the UPGDB, a derivative feature class will be created that converts the polygons into a point dataset based on the polygon’s centroids.

Allocation: Full allocation means that all land use demand (based on the demographic inputs) has been accommodated within the model run. The resulting table tells us how many acres of each land use are assigned to each BaseGeom polygon. Under allocation means that one or more land use was not able to be accommodated fully during the model run. Depending on the purpose of the run, this should be addressed appropriately.

Land Use: A land use is either residential or employment and allows for some portion of vacant space, and residential vacant housing units within the land use. Land uses are permitted to develop in a user specified list of General Plan categories.

Subareas: A subarea is a subsection of the model’s geographic coverage that can have distinct control totals for population and employment assigned to it.

Redevelopment: (optional)The redevelopment dataset indicates how many people currently live or work on each polygon. If development on these polygons is not prohibited by a constraint (or general plan), when those polygons are selected for development, the population and employment totals are added to a tally and a second (or third...) iteration of the allocation is done to accommodate those displaced. This could result in a large number of iterations and might take a long time to achieve full allocation.

TimeStep: A time step allows the specification of almost all UPlan settings to be applied. Features that cannot be customized for each TimeStep: BaseGeom, Subareas, Redevelopment, and Land Uses. For example a run with two time steps could run one from 2015-2025, and a second from 2025-2035. Each time step can have independent demographic projections, attractors, constraints, and general plans.

General Plan: A general plan layer defines where land uses are permitted to develop.

Mixed Use: General plan categories may allow two or more otherwise permitted land uses to coexist on the same polygon. For example: a downtown mixed use category may allow res. high and retail to both occupy the same polygon. Note that each of these land uses is assumed to cover the entire polygon in a vertical mixed use format.

Constraint: A constraint reduces the available space for development for a land use as a percent of the land area. For example: a polygon overlapped by a wetland might have a 50% reduction in developable space, and a polygon that is already fully developed might have a 100% reduction. When multiple constraints overlap, their constraints are summed. i.e. an overlapping 50% and 25% set of constraints would have a final effect of being a 75% reduction in developable space. Constraints are calculated based on the union of all constraining layers with the BaseGeom. After calculating that union, and the net constraint on each resulting polygon, the developable space for each land use is summed and assigned back to the BaseGeom polygons.

Attractor: Attractors are used to prioritize where growth occurs when there is more space than required for a land use. Attractors can be both positive and negative(i.e. a discourager). Each land use can have independent attractors. Attractors are now defined as the attraction at a distance from the attractor layer. The weight is then interpolated between each consecutive set of weighted points.




Quick Guide


Overview


	Create a UPGDB

	Prepare the BaseGeom dataset

	Import BaseGeom

	Import any needed Subarea, Constraint, Attractor, General Plan, and Redevelopment datasets.

	Specify settings for Land uses including densities, demographics, levels of constraints, attractors, and general plans.

	Precalculate: Constraints, General Plan permissions, weights, and land use demand.

	Allocate land uses

	Post-Run Analysis and visualization






Create UPGDB

Tool under development




Prepare BaseGeom

Tools under development




Import BaseGeom

Use the BaseGeom import tool (mostly complete)




Import Other Datasets

Tools under development




Specify Settings

Tools under development




PreCalculate


Constraints

Use the tool (UI not complete, but primary code is finished)




General Plans

Use the tool (UI not complete, but primary code is finished)




Attraction Net Weights

Use the tool (UI not complete, but primary code is finished)




Demographics/Land Use Demand

Use the tool (UI not complete, but primary code is nearly finished)






Allocation

Use the tool (UI not complete, but primary code is finished)




Post-Process


Visualization

Tools under development for final allocation, net attraction, constraints, and general plans




Zonal Summary

Tool under development. This will provide basic TAZ export support as well as summaries by other geographies (constraints, zones)




Reporting

Tool under development. Text based output and reporting of results.








Detailed Discussion


PreCalculations


Constraints




General Plans




Net Attraction Weights




Demographics/Land Use Demand






Allocation

[image: _images/AllocationFlow.png]








          

      

      

    


    
         Copyright 2015, Nathaniel Roth.
      Created using Sphinx 1.3.1.
    

  

  
    
    
    Installation
    
    

    

 

















  
  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	UPlan4 0.1 documentation 
 
      

    


    
      
          
            
  
Installation


Introduction

To run UPlan there are a few installation steps that need to be completed first. The most technically complicated will be the installation of an updated version of Numpy and Pandas to your ArcGIS’s Python installation. This must happen for the 32bit installation of Python, and if you have installed the 64bit Background Processing toolkit it is optional for advanced users who might be calling functions from UPlan from within the 64bit installation.

In the future these installations may not be needed as Esri has hinted that Pandas may become part of the basic Python installation for ArcGIS.


Numpy

Numpy is a key component of most scientific and numeric processing in Python. A version of it is installed with ArcGIS’s Python installation, but the version (at least as of ArcGIS 10.2.2 and 10.3) is several versions behind the current version. Updating the Numpy version makes the installation of Pandas much easier, and I have not yet run into any compatibility problems with Arcpy or other Python libraries.




Pandas

Pandas is a Python library that rests on top of Numpy and allows us to work with data tables in memory and vastly more efficiently than doing manipulations of the tables through Arcpy. Pandas is becoming a very commonly used library in Python, and Esri as suggested that it’ll become a standard part of their default Python installation for ArcGIS in the future.






Installing Numpy and Pandas

To install/upgrade Numpy and Pandas you will need to install pip which is a utility for managing the installation of Python libraries. These instructions are written to focus on the 32bit install. If you are also doing the optional 64 bit installation, substitute ArcGIS10.2X64 for ArcGIS10.2 anywhere you see it occur in a file path. All of the steps including the pip installation needs to be done independently for the 32 and 64 bit installations. The are completely independent installations from each other.

Download the get-pip.py file from https://pip.pypa.io/en/latest/installing.html

My suggestion is to copy it into:

C:\Python27\ArcGIS10.2\





Open the commandline prompt with Administrative privileges. Then enter the following lines one by one.

cd c:\Python27\ArcGIS10.2
python.exe get-pip.py





If you are asked for confirmation on the installation of pip, please accept it.

The pip application will be installed into:

c:\Python27\ArcGIS10.2\Scripts





To install the upgraded version of Numpy, download the .whl file for the appropriate version of Python from: http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy

Both ArcGIS 10.2 and 10.2 use versions of Python 2.7, so you’ll want the version looks like: numpy-1.9.2+mkl-cp27-none-win32.whl for the 32bit Python and numpy-1.9.2+mkl-cp27-none-win_amd64.whl for 64 bit Python (optional).

Numpy version 1.9.2 is the current version as of the time I’m writing this, it could change over time.

Save the 32 bit file into c:Python27ArcGIS10.2Scripts for convenience.

From the command line promt(with Administrative privileges): (make sure that ArcGIS is fully closed and no other application is using Python)

c:\Python27\ArcGIS10.2\Scripts
pip.exe install numpy-1.9.2+mkl-cp27-none-win32.whl





The installation process should tell you that it’s uninstalling an older version of Numpy.

To install the Pandas, download the .whl file for the appropriate version of Python from: http://www.lfd.uci.edu/~gohlke/pythonlibs/#pandas

Both ArcGIS 10.2 and 10.2 use versions of Python 2.7, so you’ll want the version looks like: pandas-0.16.1-cp27-none-win32.whl for the 32bit Python and pandas-0.16.1-cp27-none-win_amd64.whl for 64 bit Python (optional).

Pandas version 0.16.1 is the current version (6/12/2015), though that will likely change over time.

Save the 32 bit file into c:Python27ArcGIS10.2Scripts for convenience.

From the command line promt(with Administrative privileges): (make sure that ArcGIS is fully closed and no other application is using Python)

c:\Python27\ArcGIS10.2\Scripts
pip.exe install pandas-0.16.1-cp27-none-win32.whl











          

      

      

    


    
         Copyright 2015, Nathaniel Roth.
      Created using Sphinx 1.3.1.
    

  

  
    
    
    Meeting Notes
    
    

    

 

















  
  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	UPlan4 0.1 documentation 
 
      

    


    
      
          
            
  
Meeting Notes


May 27, 2015, 1pm


Call in Information:

Phone: 1-866-740-1260

Access Code: 7546212

Webinar Link: https://cc.readytalk.com/r/vr12x9m1ffr9&eom




Agenda:


	Welcome

	Project Update

	Demo of the “Alpha” version of UPlan 4 (weighting and allocation). with a likely appearance of redevelopment and time steps.

	Phase2 and contract changes

	Next steps (next meeting)






Notes:


Project Update


	The allocation component is feature complete. Getting ready for testing.
	Features

	Time Steps

	Subareas

	Mixed Use

	Redevelopment

	Using

	Polygons/parcels

	Constraints

	Attractors (both positive and negative)

	General Plans

	Run Times using our Calaveras County test data (minutes:seconds)

	PreCalc: Subareas: 0:46

	PreCalc: General Plans: 0:46

	PreCalc: Constraints: 8:23 (2 Time steps, 3 constraint layers, 7 land uses)

	PreCalc: Weights: 4:26 (2 Time steps, 4 Attractors/discouragers, 7 land uses)

	Allocation: 7:00 (2 Time steps, 2 Subareas, Redevelopment, 7 land uses)





	Demographics is nearly complete
	Running with hardcoded values, will very soon read from tables





	Toolboxes
	First toolboxes for layer management and UPlan operation are being assembled.










Demo and Explanation

See User Manual








April 28, 2015, 11am


Call in Information:

Phone: 1-866-740-1260

Access Code: 7546212

Webinar Link: https://cc.readytalk.com/r/snagpuao8zdb&eom




Agenda:


	Introductions

	Status Update (Nate)





	Data Management: UPlan Configuration Settings, Data Import

	PreCalculations: (Constrained Space, Attraction Weights, General Plans)

	Allocation: Primary Allocation, TimeSteps, SubArea, Redevelopment

	User Interface: Python Toolbox, C#

	PostProcess Tools: TAZ export







	Land Use Methods (Nate)

	Timelines (Nate)





	Still on track







	Admin. Updates








February 26, 2015


Agenda:


	Welcome & Introductions

	Proposed programming languages (Nate)

	Proposed features (Nate)

	Timelines (Nate)

	Billing and Administration






Notes:

Nate provided an overview of the current status and plans for the continued development.

We discussed:
Software platform: ESRI and Arcpy based
Results of the informal online survey conducted by Nate of the past and present UPlan users.
The proposed route forward and had general agreement on the plan as described in the development document.






January 14, 2015

Initial meeting for UPlan 4 development


Agenda


	UPlan status update for each county (county/RTPA reps)

	Steps and time frames for UPlan update (Nate)

	Financial Needs/Management

	County Responsibilities/Tasks (Group)





	Short Term

	Long Term







	UPlan4





	Git

	Technologies

	Methods









Notes


UPlan Status for counties:

Tuolumne:

UPlan began with training in 2004.
It’s been a long time with lots of gaps. Actually using it in 2005(ish). The county created an Oversight Committee and a Technical Advisory Committee (the two of which ended up dissolving). Had issues with presenting too much detail to the committees resulting in burnout. It took a couple years to agree on model inputs and was completed in ~2010-11. By that point the public interest was low due to the recession and some of the inputs also needed to be updated. Ending with a fizzle.
Since then, to comply with GHG regulations, some additional analysis has been done which suggested some changes to the GP. Given the political shifts, developers have significant leeway to move as they wish.

Have a process going on where the General Plan is being made consistent with zoning (rather than the other way around).

UPlan past: Adopted the Distinctive Communities plan in ~2010-11 as the conclusion of the Blueprint.

Calaveras:

Completed the Blueprint process, with the new planning director integrated UPlan into the GP EIR process. Draft GP Released in December has references to UPlan.

Amador:

See ACTC report (approved by board on Dec. 19, 2014), with the work and the findings. Amador County continues to have challenges with the politics of the planning environment regarding the adoption of UPlan as a countywide planning tool.
Latest version:
ACTC was told to use the draft county GP, and the most recent city general plans, and instructed to stick to transportation planning. (separation of land use and transportation planning). ACTC has been finding that the UPlan results are very useful for ongoing transportation planning.

Subsequently, the county came back to ask for UPlan outputs for their own business processes (circulation element, housing element).

Cindy will be doing a lot of data sorting and cleanup.

ACTC Board wants to see and approve any outward facing versions of the data.

ACTC UPlan run versions are carefully tracked with a structured naming convention. X.0 is the release version, X.1+ are in-house working products.




Contracting:

Cal-Tuolumne: split ~$53k
Amador: ~$70k
UCD: $95k (phase1), $95k(Phase2).

Billing:
UCD: Monthly (with supporting documentation)

Robin will need to invoice for the local match from the counties to cover the 14/15 FY outlay.




Time Lines:

(enhanced from our discussion)
By Mid-February: Nate will deliver examples of the methods to be used in UPlan
Second week of February: Counties will provide feedback on the methods
By End of February: Nate will deliver a development plan with details about the methods to be used. (Deliverable for Task 3.1.1)
By End of June: Beta version of UPlan will be available for testing by counties.
By End of June: Draft (possibly coarse) documentation of UPlan’s methods and use will be available to the counties.
August 31, End of Contract for Phase 1.




Other Notes:

Road Centerlines may be available from Vestra for the full state. Being done for CalFire Dispatch.




UPlan Functional Needs:

Better ability to simulate:


	Rural employment location (winery)

	Farmworker Housing



Primary Goals:


	Mixed use

	Sequential time steps

	Subarea support



Run Tracking/Metadata

Post Run Analysis:


	TAZ Export

	Zonal Summary



Requests:
Thiessen Polygon Creation for building primary datasets.
Pseudoparcel creation (automate breaking down larger parcels into smaller pieces to avoid having to apply land uses to larger areas than necessary). This tool requires ArcGIS Desktop Advanced licensing.




UPlan Technologies:

Nate suggested three possible top level architectures:


	ESRI with Python/ArcPY (model) and C# (User Interface)

	QGIS using Python and PostGIS

	Django using Python and PostGIS (basically a web application that can be run on a desktop)



The group appeared to be fairly committed to remaining on the ESRI Platform using ArcPy.
Nate has a prototype written using arcpy that has very basic functionality (no user interface) that runs in arcpy in 17 min.

Nate is working on an open source based version (Update, I’ve got it working but it’s more complex and would require more skilled other folks to update).

If the “model” code is written using Arcpy, I will need to develop the UI in C# as an ArcGIS Add-in or extension.

However, keeping this in ESRI will require that users have either an ArcGIS Desktop Advanced License, or a Spatial Analyst Extension License, potentially resulting in additional licensing costs.

The two options below have the advantage of having no licensing costs and possibly allowing for wider use in non-esri environments or where budget for licensing is a problem.

The QGIS option will require that users develop comfort with QGIS and to a lesser extent with PostGIS.

Django will be a complex installation and will pose some learning challenges to the staff and might have issues with IT department acceptance. However, it could be exposed to the internet for outready purposes.











          

      

      

    


    
         Copyright 2015, Nathaniel Roth.
      Created using Sphinx 1.3.1.
    

  

  
    
    
    Progress Reports
    
    

    

 

















  
  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	UPlan4 0.1 documentation 
 
      

    


    
      
          
            
  
Progress Reports


First Quarter 2015

April 13, 2015

During the first quarter of 2015, we (ICE, UC Davis) accomplished the following:


Accomplishments:


	An openly viewable code repository has been established at: https://bitbucket.org/nathanielroth/uplan
	All code in it’s current state is visible, and downloadable

	All documentation source material is stored in its most current state

	Documentation (including this document) are available at: http://uplan.readthedocs.org/ (The source documentation on bitbucket.org is automatically updated onto readthedocs.org each time it is updated)





	The initial system design was completed and is documented at: Link

	Some of the key concepts from the system design document are:
	A move to a polygon based structure with the use of a “base geometry” dataset that can be derived from multiple sources (likely but not necessarily, polygons)

	Constraints replace masks and allow for tailored reductions in developablity specific to each land use.

	Built in vertical mixed use, improved redevelopment, and time step functionality

	Written primarily in Python (for Arcpy), with possible user interface components in C# as an ArcGIS add-in.





	As part of the system design an informal survey was conducted with the following notable results
	The user group expressed a strong preference for staying in the Esri environment

	Maintaining the ability to run UPlan with simple demographics has a high priority

	Deterministic allocation is important to most users

	TAZ export functionality (preferably with the custom export) is essential

	Vertical mixed use, redevelopment, and time steps support are strongly desired

	Other desired, but not as critical components are the use of past growth to develop a statistical calibration of attracters and weighted random allocation, .





	Much of the UPlan system was prototyped within arcpy
	Results in arcpy were very positive for being able to complete the work

	The performance of the prototype in arcpy with run times in the ~5-7 minute range.





	Translation of prototype into deployable code (Python with Arcpy) began and is proceeding well
	A prototype dataset has been constructed for use (based on Calaveras County Data)

	A simplified, but not oversimplified set of settings (general plan, attractor, constraint, and land use demand) are in use.

	Additional (free with installation instructions coming) Python libraries will be needed to run UPlan. This includes Pandas, and a prerequisite update of the numpy library installed with ArcGIS’s installation of Python.





	Individual components of the full model are running, with reasonable run times, and expected results for:
	General Plans: Specifying which land uses are permitted in each area including mixed-use.

	Attraction Weights: Calculating weights for each base geometry polygon for each land use.

	Constraints: Calculating the developable space in each base geometry polygon for each land use as reduced by the overlapping constraints.





	The following components are in active development or in testing
	UPlan configuration settings: read/write to and from a file geodatabase

	Allocation: Assigning land uses to polygons based on general plans, constraints, attractions, and allowed mixed use combinations.










Current Programming Status:

Base Geometries: a “Base Geometry” dataset is the collection of all parcels or other polygons that will be used to track land use change. A full base geometry set includes two layers: the polygon boundaries, and the polygon centroids linked by a common identifier unique to each polygon. Primary use of the base geometry set is operational and is being used by almost all subsequent components of UPlan.

UPlan Configuration: The UPlan configuration settings and storage methods are developed and in use, but continue to evolve as new features are added.

General Plan: Land availability for land uses is implemented and operational. The developablity of each polygon is determined by the General Plan category that it’s centroid falls into. Mixed use settings are currently undergoing testing.

Constraints: Developable space for each polygon is reduced for each land use based on the strength of the constraint and the portion of the polygon overlapped by that constraint. Where multiple constraints overlap, their effects are cumulative. This is coded and operational.

Attractions: The calculation of attraction weights based on the distance from the attraction layer to the centroid of each polygon and then weighted by the user specified factors is coded and operational.

Subareas: The calculations for which polygon falls into each subarea are operational and in use. A polygon is assigned to the subarea that its centroid falls into.

Time Steps: The time step settings exist, and are coded, but largely untested while the allocation components are being completed.

Allocation: (Broken into subcategories)



	Allocation: The initial allocation of land uses by time step and subarea to available space is operational, but still under active development.

	Allocation Evaluation: This process checks the primary allocation for conflicts, and removes land uses that conflict with higher priority land uses. These are then submitted back to another iteration of the allocation process for reallocation.

	Mixed Use: This evaluation step is the point at which mixed use are evaluated to be sure that they are permitted under the general plan settings. Coded and in early testing.

	Redevelopment: Not yet implemented. The connection points for inserting redevelopment functions exist and await implementation.









Next Steps:


	Complete the testing of Allocation functions including redevelopment, mixed use, and time steps.

	Set the initial Land Use Demand methods (See methods 1, 2, and 3 from the Development Page)

	Connect the UPlan tools to a Python Toolbox for easier use within ArcGIS

	Develop a graphical user interface for managing General Plan, Attractor, Constraints, and model configuration settings.

	Develop data preparation and loading tools

	Develop post-run analytical tools for exporting results to zones or TAZs.

	Continue to improve documentation.











          

      

      

    


    
         Copyright 2015, Nathaniel Roth.
      Created using Sphinx 1.