

unMessage

What is it?

	Overview
	Features

	Installation
	Requirements

	Using a Virtual Environment

	Installing

	Updating

	Usage

	Persistence

	Graphical User Interface (GUI)
	Sending Requests

	Receiving Requests

	Chatting
	Notifying Presence

	Verifying

	Authenticating

	Authentication Levels

	Relaunching unMessage

	Command-line Interface (CLI)
	Sending Requests

	Receiving Requests

	Chatting
	Transmitting Files

	Notifying Presence

	Verifying

	Authenticating

	Authentication Levels

	Relaunching unMessage

	unMessage Protocol
	Establishing Conversations
	Stage 1: Request sent

	Stage 2: Request accepted

	Stage 3: Conversation established

	Identifying conversations

	Packet Formats
	Request Packet

	Reply Packet

	Regular Packet

	Threat Model
	Adversary Capabilities

	Possible Attacks

Other

	Changelog
	unMessage 0.2.0, released 2017-05-12

	unMessage 0.1.1, released 2017-02-10

	unMessage 0.1.0, released 2017-01-22

	Feedback

Overview

unMessage is a peer-to-peer instant messaging application designed
to enhance privacy and anonymity.

Warning

unMessage is alpha software. While every effort has been made
to make sure unMessage operates in a secure and bug-free fashion,
the code has not been audited. Please do not use unMessage for
any activity that your life depends upon.

Features

	Transport makes use of Twisted [https://twistedmatrix.com], Tor Onion Services [https://www.torproject.org/docs/hidden-services.html] and
txtorcon [https://github.com/meejah/txtorcon]

	Encryption is performed using the Double Ratchet Algorithm [https://whispersystems.org/docs/specifications/doubleratchet]
implemented in pyaxo [https://github.com/rxcomm/pyaxo] (using PyNaCl [https://github.com/pyca/pynacl])

	Authentication makes use of the Socialist Millionaire Protocol [https://en.wikipedia.org/wiki/Socialist_millionaire]
implemented in Cryptully [https://github.com/shanet/Cryptully]

	Transport metadata is minimized by Tor and application metadata by
the unMessage Protocol

	User interfaces are created with Tkinter [https://docs.python.org/2/library/tkinter.html] (graphical) and
curses [https://docs.python.org/2/library/curses.html] (command-line)

Installation

unMessage’s installation is done in three steps:

	Install requirements

	Use a virtual environment

	Install unMessage

Requirements

Install the following requirements via package manager:

$ # If using Debian/Ubuntu
$ sudo apt-get install build-essential gcc libffi-dev libopus0 \
 libsodium-dev libssl-dev portaudio19-dev python-dev python-tk

$ # If using Fedora
$ sudo dnf install gcc libffi-devel libsodium-devel \
 openssl-devel opus portaudio-devel python-devel \
 redhat-rpm-config tkinter

If you have tor installed, make sure its version is at least
0.2.7.1:

$ tor --version

If you must update it or do not have it installed, check the version
provided by the package manager:

$ # If using Debian/Ubuntu
$ apt-cache show tor

$ # If using Fedora
$ dnf info tor

If the version to be provided is not at least 0.2.7.1, you will
have to set up Tor’s package repository [https://www.torproject.org/docs/debian.html.en#ubuntu]. Once you have a repository
which can provide an updated tor, install it:

$ # If using Debian/Ubuntu
$ sudo apt-get install tor

$ # If using Fedora
$ sudo dnf install tor

Using a Virtual Environment

Install virtualenv [https://pypi.python.org/pypi/virtualenv], pip [https://pypi.python.org/pypi/pip] and setuptools [https://pypi.python.org/pypi/setuptools]:

$ # If using Debian/Ubuntu
$ sudo apt-get install python-virtualenv

$ # If using Fedora
$ sudo dnf install python-virtualenv

Use a virtual environment:

$ virtualenv ~/unmessage-env # create
$. ~/unmessage-env/bin/activate # activate
(unmessage-env)$ # prompt shows which environment is active

Update setuptools, pip and virtualenv:

(unmessage-env)$ pip install --upgrade setuptools
(unmessage-env)$ pip install --upgrade pip
(unmessage-env)$ pip install --upgrade virtualenv

Make sure that the update installs at least pip 8 and
setuptools 19.4.

Installing

Finally, install unMessage:

(unmessage-env)$ pip install unmessage

Launch unMessage with any of the commands:

(unmessage-env)$ unmessage-gui # graphical user interface (GUI)
(unmessage-env)$ unmessage-cli # command-line interface (CLI)
(unmessage-env)$ unmessage # last interface used

Make sure to activate the virtual environment whenever you wish to
use unMessage:

$. ~/unmessage-env/bin/activate

As well as deactivate it when you are done:

(unmessage-env)$ deactivate

Updating

pip can also be used to update unMessage:

(unmessage-env)$ pip install --upgrade unmessage

Usage

unMessage offers usage instructions for both interfaces:
Graphical User Interface (GUI) and Command-line Interface (CLI).

Persistence

All files used by unMessage are saved in ~/.config/unMessage/

Graphical User Interface (GUI)

Launch unMessage’s GUI with:

$ unmessage-gui

You are taken to the Start Peer tab and you are required to pick any
name you wish to use and press Start:

[image: ../_images/start-gui.png]
Start Peer window

Tor is launched and if this is the first time you use that name,
your Onion Service and Double Ratchet keys are created and you
are ready to receive and send requests to initialize conversations.
unMessage displays this bootstrap process:

[image: ../_images/bootstrap-gui.png]
Bootstrap window

The Copy buttons at the top bar can be used to copy information
the other peers need to send you requests. You must share both your
identity address and key:

charlie@jt6zabesvrhxvhee.onion:50001 v4kU6s+NuJW/Znbjz0AxoI9Gvl1XDS5eiOTm6cE38E4=

Sending Requests

Press the New chat button at the top bar to open the Request
window. Provide the identity address and key of the peer you
wish to contact:

[image: ../_images/req-send-gui.png]
Outbound request window

An identity address is provided in the format
<name>@<onion address>, where the <name> is only a local
identifier of the peer and you can pick any name you wish to call
them.

Receiving Requests

Inbound requests are notified in a new window with the information of
the peer who sent the request:

[image: ../_images/req-accept-gui.png]
Inbound request window

As mentioned previously, peer names are local and when accepting a
request you can pick another one to call them instead of using the one
they sent.

Chatting

unMessage creates tabs for each peer you have a conversation with.
Within each tab, besides composing messages and sending (clicking
Send or pressing the Enter key) there are some actions
available.

[image: ../_images/msg-gui.png]
Chat tab

Notifying Presence

If you wish to notify the peer whenever you go online or offline,
check Send Presence and unMessage will start to send them
notifications of these events.

Verifying

If you have some secure communication channel established with the
other peer, ask them for their unMessage public identity key. Click
Verify and enter the key:

[image: ../_images/verify-gui.png]
Verification window

If the key matches, the peer will be verified and now you have
established a verified and secure communication channel:

[image: ../_images/level-verify-gui.png]
Verified conversation

Authenticating

The authentication of a conversation works by prompting both peers for
a secret (which was exchanged through some other secure channel) and
if the secrets provided match, they are sure they are chatting with
the right person. Click Authenticate and provide the secret:

[image: ../_images/auth-gui.png]
Authentication window

An authentication session is created when the secrets are exchanged
and is valid until one of the peers disconnect. When it happens, the
conversation is not authenticated anymore and a new session must be
initialized when the peers reconnect.

[image: ../_images/level-auth-gui.png]
Authenticated conversation

Assuming that one of the peers might be an attacker, this process is
done with the Socialist Millionaire Protocol [https://en.wikipedia.org/wiki/Socialist_millionaire] by comparing the
secrets without actually disclosing them.

Authentication Levels

As noticed, unMessage conversations have three authentication levels:

	Unverified Conversation

	Verified Conversation

	Authenticated Conversation

When the conversation is established, its level is
Unverified Conversation because unMessage does not know if you
are sure that the peer’s identity key is actually theirs.

If you follow the Verifying section, the level changes
to Verified Conversation and it persists for as long the
conversation exists.

If you follow the Authenticating section, the
level changes to Authenticated Conversation and it persists for as
long the session exists. Once the session is over, the level
drops to the identity key’s verification level:
Unverified/Verified.

Important

The Authenticated level is stronger than the Verified
level because the former is a short term verification that lasts
only until the peers disconnect, while the latter is long term
that lasts until the conversation is deleted (manually, by the
user). That means that with a short term verification you are able
to authenticate the peer at that exact time, while a long term
verification means that you authenticated the peer in the past,
but is not aware of a compromise in the future.

This feature aims to increase unMessage’s security by identifying
an attack that is not covered by the scope of the
Double Ratchet Algorithm: compromised keys.

Relaunching unMessage

unMessage remembers the last User Interface and Peer that you used. If
you wish to use a shortcut, you may call:

unmessage

Command-line Interface (CLI)

To launch unMessage’s CLI, pick any name you wish to use and call
it with:

$ unmessage-cli -name <name>

Tor is launched and if this is the first time you use that name,
your Onion Service and Double Ratchet keys are created and you
are ready to receive and send requests to initialize conversations.
unMessage displays this bootstrap process:

[image: ../_images/bootstrap-cli.png]
Bootstrap lines

After unMessage is launched, you can call /help to display all the
commands the CLI responds to:

[image: ../_images/help-cli.png]
/help command

The /peer, /onion and /key commands can be used to copy
information the other peers need to send you requests. You must share
both your identity address and key:

bob@a7riwene46w3vqhp.onion RefK+9vx3GZpclb/On95iJ1QnxqkUeq/JBYqK5gHFwo=

Sending Requests

Use the /req-send command to send a request, providing the
identity address and key of the peer you wish to contact:

[image: ../_images/req-send-cli.png]
/req-send command

An identity address is provided in the format
<name>@<onion address>, where the <name> is only a local
identifier of the peer and you can pick any name you wish to call
them.

Receiving Requests

Inbound requests are notified, with the information of the peer who
sent the request:

[image: ../_images/req-accept-cli.png]
/req-accept command

As mentioned previously, peer names are local and when accepting a
request you can pick another one to call them instead of using the one
they sent.

Chatting

unMessage diplays each peer you have a conversation with by calling
the /convs command.

[image: ../_images/convs-cli.png]
/convs command

To send a message to a peer, use the /msg command:

[image: ../_images/msg-cli.png]
/msg command

Transmitting Files

unMessage also supports file transfers. Sending a request to transmit
a file can be done with the /file-send command:

/file-send charlie ~/file.txt

The other party will receive a notification with the file name, size
and checksum. It can be authorized to be transmitted with the
/file-accept command:

/file-accept dory DiEjQOChrEorC0iPxrdNenBhiITaobehz5sQSkNnWIY=

The file will be saved by default as
~/.config/unMessage/<your-peer>/conversations/<other-peer>/file-transfer/<original-file-name>.
The command also supports an optional argument for the path to save
the file instead of using the default one:

/file-accept dory DiEjQOChrEorC0iPxrdNenBhiITaobehz5sQSkNnWIY= ~/dory.txt

Once the initiator receives the confirmation, the file transfer is
finally initialized and both parties are notified when it is complete.

Notifying Presence

If you wish to notify the peer whenever you go online or offline,
use the /pres-on command and unMessage will start to send them
notifications of these events:

[image: ../_images/pres-on-cli.png]
/pres-on command

To disable, use the /pres-off command.

Verifying

If you have some secure communication channel established with the
other peer, ask them for their unMessage public identity key. Use the
/verify command and enter the key:

[image: ../_images/verify-cli.png]
/verify command

If the key matches, the peer will be verified and now you have
established a verified and secure communication channel.

Authenticating

The authentication of a conversation works by prompting both peers for
a secret (which was exchanged through some other secure channel) and
if the secrets provided match, they are sure they are chatting with
the right person. Call the /auth command and provide the secret:

[image: ../_images/auth-cli.png]
/auth command

An authentication session is created when the secrets are exchanged
and is valid until one of the peers disconnect. When it happens, the
conversation is not authenticated anymore and a new session must be
initialized when the peers reconnect.

Assuming that one of the peers might be an attacker, this process is
done with the Socialist Millionaire Protocol [https://en.wikipedia.org/wiki/Socialist_millionaire] by comparing the
secrets without actually disclosing them.

Authentication Levels

As noticed, the names of the peers are colored based on the
conversation authentication levels:

	Unverified Conversation (red)

	Verified Conversation (green)

	Authenticated Conversation (cyan)

When the conversation is established, its level is
Unverified Conversation because unMessage does not know if you
are sure that the peer’s identity key is actually theirs.

If you follow the Verifying section, the level changes
to Verified Conversation and it persists for as long the
conversation exists.

If you follow the Authenticating section, the
level changes to Authenticated Conversation and it persists for as
long the session exists. Once the session is over, the level
drops to the identity key’s verification level:
Unverified/Verified.

Important

The Authenticated level is stronger than the Verified
level because the former is a short term verification that lasts
only until the peers disconnect, while the latter is long term
that lasts until the conversation is deleted (manually, by the
user). That means that with a short term verification you are able
to authenticate the peer at that exact time, while a long term
verification means that you authenticated the peer in the past,
but is not aware of a compromise in the future.

This feature aims to increase unMessage’s security by identifying
an attack that is not covered by the scope of the
Double Ratchet Algorithm: compromised keys.

Relaunching unMessage

unMessage remembers the last User Interface and Peer that you used. If
you wish to use a shortcut, you may call:

unmessage

Note

unMessage’s CLI is inspired by xmpp-client [https://github.com/agl/xmpp-client].

unMessage Protocol

This section describes the logic for sending/accepting requests and
exchanging messages in Establishing Conversations, as well as the
packets used in each of those stages in Packet Formats.

Establishing Conversations

The unMessage protocol is based on the Double Ratchet Algorithm [https://whispersystems.org/docs/specifications/doubleratchet] to
establish conversations and exchange messages privately and
anonymously.

Note

unMessage uses Tor Onion Services [https://www.torproject.org/docs/hidden-services.html] to anonymously connect peers
as we believe that it is the best transport for this kind of
application, but other approaches such as posting the packets to a
public mailing list should also work (as long as the packets are
anonymously posted).

In the Double Ratchet Algorithm, a secret key must be agreed on
to derive all the other keys involved in the conversation. The
secret key used by unMessage is generated with the
Triple Diffie-Hellman Key Agreement [https://whispersystems.org/blog/simplifying-otr-deniability], using one party’s
public identity and handshake keys, and another’s
private identity and handshake keys.

Each party must have its mode assigned to as either Alice or
Bob. The one who starts the initialization is Bob and can
send messages right after the secret key is generated. As part of
the initialization, Bob must send his public ratchet key to
Alice so that she is able to start the
Diffie-Hellman ratcheting [https://whispersystems.org/docs/specifications/doubleratchet/#diffie-hellman-ratchet] and also send messages immediately.

unMessage conversations have the following stages:

	Request sent

	Request accepted

	Conversation established

In order to send requests, both parties must launch unMessage to
generate their Onion Service and Double Ratchet keypairs.
unMessage is a serverless application, so a peer who wishes to
receive requests must send/publish their Onion Service address and
Double Ratchet public identity key through some other communication
channel.

unMessage assigns Bob to the one who sends a request and Alice
to the one who receives it.

Important

In the following sections, the shared request key and
conversation ID are described as the direct input of hash and
encryption functions for simplicity. In fact, these keys are input
of a Key Derivation Function (KDF) along with its respective
salt, and the output keys of the KDF that are actually used
by such functions.

Stage 1: Request sent

A request keypair is generated by Bob’s unMessage to derive a
Diffie-Hellman shared request key using the
private request key and Alice’s public identity key.
The shared request key, is used to encrypt the following
information needed by Alice to initialize a conversation with
Bob:

	Bob’s identity address

	Bob’s identity public key

	Bob’s handshake public key

	Bob’s ratchet public key

This set composes the handshake packet, which after encrypted is
used to compose the request packet:

	IV

	hash(IV + Alice’s public identity key + shared request key)

	keyed_hash(shared request key, encrypted handshake packet)

	public request key

	encrypted handshake packet

The packet is then sent to Alice’s Onion Address and Stage 1
is completed.

Important

The handshake packet should be signed by the Onion Service
and Double Ratchet keys so that a peer cannot advertise keys
they do not own. This will be implemented in a future version of
unMessage.

Stage 2: Request accepted

After receiving the request packet, Alice’s unMessage derives
the shared request key using Alice’s private identity key and
the public request key. The shared request key is hashed with
the IV and the handshake packet to make sure that is indeed an
unMessage request packet and the handshake packet can be
decrypted. Alice is notified that the request was received from
Bob and accepts it to initialize the Double Ratchet
conversation.

Bob’s public identity and handshake keys sent in the
handshake packet are used to generate the Double Ratchet
secret key with
Alice’s private identity and handshake keys (the former was
generated when unMessage was launched by the first time and the latter
when the request was accepted, to be used for this specific
conversation). The Double Ratchet conversation is finally
initialized using the secret key and Bob’s public ratchet key
(also sent in the handshake packet). At this point, Stage 2
is completed and Alice can start sending encrypted messages.
However, as Bob does not have Alice’s public handshake key, it
is encrypted (using the shared request key) and sent along with
the unMessage reply packet:

	IV

	hash(IV + Bob’s public identity key + shared request key)

	keyed_hash(shared request key, encrypted handshake key + encrypted payload)

	Alice’s encrypted public handshake key

	encrypted payload

Stage 3: Conversation established

When messages from Alice are received, Bob’s unMessage hashes
the shared request key with the IV and
Alice’s encrypted public handshake key concatenated with the
encrypted payload to make sure that is indeed an unMessage
packet from Alice, and her public handshake key can be
decrypted. Bob now can also generate the secret key with his
private identity and handshake keys, and
Alice’s public identity and handshake keys. With his part of
the conversation initialized, he can start sending unMessage
regular packets:

	IV

	hash(IV + Alice’s public identity key + conversation ID)

	keyed_hash(conversation ID, encrypted payload)

	encrypted payload

Stage 3 is completed when Alice receives a regular packet
from Bob, which means that he was able to initialize the
conversation with her public handshake key and there is no need
to send reply packets anymore, so her unMessage also starts
sending regular packets.

Identifying conversations

All of the identifying information of an unMessage packet is encrypted
so that an attacker who intercepts it cannot tell who are the receiver
and sender.

When a packet is received, unMessage assumes it is a
regular packet and attempts to use all of the peer’s
conversation IDs to derive the IV hash. If the hash matches
the packet’s IV hash, unMessage identifies the sender and is able
to decrypt the payload (after verifying its integrity). If the
IV hash does not match, unMessage assumes the packet is a
request packet and derives a shared request key using the
public request key from the packet and the peer’s
public identity key. unMessage attempts to use the
shared request key and the IV to derive a hash that matches
the packet’s IV hash. If it matches, unMessage checks the
integrity of the rest of the packet and processes the request as
described in Stage 2.

When unMessage fails to identify or check the integrity of packets,
they are ignored.

Note

The IV hash also uses the receiver’s public identity key as
part of the hash so that, for example, Alice can tell the
difference between messages she sent to Bob and messages she
received from Bob.

The IV hash is another implementation of an hSub [http://is-not-my.name/hsub.html].

Packet Formats

unMessage’s conversations have three stages, each using a different
packet format:

	Request: contains Bob’s name, address and keys (identity,
handshake and ratchet)

	Reply: contains Alice’s key (handshake) and optionally an
encrypted element

	Regular: contains an encrypted element

Note

Elements are the plaintext of the information exchanged in
unMessage’s conversations, which are wrapped by Double Ratchet’s
encryption and added to reply/regular packets for transmission.
(e.g., presence notifications, text messages,
authentication buffers)

The following sections summarize what each packet is used for, their
exact contents and their size in bytes.

(In the following diagrams, data surrounded by ===
is encrypted)

Request Packet

To notify Alice that Bob wishes to establish a conversation
with her, he must send all the information she needs to complete this
process. The information is sent in a request packet:

+--+
| Request packet (240 + address) |
+--+
| IV (8) |
| IV Hash (32) |
| Keyed hash (32) |
| Public request key (32) |
| |
| +--+ |
| | Encrypted handshake packet (136 + address) | |
| +--+ |
	Nonce (24)			
	MAC (16)			
	+==+			
		Identity address		
		Public identity key (32)		
		Public handshake key (32)		
		Public ratchet key (32)		
	+==+			
+--+				
+--+

The request key is used to derive a shared request key with
Alice’s identity key in order to encrypt Bob‘s information so
that only the ones in possession of the private request or
identity keys are able to read who sent the request.

Reply Packet

Once Alice accepts the request, she is able to send encrypted
elements to Bob, who sent all information required by her to
initialize a conversation. However, as Bob needs her
handshake key, she adds it before the payload of the message, in
case an element should also be included. This information is sent in a
reply packet:

+--+
| Reply packet (192 + 72 + payload) |
+--+
| IV (8) |
| IV Hash (32) |
| Keyed hash (32) |
| |
| +--+ |
| | Encrypted public handshake key (72) | |
| +--+ |
	Nonce (24)			
	MAC (16)			
	+==+			
		Public handshake key (32)		
	+==+			
+--+				
+--+				
	Encrypted payload (120 + payload)			
+--+				
	+--+			
		Double Ratchet header (80)		
	+--+			
		Nonce (24)		
		MAC (16)		
		+====================================+		
			Ns (3)	
			PNs (3)	
			DHRs (32)	
		+====================================+		
		Padding (2)		
	+--+			
	+--+			
		Double Ratchet payload (40 + payload)		
	+--+			
		Nonce (24)		
		MAC (16)		
		+====================================+		
			Payload	
		+====================================+		
	+--+			
+--+				
+--+

In order to send multiple messages to Bob (which might be
delivered out of order), Alice must continue to send her
handshake key until Bob replies (signaling that he was able to
establish a conversation as well). To prevent reply packets from
being linked by leaking the handshake key, it is encrypted using
the shared request key used in the encryption of the
request packet sent by Bob.

Regular Packet

Once both peers have initialized their sides of the conversation,
there is no need for Alice to send the handshake key anymore.
The only content subsequent exchanges transmit are their payloads.
This information is sent in a regular packet:

+--+
| Regular packet (192 + payload) |
+--+
| IV (8) |
| IV Hash (32) |
| Keyed hash (32) |
| |
| +--+ |
| | Encrypted payload (120 + payload) | |
| +--+ |
	+--+					
		Double Ratchet header (80)				
	+--+					
		Nonce (24)				
		MAC (16)				
		+====================================+				
			Ns (3)			
			PNs (3)			
			DHRs (32)			
		+====================================+				
		Padding (2)				
	+--+					
	+--+					
		Double Ratchet payload (40 + payload)				
	+--+					
		Nonce (24)				
		MAC (16)				
		+====================================+				
			Payload			
		+====================================+				
	+--+					
+--+						
+--+

Important

Despite the fact that each packet’s contents look like random
information, in the current version of unMessage all of them have
a different size. In the future, all packets should be padded to a
fixed size in order to achieve indistinguishability.

Threat Model

unMessage is characterized by the packets it creates and processes,
and the transport used to transmit such packets between its peers. Tor
Onion Services is the current supported solution used to connect
peers, but as unMessage employs an application protocol that manages
its own packets, it would be possible to allow the use of other
transports as long as such packets are transmitted from one peer to
another, anonymously.

It is expected that the transport connecting the peers conceals their
real identity, location and path of transmissions from each other as
well as from an external adversary observing the network that is not
as powerful as a Global Passive Adversary. From this perspective,
unMessage is susceptible to the same security vulnerabilities as the
transport in use.

Although unMessage expects that information to be anonymously
exchanged between the peers, it does not require anything beyond
that because by default its packet format provides:

	Integrity

	Authenticity

	Confidentiality

	Anonymity

As conversations are established between peers with Double Ratchet
sessions, they also benefit from the properties of:

	Forward secrecy

	Future secrecy

	Deniability

Adversary Capabilities

From the application’s perspective, taking into account the local
server availability, packet creation and packet processing, we assume
the following capabilities from an adversary:

	An adversary is unable to break the cryptographic primitives used by
unMessage.

	An adversary is able to observe, intercept, replay and modify all
packets exchanged by the peers.

	An adversary is able to send requests and malformed packets to a
peer whose unMessage address and public identity key has been
acknowledged by them.

	An adversary is unable to perform an attack by making multiple
connections or sending multiple requests to a peer whose unMessage
address has been acknowledged by them, making that peer
unavailable to others.

	An adversary is unable to send malformed/malicious elements
to a peer who accepted their request and therefore has established
a conversation with.

	An adversary is unable to compromise a peer’s private identity key
to impersonate them in current and future conversations.

	An adversary is unable to compromise a peer’s private identity key
to decrypt any of the requests they received/accepted.

Possible Attacks

Some limitations to the adversary’s capabilities had to be imposed
due to the current implementation of unMessage, which does not yet
prevent some of the attacks mentioned in
Adversary Capabilities:

	unMessage maps an Onion Service to a local server that accepts
connections and receives netstrings [https://twistedmatrix.com/documents/16.6.0/api/twisted.protocols.basic.NetstringReceiver.html] to be parsed as unMessage
packets. This behavior allows an adversary who has knowledge of a
peer’s Onion Service address to perform the attack mentioned in
item 4, by either making the Onion Service inaccessible in the
network or overloading the unMessage instance.

	Although unMessage validates the format of the packets it expects to
receive and an adversary cannot make any modifications due to the
integrity checks, once a packet is decrypted after being validated
by passing such checks, there is not yet a mechanism validating the
conversation elements (i.e., the plaintext of reply/regular packets)
and the attack mentioned in item 5 is possible to be performed.

	The attack mentioned in item 6 can be mitigated as unMessage
provides an authentication feature. As long as the users have
securely agreed on a secret that is not known by the adversary, the
party who the impersonator is communicating with can use it to
initiate the authentication process and detect the attack. Even
though any user can initiate the authentication at any time after a
conversation is established, it is up to them to properly handle the
secret and regularly authenticate themselves - or at least do so
under any suspicion. Even if users take such actions, unMessage is
only able to detect instead of prevent it.

	All the peer information required to send/receive conversation
requests is encrypted with a shared secret derived from a
Diffie-Hellman key exchange using Bob’s request key and Alice’s
identity key. The request key is ephemeral and is disposed once the
conversation is established, but the identity key is not. For that
reason, the attack mentioned in item 7 is possible to be performed
but not prevented by unMessage.

Changelog

unMessage 0.2.0, released 2017-05-12

	Support multiple conversation managers

	Support voice conversations with unTalk

	Support connecting to the system’s Tor

	Use Ephemeral Onion Services

	Allow customization of the local server’s network interface

	Fix bug which allowed any command on the CLI before bootstrapping

	Fix bug which ignored element packets longer than 4 lines and
consequently any multiline message

unMessage 0.1.1, released 2017-02-10

	Improve ports handling

	Improve handling of unusual packets

unMessage 0.1.0, released 2017-01-22

	Initial commit

Feedback

Please join us on #unMessage:anemone.me or #anemone:anemone.me
with Matrix [https://matrix.org], #anemone at OFTC [https://oftc.net], or use the
GitHub issue tracker [https://github.com/AnemoneLabs/unmessage/issues] to leave suggestions, bug reports, complaints
or anything you feel will contribute to this application.

Index

 _images/auth-gui.png
Provide the shared secret:

e
oK cancel

_images/msg-cli.png
* unMessage - dory@tgpkn6nbha36byrp.onion:50000 42efA1TXH7wFs260YEXPq29PurOmtVQOgNSsm1gQ2TM=

> /msg charlie Hi!
charlie< Hi!

charlie< []

_static/comment.png

_images/level-auth-gui.png
dory |

charlie: Hello

Authenticated Conversation
”dﬂrw

_static/plus.png

_images/req-accept-gui.png
Chat request received!
Do you know this peer?

Identity Address

Identity Key

New name (Optional)

Accept Request

_static/down.png

_images/req-send-gui.png
Whom would you like

to chat with?
Identity Address
dory@tgpknnbha3ebyrp.onion:50000
Identity Key

|42efAITXHTWFs260YEXPG29PUrOmEVQOgNSsm1gQ2TM=

Send Request

_static/comment-close.png

_images/bootstrap-cli.png
ok kK K X K % %

unMessage

Starting peer
Configuring local server

Running local server

Configuring Tor

Configuring Tor process

Configuring Onion Service

Running reactor

85%: Finishing handshake with first hop
90%: Establishing a Tor circuit

_static/file.png

_images/start-gui.png
Start Peer

How will peers find you?
Name
charlie
Local Server Port (Optional)

Tor Port (Optional)

Tor Control Port (Optional)

Start

_static/minus.png

_images/bootstrap-gui.png
New Chat Copy Identity Copy Key Copy Peer Copy Onion Quit

Bootstrap |

Starting peer
Configuring local server

Running local server

Configuring Tor

(Configuring Tor process

(Configuring Onion Service

Running reactor

85%: Finishing handshake with first hop
9%: Establishing a Tor circuit

_images/req-send-cli.png
* unMessage - dory@tgpkn6nbha36byrp.onion:50000 42efA1TXH7wFs260YEXPq29PurOmtVQOgNSsm1gQ2TM=

> /req-send charlie@jt6zabesvrhxvhee.onion:50001 v4kU6s+NuJW/ZnbjZz8AxoI9Gv11XDS5ei0Tm6CE3BEA=
* Request sent: charlie@jt6zabesvrhxvhee.onion:50001 has received your request

>0

_images/verify-gui.png
Provide the contact's public key:
129PUrOMEVQOgNSSM1gQ2TM=

[] cm

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		unMessage

 		Overview

 		Features

 		Installation

 		Requirements

 		Using a Virtual Environment

 		Installing

 		Updating

 		Usage

 		Persistence

 		Graphical User Interface (GUI)

 		Sending Requests

 		Receiving Requests

 		Chatting

 		Notifying Presence

 		Verifying

 		Authenticating

 		Authentication Levels

 		Relaunching unMessage

 		Command-line Interface (CLI)

 		Sending Requests

 		Receiving Requests

 		Chatting

 		Transmitting Files

 		Notifying Presence

 		Verifying

 		Authenticating

 		Authentication Levels

 		Relaunching unMessage

 		unMessage Protocol

 		Establishing Conversations

 		Stage 1: Request sent

 		Stage 2: Request accepted

 		Stage 3: Conversation established

 		Identifying conversations

 		Packet Formats

 		Request Packet

 		Reply Packet

 		Regular Packet

 		Threat Model

 		Adversary Capabilities

 		Possible Attacks

 		Changelog

 		unMessage 0.2.0, released 2017-05-12

 		unMessage 0.1.1, released 2017-02-10

 		unMessage 0.1.0, released 2017-01-22

 		Feedback

_images/req-accept-cli.png
* unMessage - dory@tgpkn6nbha36byrp.onion:50000 42efA1TXH7wFs260YEXPq29PurOmtVQOgNSsm1gQ2TM=

* Request received: charlie has sent you a request - accept using "/req-accept charlie@jt6zabe
svrhxvhee.onion:50001 [<new_peer name>]"
> /req-accept charlie@jt6zabesvrhxvhee.onion:50001

* Conversation established: You can now chat with charlie using "/msg charlie <message>"

>0

_images/convs-cli.png
* unMessage - dory@tgpkn6nbha36byrp.onion:50000 42efA1TXH7wFs260YEXPq29PurOmtVQOgNSsm1gQ2TM=

* Conversations:
charlie@jt6zabesvrhxvhee.onion:50001 v4kU6s+NuJW/Znbjz0AxoI9Gv11XDS5ei0Tm6CcE38E4=

_images/pres-on-cli.png
* unMessage - dory@tgpkn6nbha36byrp.onion:50000 42efA1TXH7wFs260YEXPq29PurOmtVQOgNSsm1gQ2TM=

> /pres-on charlie
* You will start sending your presence to charlie

>0

_images/verify-cli.png
* unMessage - dory@tgpkn6nbha36byrp.onion:50000 42efA1TXH7wFs260YEXPq29PurOmtVQOgNSsm1gQ2TM=

charlie< /verify charlie v4kU6s+NuJW/Znbjz0AxoI9Gv11XDS5ei0Tm6cE38E4=
* charlie's key has been verified.

charlie< []

_images/auth-cli.png
* unMessage - dory@tgpkn6nbha36byrp.onion:50000 42efA1TXH7wFs260YEXPq29PurOmtVQOgNSsm1gQ2TM=

* Authentication started: charlie wishes to authenticate - advance using "/auth charlie <secr|
et>"

> /auth charlie axolotl

* Authentication successful: Your conversation with charlie is authenticated!

> 1

_images/help-cli.png
* unMessage - bob@jt6zabesvrhxvhee.onion:50000 v4kU6s+NuJW/Znbjz0AxoI9Gv11XDS5ei0Tm6CcE38E4=

> /help
/auth

/convs
/delete

/help
/identity
/key
/msg

/onion
/peer
/pres-off
/pres-on

/quit
/req-accept

/req-send
/regs-in

/regs-out
/verify

authenticate a conversation with a shared secret
args: <peer name> <secret>
display existing conversations
delete conversation with a peer
args: <peer name>
display commands that unMessage responds to
display your identity in the format <peer name>@<onion servers:<port>
display your identity key
send message to a peer you maintain a conversation
args: <peer name> <message>
display your onion server
display your peer address and key
disable sending your presence to a peer at startup
args: <peer name>
enable sending your presence to a peer at startup
args: <peer name>
quit unMessage
accept a conversation request
args: <peer name>@<onion server>:<port> [<new_peer name>]
send a conversation request
args: <peer name>@<onion server>[:<port>] <identity key>
display inbound requests
display outbound requests
verify a peer's identity key
args: <peer name> <identity key>

_images/msg-gui.png

_images/level-verify-gui.png

