

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	unitils 0.1.0 documentation

Unitils

Introduction

[image: Travis-CI Build Status (for Linux)]
 [https://travis-ci.org/iLoveTux/unitils][image: AppVeyor Build Status (for windows)]
 [https://ci.appveyor.com/project/iLoveTux/unitils][image: Test Coverage Status]
 [https://codecov.io/gh/iLoveTux/unitils][image: Code Climate]
 [https://codeclimate.com/github/iLoveTux/unitils][image: Documentation Status]
 [http://unitils.readthedocs.io/en/latest/index.html]
What is it and why do I care?

Unitils has been incredibly useful for my co-workers and myself. They are simplified, altered forms of common and useful utilities you are likely to find on most Unix-like operating systems. They are written as command line utilities, but also present a single Python generator which can be used from within Python without “shelling” the command out.

Because of the simplified nature of these utilities along with the compromises we have made. We wished to differentiate ourselves from similar commands which were our inspiration. Each of our utilities appends ”.py” to the end of the command. For instance, our version of grep can be invoked with the grep.py command.

For instance, grep.py is designed to be used just like this:

$ grep.py -i 'warn' /var/log/*.log

And from Python it can be used like this:

from glob import iglob
from unitils import grep

for match in grep("warn", iglob('/var/log/*.log'), ignore_case=True):
 print(match)

Why should I use it?

Unitils is a collection of useful utilities which have been re-written to be simple
and to provide a CLI as well as a Python API.

Unitils was written to be:

	Fast, everything is an generator (where possible) and strives to be as efficient in both memory and cpu time.

	Tested, Unittests are important and we strive for high test coverage.

	Cross Platform, Written in Python these utilities can run on Windows, Linux and Mac OSx.

	Provides an API to use these utilities in Python, cross-platform and without “shelling out”.

	Open Source, This project is released under the GPLv3 [https://www.gnu.org/licenses/gpl.txt]

How does it work?

Each command we target, we create a Python generator which yields the output and send it to stdout. So we in effect have native, memory efficient access to many common utilities directly from within Python. We then wrap a command line interface around this generator tp provide our users with a convenient cross-platform utility.

How do I get it?

To get the most supported version:

$ pip install unitils

To get the latest version:

$ pip install https://github.com/ilovetux/unitils/archive/master.zip

For the nightlies:

$ pip install https://github.com/ilovetux/unitils/archive/dev.zip

How do I run the tests?

You can clone the repository and use the following command:

$ make test

or alternately:

$ python setup.py nosetests

In general, the master branch is what is available on PyPI.

What is this compatible with?

Unitils is tested and confirmed to work with

	Python 3.5

	Python 3.4

	Python 3.3

	Python 2.7

	pypy

Unitils should work on all platforms on which Python runs.

What is the current list of utilities provided by unitils?

	cat

	cp

	find

	grep

	head

	ls

	mv

	watch

	wc

	which

What is on the list to be done?

See this issue [https://github.com/iLoveTux/unitils/issues/5] for the state of
our current prgress.

How can I help?

You can do all the github type things, submit an issue in our issue tracker [https://github.com/ilovetux/unitils/issues] or fork and submit a pull request [https://github.com/ilovetux/unitils/pulls]. If none of that appeals to you, you can always send me an email personally at me@ilovetux.com

	Introduction
	What is it and why do I care?

	Why should I use it?

	How does it work?

	How do I get it?

	How do I run the tests?

	What is this compatible with?

	What is the current list of utilities provided by unitils?

	What is on the list to be done?

	How can I help?

	Rationale
	Abstract

	CLI
	cat.py(1)

	cp.py(1)

	find.py(1)

	grep.py(1)

	head.py(1)

	ls.py(1)

	mv.py(1)

	watch.py(1)

	wc.py(1)

	which.py(1)

	Overview

	Stay Tuned

	API

 Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	unitils 0.1.0 documentation

Introduction

[image: Travis-CI Build Status (for Linux)]
 [https://travis-ci.org/iLoveTux/unitils][image: AppVeyor Build Status (for windows)]
 [https://ci.appveyor.com/project/iLoveTux/unitils][image: Test Coverage Status]
 [https://codecov.io/gh/iLoveTux/unitils][image: Code Climate]
 [https://codeclimate.com/github/iLoveTux/unitils][image: Documentation Status]
 [http://unitils.readthedocs.io/en/latest/index.html]
What is it and why do I care?

Unitils has been incredibly useful for my co-workers and myself. They are simplified, altered forms of common and useful utilities you are likely to find on most Unix-like operating systems. They are written as command line utilities, but also present a single Python generator which can be used from within Python without “shelling” the command out.

Because of the simplified nature of these utilities along with the compromises we have made. We wished to differentiate ourselves from similar commands which were our inspiration. Each of our utilities appends ”.py” to the end of the command. For instance, our version of grep can be invoked with the grep.py command.

For instance, grep.py is designed to be used just like this:

$ grep.py -i 'warn' /var/log/*.log

And from Python it can be used like this:

from glob import iglob
from unitils import grep

for match in grep("warn", iglob('/var/log/*.log'), ignore_case=True):
 print(match)

Why should I use it?

Unitils is a collection of useful utilities which have been re-written to be simple
and to provide a CLI as well as a Python API.

Unitils was written to be:

	Fast, everything is an generator (where possible) and strives to be as efficient in both memory and cpu time.

	Tested, Unittests are important and we strive for high test coverage.

	Cross Platform, Written in Python these utilities can run on Windows, Linux and Mac OSx.

	Provides an API to use these utilities in Python, cross-platform and without “shelling out”.

	Open Source, This project is released under the GPLv3 [https://www.gnu.org/licenses/gpl.txt]

How does it work?

Each command we target, we create a Python generator which yields the output and send it to stdout. So we in effect have native, memory efficient access to many common utilities directly from within Python. We then wrap a command line interface around this generator tp provide our users with a convenient cross-platform utility.

How do I get it?

To get the most supported version:

$ pip install unitils

To get the latest version:

$ pip install https://github.com/ilovetux/unitils/archive/master.zip

For the nightlies:

$ pip install https://github.com/ilovetux/unitils/archive/dev.zip

How do I run the tests?

You can clone the repository and use the following command:

$ make test

or alternately:

$ python setup.py nosetests

In general, the master branch is what is available on PyPI.

What is this compatible with?

Unitils is tested and confirmed to work with

	Python 3.5

	Python 3.4

	Python 3.3

	Python 2.7

	pypy

Unitils should work on all platforms on which Python runs.

What is the current list of utilities provided by unitils?

	cat

	cp

	find

	grep

	head

	ls

	mv

	watch

	wc

	which

What is on the list to be done?

See this issue [https://github.com/iLoveTux/unitils/issues/5] for the state of
our current prgress.

How can I help?

You can do all the github type things, submit an issue in our issue tracker [https://github.com/ilovetux/unitils/issues] or fork and submit a pull request [https://github.com/ilovetux/unitils/pulls]. If none of that appeals to you, you can always send me an email personally at me@ilovetux.com

 Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	unitils 0.1.0 documentation

Rationale

Abstract

This document outlines in detail why I believe this library is a worthwhile investment in time and resources.

Where the idea originated

There is a slight disconnect between DevOps engineers (particularly Operations personele, Administration personele and Security Analysists) caused by a difference in language, culture and tools. Over and over, people are being asked to transition to a DevOps work cycle but something as simple as learning the new tools and mindset can be overwhelming. Most non-development IT professionals are familiar with basic linux commands, so we decided to explore that.

A lot of the work being done in the DevOps space are written in Python, and because Python is a great language for automation, we decided that it would be almost a gift to allow people making the DevOps transition. Automation is nothing new and lots of people have experience making shell scripts or batch files to acomplish the same task. If these people were given a familiar toolset with which to work in Python their transition will be just that much easier.

At the same time, we realized that “shelling out” commands was a real option, but the overhead of spawing shells and the limitation of using OS-specific system calls makes this unusable for cross-platform automation. Instead what we needed was a native Python function to mirror how these commands work on the outside.

About the time we made this realization, a few of my co-workers along with myself found ourselves working in a Windows environment. We agonized about having our basic toolset taken away from us (Imagine a carpenter working in a shop that forbids hammers). We would have loved to just be able to tail a file and grep the logs (I know there are Windows ways of doing the above tasks, but I only make use of them every couple of years).

This is when our idea was made to not only make a library which provides functions mirroring Linux commands, but to also provide these functions with a Command Line Interface. The dual interfaces (programatic and command line) allow great flexibility.

The commands we are targeting

Please see this issue [https://github.com/iLoveTux/unitils/issues/5] for the
current state of our progress.

 Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	unitils 0.1.0 documentation

CLI

	cat.py(1)

	cp.py(1)

	find.py(1)

	grep.py(1)

	head.py(1)

	ls.py(1)

	mv.py(1)

	watch.py(1)

	wc.py(1)

	which.py(1)

Please see this issue [https://github.com/iLoveTux/unitils/issues/5] for the
current state of our progress.

Overview

The CLI utilites provided by unitils are designed to mirror their GNU equivalents whenever possible. Sometimes we will make concessions due to time-to-market concerns, efficiency concerns or simply thinking that YAGNI.

Below follows a listing of commands along with the options which control how they work along with descriptions.

Stay Tuned

 Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	unitils 0.1.0 documentation

 	CLI

cat.py(1)

Name

cat.py - Concatenate files and print on standard output.

SYNOPSIS

cat.py [OPTIONS]... [FILE]...

DESCRIPTION

Concatenate FILE(s) to standard output.

When no FILE or when FILE is “-”, read standard input.

-h, --help
 Print usage message and exit
--version
 output version information and exit
-n, --number
 Number all output lines.

EXAMPLES

OVERVIEW

This is a work-in-progress, we aim to become feature-compatible with cat
as released by the Free Software Foundation.

ENVIRONMENT VARIABLES

No environment variables affect the behavior of this software.

COPYRIGHT

Copyright 2016 Clifford Bressette IV (iLoveTux).

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

BUGS

Bugs can be reported in our
issue tracker [https://github.com/ilovetux/unitils/issues]. This is also the
correct place for feature requests.

SEE ALSO

None yet

NOTES

None yet

 Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	unitils 0.1.0 documentation

 	CLI

cp.py(1)

Name

cp.py - Copy a file or directory

SYNOPSIS

cp.py [OPTIONS] SRC DST

DESCRIPTION

cp.py copies a source file or directory to a destination. If dst is a
directory, then a file with the same name as the original will be placed
within the directory. If src is a directory, you should specify –recursive
as this will allow the directory to be copied in full.

This is a simplified clone of the well-known cp command. Not all options
for the original will be available for this command.

OPTIONS

Generic Program Information

--help
 Output a usage message and exits.
-R, --recursive
 Recursively copy the contents of src to dst
-n, --no-clobber
 If specified, files will not be copied if they already exist at dst

EXAMPLES

OVERVIEW

This is a work-in-progress, we aim to become feature-compatible with cp
as released by the Free Software Foundation.

ENVIRONMENT VARIABLES

No environment variables affect the behavior of this software

EXIT STATUS

We aim to take advantage of exit status, but currently do not. The exit status
will be 0 unless an error occurs in which case it will be non-zero.

COPYRIGHT

Copyright 2016 Clifford Bressette IV (iLoveTux).

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

BUGS

Bugs can be reported in our
issue tracker [https://github.com/ilovetux/unitils/issues]. This is also the
correct place for feature requests.

SEE ALSO

None yet

NOTES

None yet

 Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	unitils 0.1.0 documentation

 	CLI

find.py(1)

Name

find.py - Search for files in a directory heirarchy

SYNOPSIS

find.py [OPTIONS...] [PATH]

DESCRIPTION

find.py currently differs greatly from the GNU implementation of find.
We do not currently evaluate expressions. We believe that we can cover
most common use cases with options rather than with a Domain Specific
Language (DSL), if this is found not to be the case, we will re-evaluate.

We try as much as possible to make the usage feel like the usage of the
GNU find utility.

OPTIONS

-iname=INAME
 The case-insensitive name spec (glob pattern) to search for.
-name=NAME
 The case-sensitive name spec (glob pattern) to search for.
-type=TYPE
 The type of file to look for. TYPE can be any of the following:

 b block (buffered) special
 c character (unbuffered) special
 d directory
 p named pipe (FIFO)
 f regular file
 l symbolic link
 s socket

EXAMPLES

OVERVIEW

This is a work-in-progress, we aim to become feature-compatible with find
as released by the Free Software Foundation.

ENVIRONMENT VARIABLES

No environment variables affect the behavior of this software

EXIT STATUS

We aim to take advantage of exit status, but currently do not. The exit status
will be 0 unless an error occurs in which case it will be non-zero.

COPYRIGHT

Copyright 2016 Clifford Bressette IV (iLoveTux).

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

BUGS

Bugs can be reported in our
issue tracker [https://github.com/ilovetux/unitils/issues]. This is also the
correct place for feature requests.

SEE ALSO

None yet

NOTES

None yet

 Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	unitils 0.1.0 documentation

 	CLI

grep.py(1)

Name

grep.py - print lines matching a pattern

SYNOPSIS

grep.py [OPTIONS] PATTERN [FILE...]

DESCRIPTION

grep.py searches the named input FILEs for lines containing a match to the
given PATTERN. If no files are specified, or if the file “-” is given,
grep.py searches standard input. By default, grep.py prints the matching
lines.

This is a simplified clone of the well-known grep command. Not all options
for the original will be available for this command. In addition, regular
expressions are handled differently by grep.py than by grep. Particularly
only one flavor of regular expressions are supported, this is because
Python’s regular expression is used for ease and speed of development.

OPTIONS

Generic Program Information

--help
 Output a usage message and exits.
-V, --version
 Output the version number of grep.py and exit

Matching Control

-i, --ignore-case
 Ignore case distinctions in both the PATTERN and the input files.
-v, --invert-match
 Invert the sense of matching, to select non-matching lines

General Output Control

--color[=WHEN]
 WHEN can be "never", "always" or "auto". On *nix systems, ANSI escape
 sequences are used to achieve terminal coloring. On Windows systems,
 these ANSI escape sequences are intercepted and the appropriate system
 API calls are made to color the text. No environment variables are
 interpreted to control the color.

Output Line Prefix Control

-H, --with-filename
 Print the filename for each match.
-n, --line-number
 Prefix each line of output with a 1-based line number within
 its input file.

EXAMPLES

OVERVIEW

This is a work-in-progress, we aim to become feature-compatible with grep
as released by the Free Software Foundation with the exception of the multiple
regular expression engines. We will stick to Python’s native regular expression
engine as we believe that writing regular expression engines is beyond the
scopeof this project.

ENVIRONMENT VARIABLES

No environment variables affect the behavior of this software

EXIT STATUS

We aim to take advantage of exit status, but currently do not. The exit status
will be 0 unless an error occurs in which case it will be non-zero.

COPYRIGHT

Copyright 2016 Clifford Bressette IV (iLoveTux).

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

BUGS

Bugs can be reported in our
issue tracker [https://github.com/ilovetux/unitils/issues]. This is also the
correct place for feature requests.

SEE ALSO

None yet

NOTES

None yet

 Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	unitils 0.1.0 documentation

 	CLI

head.py(1)

Name

head.py - Output the first part of files

SYNOPSIS

head.py [OPTIONS]... [FILE]...

DESCRIPTION

head.py will send the first 10 lines of each file to stdout. If more
than one file is specified each will be preceded by a header containing
the filename

This is a simplified clone of the well-known head command. Not all options
for the original will be available for this command.

OPTIONS

Generic Program Information

--help
 Output a usage message and exits.
-n, --lines
 The number of lines to print
-q, --quiet
 Never print the header with the filename
-v, --verbose
 Always print the header with the filename

EXAMPLES

OVERVIEW

This is a work-in-progress, we aim to become feature-compatible with head
as released by the Free Software Foundation.

ENVIRONMENT VARIABLES

No environment variables affect the behavior of this software

EXIT STATUS

We aim to take advantage of exit status, but currently do not. The exit status
will be 0 unless an error occurs in which case it will be non-zero.

COPYRIGHT

Copyright 2016 Clifford Bressette IV (iLoveTux).

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

BUGS

Bugs can be reported in our
issue tracker [https://github.com/ilovetux/unitils/issues]. This is also the
correct place for feature requests.

SEE ALSO

None yet

NOTES

None yet

 Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	unitils 0.1.0 documentation

 	CLI

ls.py(1)

Name

ls.py - List directory contents

SYNOPSIS

ls.py [OPTIONS...] [FILE...]

DESCRIPTION

List information about the FILEs (the current directory by default).
Sort entries alphabetically.

This is currently extremely limited compared to the GNU ls command,
but improvements are expected to be done soon. If you need a specific
feature to be completed please don’t hesitate to open an issue in
our issue tracker [https://github.com/ilovetux/unitils].

OPTIONS

-a, --all
 Do not ignore entries starting with .
-A, --almost-all
 do not list implied . and ..

EXAMPLES

OVERVIEW

This is a work-in-progress, we aim to become feature-compatible with ls
as released by the Free Software Foundation.

ENVIRONMENT VARIABLES

No environment variables affect the behavior of this software

EXIT STATUS

We aim to take advantage of exit status, but currently do not. The exit status
will be 0 unless an error occurs in which case it will be non-zero.

COPYRIGHT

Copyright 2016 Clifford Bressette IV (iLoveTux).

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

BUGS

Bugs can be reported in our
issue tracker [https://github.com/ilovetux/unitils/issues]. This is also the
correct place for feature requests.

SEE ALSO

None yet

NOTES

None yet

 Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	unitils 0.1.0 documentation

 	CLI

mv.py(1)

Name

mv.py - Recursively move src to dst

SYNOPSIS

mv.py [OPTIONS] SRC DST

DESCRIPTION

Recursively move src to dst.

This is currently extremely limited compared to the GNU ls command,
but improvements are expected to be done soon. If you need a specific
feature to be completed please don’t hesitate to open an issue in
our issue tracker [https://github.com/ilovetux/unitils].

OPTIONS

-h, --help
 Prints a usage message and exits

EXAMPLES

OVERVIEW

This is a work-in-progress, we aim to become feature-compatible with mv
as released by the Free Software Foundation.

ENVIRONMENT VARIABLES

No environment variables affect the behavior of this software

EXIT STATUS

We aim to take advantage of exit status, but currently do not. The exit status
will be 0 unless an error occurs in which case it will be non-zero.

COPYRIGHT

Copyright 2016 Clifford Bressette IV (iLoveTux).

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

BUGS

Bugs can be reported in our
issue tracker [https://github.com/ilovetux/unitils/issues]. This is also the
correct place for feature requests.

SEE ALSO

None yet

NOTES

None yet

 Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	unitils 0.1.0 documentation

 	CLI

watch.py(1)

Name

watch.py - execute a program periodically, displaying the results

SYNOPSIS

wc.py [OPTIONS...] COMMAND

DESCRIPTION

watch.py runs COMMAND repeatedly, displaying its output and errors. This
allows you to watch the program output change over time. By default, the
program is run every two seconds. By default, watch.py will run until
interrupted.

NOTE: This program differs significantly in execution from the GNU version
of watch. This is because I have not been able to find a way to go
fullscreen within a Windows command prompt. Instead, we clear the screen
before displaying the new output (cls on Windows and clear on *nix). If
you know of a way to achieve the desired results in a cross-platform way
within Python, please open an issue in our
issue tracker [https://github.com/ilovetux/unitils/issues] or better yet,
open a pull request [https://github.com/ilovetux/unitils/pulls]

EXAMPLES

OVERVIEW

This is a work-in-progress, we aim to become feature-compatible with watch
as released by the Free Software Foundation.

ENVIRONMENT VARIABLES

No environment variables affect the behavior of this software

EXIT STATUS

We aim to take advantage of exit status, but currently do not. The exit status
will be 0 unless an error occurs in which case it will be non-zero.

COPYRIGHT

Copyright 2016 Clifford Bressette IV (iLoveTux).

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

BUGS

Bugs can be reported in our
issue tracker [https://github.com/ilovetux/unitils/issues]. This is also the
correct place for feature requests.

SEE ALSO

None yet

NOTES

None yet

 Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	unitils 0.1.0 documentation

 	CLI

wc.py(1)

Name

wc.py - Print newline, word and byte counts for each file

SYNOPSIS

wc.py [OPTIONS...] [FILES...]

DESCRIPTION

Print newline, word and byte counts for each FILE, and a total line
if more than one file is specified. A word is a non-zero-length sequence
of characters delimited by whitespace.

With no FILE or when FILE is “-”, read standard input.

The options below may be used to select which counts are printed, always
in the following order: newline, word, character, byte, maximum line length.

-c, --bytes
 print the byte counts

-m, --chars
 print the character counts

-l, --lines
 print the newline counts

-L, --max-line-length
 print the maximum display width

-w, --words
 print the word counts

-h, --help display this help and exit

--version
 output version information and exit

EXAMPLES

OVERVIEW

This is a work-in-progress, we aim to become feature-compatible with wc
as released by the Free Software Foundation.

ENVIRONMENT VARIABLES

No environment variables affect the behavior of this software

EXIT STATUS

We aim to take advantage of exit status, but currently do not. The exit status
will be 0 unless an error occurs in which case it will be non-zero.

COPYRIGHT

Copyright 2016 Clifford Bressette IV (iLoveTux).

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

BUGS

Bugs can be reported in our
issue tracker [https://github.com/ilovetux/unitils/issues]. This is also the
correct place for feature requests.

SEE ALSO

None yet

NOTES

None yet

 Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	unitils 0.1.0 documentation

 	CLI

which.py(1)

Name

which.py - Search PATH for cmd and return the first instance

SYNOPSIS

which.py [OPTIONS] CMD

DESCRIPTION

Searches the PATH for cmd and prints the first occurance. This means
that the path printed will be the command invoked when cmd is issued.

This is currently extremely limited compared to the GNU ls command,
but improvements are expected to be done soon. If you need a specific
feature to be completed please don’t hesitate to open an issue in
our issue tracker [https://github.com/ilovetux/unitils].

OPTIONS

-h, --help
 Prints a usage message and exits
-a, --all
 Prints all matches, not just the first one

EXAMPLES

OVERVIEW

This is a work-in-progress, we aim to become feature-compatible with which
as released by the Free Software Foundation.

ENVIRONMENT VARIABLES

No environment variables affect the behavior of this software

EXIT STATUS

We aim to take advantage of exit status, but currently do not. The exit status
will be 0 unless an error occurs in which case it will be non-zero.

COPYRIGHT

Copyright 2016 Clifford Bressette IV (iLoveTux).

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

BUGS

Bugs can be reported in our
issue tracker [https://github.com/ilovetux/unitils/issues]. This is also the
correct place for feature requests.

SEE ALSO

None yet

NOTES

None yet

 Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	unitils 0.1.0 documentation

API

	
unitils.cat(files, number=False)[source]

	iterate through each file in files and yield each line in turn.

	Parameters:	
	files (list of open file-like objects) – The files to concatenate

	number (boolean) – If True, yield two-tuples of (line_number, line)

	
unitils.cp(src, dst, no_clobber=False, recursive=False)[source]

	Copy src to dst.

	Parameters:	
	src (str) – The file(s) to copy

	dst (str) – The destination for src

	no_clobber (boolean) – If True, do not overwrite files if they already exist

	recursive (boolean) – If True recursively copy the contents of src to dst

	
unitils.find(path='.', name=None, iname=None, ftype='*')[source]

	Search for files in a directory heirarchy.

This is dramatically different from the GNU version of
find. There is no Domain Specific language.

	Parameters:	
	path (str) – The directory to start in

	name (str) – The name spec (glob pattern) to search for

	iname (str) – The case-insensitive name spec (glob pattern) to search for

	ftype (str) – The type of file to search for must be one of b, c, d, p, f, k, s or *

	
unitils.grep(expr, files, line_numbers=False, filenames=False, color=False, invert_match=False, ignore_case=False)[source]

	search the contents of files for expr, yield the results

files can be a filename as str, a list of filenames, a file-like
object or a list of file-like objects. In any case, all files
will be searched line-by-line for any lines which contain expr
which will be yielded.

This does not support sending text in directly to search, the
reason is that this operation is fairly simple in Python:

import re

expr = re.compile(r"^\d+\s\w+")
matches = (l for l in text.splitlines() if expr.search(line))
for line in matching_lines:
 print(line)

	Parameters:	
	files (str, list, file) – files to search for expr

	expr (str, compiled regex) – the regular expression to search for

	line_numbers (bool) – If True, line numbers will be prepended to results

	filenames (bool) – If True, filenames will be prepended to results

	
unitils.head(files, lines=10, verbose=False, quiet=False)[source]

	Read the first 10 lines (by default) of each file in files.

As this is supposed to imitate the behavior of head, but also
be used as a Python callable, some liberties have been taken
to accomodate the functionality.

If one file is passed in, a generator is returned which will
yield the first n lines in the file.

If more than one file is passed in, a dict is returned keyed
by filename mapping to a generator which will yield the first
n lines of that file.

	Parameters:	
	files (str list) – The files to examine

	lines (int) – The number of lines to yield from each file

	verbose (boolean) – Always include the filename (as described above)

	quiet (boolean) – Never include the filename (as described above)

	
unitils.ls(path='.', _all=False, almost_all=False)[source]

	Iterator yielding information about path (defaults to
current directory)

Currently this will only list the contents of a directory.
More features will be added in the near future, but if there
is a certain feature you are in need of, please don’t hesitate
to submit an issue in our
issue tracker [https://github.com/ilovetux/unitils/issues]
or better yet submit a
pull request [https://github.com/ilovetux/unitils/pulls]

	Parameters:	
	path (str) – The directory to list

	_all (boolean) – If True files starting with ”.” are not ignored

	almost_all (boolean) – Like _all, but do not include ”.” and ”..”

	
unitils.mv(src, dst)[source]

	Move or rename src to dst.

	Parameters:	
	src (str) – The file/directory to move

	dst – The destination for the files to be moved

	dst – str

	
unitils.system_call(command, stdin=-1, stdout=-1, stderr=-2, shell=False)[source]

	Helper function to shell out commands. This should be platform
agnostic.

Arguments are the same as to subprocess.Popen. Returns (stdout, stderr,
returncode)

	
unitils.watch(command, interval=2)[source]

	Iterator yielding a tuple of (stdout, stderr, returncode)
returned by issuing command to the system repeatedly. By default
sleeps for 2 seconds between issuing commands.

	Parameters:	
	command (str, list) – The command to issue to the system

	interval (int) – The number of seconds to wait before issuing command again

	Returns:	Iterator of three-tuples containing (stdout, stderr, returncode)

	
unitils.wc(files, lines=False, byte_count=False, chars=False, words=False, max_line_length=False)[source]

	Yields newline, word and byte counts for each file and a total
line if more than one file is specified

	Parameters:	
	files (iterable) – An iterable of open, file-like objects or strings containing filenames

	lines (boolean) – Whether to include line counts

	byte_count (boolean) – Whether to include bytes count

	chars (boolean) – Whether to include chars count

	words (boolean) – Whether to include word count

	max_line_lenth (boolean) – Whether to include max_line_length

	
unitils.which(cmd, _all=False)[source]

	Search the PATH for the first occurance of cmd.

	Parameters:	
	cmd (str) – The command for which to search

	_all (boolean) – If True, all occurances of cmd on the PATH will be returned

 Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	unitils 0.1.0 documentation

 Python Module Index

 u

 			

 		
 u	

 	
 	
 unitils	

 Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	unitils 0.1.0 documentation

Index

 C
 | F
 | G
 | H
 | L
 | M
 | S
 | U
 | W

C

 	

 	cat() (in module unitils)

 	

 	cp() (in module unitils)

F

 	

 	find() (in module unitils)

G

 	

 	grep() (in module unitils)

H

 	

 	head() (in module unitils)

L

 	

 	ls() (in module unitils)

M

 	

 	mv() (in module unitils)

S

 	

 	system_call() (in module unitils)

U

 	

 	unitils (module)

W

 	

 	watch() (in module unitils)

 	wc() (in module unitils)

 	

 	which() (in module unitils)

 Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		unitils 0.1.0 documentation »

 All modules for which code is available

		unitils.cat

		unitils.cp

		unitils.find

		unitils.grep

		unitils.head

		unitils.ls

		unitils.mv

		unitils.util

		unitils.watch

		unitils.wc

		unitils.which

 © Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

_modules/unitils/grep.html

 Navigation

 		
 index

 		
 modules |

 		unitils 0.1.0 documentation »

 		Module code »

 Source code for unitils.grep

from __future__ import unicode_literals
import io
import os
import re
import sys
import atexit
import colorama

def magenta(text):
 """Return text surrounded by control characters to turn it magenta
 """
 return "{}{}{}".format(colorama.Fore.MAGENTA, text, colorama.Fore.RESET)

def green(text):
 """Return text surrounded by control characters to turn it green
 """
 return "{}{}{}".format(colorama.Fore.GREEN, text, colorama.Fore.RESET)

def red(text):
 """Return text surrounded by control characters to turn it red
 """
 return "{}{}{}".format(colorama.Fore.RED, text, colorama.Fore.RESET)

def build_regex(pattern, ignore_case):
 flags = re.IGNORECASE if ignore_case else 0
 try:
 return re.compile(pattern, flags=flags)
 except ValueError:
 # Might already be a compiled regular expression
 return re.compile(pattern.pattern, flags=flags)

Python 2 and 3 compatibility
def is_string(s):
 return isinstance(s, ("".__class__, u"".__class__))

[docs]def grep(expr,
 files,
 line_numbers=False,
 filenames=False,
 color=False,
 invert_match=False,
 ignore_case=False):
 """search the contents of files for expr, yield the results

 files can be a filename as str, a list of filenames, a file-like
 object or a list of file-like objects. In any case, all files
 will be searched line-by-line for any lines which contain expr
 which will be yielded.

 This does not support sending text in directly to search, the
 reason is that this operation is fairly simple in Python::

 import re

 expr = re.compile(r"^\d+\s\w+")
 matches = (l for l in text.splitlines() if expr.search(line))
 for line in matching_lines:
 print(line)

 :param files: files to search for expr
 :param expr: the regular expression to search for
 :param line_numbers: If True, line numbers will be prepended to results
 :param filenames: If True, filenames will be prepended to results
 :type filenames: bool
 :type line_numbers: bool
 :type expr: str, compiled regex
 :type files: str, list, file
 """
 expr = build_regex(expr, ignore_case)
 files = files if isinstance(files, list) else [files]
 for index, fp in enumerate(list(files)):
 if is_string(fp) and os.path.exists(fp) and os.path.isfile(fp):
 files[index] = io.open(fp)
 atexit.register(files[index].close)
 for fp in files:
 for line_number, line in enumerate(fp, start=1):
 if bool(expr.search(line)) == invert_match:
 continue
 line = expr.sub(red(r"\g<0>"), line) if color else line
 if line_numbers:
 line = "{}: {}".format(green(line_number) if color else line_number, line)
 if filenames:
 if hasattr(fp, "name"):
 line = "{}: {}".format(magenta(fp.name) if color else fp.name, line)
 else:
 line = "{}: {}".format(magenta("<stdin>") if color else "<stdin>", line)
 yield line

 © Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

_static/down.png

_modules/unitils/wc.html

 Navigation

 		
 index

 		
 modules |

 		unitils 0.1.0 documentation »

 		Module code »

 Source code for unitils.wc

import os
import re
import io
import atexit

word = re.compile(r"(\S+)")

def _examine_fp(fp):
 """Examine fp and returns the interesting metrics.

 :param fp: The file-like object to examine
 :type fp: file
 :returns: tuple containing number of lines, words, bytes, chars, max_line_length and filename
 :rtype: tuple
 """
 max_line_length = 0
 current_lines = 0
 current_chars = 0
 current_words = 0
 current_bytes = 0
 for line in fp:
 current_lines += 1
 current_words += len(word.findall(line))
 current_chars += len(line)
 current_line_length = len(line.strip())
 if max_line_length < current_line_length:
 max_line_length = current_line_length
 try:
 fp.seek(0, os.SEEK_END)
 _bytes = fp.tell()
 except io.UnsupportedOperation:
 # If stdin, assume a byte per char, probably a bad idea
 _bytes = current_chars
 filename = fp.name if hasattr(fp, "name") else "<stdin>"
 return (
 current_lines,
 current_words,
 _bytes,
 current_chars,
 max_line_length,
 filename
)

def _gather_output(counts,
 lines,
 byte_count,
 chars,
 words,
 max_line_length):
 """Takes all available metrics and returns information filtered to reflect user
 options.

 :param counts: The actual measurments returned by _examine_fp(fp)
 :param lines: Whether to include line counts
 :param byte_count: Whether to include bytes count
 :param chars: Whether to include chars count
 :param words: Whether to include word count
 :param max_line_lenth: Whether to include max_line_length

 :type max_line_lenth: boolean
 :type words: boolean
 :type chars: boolean
 :type byte_count: boolean
 :type lines: boolean
 :type counts: tuple
 """
 current_lines = counts[0]
 current_words = counts[1]
 current_bytes = counts[2]
 current_chars = counts[3]
 current_max_line_length = counts[4]
 current_name = counts[5]
 if not any((lines, byte_count, chars, words, max_line_length)):
 return (current_lines, current_words, current_bytes, current_name)
 else:
 ret = (current_name,)
 if max_line_length:
 ret = (current_max_line_length,) + ret
 if byte_count:
 ret = (current_bytes,) + ret
 if chars:
 ret = (current_chars,) + ret
 if words:
 ret = (current_words,) + ret
 if lines:
 ret = (current_lines,) + ret
 return ret

[docs]def wc(files,
 lines=False,
 byte_count=False,
 chars=False,
 words=False,
 max_line_length=False):
 """Yields newline, word and byte counts for each file and a total
 line if more than one file is specified

 :param files: An iterable of open, file-like objects or strings containing filenames
 :param lines: Whether to include line counts
 :param byte_count: Whether to include bytes count
 :param chars: Whether to include chars count
 :param words: Whether to include word count
 :param max_line_lenth: Whether to include max_line_length

 :type max_line_lenth: boolean
 :type words: boolean
 :type chars: boolean
 :type byte_count: boolean
 :type lines: boolean
 :type files: iterable
 """
 total_lines = 0
 total_bytes = 0
 total_chars = 0
 total_words = 0
 total_line_length = 0

 for fp in files:
 current_stats = _examine_fp(fp)
 yield _gather_output(current_stats,
 lines,
 byte_count,
 chars,
 words,
 max_line_length)

 total_lines += current_stats[0]
 total_words += current_stats[1]
 total_bytes += current_stats[2]
 total_chars += current_stats[3]
 if total_line_length < current_stats[4]:
 total_line_length = current_stats[4]
 if len(files) > 1:
 yield _gather_output(
 (
 total_lines, total_words,
 total_bytes, total_chars,
 total_line_length, "total"
),
 lines,
 byte_count,
 chars,
 words,
 max_line_length
)

 © Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

_static/up.png

_static/down-pressed.png

_modules/unitils/cp.html

 Navigation

 		
 index

 		
 modules |

 		unitils 0.1.0 documentation »

 		Module code »

 Source code for unitils.cp

import os
import shutil

[docs]def cp(src, dst, no_clobber=False, recursive=False):
 """Copy src to dst.

 :param src: The file(s) to copy
 :param dst: The destination for src
 :param no_clobber: If True, do not overwrite files if they already exist
 :param recursive: If True recursively copy the contents of src to dst
 :type src: str
 :type dst: str
 :type no_clobber: boolean
 :type recursive: boolean
 """
 if no_clobber and os.path.exists(dst) and os.path.isfile(dst):
 return None
 if recursive:
 return shutil.copytree(src=src, dst=dst)
 return shutil.copy(src=src, dst=dst)

 © Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		
 modules |

 		unitils 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

_modules/unitils/head.html

 Navigation

 		
 index

 		
 modules |

 		unitils 0.1.0 documentation »

 		Module code »

 Source code for unitils.head

import io
import atexit
import itertools

[docs]def head(files, lines=10, verbose=False, quiet=False):
 """Read the first 10 lines (by default) of each file in files.

 As this is supposed to imitate the behavior of head, but also
 be used as a Python callable, some liberties have been taken
 to accomodate the functionality.

 If one file is passed in, a generator is returned which will
 yield the first n lines in the file.

 If more than one file is passed in, a dict is returned keyed
 by filename mapping to a generator which will yield the first
 n lines of that file.

 :param files: The files to examine
 :param lines: The number of lines to yield from each file
 :param verbose: Always include the filename (as described above)
 :param quiet: Never include the filename (as described above)
 :type files: str list
 :type lines: int
 :type verbose: boolean
 :type quiet: boolean
 """
 if not isinstance(files, list):
 files = [files]
 for index, file in enumerate(list(files)):
 if isinstance(file, str):
 files[index] = io.open(file, "r")
 atexit.register(files[index].close)
 if len(files) == 1 and verbose is False:
 return (line for i, line in enumerate(files[0]) if i + 1 <= lines)
 ret = {}
 for file in files:
 ret[file.name] = (line for i, line in enumerate(file) if i + 1 <= lines)
 if quiet:
 return itertools.chain.from_iterable(ret.values())
 return ret

 © Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

_modules/unitils/find.html

 Navigation

 		
 index

 		
 modules |

 		unitils 0.1.0 documentation »

 		Module code »

 Source code for unitils.find

import fnmatch
import stat
import re
import os

[docs]def find(path=".", name=None, iname=None, ftype="*"):
 """Search for files in a directory heirarchy.

 This is dramatically different from the GNU version of
 find. There is no Domain Specific language.

 :param path: The directory to start in
 :param name: The name spec (glob pattern) to search for
 :param iname: The case-insensitive name spec (glob pattern) to search for
 :param ftype: The type of file to search for must be one of b, c, d, p, f, k, s or *
 :type ftype: str
 :type iname: str
 :type name: str
 :type path: str
 """
 if ftype not in "bcdpfls*" or len(ftype) != 1:
 raise NotImplementedError(
 "Introspection for {} not implemented".format(ftype)
)
 ftype_mapping = {
 "b": stat.S_ISBLK, "c": stat.S_ISCHR,
 "d": stat.S_ISDIR, "p": stat.S_ISFIFO,
 "f": stat.S_ISREG, "l": stat.S_ISLNK,
 "s": stat.S_ISSOCK,
 "*": lambda *args, **kwargs: True,
 }
 type_test = ftype_mapping[ftype]

 if name is not None:
 regex = re.compile(fnmatch.translate(name))
 elif iname is not None:
 regex = re.compile(fnmatch.translate(iname), flags=re.IGNORECASE)
 else:
 regex = re.compile(fnmatch.translate("*"))

 if regex.match(path) and type_test(os.stat(path).st_mode):
 yield os.path.relpath(path)

 for root, dirs, files in os.walk(path):
 for n in files + dirs:
 filename = os.path.join(root, n)
 _stat = os.stat(filename)
 if regex.match(n) and type_test(_stat.st_mode):
 yield filename

 © Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_modules/unitils/ls.html

 Navigation

 		
 index

 		
 modules |

 		unitils 0.1.0 documentation »

 		Module code »

 Source code for unitils.ls

import os

[docs]def ls(path=".", _all=False, almost_all=False):
 """Iterator yielding information about path (defaults to
 current directory)

 Currently this will only list the contents of a directory.
 More features will be added in the near future, but if there
 is a certain feature you are in need of, please don't hesitate
 to submit an issue in our
 `issue tracker <https://github.com/ilovetux/unitils/issues>`_
 or better yet submit a
 `pull request <https://github.com/ilovetux/unitils/pulls>`_

 :param path: The directory to list
 :param _all: If True files starting with "." are not ignored
 :param almost_all: Like _all, but do not include "." and ".."
 :type path: str
 :type _all: boolean
 :type almost_all: boolean
 """
 listing = sorted(os.listdir(path))
 if _all:
 listing = [".", ".."] + listing
 elif almost_all:
 pass
 else:
 listing = filter(lambda x: not x.startswith("."), listing)
 for item in listing:
 yield item

 © Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

_modules/unitils/which.html

 Navigation

 		
 index

 		
 modules |

 		unitils 0.1.0 documentation »

 		Module code »

 Source code for unitils.which

import os

[docs]def which(cmd, _all=False):
 """Search the PATH for the first occurance of cmd.

 :param cmd: The command for which to search
 :param _all: If True, all occurances of cmd on the PATH will be returned
 :type cmd: str
 :type _all: boolean
 """
 PATH = os.environ["PATH"].split(os.pathsep)
 if _all:
 return (os.path.join(path, cmd) for path in PATH
 if os.path.exists(os.path.join(path, cmd))
 and os.access(os.path.join(path, cmd), os.X_OK))
 else:
 for path in PATH:
 fname = os.path.join(path, cmd)
 if os.path.exists(fname) and os.access(fname, os.X_OK):
 return fname

 © Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

_modules/unitils/mv.html

 Navigation

 		
 index

 		
 modules |

 		unitils 0.1.0 documentation »

 		Module code »

 Source code for unitils.mv

import shutil

[docs]def mv(src, dst):
 """Move or rename src to dst.

 :param src: The file/directory to move
 :param dst: The destination for the files to be moved
 :type src: str
 :param dst: str
 """
 shutil.move(src=src, dst=dst)

 © Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

_modules/unitils/cat.html

 Navigation

 		
 index

 		
 modules |

 		unitils 0.1.0 documentation »

 		Module code »

 Source code for unitils.cat

[docs]def cat(files, number=False):
 """iterate through each file in files and yield each line in turn.

 :param files: The files to concatenate
 :param number: If True, yield two-tuples of (line_number, line)

 :type files: list of open file-like objects
 :type number: boolean
 """
 line_number = 1
 for fp in files:
 for line in fp:
 yield (line_number, line) if number else line
 line_number += 1

 © Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

_modules/unitils/watch.html

 Navigation

 		
 index

 		
 modules |

 		unitils 0.1.0 documentation »

 		Module code »

 Source code for unitils.watch

import unitils
import time

[docs]def watch(command, interval=2):
 """Iterator yielding a tuple of (stdout, stderr, returncode)
 returned by issuing command to the system repeatedly. By default
 sleeps for 2 seconds between issuing commands.

 :param command: The command to issue to the system
 :param interval: The number of seconds to wait before issuing command again
 :type command: str, list
 :type interval: int
 :returns: Iterator of three-tuples containing (stdout, stderr, returncode)
 """
 while True:
 yield unitils.system_call(command)
 time.sleep(interval)

 © Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

_modules/unitils/util.html

 Navigation

 		
 index

 		
 modules |

 		unitils 0.1.0 documentation »

 		Module code »

 Source code for unitils.util

"""Various utility functions for use with command line programs.
"""
import os
import functools
import subprocess

clear = functools.partial(os.system, 'cls' if os.name == 'nt' else 'clear')
clear.__doc__ = """Clear the terminal. uses "cls" on Windows and "clear
on *nix systems."""

[docs]def system_call(
 command,
 stdin=subprocess.PIPE,
 stdout=subprocess.PIPE,
 stderr=subprocess.STDOUT,
 shell=False):
 """Helper function to shell out commands. This should be platform
 agnostic.

 Arguments are the same as to subprocess.Popen. Returns (stdout, stderr,
 returncode)
 """
 stderr = subprocess.STDOUT
 pipe = subprocess.Popen(
 command,
 stdin=stdin,
 stdout=stdout,
 stderr=stderr,
 shell=shell)
 stdout, stderr = pipe.communicate()
 return stdout, stderr, pipe.returncode

import os
import sys
import struct

if sys.platform == 'win32':
 def get_terminal_size(defaultx=80, defaulty=25):
 """Return size of current terminal console.
 This function try to determine actual size of current working
 console window and return tuple (sizex, sizey) if success,
 or default size (defaultx, defaulty) otherwise.
 Dependencies: ctypes should be installed.
 Author: Alexander Belchenko (e-mail: bialix AT ukr.net)
 """
 try:
 import ctypes
 except ImportError:
 return defaultx, defaulty

 h = ctypes.windll.kernel32.GetStdHandle(-11)
 csbi = ctypes.create_string_buffer(22)
 res = ctypes.windll.kernel32.GetConsoleScreenBufferInfo(h, csbi)

 if res:
 (bufx, bufy, curx, cury, wattr,
 left, top, right, bottom, maxx, maxy) = struct.unpack(
 "hhhhHhhhhhh", csbi.raw)
 sizex = right - left + 1
 sizey = bottom - top + 1
 return (sizex, sizey)
 else:
 return (defaultx, defaulty)

 def get_keypress():
 """Wait for a keypress and return key pressed. This is
 the Windows version of this command"""
 import msvcrt
 return msvcrt.getch()
else:
 def get_terminal_size(fd=1, defaultx=80, defaulty=25):
 """Returns height and width of current terminal. First tries to get
 size via termios.TIOCGWINSZ, then from environment. Defaults to 25
 lines x 80 columns if both methods fail.

 :param fd: file descriptor (default: 1=stdout)
 :defaultx: The value to return for x if unable to determine
 (default: 80)
 :param fd: The value to return for y if unable to determine
 (default: 80)
 """
 try:
 import fcntl, termios, struct
 hw = struct.unpack('hh', fcntl.ioctl(fd, termios.TIOCGWINSZ, '1234'))
 wh = (hw[1], hw[0])
 except:
 try:
 wh = (os.environ['COLUMNS'], os.environ['LINES'])
 except:
 wh = (80, 25)
 return wh

 def get_keypress():
 """Wait for a keypress and return key pressed. This is
 the *nix version of this command"""
 import termios, fcntl, sys, os
 fd = sys.stdin.fileno()

 oldterm = termios.tcgetattr(fd)
 newattr = termios.tcgetattr(fd)
 newattr[3] = newattr[3] & ~termios.ICANON & ~termios.ECHO
 termios.tcsetattr(fd, termios.TCSANOW, newattr)

 oldflags = fcntl.fcntl(fd, fcntl.F_GETFL)
 fcntl.fcntl(fd, fcntl.F_SETFL, oldflags | os.O_NONBLOCK)

 try:
 while 1:
 try:
 c = sys.stdin.read(1)
 break
 except IOError: pass
 finally:
 termios.tcsetattr(fd, termios.TCSAFLUSH, oldterm)
 fcntl.fcntl(fd, fcntl.F_SETFL, oldflags)
 return c

def page(text):
 """Page through text on a terminal. Similar to more.

 :param text: The text to page through
 :type text: str
 :returns: None
 """
 if not sys.stdout.isatty():
 sys.stdout.write(text)
 sys.stdout.flush()
 return
 height = get_terminal_size()[1]
 current_line = 0
 for line in text.splitlines():
 if current_line >= height - 2:
 sys.stdout.write(" \r{}".format(line))
 sys.stdout.flush()
 sys.stdout.write("\n--more--\r")
 sys.stdout.flush()
 key = get_keypress()
 if key == " ":
 sys.stdout.write(" \r")
 sys.stdout.flush()
 current_line = 0
 elif key == "q":
 sys.stdout.write(" ")
 sys.stdout.flush()
 break
 elif key == '\x03':
 sys.stdout.write(" \r")
 sys.stdout.flush()
 break
 else:
 print(line)
 current_line += 1

 © Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

