

    
      
          
            
  
Contents



	Unide Python
	Installation

	Contributing

	Documentation





	Programming Guide
	Getting Started

	Validation and Parsing

	Timestamps





	API Reference
	unide.common

	PPMP Measurements

	PPMP Messages

	PPMP Process

	Schema

	Utilities












Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
Unide Python

[image: Travis-CI badge]
 [https://travis-ci.org/eclipse/unide.python][image: Coveralls badge]
 [https://coveralls.io/r/eclipse/unide.python?branch=master][image: Read the Docs]
 [http://unidepython.readthedocs.io/en/latest/]This Python package is part of the Eclipse Unide Project [https://www.eclipse.org/unide] and provides an API for generating,
parsing and validating PPMP payloads. PPMP, the “Production
Performance Management Protocol” [https://www.eclipse.org/unide/specification] is a simple,
JSON-based protocol for message payloads in (Industrial) Internet of
Things applications defined by the Eclipse IoT Working Group [https://iot.eclipse.org/]. Implementations for other programming
languages are available from the Unide web site.

The focus of the Python implementation is ease of use for backend
implementations, tools and for prototyping PPMP
applications. Generating a simple payload and sending it over MQTT
using Eclipse Paho [https://github.com/eclipse/paho.mqtt.python] is
a matter of just a few lines:

>>> import unide
>>> import paho.mqtt.client as mqtt
>>> client = mqtt.Client()
>>> client.connect("localhost", 1883, 60)
>>> device = unide.Device("Devive-001")
>>> measurement = device.measurement(temperature=36.7)
>>> client.publish(topic="sample", measurement)






Installation

The latest version is available in the Python Package Index (PyPI) and
can be installed using:

pip install unide-python





unide-python can be used with Python 2.7, 3.4, 3.5 and 3.6.

Source code, including examples and tests, is available on GitHub:
https://github.com/eclipse/unide.python

To install the package from source:

git clone git@github.com:eclipse/unide.python.git
cd unide.python
python setup.py install








Contributing

This is a straightforward Python project, using setuptools and the
standard setup.py mechanism. You can run the test suite using
setup.py:

python setup.py test





There also is a top-level Makefile that builds a development
environment and can run a couple of developer tasks. We aim for 100%
test coverage and use tox [https://pypi.python.org/pypi/tox] to
test against all supported Python releases. To run all tests against
all supported Python versions, build the documentation locally and an
installable wheel, you’ll require pyenv [https://github.com/pyenv/pyenv] and a decent implementation of
make. make all will create a virtualenv env in the project
directory and install the necessary tools (see tools.txt).

For bug reports, suggestions and questions, simply open an issue in
the Github issue tracker. We welcome pull requests.




Documentation

Detailed documentation is available on Read the Docs:
http://unidepython.readthedocs.io/en/latest/.







          

      

      

    

  

    
      
          
            
  
Programming Guide

PPMP is simple enough to be reasonably used from Python without an API
at all. The simplest possible PPMP measurement payload, transmitting
just one sensor reading for “temperature”, looks like this:

{
  "content-spec":
    "urn:spec://eclipse.org/unide/measurement-message#v2",
  "device": {
    "deviceID": "a4927dad-58d4-4580-b460-79cefd56775b"
  },
  "measurements": [{
    "ts": "2002-05-30T09:30:10.123+02:00",
    "series": {
       "$_time": [ 0 ],
       "temperature": [ 45.4231 ]
  }
}





The main use cases for unide are handling and generating complex
payloads programmatically, and parsing and validating incoming PPMP
messages. unide is suitable for backend implementations receiving
PPMP data, it can run on gateways supporting Python, and it is useful
for quickly scripting PPMP applications and tools.


Getting Started

unide provides a Python class for every entity described in the
PPMP specification [https://www.eclipse.org/unide/specification].
Classes have read-write attributes for each property in the
specification. All properties can be passed directly into the class
constructor using positional and named arguments.

Unset properties are None in the Python API, but will not be
serialized as ‘null’ into JSON, i.e. unset properties will not appear
in the JSON output at all. Strings are mapped to and from Python
Unicode strings (i.e. unicode for Python 2, and str for Python
3). Numeric values are mapped to Python float. Timestamps are mapped
to Python’s datetime (see
Timestamps for details).

Every PPMP entity can be build separately, and re-used later to
assemble a complete payload. A central entity in PPMP is the Device,
that has just one mandatory property, its deviceID:

>>> from unide.common import Device
>>> device = Device("Device-001")
>>> print(device.deviceID == "Device-001")
Device-001





All other properties of device are now None and can be assigned
a value:

>>> print(device.operationalStatus)
None
>>> device.operationalStatus = "running"
>>> print(device.operationalStatus)
running





PPMP objects can be printed:

>>> print(device)
Device(deviceID=Device-001, operationalStatus=running)





In PPMP, all messages originate from a device. The Device class
therefore has convenience APIs to quickly produce complete
payloads. The example below produces a simple MeasurementPayload
using Device.measurement():

>>> msg = device.measurement(temperature=36.7)
>>> print(msg)
{"device": {"deviceID": "Device-001", "operationalStatus": "running"}, "content-spec": "urn:spec://eclipse.org/unide/measurement-message#v2", "measurements": [{"ts": "2017-09-13T22:23:26.840407+02:00", "series": {"temperature": [36.7], "$_time": [0]}}]}





The other two types of PPMP messages are MessagePayload and
ProcessPayload and can be produced using Device.message() and Device.process()
respectively.

We can create the same message using the lower-level APIs by building
each component separately. To do that, we have to create a
Series object and explicitly
declare the dimension temperature that we want to provide:

>>> from unide.measurement Series
>>> series = Series("temperature")
>>> series.add_sample(0, temperature=36.7)





Then, we create a Measurement object and assemble a
MeasurementPayload
using the components we’ve just created:

>>> from unide.measurement import Measurement, MeasurementPayload
>>> from unide import util
>>> m = Measurement(ts=util.local_now(), series=series)
>>> payload = MeasurementPayload(device=device)
>>> payload.measurements.append(m)





The measurements property of the payload object is just a normal
Python list of Measurement objects.

Finally, payload can be converted to JSON by using
dumps() from unide.util. The
string returned by dumps can be send as a payload using a transport
protocol like HTTP/REST or MQTT. unide by itself does not implement
any transport protocol:

>>> from unide.util import loads
>>> print(dumps(payload, indent=4))
{
    "device": {
        "deviceID": "Device-001"
    },
    "content-spec": "urn:spec://eclipse.org/unide/measurement-message#v2",
    "measurements": [
        {
            "ts": "2017-09-13T23:40:46.685521+02:00",
            "series": {
                "$_time": []
            }
        }
    ]
 }








Validation and Parsing

The unide APIs validate inputs. For example, the maximum length for
device identifiers is 36. Trying to assign a longer id raises a
ValueError exception:

>>> device = Device("PPMP HAS A SIZE RESTRICTION FOR DEVICE IDs!")
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "measurement.py", line 225, in __init__
    self.deviceID = deviceID
  File "schema.py", line 96, in set
    value = check(self, name, value, constraint)
  File "schema.py", line 84, in check
    .format(name=name, value=value, classname=type(self).__name__))
ValueError: u'PPMP HAS A SIZE RESTRICTION FOR DEVICE IDs!' is not an appropriate value for 'Device.deviceID'





Parsing a PPMP message is done using loads():

>>> from unide.util import loads
>>> msg = loads(open("tests/message.json").read())
>>> print(msg)
MessagePayload(device=Device(operationalStatus=normal, deviceID=2ca5158b-8350-4592-bff9-755194497d4e, metaData={u'swVersion': u'2.0.3.13', u'swBuildID': u'41535'}), messages=[<unide.message.Message object at 0x1095938d0>, <unide.message.Message object at 0x109af6510>], content-spec=urn:spec://eclipse.org/unide/machine-message#v2)





loads() automatically detects the payload type and returns
the appropriate unide object. If the payload type can not be
detected, an exception will be raised.

Besides trying to detect the PPMP type, parsed messages will not be
validated by default. Malformed messages can be parsed, and all
recognizable information can be accessed. A message can be validated
using problems() after
loading it:

>>> msg = loads(open("tests/invalid.json").read())
>>> msg.problems()
[u"'xdevice' is not a valid key for 'MessagePayload' objects"]





problems() returns a list of
issues. An empty list indicates a valid payload.

To validate a payload while parsing it, one can set the validate
flag for loads. When the payload is not valid, a ValidationError
exception is raised:

>>> msg = loads(open("tests/invalid.json").read(), validate=True)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/Users/frank/Projects/unide/cslab/unide.python/src/unide/util.py", line 51, in loads
    raise ValidationError(errors)
  unide.util.ValidationError: 'xdevice' is not a valid key for 'MessagePayload' objects








Timestamps

All PPMP messages carry one or more timestamps. Timestamps are
represented by unide as Python datetime.datetime objects. In
Python, datetime objects come in two flavours: “naive” – without
timezone information, and “aware” – including timezone
information. While the PPMP specification is not explicit about this,
unide automatically makes all timestamps “aware”. If you assign a
“naive” datetime to a PPMP property, it will be made “aware” by
adding the local timezone offset:

>>> from unide.measurement import Measurement
>>> import datetime
>>> now = datetime.datetime.now()
>>> m = Measurement(ts=now)
>>> print(now)
2017-09-13 22:56:59.329554
>>> print(m.ts)
2017-09-13 22:56:59.329554+02:00
>>>





Note the difference! “Naive” and “aware” timestamps are not even
compatible in Python:

>>> now == m.ts
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can't compare offset-naive and offset-aware datetimes





We therefore recommend to always use “aware” datetime objects to
avoid awe and confusion.

unide provides two functions in its unide.util module to
help with that: local_now() computes
the timestamp for the current time including the local timezone
offset, and local_timezone(value) converts any naive datetime to “aware”
using the offset of the local timezone.







          

      

      

    

  

    
      
          
            
  
API Reference


unide.common

Schema objects commonly used by more than one PPMP payload type.




PPMP Measurements




PPMP Messages




PPMP Process




Schema




Utilities







          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _static/up-pressed.png





nav.xhtml

    
      Table of Contents


      
        		
          Contents
        


        		
          Unide Python
          
            		
              Installation
            


            		
              Contributing
            


            		
              Documentation
            


          


        


        		
          Programming Guide
          
            		
              Getting Started
            


            		
              Validation and Parsing
            


            		
              Timestamps
            


          


        


        		
          API Reference
          
            		
              unide.common
            


            		
              PPMP Measurements
            


            		
              PPMP Messages
            


            		
              PPMP Process
            


            		
              Schema
            


            		
              Utilities
            


          


        


      


    
  

_static/down-pressed.png





_static/down.png





_static/comment-close.png





_static/up.png





_static/comment.png





_static/logo.png
& unie





_static/minus.png





_static/file.png





_static/plus.png





_static/ajax-loader.gif





_static/comment-bright.png





