

UFO Documentation

Users

	Installation
	Installation on Linux

	Installation on MacOS X

	Installation with Docker

	Installation on Windows with WSL2

	Using UFO
	Quick start guide

	Application programming interface

	Environment variables

	Task execution

	JSON Configuration Format

	Developing new task filters
	Writing a task in C

	The GObject property system

	Frequently Asked Questions
	Installation

	Usage

Developers

	Reporting Bugs

	Changelog
	Version 0.16

	Version 0.15.2

	Version 0.15.1

	Version 0.15

	Version 0.14

	Version 0.13

	Version 0.12.1

	Version 0.12

	Version 0.11.1

	Version 0.11

	Version 0.10

	Version 0.9.1

	Version 0.9

	Version 0.8

	Version 0.7

	Version 0.6

	Version 0.5

	Version 0.4

	Version 0.3

	Version 0.2

	Version 0.1.1

Additional notes

	Copyright

Installation

In this section, information about how to install the UFO library and the
accompanying filter suite is described.

	Installation on Linux
	Installing RPM packages

	Installing Debian packages

	Installing from source

	Installation on MacOS X

	Installation with Docker
	Rady-to-use Images

	Build

	Usage on AMD

	Usage on NVIDIA

	Usage on Intel

	Installation on Windows with WSL2

Installation on Linux

Installing RPM packages

We provide RPM-based packages for openSUSE, RHEL and CentOS7. First you have to
add the openSUSE repository matching your installation. Go to our OBS [https://build.opensuse.org/repositories/home:ufo-kit] page, copy the URL that
says “Go to download repository” and use that URL with:

opensuse $ zypper addrepo <URL> repo-ufo-kit
centos $ wget <URL>/home:ufo-kit.repo -O /etc/yum.repos.d/ufo-kit.repo

Now update the repositories and install the framework and plugins:

opensuse $ zypper install ufo-core ufo-filters
centos $ yum install ufo-core ufo-filters

Installing Debian packages

UFO is part of Debian Sid and thus also available since Ubuntu 17.04. To install
both the core framework and the filters install:

$ apt install libufo-bin libufo-dev ufo-filters

Installing from source

If you want to build the most recent development version, you have to clone the
source from our repository, install all required dependencies and compile the
source.

Retrieving the source code

In an empty directory, issue the following commands to retrieve the current
unstable version of the source:

$ git clone https://github.com/ufo-kit/ufo-core
$ git clone https://github.com/ufo-kit/ufo-filters

The latter is used for developers who have write-access to the corresponding
repositories. All stable versions are tagged. To see a list of all releases
issue:

$ git tag -l

Installing dependencies

UFO has only a few hard source dependencies: GLib 2.0 [http://developer.gnome.org/glib/stable/], JSON-GLib 1.0 [http://live.gnome.org/JsonGlib] and a valid OpenCL installation.
Furthermore, it is necessary to build the framework with a recent version of
CMake [http://cmake.org]. Sphinx [http://sphinx.pocoo.org] is used to
create this documentation. This gives you a bare minimum with reduced
functionality. To build all plugins, you also have to install dependencies
required by the plugins.

OpenCL development files must be installed in order to build UFO. However, we
cannot give general advices as installation procedures vary between different
vendors. However, our CMake build facility is in most cases intelligent enough
to find header files and libraries for NVIDIA CUDA and AMD APP SDKs.

Ubuntu/Debian (Tested on Ubuntu 20.04.3 LTS)

On Debian or Debian-based system the following packages are required to build
ufo-core:

$ apt install build-essential cmake meson libglib2.0-dev libjson-glib-dev

In case you want to use UFO with NVIDIA cards, you need to install the driver
and CUDA. It also makes sense to change the
/lib/systemd/system/nvidia-persistenced.service persistence option from
–no-persistence-mode to –persistence-mode. This will speed up the
initialization of the cards. CUDA installation (package versions may of course
quickly change)

$ apt install nvidia-driver-460 nvidia-utils-460 nvidia-cuda-toolkit

You will also need an OpenCL ICD loader. To simply get the build running, you
can install

$ apt install ocl-icd-opencl-dev

Generating the introspection files for interfacing with third-party languages
such as Python you must install

$ apt install gobject-introspection libgirepository1.0-dev

and advised to install

$ apt install python3-dev

To use the ufo-mkfilter script you also need the jinja2 Python package:

$ apt install python3-jinja2

Building the reference documentation and the Sphinx manual requires:

$ apt install gtk-doc-tools python3-sphinx sphinxcontrib-bibtex sphinx_rtd_theme

Additionally the following packages are recommended for some of the plugins:

$ apt install libtiff5-dev

openSUSE and CentOS7

For openSUSE (zypper) and CentOS7 the following packages should get you started:

$ [zypper|yum] install cmake gcc gcc-c++ glib2-devel json-glib-devel

Additionally the following packages are recommended for some of the plugins:

$ [zypper|yum] install libtiff-devel

Building ufo-core with CMake

Change into another empty build directory and issue the following commands to
configure

$ cmake <path-to-ufo>

CMake will notify you, if some of the dependencies are not met. In case you want
to install the library system-wide on a 64-bit machine you should generate the
Makefiles with

$ cmake -DCMAKE_INSTALL_LIBDIR=lib64 <path-to-ufo>

For earlier versions of PyGObject, it is necessary that the introspection files
are located under /usr not /usr/local. You can force the prefix by
calling

$ cmake -DCMAKE_INSTALL_PREFIX=/usr <path-to-ufo>

Last but not least build the framework, introspection files, API reference and
the documentation using

$ make

If everything went well, you can install the library with

$ make install

See also

Why can’t the linker find libufo.so?

 Installation on MacOS X

Installation on MacOS X

Preface: This information is kindly provided by Andrey Shkarin and Roman
Shkarin.

	Install the MacPorts from http://macports.org

Note

If you previously installed MacPorts, and it can not be started after
latest installation. Error: port dlopen (…
You must download the tar.gz file and install it using a terminal:

./configure
make
sudo make install

 Installation with Docker

Installation with Docker

Before, proceeding have a look at the Docker documentation [https://docs.docker.com/engine/installation] and install Docker on your
system.

Rady-to-use Images

You can pull the following images from the ufo-kit [https://hub.docker.com/r/tfarago/ufo-kit/] repository on dockerhub without
the need of Building them. They contain the complete software stack including
ufo-core [https://github.com/ufo-kit/ufo-core],
ufo-filters [https://github.com/ufo-kit/ufo-filters],
tofu [https://github.com/ufo-kit/tofu] and their dependencies (except NVIDIA driver), so after the
installation you can start using all the available tools, including GUIs:

docker pull tfarago/ufo-kit:ufo-nvidia-ubuntu-20.04
docker pull tfarago/ufo-kit:ufo-intel-ubuntu-20.04

Build

Depending on the GPUs in your system you have to use a different Dockerfile.
Before doing so, create an empty directory and copy the respective Dockerfile
from the docker directory and rename it to Dockerfile. In the case of
the AMD-based Dockerfile you have to download
AMD-APP-SDK-v3.0-0.113.50-Beta-linux64 [http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/],
and move it into the same directory. Now go into the directory and type:

$ docker build -t ufo .

This will build an image tagged ufo containing both ufo-core and
ufo-filters.

Usage on AMD

Run the image in a new Docker container using:

$ docker run -it --device=/dev/ati/card0 ufo

Usage on NVIDIA

Install nvidia-container-runtime [https://nvidia.github.io/nvidia-container-runtime/] and then pull the image:

$ docker pull tfarago/ufo-kit:ufo-nvidia-ubuntu-20.04

and run:

$ docker run --rm -it --gpus all tfarago/ufo-kit:ufo-nvidia-ubuntu-20.04

If you want to use the graphical user interfaces (GUIs) run:

$ sudo xhost +local:username
$ docker run --rm -it --gpus all -v /tmp/.X11-unix:/tmp/.X11-unix -e DISPLAY=$DISPLAY tfarago/ufo-kit:ufo-nvidia-ubuntu-20.04

Usage on Intel

First install the OpenCL runtime (Ubuntu-specific but it should be similar for
other distributions):

$ sudo apt-get install intel-opencl-icd

then pull the image:

$ docker pull tfarago/ufo-kit:ufo-intel-ubuntu-20.04

and run the following:

$ docker run --rm -it --device /dev/dri:/dev/dri tfarago/ufo-kit:ufo-intel-ubuntu-20.04

or this for GUI support:

$ sudo xhost +local:username
$ docker run --rm -it --device /dev/dri:/dev/dri -v /tmp/.X11-unix:/tmp/.X11-unix -e DISPLAY=$DISPLAY tfarago/ufo-kit:ufo-intel-ubuntu-20.04

 Installation on Windows with WSL2

Installation on Windows with WSL2

With Windows 11 and WSL2 it is possible to use Intel OpenCL GPU support. Please
follow Intel’s documentation [https://www.intel.com/content/www/us/en/artificial-intelligence/harness-the-power-of-intel-igpu-on-your-machine.html] for detailed installation procedure. Long story
short, you need to install WSL2 and Ubuntu 20.04 from Microsoft Store, then the
Intel driver [https://www.intel.com/content/www/us/en/download/19344/30579/intel-graphics-windows-dch-drivers.html?] inside Windows and then OpenCL runtime [https://github.com/intel/compute-runtime/releases/tag/21.35.20826] inside Ubuntu 20.04
running in the WSL. After that, follow the normal installation procedure
(without the nvidia packages) described in Ubuntu/Debian (Tested on Ubuntu 20.04.3 LTS).

 Using UFO

Using UFO

UFO is a framework for high-speed image processing at Synchrotron [http://en.wikipedia.org/wiki/Synchrotron] beamlines. It
facilitates every available hardware device to process tomographic data as fast
as possible with on-line reconstruction as the ultimate goal.

It is written in C using the GLib [http://developer.gnome.org/glib/] and GObject [http://developer.gnome.org/gobject/stable/index.html] libraries to provide an
object-oriented API.

After installing the framework you’re ready to build your
own image processing pipeline or implement a new filter.

	Quick start guide
	Launching pipelines on the command line

	Using a JSON description

	C interface

	Python Interface

	Application programming interface
	Preliminaries

	Instantiating tasks

	Configuring tasks

	Connecting tasks

	Execution

	Reference

	Environment variables

	Task execution
	Profiling execution

	Broadcasting results

	JSON Configuration Format
	Nodes array

	Edges array

	Loading and Saving the Graph

 Quick start guide

Quick start guide

There are three ways to specify and execute a graph of tasks. The simplest
method requires you to construct a pipeline on the command line using the
ufo-launch tool which is similar to gst-launch [http://docs.gstreamer.com/display/GstSDK/gst-launch] from the GStreamer package.
The second method involves writing a JSON file that
is executed by the ufo-runjson utility, the other way uses the provided
language bindings to setup the task graph specifically.

To influence the execution from the process environment check the existing
environment variables.

Launching pipelines on the command line

The ufo-launch tool receives a list of tasks separated by exclamation marks
! and executes the data flow in that order. To specify task parameters, you
can add key-value pairs seperated by an equal sign. For example, to split a
multi EDF file to single TIFFs you would do:

$ ufo-launch read path=file.edf ! write filename=out-%05i.tif

You can concatenate an arbitrary number of tasks. For example to blur the lena
image you would something like this:

$ ufo-launch read path=lena.tif ! blur size=20 sigma=5 ! write

Some tasks receive multiple inputs which requires the use of brackets to collect
all arguments. For example, a simple flat field correction would look like
this:

$ ufo-launch [read path=radios, read path=darks, read path=flats]! flat-field-correct ! write filename=foo.tif

Using a JSON description

Our UFO JSON format has the advantage to be
language-agnostic and portable across different versions of the UFO framework.
Let’s start with a simple example, that computes the one-dimensional
Fourier-transform on a set of input files:

{
 "nodes" : [
 {
 "plugin": "read",
 "name": "reader",
 "properties" : { "path": "*.tif" }
 },
 {
 "plugin": "fft",
 "name": "fft"
 },
 {
 "plugin": "write",
 "name": "writer",
 "properties" : { "filename": "fft-%05i.tif" }
 }
],
 "edges" : [
 {
 "from": { "name": "reader" },
 "to": { "name": "fft" }
 },
 {
 "from": { "name": "fft" },
 "to": { "name": "writer" }
 }
]
}

Save this to a file named fft.json and execute it by calling the
ufo-runjson tool:

$ ufo-runjson fft.json

C interface

A simple UFO program written in C that loads the JSON description can look like
this:

/* ufo/ufo.h is the only header allowed to be included */
#include <ufo/ufo.h>

int main (void)
{
 UfoTaskGraph *graph;
 UfoBaseScheduler *scheduler;
 UfoPluginManager *manager;

 #if !(GLIB_CHECK_VERSION (2, 36, 0))
 g_type_init ();
 #endif

 graph = UFO_TASK_GRAPH (ufo_task_graph_new ());
 manager = ufo_plugin_manager_new ();

 ufo_task_graph_read_from_file (graph, manager, "hello-world.json", NULL);

 scheduler = ufo_scheduler_new ();
 ufo_base_scheduler_run (scheduler, graph, NULL);

 /* Destroy all objects */
 g_object_unref (graph);
 g_object_unref (scheduler);
 g_object_unref (manager);
 return 0;
}

You can compile this with:

$ gcc `pkg-config --cflags ufo` foo.c -o foo `pkg-config --libs ufo`

As you can see we simply construct a new UfoGraph object from a JSON encoded
configuration file and execute the computation
pipeline with a UfoScheduler object.

Rather than loading the structure from a file, you can also construct it by
hand:

#include <ufo/ufo.h>

int main (void)
{
 UfoTaskGraph *graph;
 UfoPluginManager *manager;
 UfoBaseScheduler *scheduler;
 UfoTaskNode *reader;
 UfoTaskNode *writer;

 #if !(GLIB_CHECK_VERSION (2, 36, 0))
 g_type_init ();
 #endif

 graph = UFO_TASK_GRAPH (ufo_task_graph_new ());
 manager = ufo_plugin_manager_new ();
 scheduler = ufo_scheduler_new ();
 reader = ufo_plugin_manager_get_task (manager, "read", NULL);
 writer = ufo_plugin_manager_get_task (manager, "write", NULL);

 g_object_set (G_OBJECT (reader),
 "path", "/home/user/data/*.tif",
 "number", 5,
 NULL);

 ufo_task_graph_connect_nodes (graph, reader, writer);
 ufo_base_scheduler_run (scheduler, graph, NULL);
 return 0;
}

Python Interface

There are no plans to support any languages with manually written language
bindings. However, UFO is a GObject-based library from which gir (GObject
Introspection) files can be generated at build time. Any language that supports
GObject Introspection and the gir/typelib format is thus able to
integrate UFO. No manual intervention is need if the GObject Introspection tools
are found.

Because several languages support GObject Introspection, you have to consult the
appropriate reference manuals to find out how the GObjects are mapped to their
language equivalents. Some of the options are

	Python: PyGObject [http://live.gnome.org/PyGObject]

	Javascript: Gjs [http://live.gnome.org/Gjs] and Seed [http://live.gnome.org/Seed]

	Vala has direct support using the --pkg option

A GNOME wiki page [http://live.gnome.org/GObjectIntrospection/Users] lists all available runtime bindings.

The simple example from the beginning – with Python-GObject installed – would
look like this:

from gi.repository import Ufo

manager = Ufo.PluginManager()
graph = Ufo.TaskGraph()
scheduler = Ufo.Scheduler()

graph.read_from_file(manager, "some-graph.json")
scheduler.run(graph)

Similarly, constructing the graph by hand maps one-to-one to the Python object
and keyword system:

from gi.repository import Ufo

graph = Ufo.TaskGraph()
manager = Ufo.PluginManager()
scheduler = Ufo.Scheduler()

reader = manager.get_task('read')
writer = manager.get_task('write')
reader.set_properties(path='/home/user/data/*.tif', number=5)

graph.connect_nodes(reader, writer)
scheduler.run(graph)

 Application programming interface

Application programming interface

This section explains the application programming interface of UFO in order to
build programs integrating the UFO processing chain rather than using one of the
higher-level programs. For the remainder of this section, we will use both the
Python and C interfaces to illustrate the main concepts. They are functionally
equivalent, just remember that the C module prefixes UFO_, ufo_ and
Ufo translate to the Python package Ufo and some conventions such as
constructors (ending with _new) and exceptions (last parameter of type
GError **) translate seamlessly into their Python equivalents.

In almost all cases, the steps to set up a processing chain are the same:

	Instantiation of a plugin manager in order to load tasks

	Configuration and parameterization of the tasks

	Instantiation of a task graph to specify the data flow

	Instantiate of a scheduler to run the task graph object

Preliminaries

We assume that UFO is built and installed correctly with the header (for
the C API) and the introspection files (ending in .typelib for Python). You can
verify that you compilation and linkage is possible by calling:

pkg-config --cflags --libs ufo

which should give reasonable output. To get started you have to include the
necessary header files or import the respective Python meta module. Note that
with recent Python introspection releases, you have to specify the version of
the module you want to import before actually importing the module.

/* C and C++ */
#include <ufo/ufo.h>

Python
import gi
gi.require_version('Ufo', '0.0')
from gi.repository import Ufo

Instantiating tasks

Tasks are loaded dynamically at run-time and require a plugin manager to locate
them in the configured search paths. The very first thing you want to do is
create a new plugin manager. In GObject C every object is reference-counted, so
if you want to add and remove ownership to an object call g_object_ref() and
g_object_unref() respectively. In Python this is done automatically.

/* C and C++ */
UfoPluginManager *pm;

pm = ufo_plugin_manager_new ();

/* some time later */

g_object_unref (pm);

Python
pm = Ufo.PluginManager()

Once you have a plugin manager, you can load new tasks (which are actually task
nodes!) by passing the name to the get_task() method. From now on, any time
you will see a GError ** pointer location means as the last method argument,
you can either pass NULL to ignore it or pass the address of GError *
pointer to receive information in case something went wrong. In Python these are
automatically translated to run-time exceptions you may examine.

/* C and C++ */
UfoTaskNode *read_task;
UfoTaskNode *write_task;
GError *error = NULL;

read_task = ufo_plugin_manager_get_task (pm, "read", &error);
write_task = ufo_plugin_manager_get_task (pm, "read", &error);

if (error != NULL) {
 g_printerr ("error: %s\n", error->message);
 g_error_free (error);
}

g_object_unref (read_task);
g_object_unref (write_task);

Python
pm = Ufo.PluginManager()
read_task = pm.get_task('read')
write_task = pm.get_task('write')

The default search path is determined at built time of libufo however you can
extend that by adding additional paths to the UFO_PLUGIN_PATH
environment variable.

Configuring tasks

Once you loaded all required tasks you most likely want to configure them. To
make this as flexible as possible we use the GObject property mechanism which
gives us type-safe parameters that you can monitor for changes. It is possible
to set a single property, however this is a bit of a hassle in C, or many at
once:

/* C and C++ */
/* Setting a single value. */
GValue path = {0,};

g_value_init (&path, G_TYPE_STRING);
g_value_set_string (&path, "/home/data/*.tif");
g_object_set_property (read_task, "path", &path);
g_value_unset (&path);

/* Setting multiple values. Mark end with NULL. */
g_object_set (read_task,
 "path", "/home/data/*.tif",
 "start", 10,
 "number", 100,
 NULL);

Python
read_task.props.path = '/home/data/*.tif'
read_task.set_properties(path='/home/data/*.tif', start=10, number=100)

The properties of the standard UFO tasks are documented at
http://ufo-filters.readthedocs.io.

Connecting tasks

To specify the flow from one task to another, you must connect them in a task
graph object. Note that although you could connect them in a wrong way, for
example a writer into a reader, you will get an error once you try to execute
such a graph.

There is the simple connect_nodes() interface for standard cases which will
connect the output of a task to the first input of another task and the
complete connect_nodes_full() interface which will allow you to specify the
input port of the receiving task.

/* C and C++ */
UfoTaskGraph *graph;

graph = UFO_TASK_GRAPH (ufo_task_graph_new ());

/* simple API */
ufo_task_graph_connect_nodes (graph, read, write);

/* complete API */
ufo_task_graph_connect_nodes_full (graph, read, write, 0);

Python
graph = Ufo.TaskGraph()

simple API
graph.connect_nodes(read, write)

complete API
graph.connect_nodes_full(read, write, 0)

Execution

The last step is execution of the data flow structure. This requires a scheduler
object on which we call the run method with the task graph:

/* C and C++ */
UfoBaseScheduler *scheduler;

scheduler = ufo_scheduler_new ();
ufo_base_scheduler_run (scheduler, graph, &error);

Python
scheduler = Ufo.Scheduler()
scheduler.run(graph)

You can configure the execution using scheduler properties and some of the
Environment variables.

Reference

To get a complete reference, please install gtk-doc and install the generated
API reference. You can view it with the Devhelp program. Another option is to
browse the automatically generated PyGObject API reference [https://lazka.github.io/pgi-docs/#Ufo-0.0].

 Environment variables

Environment variables

You can modify the run-time behaviour by setting environment variables:

	
G_MESSAGES_DEBUG

	Controls the output of the library. By default nothing is printed on stdout.
Set this to all to see debug output.

	
UFO_PLUGIN_PATH

	Colon-separated list of paths in which plugin manager looks for additional
task modules. The plugins are load with descending priority.

	
UFO_KERNEL_PATH

	Colon-separated list of search paths for OpenCL kernel files.

	
UFO_DEVICES

	Controls which OpenCL devices should be used. It works similar to the
CUDA_VISIBLE_DEVICES environment variables, i.e. set it to 0,2 to choose
the first and third device that’s available.

	
UFO_DEVICE_TYPE

	Controls which OpenCL device types should be considered for execution. The
variable is a comma-separated list with strings being cpu, gpu and
acc, i.e. to use both CPU and GPUs set UFO_DEVICE_TYPE=”cpu,gpu”.

 Task execution

Task execution

This section provides a deeper look into the technical background concerning
scheduling and task execution. The execution model of the UFO framework is based
on the Ufo.TaskGraph that represents a network of interconnected task
nodes and the Ufo.BaseScheduler that runs these tasks according to a
pre-defined strategy. The Ufo.Scheduler is a concrete implementation and is
the default choice because it is able to instantiate tasks in a multi-GPU
environment. For greater flexibility, the Ufo.FixedScheduler can be used to
define arbitrary GPU mappings.

Profiling execution

By default, the scheduler measures the run-time from initial setup until
processing of the last data item finished. You can get the time in seconds via the
time property

g = Ufo.TaskGraph()
scheduler = Ufo.Scheduler()
scheduler.run(g)
print("Time spent: {}s".format(scheduler.time))

To get more fine-grained insight into the execution, you can enable tracing

scheduler.props.enable_tracing = True
scheduler.run(g)

and analyse the generated traces for OpenCL (saved in opencl.PID.json) and
general events (saved in trace.PID.json). To visualize the trace events, you
can either use the distributed ufo-prof tool or Google Chrome or Chromium by
going to chrome://tracing and loading the JSON files.

Broadcasting results

Connecting a task output to multiple consumers will in most cases cause
undefined results because some data is processed differently than others. A
certain class of problems can be solved by inserting explicit Ufo.CopyTask
nodes and executing the graph with a Ufo.FixedScheduler. In the following
example, we want write the same data twice with a different prefix:

from gi.repository import Ufo

pm = Ufo.PluginManager()
sched = Ufo.FixedScheduler()
graph = Ufo.TaskGraph()
copy = Ufo.CopyTask()

data = pm.get_task('read')

write1 = pm.get_task('write')
write1.set_properties(filename='w1-%05i.tif')

write2 = pm.get_task('write')
write2.set_properties(filename='w2-%05i.tif')

graph.connect_nodes(data, copy)
graph.connect_nodes(copy, write1)
graph.connect_nodes(copy, write2)

sched.run(graph)

Note

The copy task node is not a regular plugin but part of the core API and
thus cannot be used with tools like ufo-runjson or ufo-launch.

 JSON Configuration Format

JSON Configuration Format

JSON [http://json.org] is a self-contained, human-readable data-interchange format. It is pure
Unicode text and language independent. The main structures objects containing
key/value pairs (hash-tables, dictionaries, associative arrays …) and ordered
lists (arrays, vectors, sequences …) of objects or values. For a complete
description you may refer to the complete reference at json.org [http://json.org].

The configuration of a filter setup is stored in a JSON-encoded text file with a
.json suffix. The root object must at least contain a nodes and an
edges array

{ "nodes": [], "edges": [] }

Nodes array

The nodes array contains filter objects that are executed on run-time.
Information how they are connected is provided in the Edges array.

Filter object

A filter consists at least of a plugin key string pointing to the filter
that is going to be used and a name string field for unique identification.
Of course, plugins have to be available as a shared object in UFO’s path.

To configure the filter, the properties field can be used. This is an object
that maps string keys specifying the actual filter property to the value.
Therefore, the Python code to set a property

read = graph.get_filter('read')
read.set_properties(path='/home/user/data/*.tif', count=5)

translates to

{ "path": "/home/user/data/*.tif", "count": 5 }

Example nodes array

An example node array looks like this:

"nodes" : [
 {
 "plugin": "read",
 "name": "read",
 "properties" : { "path": "/home/user/data/*.tif", "count": 5 }
 },
 {
 "plugin": "write",
 "name": "write"
 }
]

Edges array

The edges array specifies how the nodes in a Nodes array are connected. Each
entry is an object that contains two objects from and to. In both
objects you have to specify at least the node name with the name key.
Furthermore, if there are several inputs or outputs on a node, you have to tell
which input and output to use with the input on the to node and the
output key on the from node. If you omit these, they are assumed to be
0.

To connect the nodes defined in the Example nodes array all you have to do is

"edges" : [
 {
 "from": {"name": "read"},
 "to": {"name": "write", "input": 2}
 }
]

Note, that the names specify the name of the node, not the plugin.

Loading and Saving the Graph

The UfoGraph class exports the ufo_graph_read_from_json and
ufo_graph_read_save_to_json methods which are responsible for loading and
saving the graph. In Python this would simply be:

from gi.repository import Ufo

g1 = Ufo.TaskGraph()

set up the filters using graph.get_filter() and filter.connect_to()

g1.run()
g1.save_to_json('graph.json')

g2 = Ufo.TaskGraph()
g2.load_from_json('graph.json')
g2.run()

 Developing new task filters

Developing new task filters

UFO filters are simple shared objects that expose their GType and implement
the UfoFilter class.

Writing a task in C

Writing a new UFO filter consists of filling out a pre-defined class structure.
To avoid writing the GObject boild plate code, you can call

ufo-mkfilter AwesomeFoo

to generate the header and source file templates. The name must be a camel-cased
version of your new filter.

You are now left with two files ufo-awesome-foo-task.c and
ufo-awesome-foo-task.h. If you intend to distribute that filter with the
main UFO filter distribution, copy these files to ufo-filters/src. If you
are not depending on any third-party library you can just add the following line
to the CMakeLists.txt file:

set(ufofilter_SRCS
 ...
 ufo-awesome-foo-task.c
 ...)

You can compile this as usual by typing

make

in the CMake build directory of ufo-filters.

Initializing filters

Regardless of filter type, the ufo_awesome_foo_task_init() method is the
constructor of the filter object and the best place to setup all data that
does not depend on any input data.

The ufo__awesome_foo_task_class_init() method on the other hand ist the
class constructor that is used to override virtual methods by setting
function pointers in each classes’ vtable.

You must override the following methods: ufo_awesome_task_get_num_inputs,
ufo_awesome_task_get_num_dimensions, ufo_awesome_task_get_mode,
ufo_awesome_task_setup, ufo_awesome_task_get_requisition,
ufo_awesome_task_process and/or ufo_awesome_task_generate.

get_num_inputs, get_num_dimensions and get_mode are called by the
run-time in order to determine how many inputs your task expects, which
dimensions are allowed on each input and what processing mode your task runs

static guint
ufo_awesome_task_get_num_inputs (UfoTask *task)
{
 return 1; /* We expect only one input */
}

static guint
ufo_awesome_task_get_num_dimensions (UfoTask *task, guint input)
{
 return 2; /* We ignore "input" and always expect 2 dimensions */
}

static UfoTaskMode
ufo_awesome_task_get_mode (UfoTask *task)
{
 /* We process one item after another */
 return UFO_TASK_MODE_PROCESSOR;
}

The mode decides which functions of a task are called. Each task can provide a
process function that takes input data and optionally writes output data and
a generate function that does not take input data but writes data. Both
functions return a boolean value to signal if data was produced or not (e.g. end
of stream):

	UFO_TASK_MODE_PROCESSOR: The task reads data and optionally writes data.
For that it must implement process.

	UFO_TASK_MODE_GENERATOR: The task only produces data (e.g. file readers)
and must implement generate.

	UFO_TASK_MODE_REDUCTOR: The tasks reads the input stream and produces
another output stream. Reading is accomplished by implementing process
whereas production is done by generate.

setup can be used to initialize data that depends on run-time resources like
OpenCL contexts etc. This method is called only once

static void
ufo_awesome_task_setup (UfoTask *task,
 UfoResources *resources,
 GError **error)
{
 cl_context context;

 context = ufo_resources_get_context (resources);

 /*
 Do something with the context like allocating buffers or create
 kernels.
 */
}

On the other hand, get_requisition is called on each iteration right before
process. It is used to determine which size an output buffer must have
depending on the inputs. For this you must fill in the requisition structure
correctly. If our output buffer needs to be as big as our input buffer we would
specify

static void
ufo_awesome_task_get_requisition (UfoTask *task,
 UfoBuffer **inputs,
 UfoRequisition *requisition)
{
 ufo_buffer_get_requisition (inputs[0], requisition);
}

Finally, you have to override the process method

static gboolean
ufo_awesome_task_process (UfoTask *task,
 UfoBuffer **inputs,
 UfoBuffer *output,
 UfoRequisition *requisition)
{
 UfoGpuNode *node;
 cl_command_queue cmd_queue;
 cl_mem host_in;
 cl_mem host_out;

 /* We have to know to which GPU device we are assigned to */
 node = UFO_GPU_NODE (ufo_task_node_get_proc_node (UFO_TASK_NODE (task)));

 /* Now, we can get the command queue */
 cmd_queue = ufo_gpu_node_get_cmd_queue (node);

 /* ... and get hold of the data */
 host_in = ufo_buffer_get_device_array (inputs[0], cmd_queue);
 host_out = ufo_buffer_get_device_array (output, cmd_queue);

 /* Call a kernel or do other meaningful work. */
}

Tasks can and will be copied to speed up the computation on multi-GPU systems.
Any parameters that are accessible from the outside via a property are
automatically copied by the run-time system. To copy private data that is only
visible at the file scope, you have to override the UFO_NODE_CLASS method
copy and copy the data yourself. This method is always called before
setup so you can be assured to re-create your private data on the copied
task.

Note

It is strongly encouraged that you export all your parameters as properties
and re-build any internal data structures off of these parameters.

 Frequently Asked Questions

Frequently Asked Questions

Installation

Why can’t the linker find libufo.so?

In the rare circumstances that you installed UFO from source for the first time
by calling make install, the dynamic linker does not know that the library
exists. If this is the case issue

$ sudo ldconfig

on Debian systems or

$ su
$ ldconfig

on openSUSE systems.

If this is not working, the library is neither installed into /usr/lib nor
/usr/local/lib on 32-bit systems or /usr/lib64 and /usr/local/lib64
on 64-bit systems.

How are kernel files loaded?

In a similar way as plugins. However, OpenCL kernel files are not architecture
specific and are installed to ${PREFIX}/share/ufo. Additional search paths
can be added at run-time through the UFO_KERNEL_PATH environment
variable.

Usage

Why do I get a “libfilter<foo>.so not found” message?

Because the UFO core system is unable to locate the filters. By default it looks
into ${LIBDIR}/ufo. If you don’t want to install the filters system-wide,
you can tell the system to try other paths as well by appending paths to the
UFO_PLUGIN_PATH environment variable.

How can I control the debug output from libufo?

Generally, UFO emits debug messages under the log domain Ufo. If you use a
UFO-based tool and cannot see debug messages, you might have to enable them by
setting the G_MESSAGES_DEBUG environment variable, i.e.:

export G_MESSAGES_DEBUG=Ufo

To handle these messages from within a script or program, you must set a log
handler [http://developer.gnome.org/glib/unstable/glib-Message-Logging.html#g-log-set-handler] that decides what to do with the messages. To ignore all messages in
Python, you would have to write something like this:

from gi.repository import Ufo, GLib

def ignore_message(domain, level, message, user):
 pass

if __name__ == '__main__':
 GLib.log_set_handler("Ufo", GLib.LogLevelFlags.LEVEL_MASK,
 ignore_message, None)

How can I use Numpy output?

Install the ufo-python-tools. You can then use the BufferInput filter to
process Numpy arrays data:

from gi.repository import Ufo
import ufo.numpy
import numpy as np

arrays = [i*np.eye(100, dtype=np.float32) for i in range(1, 10)]
buffers = [ufo.numpy.fromarray(a) for a in arrays]

pm = Ufo.PluginManager()
numpy_input = pm.get_task('bufferinput')
numpy_input.set_properties(buffers=buffers)

How can I synchronize two properties?

Although this is a general GObject question, synchronizing two properties is
particularly important if the receiving filter depends on a changed property.
For example, the back-projection should start only if a center-of-rotation is
known. In Python you can use the bind_property function from the
ufotools module like this:

from gi.repository import Ufo
import ufotools.bind_property

pm = Ufo.PluginManager()
cor = g.get_task('centerofrotation')
bp = g.get_task('backproject')

Now connect the properties
ufotools.bind_property(cor, 'center', bp, 'axis-pos')

In C, the similar g_object_bind_property function is provided out-of-the-box.

 Reporting Bugs

Reporting Bugs

Bug reports regarding the UFO framework should be submitted to the ufo-core
issue tracker [https://github.com/ufo-kit/ufo-core/issues]. Anything related to
specific filter behaviour should be filed on the ufo-filters issue tracker [https://github.com/ufo-kit/ufo-filters/issues].

 Changelog

Changelog

Here you can see the full list of changes between each ufo-core release.

Version 0.16

Enhancements:

	OutputTask signals end via “inputs-stopped” signal

	InputTask: Improve performance

	Add ufo_buffer_set/get_layout and pass through

Fixes:

	Better error propagation

	Fix #116: allow _get_requisition to report errors

	Fix #130: add ufo_buffer_swap_data interface

	Fix #143: invalid object dereference

	Fix #145: remove sphinx-tabs dependency

	Fix #146: multi GPU expansion broke

	Fix #147: do correct comparison

	Fix #148: re-write longest path algorithm

	Fix #154: add UFO_RESOURCES_CHECK_SET_AND_RETURN

Breaks:

	Remove _with_opts functions

	Retire ufo_graph_{{shallow_}copy|subgraph,flatten}

	Raise GLib version to 2.38

	Remove address options from CLI tools

	Remove daemon and messenger API

Version 0.15.2

This is another bugfix release to help Debian adoption.

Version 0.15.1

This is bugfix release that fixes #143 which causes segfaults with certain task
graph conditions.

Version 0.15

Released on January 4th 2018.

Enhancements:

	Manual and API documentation has been much improved

	Passing -Dintrospection=false to meson disables introspection data

	An error is generated if duplicate node names exist in JSON

	Added ufo_profiler_call_blocking to wait for execution

	Added ufo_resources_get_kernel_from_source_with_opts

	Added an NVIDIA Dockerfile example

	The deadlock warning has been turned into a debug message

	The scheduler returns early if no OpenCL platform is found

	Fix #135: added UFO_GPU_NODE_INFO_NAME

Fixes:

	UFO is compiled with gnu99 now to avoid GLOB_TILDE complaints

	Fixed wrong references and highlighting in the manual

	if UFO_DEVICE_TYPE=cpu is set, no GPUs are used

	Fix #142: fixed multi input and GPU processing

	Fix #142: prune graph correctly for multiple GPU

	Fix #137: support JSON array properties

	Fix #133: output build flag string for each device

	Fix #132: do not segfault on unknown properties

	Fix #126: abort execution without resources

	Fix #129: allocate enough memory for index array

	Fix #125: build and install manpages with meson

Breaks:

	Property sets have been removed from the JSON specification

Version 0.14

Released on September 5th 2017.

Enhancements:

	meson build system support has been added

	Improve documentation

	Improve expansion for multi-input node graphs

	Output warning in case expansion is not possible

	Use g_printerr to print errors on stderr instead of stdout

	ufo-launch returns exit code 1 on execution error

	Make device usage debug output unambiguous

	#123: allow vector properties via ufo-launch

	#120: generate buffer timestamps with the –timestamps option

Fixes:

	Fix a minor memory leak in ufo-launch

	Fix problem with CMake install dir

	Fix #119: compile OpenCL programs for each device with device-specific flags
to allow kernel developers optimizations for each device

	Fix #121: use the same command-line interface for both runjson and launch

Breaks:

	We dropped support for Autotools, CMake and meson are the only options to
build at the moment.

Version 0.13

Released on January 25th 2017.

Enhancements:

	ufo-runjson: Add the -s/–scheduler flag to choose a scheduler different from
the regular one.

	Restructure docs and add section about broadcasts

	Added ufo_resources_get_kernel_source function to have an API to access
directly a source file from CL/kernel path.

Fixes:

	Fixup for compilation and installation on MacOS

Version 0.12.1

Bugfix release released on November 28th 2016.

	Do not install the Docbook XML build dir

	Document UFO_BUFFER_DEPTH_INVALID

	Enable Large File Support

	Check ftell and return NULL on error

	Add forgotten manpage to the build list

	Initialize uninitialized variable

	Enable _FORTIFY_SOURCE feature flag

Version 0.12

Released on November 24th 2016.

Enhancements:

	ufo-launch: convert string to enum values

	ufo-runjson: add -t/–trace flag doing the same thing as ufo-launch

	Documentation updates

Fixes:

	Fix manual heading

	ufo-mkfilter: fix template and type handling

	Add manpage for ufo-prof

Breaks:

	Add UFO_BUFFER_DEPTH_INVALID with value zero which means adding to the API and
breaking ABI

	Remove package target from the build system

Version 0.11.1

Bugfix release released on November 12th 2016.

	Install systemd unit file through pkg-config

	Fix #110: install templates correctly

	Do not run xmllint on manpage generation output

	Remove unused CMake modules

	Remove executable bit from source files

	Remove PACKAGE_* variables

Version 0.11

Released on November 8th 2016

Enhancements:

	Build manpages for the tools

	Update TomoPy integration

	Add UFO_DEVICE_TYPE environment variable

	Properly build on MacOS

	Unify debug message output format

	ufo-launch: rewrite specification parser allowing more flexible descriptions

	ufo-launch: add –quieter

	ufo-mkfilter: add –type and –use-gpu

Fixes:

	Check if we have with multiple roots to exit early

	Show version information consistently

	ufo-prof: support Python < 3.0

Breaks:

	GNUInstallDirs instead is now used instead of our own ConfigurePaths CMake
module which might affect installation paths on your system. Please note that
for example -DPREFIX thus becomes -DCMAKE_INSTALL_PREFIX.

	Remove CPack

	ufod: unused –paths option removed

	ufo-runjson: unused –path option removed

	ufo-launch: do not execute graph when –dump’ing

Version 0.10

Released on May 24th 2016

Enhancements:

	Add UFO_GPU_NODE_INFO_MAX_MEM_ALLOC_SIZE

	Fix #103: allow ufo-launch to use arbitrary graphs with new workflow
specification and more robust parsing

	Look for AMD APP SDK 3.0

	Cache programs to avoid rebuilding them

	ufo-runjson now also outputs the number of processed items

	Fix #104: output type and blurb with -v

Fixes:

	Fix #106: match word characters to find plugins

	Fix #101: really unref non-intermediate nodes

	ufo-launch: query only valid graph

	Fixed misleading documentation

	Fixed some leaks and unreferenced resources

	Stop num-processed from being serialized into JSON field

	ufod: fix segfault if no address is specified

Breaks:

	ufo-query: print errors on stderr instead of stdout

	ufo-launch: removed –progress and –time in favor of –quiet

	Removed public ufo_signal_emit symbol

	Use date and time to differentiate trace profiles

	Replace clprof with ufo-prof

Version 0.9.1

Release on January 12th 2016.

Enhancements:

	Pass a property map to scheduler in the Python wrapper

	Added convenience wrapper to copy into a buffer

Fixes:

	Fix version numbering from 0.8.x to 0.9.x

	Fix documentation issues

	Fix build problems if libzmq is not present

	ufo-launch unrefs non-intermediate nodes

Version 0.9

Release on November 3rd 2015.

Enhancements:

	Generally improved debug output

	Add support for plugin packages as demonstrated by the ART plugins

	Add Docker installation method

	Add simple fabfile to start ufod instances

	Allow reductors to pause processing

	Add ufo-query binary to retrieve info about tasks

	Add ufo_buffer_set_device_array API call

	Python: add ufo.numpy.empty_like

	ufo-launch: add –dump flag to serialize to JSON

	ufo-launch: add Bash completion script

	ufo-launch: pass address list

Fixes:

	Fix segfault with long-running tasks

	Prevent daemon from leaking OpenCL resources

	Fix broken continuous daemon operation

	ufo-launch: fix parsing uint64

	Use same reductor policy for both schedulers

	Fix ufo_buffer_new_with_data

	Fix nano second to second conversion

Breaks:

	Specify device subset with UFO_DEVICES

	Do not prepend . to trace and profile output

	Change ufo_buffer_set_host_array signature

	Use common timestamp unit for both trace types

Version 0.8

Release on May 19th 2015.

This release breaks with the distinction of ArchGraph and Resources. The former
is removed with its functionality moved to the latter. Besides that numerous
improvements have been incorporated:

	ufo-launch: add –time and –trace options

	Added a systemd unit for ufod

	Fixed cluster communication.

	Fixed #86: use CL_INTENSITY instead of CL_R

	Handle kernel path with environment variable UFO_KERNEL_PATH

	ufo-launch now parses boolean properties

	Removed hard dependency on ZeroMQ

	Removed WITH_DEBUG and WITH_PROFILING CMake variables

	Add JSON-based TANGO server for remote computation

	Removed ufo_base_scheduler_get_gpu_nodes()

	Fixed #80: add ufo_gpu_node_get_info()

	Fixed re-running the same task graph

	Removed tifffile dependency

	Fixed #78: reset num-processed before execution

	Fixed #77: initialize threads when accessing the GIL

Version 0.7

Released on February 20th 2015.

This is a major update from the previous version released a year ago. Besides
numerous bug fixes and compatibility enhancements we

	added ufo_signal_emit for threadsafe signal emission

	export plugin and kernel directories via pkg-config so that thirdparty plugins
easily know where to install themselves

	added the ufo-launch tool to run basic pipelines directly from the command
line

	merged the ufo-python-tools and ufo-tests repos with the core repository

	added additional buffer depths

	parse the UFO_PLUGIN_PATH environment variable to specify additional plugin
locations

	added a copy task which copies data from input 0

	added a fixed scheduler for manual assignment of hardware resources to task
nodes

	added “processed” and “generated” signals to tasks which emit whenever either
action completed

	added UFO_DEVICE_TYPE_ACC for accelerator devices

	added buffer views for larger-than-GPU data

	output OpenCL profiler information as Chrome JSON

	added ufo_resources_get_kernel_with_opts()

	added ufo_buffer_set_host_array()

	added ufo_buffer_get/set_metadata(), ufo_buffer_get_metadata_keys() and
ufo_buffer_copy_meta_data()

	added ufo_buffer_get_device_array_with_offset()

	added ufo_buffer_get_location()

and broke compatibility by

	retiring the UfoConfig infrastructure and

	replacing g_message() with g_debug()

Version 0.6

Released on January 24th 2014.

Due to the inclusion of Autotools builds, we restructured and cleaned up
installation paths, along the lines of GLib. That means headers are installed
into major API version dependent directories, e.g. now /usr/include/ufo-0/ufo.
We also split hardware-dependent and -independent files, thus kernels go into
/usr/share/ufo now. In the same vein, we also lowered the SO version down to 0,
so please if you have installed from source, make sure to remove any traces of
an old UFO installation before installing the latest version.

Minor changes include:

	Added “time” property to scheduler.

	Scheduler can now use and existing arch graph and return associated resources.

	By default only GPU devices are used.

	Documentation is now hosted at ufo-core.readthedocs.org.

	Added “num-processed” property.

Developers

	Replace GList for loops with g_list_for macro

	Include compat.h

	Renamed and install mkfilter as ufo-mkfilter.

	ufo-core is now monitored by Travis CI

	Removed the python/ subdir which is replaced by ufo-python-tools

	Removed unnecessary clprof tool.

Bugfixes

	Fix and simplify deploy script

	Require json-glib in pkgconfig

	Link to documentation on rtd.org

	Fix .gir generation

	Fix installation path for header files

	Do not error on deprecated declarations

Version 0.5

Released on October 28th 2013.

	Added MPI support as an alternative to ZMQ.

	Added basic math operations for use with filters.

	UFO can now be used reliably in a multithreaded Python context. That means,
calling ufo_scheduler_run in a Python thread will “just work”. This change
allows run-time injection of NumPy buffers into the task graph.

Developers

	Add -DDEBUG when debug is enabled so we can #ifdef it

	Add GLib version guards

	ufo-core compiles with Clang

	CMake 2.6 is used solely throughout the sources

	Add convenience function ufo_buffer_new_with_size

	Add a shim macros to support both zmq 2 and 3

	Add UFO_USE_GPU env var to restrict to single GPU

	Added ufo_resource_manager_get_cached_kernel that always returns the same
kernel object when given the same file and kernel name. Note, that you have to
guard it properly and do not call clSetKernelArg from multiple threads at
the same time.

	Add profile tracing to produce a JSON trace event file, that can be read and
visualized with Google’s Chrome browser. It can be enabled with
UfoScheduler::enable-tracing set to TRUE.

Bug fixes

	Fix #6: Don’t use enum values as bit flags

	Fix bug: no plugin name is sent to remote nodes

	Fix copy segfault in when source has not alloc’d

	Removed dependency on a C++ compiler

	Fix reduction problem

Version 0.4

Released on July 18th 2013.

Major changes

	Rewrote internal architecture for better scheduling.

	Remove profiler levels and add more output

	Implement input data partitioning: On clusters where distributed data access
is possible, we can achieve perfect linear scalability by partitioning the
input data set.

	Install SIGTERM handler for cleanup of node server

Features

	Add ufo_task_graph_get_json_data

	Streamline and simplify scheduling

	Provide function to flatten graph

	Provide graph copy functionality

	Add node indices for copies

	Add all paths as OpenCL include paths

	Write out JSON version

	Search in UFO_PLUGIN_PATH env var

Bug fixes

	Fix problems with AMD platforms

	Fix timestamp readout

	Fix potential single integer overflow

	Exit when JSON tasks could not be found

	Fix remote tasks getting stuck

	Unref expanded nodes explicitly

	Fix #189: don’t copy nodes with more than one input

	Fix #219: Warn instead of segfault

	Fix annotation for older GI compiler

	Fix problem with first remote data item

	Fix platform selection

	Fix problems with objects that are not unreffed

	Refactor buffer and add support for #184

	Refactor resources and fix #183

	Fix buffer for broadcast operations

Version 0.3

Released on February 8th 2013.

Major breakage

	A graph is now a simple data structure and not a specific graph of task nodes.
This is implemented by a TaskGraph.

	Filters are now called TaskNodes and connected with
ufo_task_graph_connect_nodes and ufo_task_graph_connect_nodes_full
respectively.

Graph expansion

With 0.2, Using multiple GPUs was possible by manually splitting paths in the
graph and assigning GPUs. Now, task graphs are automatically expanded depending
on the number of available GPUs and remote processing slaves that are started
with the newly added ufod server software.

Minor improvements

	A deploy.sh script has been added for easier deployment of the software
stack. This is especially useful to install everything in the home directory
of the user, who only needs to setup LD_LIBRARY_PATH and
GI_TYPELIB_PATH correctly to run the software.

Version 0.2

Released on November 8th 2012.

Major breakage

	Filters are now prefixed again with libfilter to allow introspected
documentation. Thus, any filter built for 0.1 cannot be used because they are
simply not found.

	ufo_plugin_manager_get_filter() received a new third parameter
error that reports errors when opening and loading a UfoFilter from a
shared object.

	ufo_resource_manager_add_program() is removed.

	The kernel file name must be passed to ufo_resource_manager_get_kernel().

	The CHECK_ERROR macro defined in ufo-resource-manager.h was renamed to
CHECK_OPENCL_ERROR to better reflect its real purpose.

	The old JSON specification has been changed to reflect the possibilities of
the current API. Thus, JSON files that worked under Ufo 0.1 cannot be read
with Ufo 0.2.

	Removed the otherwise unused ufo_buffer_get_transfer_time() and
replaced this with the more flexible ufo_buffer_get_transfer_timer().

	Rename ufo_filter_initialize() to
ufo_filter_set_plugin_name() that reflects its true meaning.

Scheduling

A more scheduable way to run filters has been implemented with the virtual
process_cpu() and process_gpu() methods. Contrary to the old
way, they act on one working set at a time that is passed as an array of
pointers to UfoBuffer. Sometimes, a filter needs to setup data
depending on the input size. For this reason, the virtual method
initialize() takes a second parameter that is again a list of pointers
to buffer objects.

Moreover, the UfoScheduler class has been added that is combining
the work previously accomplished by ufo_filter_process() and
ufo_graph_run(). The scheduler orchestrates the filters and
assigns resources in a meaningful way.

If written in the new kernel style, producer filters must return a boolean flag
denoting if data was produced or not.

General improvements

	The manual was restructured considerably.

	Saving graphs as JSON files has been added via
ufo_graph_save_to_json().

	Filters can now wait until their properties satisfy a condition using
ufo_filter_wait_until(), see also Wait until a property satisfies a condition.

	A new method ufo_resource_manager_get_kernel_from_source() so that
filters can load kernels directly from source.

	Streamlined error handling: Filters should not issue g_warnings or
g_errors on their own anymore but create an error with g_error_new and
return that.

Version 0.1.1

	Ticket #55: tests/test-channel blocks indefinitely

 Copyright

Copyright

UFO and this documentation is:

Copyright 2011 Karlsruhe Institute of Technology (Institute for Data Processing
and Electronics) and Tomsk Polytechnic University

 Index

Index

 E
 | U

E

 	
 	
 environment variable

 	G_MESSAGES_DEBUG

 	UFO_DEVICES

 	UFO_DEVICE_TYPE

 	UFO_KERNEL_PATH, [1]

 	UFO_PLUGIN_PATH, [1]

U

 	
 	UFO_KERNEL_PATH

 	
 	UFO_PLUGIN_PATH

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/ufo-logo.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 UFO Documentation

 		
 Installation

 		
 Installation on Linux

 		
 Installing RPM packages

 		
 Installing Debian packages

 		
 Installing from source

 		
 Installation on MacOS X

 		
 Installation with Docker

 		
 Rady-to-use Images

 		
 Build

 		
 Usage on AMD

 		
 Usage on NVIDIA

 		
 Usage on Intel

 		
 Installation on Windows with WSL2

 		
 Using UFO

 		
 Quick start guide

 		
 Launching pipelines on the command line

 		
 Using a JSON description

 		
 C interface

 		
 Python Interface

 		
 Application programming interface

 		
 Preliminaries

 		
 Instantiating tasks

 		
 Configuring tasks

 		
 Connecting tasks

 		
 Execution

 		
 Reference

 		
 Environment variables

 		
 Task execution

 		
 Profiling execution

 		
 Broadcasting results

 		
 JSON Configuration Format

 		
 Nodes array

 		
 Edges array

 		
 Loading and Saving the Graph

 		
 Developing new task filters

 		
 Writing a task in C

 		
 Initializing filters

 		
 Actions performed after inputs have stopped

 		
 Additional source files

 		
 Writing point-based OpenCL filters

 		
 Reporting errors at run-time

 		
 The GObject property system

 		
 Wait until a property satisfies a condition

 		
 Frequently Asked Questions

 		
 Installation

 		
 Why can’t the linker find libufo.so?

 		
 How are kernel files loaded?

 		
 Usage

 		
 Why do I get a “libfilter<foo>.so not found” message?

 		
 How can I control the debug output from libufo?

 		
 How can I use Numpy output?

 		
 How can I synchronize two properties?

 		
 Reporting Bugs

 		
 Changelog

 		
 Version 0.16

 		
 Version 0.15.2

 		
 Version 0.15.1

 		
 Version 0.15

 		
 Version 0.14

 		
 Version 0.13

 		
 Version 0.12.1

 		
 Version 0.12

 		
 Version 0.11.1

 		
 Version 0.11

 		
 Version 0.10

 		
 Version 0.9.1

 		
 Version 0.9

 		
 Version 0.8

 		
 Version 0.7

 		
 Version 0.6

 		
 Developers

 		
 Bugfixes

 		
 Version 0.5

 		
 Developers

 		
 Bug fixes

 		
 Version 0.4

 		
 Major changes

 		
 Features

 		
 Bug fixes

 		
 Version 0.3

 		
 Major breakage

 		
 Graph expansion

 		
 Minor improvements

 		
 Version 0.2

 		
 Major breakage

