

Overview

Ubuntu App Launch is the abstraction that creates a consistent interface for
managing apps on Ubuntu Touch. It is used by Unity8 and other programs to
start and stop applications, as well as query which ones are currently open.
It doesn’t have its own service or processes though, it relies on the system
init daemon to manage the processes (currently systemd [http://freedesktop.org/wiki/Software/systemd/]) but configures them
in a way that they’re discoverable and usable by higher level applications.

Environment Variables

There are a few environment variables that can effect the behavior of UAL while
it is running.

	UBUNTU_APP_LAUNCH_DEMANGLER

	Path to the UAL demangler tool that will get the Mir FD for trusted prompt session.

	UBUNTU_APP_LAUNCH_DISABLE_SNAPD_TIMEOUT

	Wait as long as Snapd wants to return data instead of erroring after 100ms.

	UBUNTU_APP_LAUNCH_LEGACY_ROOT

	Set the path that represents the root for legacy applications.

	UBUNTU_APP_LAUNCH_LIBERTINE_LAUNCH

	Path to the libertine launch utility for setting up libertine containers and XMir based legacy apps.

	UBUNTU_APP_LAUNCH_OOM_HELPER

	Path to the setuid helper that configures OOM values on application processes that we otherwise couldn’t, mostly this is for Oxide.

	UBUNTU_APP_LAUNCH_OOM_PROC_PATH

	Path to look for the files to set OOM values, defaults to /proc.

	UBUNTU_APP_LAUNCH_SNAP_BASEDIR

	The place where snaps are installed in the system, /snap is the default.

	UBUNTU_APP_LAUNCH_SNAP_LEGACY_EXEC

	A snappy command that is used to launch legacy applications in the current snap, to ensure the environment gets configured correctly, defaults to /snap/bin/unity8-session.legacy-exec

	UBUNTU_APP_LAUNCH_SNAPD_SOCKET

	Path to the snapd socket.

	UBUNTU_APP_LAUNCH_SYSTEMD_CGROUP_ROOT

	Path to the root of the cgroups that we should look in for PIDs. Defaults to /sys/fs/cgroup/systemd/.

	UBUNTU_APP_LAUNCH_SYSTEMD_PATH

	Path to the dbus bus that is used to talk to systemd. This allows us to talk to the user bus while Upstart is still setting up a session bus. Defaults to /run/user/$uid/bus.

	UBUNTU_APP_LAUNCH_SYSTEMD_NO_RESET

	Don’t reset the job after it fails. This makes it so it can’t be run again, but leaves debugging information around for investigation.

	UBUNTU_APP_LAUNCH_XMIR_HELPER

	Tool that helps to start XMir and sets the DISPLAY variable for applications

	UBUNTU_APP_LAUNCH_XMIR_PATH

	Specifies the location of the XMir binary to use

API Documentation

AppID

	
struct ubuntu::app_launch::AppID

	The set of information that is used to uniquely identify an application in Ubuntu.

Application ID’s are derived from the packaging system and the applications that are defined to work in it. It resolves down to a specific version of the package to resolve problems with upgrades and reduce race conditions that come from installing and removing them while trying to launch them. While it always resolves down to a specific version, there are functions avilable here that search in various ways for the current version so higher level apps can save just the package and application strings and discover the version when it is required.

Public Types

	
enum ApplicationWildcard

	Control how the application list of a package is searched in the discover() functions.

Values:

	
FIRST_LISTED

	First application listed in the manifest

	
LAST_LISTED

	Last application listed in the manifest

	
ONLY_LISTED

	Only application listed in the manifest

	
enum VersionWildcard

	Control how the versions are searched in the discover() set of functions

Values:

	
CURRENT_USER_VERSION

	The current installed version

Public Functions

	
operator std::string() const

	Turn the structure into a string. This is required for many older C based interfaces that work with AppID‘s, but is generally not recommended for anyting other than debug messages.

	
AppID()

	Empty constructor for an AppID. Makes coding with them easier, but generally there is nothing useful about an empty AppID.

	
bool empty() const

	Checks to see if an AppID is empty.

	
AppID(Package pkg, AppName app, Version ver)

	Constructor for an AppID if all the information is known about the package. Provides a precise and fast way to create an AppID if all the information is already known.

	Parameters

	
	package: Name of the package

	appname: Name of the application

	version: Version of the package

Public Members

	
Package package

	The package name of the application. Typically this is in the form of $app.$developer so it could be my-app.my-name, though other formats do exist and are used in the wild.

In the case of legacy applications this will be the empty string.

	
AppName appname

	The string that uniquely identifies the application. This comes from the package manifest. In a Click package this is the string that exists under the “hooks” key in the JSON manifest.

	
Version version

	Version of the package that is installed. This is always resolved when creating the struct.

	Note

	For snaps this is actually the ‘revision’ instead of the version since that is unique where ‘version’ is not.

Public Static Functions

	
AppID parse(const std::string &appid)

	Parse a string and turn it into an AppID. This assumes that the string is in the form: __ and will return an empty AppID if not.

	Parameters

	
	appid: String with the concatenated AppID

	
AppID find(const std::string &sappid)

	Find is a more tollerant version of parse(), it handles legacy applications, short AppIDs ($package_$app) and other forms of that are in common usage. It can be used, but is slower than parse() if you’ve got well formed data already.

	Note

	This will use the default registry instance, it is generally recommended to have your own instead of using the default.

	Parameters

	
	sappid: String with the concatenated AppID

	
AppID find(const std::shared_ptr<Registry> ®istry, const std::string &sappid)

	Find is a more tollerant version of parse(), it handles legacy applications, short AppIDs ($package_$app) and other forms of that are in common usage. It can be used, but is slower than parse() if you’ve got well formed data already.

	Parameters

	
	registry: Registry instance to use for persistant connections

	sappid: String with the concatenated AppID

	
bool valid(const std::string &sappid)

	Check to see whether a string is a valid AppID string

	Parameters

	
	sappid: String with the concatenated AppID

	
AppID discover(const std::string &package, ApplicationWildcard appwildcard = ApplicationWildcard::FIRST_LISTED, VersionWildcard versionwildcard = VersionWildcard::CURRENT_USER_VERSION)

	Find the AppID for an application where you only know the package name.

	Note

	This will use the default registry instance, it is generally recommended to have your own instead of using the default.

	Parameters

	
	package: Name of the package

	appwildcard: Specification of how to search the manifest for apps

	versionwildcard: Specification of how to search for the version

	
AppID discover(const std::string &package, const std::string &appname, VersionWildcard versionwildcard = VersionWildcard::CURRENT_USER_VERSION)

	Find the AppID for an application where you know the package name and application name.

	Note

	This will use the default registry instance, it is generally recommended to have your own instead of using the default.

	Parameters

	
	package: Name of the package

	appname: Name of the application

	versionwildcard: Specification of how to search for the version

	
AppID discover(const std::string &package, const std::string &appname, const std::string &version)

	Create an AppID providing known strings of packages and names

	Note

	This will use the default registry instance, it is generally recommended to have your own instead of using the default.

	Parameters

	
	package: Name of the package

	appname: Name of the application

	version: Version of the package

	
AppID discover(const std::shared_ptr<Registry> ®istry, const std::string &package, ApplicationWildcard appwildcard = ApplicationWildcard::FIRST_LISTED, VersionWildcard versionwildcard = VersionWildcard::CURRENT_USER_VERSION)

	Find the AppID for an application where you only know the package name.

	Parameters

	
	registry: Registry instance to use for persistant connections

	package: Name of the package

	appwildcard: Specification of how to search the manifest for apps

	versionwildcard: Specification of how to search for the version

	
AppID discover(const std::shared_ptr<Registry> ®istry, const std::string &package, const std::string &appname, VersionWildcard versionwildcard = VersionWildcard::CURRENT_USER_VERSION)

	Find the AppID for an application where you know the package name and application name.

	Parameters

	
	registry: Registry instance to use for persistant connections

	package: Name of the package

	appname: Name of the application

	versionwildcard: Specification of how to search for the version

	
AppID discover(const std::shared_ptr<Registry> ®istry, const std::string &package, const std::string &appname, const std::string &version)

	Create an AppID providing known strings of packages and names

	Parameters

	
	registry: Registry instance to use for persistant connections

	package: Name of the package

	appname: Name of the application

	version: Version of the package

Application

	
class ubuntu::app_launch::Application

	Class to represent an application, whether running or not, and query more information about it.

Generally the Application object represents an Application in the system. It hooks up all of it’s signals, finds out information about it and controls whether it is running or not. This class is what most users of Ubuntu App Launch will do the majority of their work.

Subclassed by ubuntu::app_launch::app_impls::Base

Public Functions

	
virtual ~Application()

	

	
virtual AppID appId() = 0

	Get the Application ID of this Application

	
virtual std::shared_ptr<Info> info() = 0

	Get a Application::Info object to describe the metadata for this application

	
virtual bool hasInstances() = 0

	A quick check to see if this application has any running instances

	
virtual std::vector<std::shared_ptr<Instance>> instances() = 0

	Get a vector of the running instances of this application

	
virtual std::shared_ptr<Instance> launch(const std::vector<URL> &urls = {}) = 0

	Start an application, optionally with URLs to pass to it.

	Parameters

	
	urls: A list of URLs to pass to the application command line

	
virtual std::shared_ptr<Instance> launchTest(const std::vector<URL> &urls = {}) = 0

	Start an application with text flags, optionally with URLs to pass to it.

	Parameters

	
	urls: A list of URLs to pass to the application command line

	
virtual std::shared_ptr<Instance> findInstance(const pid_t &pid) = 0

	Get a a pointer to the running instances of this application based on the pid

	Parameters

	
	pid: The pid to find the instance of

Public Static Functions

	
std::shared_ptr<Application> create(const AppID &appid, const std::shared_ptr<Registry> ®istry)

	Function to create an Application object. It determines the type of application and returns a pointer to that application object. It uses the registry for shared connections and is given an AppID. To find the AppID for a given application use the AppID::discover() functions.

	Parameters

	
	appid: Application ID for the application

	registry: Shared registry to use

	
class Info

	Information and metadata about the application for programs that are displaying the application to users.

The Info class has all the metadata including user visible strings and other nicities that users expect to see about applications. For most formats this is gotten from the Desktop file, but those may be in different locations depending on the packaging format.

Subclassed by ubuntu::app_launch::app_info::Desktop

Public Functions

	
virtual ~Info()

	

	
virtual const Name &name() = 0

	Name of the application

	
virtual const Description &description() = 0

	Textual description of the application

	
virtual const IconPath &iconPath() = 0

	Path to the icon that represents the application

	
virtual const DefaultDepartment &defaultDepartment() = 0

	Default department of the application

	
virtual const IconPath &screenshotPath() = 0

	Path to the screenshot of the application

	
virtual const Keywords &keywords() = 0

	List of keywords for the application

	
virtual const Popularity &popularity() = 0

	Get the relative popularity of the application, 0 is not popular

	
virtual Splash splash() = 0

	Get information for the splash screen

	
virtual Orientations supportedOrientations() = 0

	Return which orientations are supported

	
virtual RotatesWindow rotatesWindowContents() = 0

	Return whether the window contents can be rotated or not

	
virtual UbuntuLifecycle supportsUbuntuLifecycle() = 0

	

	
struct Orientations

	Orientation and placement

Public Functions

	
bool operator==(const Orientations &b) const

	Check to see if two Orientations are the same

Public Members

	
bool portrait

	Can support portrait

	
bool landscape

	Can support landscape

	
bool invertedPortrait

	Can support inverted portrait

	
bool invertedLandscape

	Can support inverted landscape

	
struct Splash

	Information to be shown on the app splash screen

Public Members

	
Title title

	Title text on the screen

	
Image image

	Image to put on the screen

	
Color backgroundColor

	Color of the background

	
Color headerColor

	Color of the header (if shown)

	
Color footerColor

	Color of the footer

	
ShowHeader showHeader

	Whether the standard UI Toolkit header should be shown

	
class Instance

	Interface representing the information about a specific application running instance. This includes information on the PIDs that make up the Application::Instance.

Subclassed by ubuntu::app_launch::jobs::instance::Base

Public Functions

	
virtual ~Instance()

	

	
virtual bool isRunning() = 0

	Check to see if the instance is currently running. The object can exist even after the instance has stopped running.

	
virtual pid_t primaryPid() = 0

	Get the primary PID for this Application::Instance, this will return zero when it is not running. The primary PID is the PID keeping the instance alive, when it exists the others get reaped.

	
virtual bool hasPid(pid_t pid) = 0

	Check to see if a PID is in the cgroup for this application instance. Each application instance tracks all the PIDs that are currently being used

	
virtual std::vector<pid_t> pids() = 0

	Check to see if a specific PID is part of this Application::Instance

	
virtual void setOomAdjustment(const oom::Score score) = 0

	Sets the value of the OOM Adjust kernel property for the all of the processes this instance.

	
virtual const oom::Score getOomAdjustment() = 0

	Gets the value of the OOM Adjust kernel property for the primary process of this instance.

	Note

	This function does not check all the processes and ensure they are consistent, it just checks the primary and assumes that.

	
virtual void pause() = 0

	Pause, or send SIGSTOP, to the PIDs in this Application::Instance

	
virtual void resume() = 0

	Resume, or send SIGCONT, to the PIDs in this Application::Instance

	
virtual void stop() = 0

	Stop, or send SIGTERM, to the PIDs in this Application::Instance, if the PIDs do not respond to the SIGTERM they will be SIGKILL’d

	
virtual void focus() = 0

	Signal the shell to focus the Application::Instance

Helper

	
class ubuntu::app_launch::Helper

	Class representing an untrusted helper in the system. Untrusted helpers are used by trusted helpers to get some amount of functionality from a package in the system. Typically this is via a Click hook in a Click package.

In order to setup a untrusted helper the trusted helper needs to install a small executable that gives the equivallent of a Desktop Exec string to the system. This is done by installing the executable in the /usr/lib//ubuntu-app-launch/$(helper type)/exec-tool. A simple example can be seen in URL Dispatcher’s URL Overlay helper [http://bazaar.launchpad.net/~indicator-applet-developers/url-dispatcher/trunk.15.10/view/head:/service/url-overlay.c]. It is important to note that the helper will be confined with the apparmor profile associated with the AppID that is being used. For Click based applications this means that an untrusted helper should be its own stanza in the Click manifest with its own apparmor hook. This will configure the confinement for the helper.

Many times an untrusted helper runs in a non-user-facing mode, it is important that UAL DOES NOT implement a lifecycle for the helper. It is the responsibility of the trusted helper to do that. Many times this is a timeout or other similar functionality. These are the tools to implement those in a reasonable fashion (services don’t have to worry about AppArmor, cgroups, or jobs) but it doesn’t not implement them by itself.

Subclassed by ubuntu::app_launch::helper_impls::Base

Public Functions

	
virtual AppID appId() = 0

	Get the AppID for this helper

	
virtual bool hasInstances() = 0

	Check to see if there are any instances of this untrusted helper

	
virtual std::vector<std::shared_ptr<Instance>> instances() = 0

	Get the list of instances of this helper

	
virtual std::shared_ptr<Instance> launch(std::vector<URL> urls = {}) = 0

	Launch an instance of a helper with an optional set of URLs that get passed to the helper.

	Parameters

	
	urls: List of URLs to passed to the untrusted helper

	
virtual std::shared_ptr<Instance> launch(MirPromptSession *session, std::vector<URL> urls = {}) = 0

	Launch an instance of a helper that is run in a Mir Trusted Prompt session. The session should be created by the trusted helper using the Mir function mir_connection_create_prompt_session_sync().

	Parameters

	
	session: Mir trusted prompt session

	urls: List of URLs to passed to the untrusted helper

Public Static Functions

	
std::shared_ptr<Helper> create(Type type, AppID appid, std::shared_ptr<Registry> registry)

	Create a new helper object from an AppID

	Parameters

	
	type: Type of untrusted helper

	appid: AppID of the helper

	registry: Shared registry instance

	
void setExec(std::vector<std::string> exec)

	Set the exec from a helper utility. This function should only be used inside a helper exec util.

	Parameters

	
	exec: The exec line to use for the helper with the AppID given

	
class Instance

	Running instance of a a Helper

Subclassed by ubuntu::app_launch::helper_impls::BaseInstance

Public Functions

	
virtual bool isRunning() = 0

	Check to see if this instance is running

	
virtual void stop() = 0

	Stop a running helper

Registry

	
class ubuntu::app_launch::Registry

	The application registry provides a central source for finding information about the applications in the system. This includes installed applications and running applications.

This class also holds onto shared resources for Ubuntu App Launch objects and functions. Generally speaking, there should only be one of them in the process. There are singleton functions, getDefault() and clearDefault(), which can be used to port applications from the old C API to the new C++ one but their use is discouraged.

Public Types

	
enum FailureType

	Sometimes apps fail, this gives us information on why they failed.

Values:

	
CRASH

	The application was running, but failed while running.

	
START_FAILURE

	Something in the configuration of the application made it impossible to start the application

Public Functions

	
Registry()

	

	
~Registry()

	

	
void clearManager()

	Remove the current manager on the registry

Public Static Functions

	
std::list<std::shared_ptr<Application>> runningApps(std::shared_ptr<Registry> registry = getDefault ())

	List the applications that are currently running, each will have a valid Application::Instance at call time, but that could change as soon as the call occurs.

	Parameters

	
	registry: Shared registry for the tracking

	
std::list<std::shared_ptr<Application>> installedApps(std::shared_ptr<Registry> registry = getDefault ())

	List all of the applications that are currently installed on the system. Queries the various packaging schemes that are supported to get thier list of applications.

	Parameters

	
	registry: Shared registry for the tracking

	
core::Signal<const std::shared_ptr<Application>&, const std::shared_ptr<Application::Instance>&> &appStarted(const std::shared_ptr<Registry> ® = getDefault ())

	Get the signal object that is signaled when an application has been started.

	Note

	This signal handler is activated on the UAL thread

	Parameters

	
	reg: Registry to get the handler from

	
core::Signal<const std::shared_ptr<Application>&, const std::shared_ptr<Application::Instance>&> &appStopped(const std::shared_ptr<Registry> ® = getDefault ())

	Get the signal object that is signaled when an application has stopped.

	Note

	This signal handler is activated on the UAL thread

	Parameters

	
	reg: Registry to get the handler from

	
core::Signal<const std::shared_ptr<Application>&, const std::shared_ptr<Application::Instance>&, Registry::FailureType> &appFailed(const std::shared_ptr<Registry> ® = getDefault ())

	Get the signal object that is signaled when an application has failed.

	Note

	This signal handler is activated on the UAL thread

	Parameters

	
	reg: Registry to get the handler from

	
core::Signal<const std::shared_ptr<Application>&, const std::shared_ptr<Application::Instance>&, const std::vector<pid_t>&> &appPaused(const std::shared_ptr<Registry> ® = getDefault ())

	Get the signal object that is signaled when an application has been paused.

	Note

	This signal handler is activated on the UAL thread

	Parameters

	
	reg: Registry to get the handler from

	
core::Signal<const std::shared_ptr<Application>&, const std::shared_ptr<Application::Instance>&, const std::vector<pid_t>&> &appResumed(const std::shared_ptr<Registry> ® = getDefault ())

	Get the signal object that is signaled when an application has been resumed.

	Note

	This signal handler is activated on the UAL thread

	Parameters

	
	reg: Registry to get the handler from

	
core::Signal<const std::shared_ptr<Application>&> &appInfoUpdated(const std::shared_ptr<Registry> ® = getDefault ())

	Get the signal object that is signaled when an application’s info has been updated.

	Note

	This signal handler is activated on the UAL thread

	Parameters

	
	reg: Registry to get the handler from

	
void setManager(const std::shared_ptr<Manager> &manager, const std::shared_ptr<Registry> ®istry)

	Set the manager of applications, which gives permissions for them to start and gain focus. In almost all cases this should be Unity8 as it will be controlling applications.

This function will failure if there is already a manager set.

	Parameters

	
	manager: A reference to the Manager object to call

	registry: Registry to register the manager on

	
std::list<std::shared_ptr<Helper>> runningHelpers(Helper::Type type, std::shared_ptr<Registry> registry = getDefault ())

	Get a list of all the helpers for a given helper type

	Parameters

	
	type: Helper type string

	registry: Shared registry for the tracking

	
core::Signal<const std::shared_ptr<Helper>&, const std::shared_ptr<Helper::Instance>&> &helperStarted(Helper::Type type, const std::shared_ptr<Registry> ® = getDefault ())

	Get the signal object that is signaled when helper has been started.

	Note

	This signal handler is activated on the UAL thread

	Parameters

	
	type: Helper type string

	reg: Registry to get the handler from

	
core::Signal<const std::shared_ptr<Helper>&, const std::shared_ptr<Helper::Instance>&> &helperStopped(Helper::Type type, const std::shared_ptr<Registry> ® = getDefault ())

	Get the signal object that is signaled when a helper has stopped.

	Note

	This signal handler is activated on the UAL thread

	Parameters

	
	type: Helper type string

	reg: Registry to get the handler from

	
core::Signal<const std::shared_ptr<Helper>&, const std::shared_ptr<Helper::Instance>&, Registry::FailureType> &helperFailed(Helper::Type type, const std::shared_ptr<Registry> ® = getDefault ())

	Get the signal object that is signaled when a helper has failed.

	Note

	This signal handler is activated on the UAL thread

	Parameters

	
	type: Helper type string

	reg: Registry to get the handler from

	
std::shared_ptr<Registry> getDefault()

	Use the Registry as a global singleton, this function will create a Registry object if one doesn’t exist. Use of this function is discouraged.

	
void clearDefault()

	Clear the default. If you’re using the singleton interface in the Registry::getDefault() function you should call this as your service and/or tests exit to ensure you don’t get Valgrind errors.

	
class Manager

	The Application Manager, almost always if you’re not Unity8, don’t use this API. Testing is a special case. Subclass this interface and implement these functions.

Each function here is being passed a function object that takes a boolean to reply. This will accept or reject the request. The function object can be copied to another thread and executed if needed.

The reply is required for the application to start. It will block (not currently implemented) until approval is given. If there are multiple requests sent they may be replied out of order if desired.

Public Functions

	
virtual void startingRequest(const std::shared_ptr<Application> &app, const std::shared_ptr<Application::Instance> &instance, std::function<void(bool)> reply) = 0

	Application wishes to startup

	Note

	This signal handler is activated on the UAL thread

	Parameters

	
	app: Application requesting startup

	instance: Instance of the app, always valid but not useful unless mulit-instance app.

	reply: Function object to reply if it is allowed to start

	
virtual void focusRequest(const std::shared_ptr<Application> &app, const std::shared_ptr<Application::Instance> &instance, std::function<void(bool)> reply) = 0

	Application wishes to have focus. Usually this occurs when a URL for the application is activated and the running app is requested.

	Note

	This signal handler is activated on the UAL thread

	Parameters

	
	app: Application requesting focus

	instance: Instance of the app, always valid but not useful unless mulit-instance app.

	reply: Function object to reply if it is allowed to focus

	
virtual void resumeRequest(const std::shared_ptr<Application> &app, const std::shared_ptr<Application::Instance> &instance, std::function<void(bool)> reply) = 0

	Application wishes to resume. Usually this occurs when a URL for the application is activated and the running app is requested.

	Note

	This signal handler is activated on the UAL thread

	Parameters

	
	app: Application requesting resume

	instance: Instance of the app, always valid but not useful unless mulit-instance app.

	reply: Function object to reply if it is allowed to resume

Implementation Details

Application Implementation Base

	
class ubuntu::app_launch::app_impls::Base

	Provides some helper functions that can be used by all implementations of application. Stores the registry pointer which everyone wants anyway.

Inherits from ubuntu::app_launch::Application

Subclassed by ubuntu::app_launch::app_impls::Legacy, ubuntu::app_launch::app_impls::Libertine, ubuntu::app_launch::app_impls::Snap

Public Functions

	
Base(const std::shared_ptr<Registry> ®istry)

	

	
~Base()

	

	
bool hasInstances()

	A quick check to see if this application has any running instances

	
std::string getInstance(const std::shared_ptr<app_info::Desktop> &desktop) const

	Generates an instance string based on the clock if we’re a multi-instance application.

	
virtual std::shared_ptr<Application::Instance> findInstance(const std::string &instanceid) = 0

	

	
std::shared_ptr<Application::Instance> findInstance(const pid_t &pid)

	Get a a pointer to the running instances of this application based on the pid

	Parameters

	
	pid: The pid to find the instance of

Protected Attributes

	
std::shared_ptr<Registry> _registry

	Pointer to the registry so we can ask it for things

Protected Static Functions

	
std::list<std::pair<std::string, std::string>> confinedEnv(const std::string &package, const std::string &pkgdir)

	Function to create all the standard environment variables that we’re building for everyone. Mostly stuff involving paths.

	Parameters

	
	package: Name of the package

	pkgdir: Directory that the package lives in

Application Implementation Legacy

	
class ubuntu::app_launch::app_impls::Legacy

	Application Implementation for Legacy applications. These are applications that are typically installed as Debian packages on the base system. The standard place for them to put their desktop files is in /usr/share/applications though other directories may be used by setting the appropriate XDG environment variables. This implementation makes use of the GIO Desktop Appinfo functions which do caching of those files to make access faster.

AppIDs for legacy applications only include the Appname variable. Both the package and the version entries are empty strings. The appname variable is the filename of the desktop file describing the application with the ”.desktop” suffix.

More info: https://specifications.freedesktop.org/desktop-entry-spec/latest/

Inherits from ubuntu::app_launch::app_impls::Base

Public Functions

	
Legacy(const AppID::AppName &appname, const std::shared_ptr<Registry> ®istry)

	

	
AppID appId()

	Get the Application ID of this Application

	
std::shared_ptr<Application::Info> info()

	Get a Application::Info object to describe the metadata for this application

	
std::vector<std::shared_ptr<Application::Instance>> instances()

	Get a vector of the running instances of this application

	
std::shared_ptr<Application::Instance> launch(const std::vector<Application::URL> &urls = {})

	Create an UpstartInstance for this AppID using the UpstartInstance launch function.

	Parameters

	
	urls: URLs to pass to the application

	
std::shared_ptr<Application::Instance> launchTest(const std::vector<Application::URL> &urls = {})

	Create an UpstartInstance for this AppID using the UpstartInstance launch function with a testing environment.

	Parameters

	
	urls: URLs to pass to the application

	
std::shared_ptr<Application::Instance> findInstance(const std::string &instanceid)

	

Private Functions

	
std::list<std::pair<std::string, std::string>> launchEnv(const std::string &instance)

	Grabs all the environment for a legacy app. Mostly this consists of the exec line and whether it needs XMir. Also we set the path if that is specified in the desktop file. We can also set an AppArmor profile if requested.

Private Members

	
AppID::AppName _appname

	

	
std::string _basedir

	

	
std::shared_ptr<GKeyFile> _keyfile

	

	
std::shared_ptr<app_info::Desktop> appinfo_

	

	
std::string desktopPath_

	

	
std::regex instanceRegex_

	

Application Implementation Libertine

	
class ubuntu::app_launch::app_impls::Libertine

	Application Implmentation for the Libertine container system. Libertine sets up containers that are read/write on a read only system, to all for more dynamic packaging systems (like deb) to work. This provides some compatibility for older applications or those who are only distributed in packaging systems requiring full system access.

Application IDs for Libertine applications have the package field as the name of the container. The appname is similar to that of the Legacy() implementation as the filename of the desktop file defining the application without the ”.desktop” suffix. UAL has no way to know the version, so it is always hard coded to “0.0”.

Libertine applications always are setup with XMir and started using the libertine-launch utility which configures the environment for the container.

More info: https://wiki.ubuntu.com/Touch/Libertine

Inherits from ubuntu::app_launch::app_impls::Base

Public Functions

	
Libertine(const AppID::Package &container, const AppID::AppName &appname, const std::shared_ptr<Registry> ®istry)

	

	
AppID appId()

	Get the Application ID of this Application

	
std::shared_ptr<Application::Info> info()

	Get a Application::Info object to describe the metadata for this application

	
std::vector<std::shared_ptr<Application::Instance>> instances()

	Get a vector of the running instances of this application

	
std::shared_ptr<Application::Instance> launch(const std::vector<Application::URL> &urls = {})

	

	
std::shared_ptr<Application::Instance> launchTest(const std::vector<Application::URL> &urls = {})

	

	
std::shared_ptr<Application::Instance> findInstance(const std::string &instanceid)

	

Private Functions

	
std::list<std::pair<std::string, std::string>> launchEnv()

	Grabs all the environment variables for the application to launch in. It sets up the confinement ones and then adds in the APP_EXEC line and whether to use XMir.

This function adds ‘libertine-launch’ at the beginning of the Exec line with the container name as a parameter. The command can be overridden with the UBUNTU_APP_LAUNCH_LIBERTINE_LAUNCH environment variable.

Private Members

	
AppID::Package _container

	

	
AppID::AppName _appname

	

	
std::string _container_path

	

	
std::shared_ptr<GKeyFile> _keyfile

	

	
std::string _basedir

	

	
std::shared_ptr<app_info::Desktop> appinfo_

	

Private Static Functions

	
std::shared_ptr<GKeyFile> keyfileFromPath(const std::string &pathname)

	

	
std::shared_ptr<GKeyFile> findDesktopFile(const std::string &basepath, const std::string &subpath, const std::string &filename)

	

Application Implementation Snappy

	
class ubuntu::app_launch::app_impls::Snap

	Class implementing a Applications that are installed in the system as Snaps. This class connects to snapd to get information on the interfaces of the installed snaps and sees if any of them are applicable to the user session. Currently that means if the command has the mir, unity8, unity7 or x11 interfaces.

For Application IDs snaps use a very similar scheme to Click packages. The package field is the name of the snap package, typically this is the overall application name. The appname is the command in the snap package, which needs to be associated with one of our supported interfaces and have a desktop file. Lastly the version field is actually the snap revision, this value changes even on updates between channels of the same version so it provides a greater amount of uniqueness.

Inherits from ubuntu::app_launch::app_impls::Base

Public Types

	
typedef std::tuple<app_info::Desktop::XMirEnable, Application::Info::UbuntuLifecycle> InterfaceInfo

	

Public Functions

	
Snap(const AppID &appid, const std::shared_ptr<Registry> ®istry)

	Uses the findInterfaceInfo() function to find the interface if we don’t have one.

	Parameters

	
	appid: Application ID of the snap

	registry: Registry to use for persistent connections

	
Snap(const AppID &appid, const std::shared_ptr<Registry> ®istry, const InterfaceInfo &interfaceInfo)

	Creates a Snap application object. Will throw exceptions if the AppID doesn’t resolve into a valid package or that package doesn’t have a desktop file that matches the app name.

	Parameters

	
	appid: Application ID of the snap

	registry: Registry to use for persistent connections

	interfaceInfo: Metadata gleaned from the snap’s interfaces

	
AppID appId()

	Returns the stored AppID

	
std::shared_ptr<Application::Info> info()

	Returns a reference to the info for the snap

	
std::vector<std::shared_ptr<Application::Instance>> instances()

	Get all of the instances of this snap package that are running

	
std::shared_ptr<Application::Instance> launch(const std::vector<Application::URL> &urls = {})

	Create a new instance of this Snap

	Parameters

	
	urls: URLs to pass to the command

	
std::shared_ptr<Application::Instance> launchTest(const std::vector<Application::URL> &urls = {})

	Create a new instance of this Snap with a testing environment setup for it.

	Parameters

	
	urls: URLs to pass to the command

	
std::shared_ptr<Application::Instance> findInstance(const std::string &instanceid)

	

Public Static Functions

	
static std::list<std::shared_ptr<Application>> list(const std::shared_ptr<Registry> ®istry)

	

	
Snap::InterfaceInfo findInterfaceInfo(const AppID &appid, const std::shared_ptr<Registry> ®istry)

	Asks Snapd for the interfaces to determine which ones the application can support.

	Parameters

	
	appid: Application ID of the snap

	registry: Registry to use for persistent connections

	
bool checkPkgInfo(const std::shared_ptr<snapd::Info::PkgInfo> &pkginfo, const AppID &appid)

	Checks a PkgInfo structure to ensure that it matches the AppID

Private Functions

	
std::list<std::pair<std::string, std::string>> launchEnv()

	Return the launch environment for this snap. That includes whether or not it needs help from XMir (including Libertine helpers)

Private Members

	
AppID appid_

	AppID of the Snap. Should be the name of the snap package. The name of the command. And then the revision.

	
std::shared_ptr<app_info::Desktop> info_

	The app’s displayed information. Should be from a desktop file that is put in ${SNAP_DIR}/meta/gui/${command}.desktop

	
std::shared_ptr<snapd::Info::PkgInfo> pkgInfo_

	Information that we get from Snapd on the package

Application Info Desktop

	
class ubuntu::app_launch::app_info::Desktop

	Inherits from ubuntu::app_launch::Application::Info

Subclassed by ubuntu::app_launch::app_impls::SnapInfo

Public Types

	
typedef TypeTagger<XMirEnableTag, bool> XMirEnable

	

	
typedef TypeTagger<ExecTag, std::string> Exec

	

	
typedef TypeTagger<SingleInstanceTag, bool> SingleInstance

	

Public Functions

	
Desktop(const AppID &appid, const std::shared_ptr<GKeyFile> &keyfile, const std::string &basePath, const std::string &rootDir, std::bitset<2> flags, std::shared_ptr<Registry> registry)

	

	
const Application::Info::Name &name()

	Name of the application

	
const Application::Info::Description &description()

	Textual description of the application

	
const Application::Info::IconPath &iconPath()

	Path to the icon that represents the application

	
const Application::Info::DefaultDepartment &defaultDepartment()

	Default department of the application

	
const Application::Info::IconPath &screenshotPath()

	Path to the screenshot of the application

	
const Application::Info::Keywords &keywords()

	List of keywords for the application

	
const Application::Info::Popularity &popularity()

	Get the relative popularity of the application, 0 is not popular

	
Application::Info::Splash splash()

	Get information for the splash screen

	
Application::Info::Orientations supportedOrientations()

	Return which orientations are supported

	
Application::Info::RotatesWindow rotatesWindowContents()

	Return whether the window contents can be rotated or not

	
Application::Info::UbuntuLifecycle supportsUbuntuLifecycle()

	

	
virtual XMirEnable xMirEnable()

	

	
virtual Exec execLine()

	

	
virtual SingleInstance singleInstance()

	

Protected Attributes

	
std::shared_ptr<GKeyFile> _keyfile

	

	
std::string _basePath

	

	
std::string _rootDir

	

	
Application::Info::Name _name

	

	
Application::Info::Description _description

	

	
Application::Info::IconPath _iconPath

	

	
Application::Info::DefaultDepartment _defaultDepartment

	

	
Application::Info::IconPath _screenshotPath

	

	
Application::Info::Keywords _keywords

	

	
Application::Info::Popularity _popularity

	

	
Application::Info::Splash _splashInfo

	

	
Application::Info::Orientations _supportedOrientations

	

	
Application::Info::RotatesWindow _rotatesWindow

	

	
Application::Info::UbuntuLifecycle _ubuntuLifecycle

	

	
XMirEnable _xMirEnable

	

	
Exec _exec

	

	
SingleInstance _singleInstance

	

Application Info Snap

	
class ubuntu::app_launch::app_impls::SnapInfo

	Subclassing the desktop info object so that we can override a couple of properties with interface definitions. This may grow as we add more fields to the desktop spec that come from Snappy interfaces.

Inherits from ubuntu::app_launch::app_info::Desktop

Public Functions

	
SnapInfo(const AppID &appid, const std::shared_ptr<Registry> ®istry, const Snap::InterfaceInfo &interfaceInfo, const std::string &snapDir)

	

	
Exec execLine()

	Figures out the exec line for a snappy command. We’re not using the Exec in the desktop file exactly, but assuming that it is kinda what we want to be run. So we’re replacing that with the script, which we have to use as we can’t get the command that is in the snap metadata as Snapd won’t give it to us. So we’re parsing the Exec line and replacing the first entry. Then putting it back together again.

Private Members

	
AppID appId_

	AppID of snap

Application Icon Finder

	
class ubuntu::app_launch::IconFinder

	Class to search for available application icons and select the best option.

This object attempts to find the highest resolution icon based on the freedesktop icon theme specification found at: https://standards.freedesktop.org/icon-theme-spec/icon-theme-spec-latest.html It parses the theme file for the hicolor theme and identifies all possible directories in the global scope and the local scope.

Public Functions

	
IconFinder(std::string basePath)

	Create an IconFinder

	Parameters

	
	basePath: the root directory to begin searching for themes

	
virtual ~IconFinder()

	

	
Application::Info::IconPath find(const std::string &iconName)

	Find the optimal icon for the given icon name.

Finds an icon in the search paths that we have for this path
	Parameters

	
	iconName: name of or path to application icon

Private Members

	
std::list<ThemeSubdirectory> _searchPaths

	

	
std::string _basePath

	

Private Static Functions

	
bool hasImageExtension(const char *filename)

	Check to see if this is an icon name or an icon filename

	
std::string findExistingIcon(const std::string &path, const std::string &iconName)

	Check in a given path if there is an existing file in it that satifies our name

	
std::list<IconFinder::ThemeSubdirectory> validDirectories(const std::string &themePath, gchar *directory, int size)

	Create a directory item if the directory exists

	
std::list<IconFinder::ThemeSubdirectory> addSubdirectoryByType(std::shared_ptr<GKeyFile> themefile, gchar *directory, const std::string &themePath)

	Take the data in a directory stanza and turn it into an actual directory

	
std::list<IconFinder::ThemeSubdirectory> searchIconPaths(std::shared_ptr<GKeyFile> themefile, gchar **directories, const std::string &themePath)

	Parse a theme file’s various stanzas for each directory

	
std::list<IconFinder::ThemeSubdirectory> themeFileSearchPaths(const std::string &themePath)

	Try to get theme subdirectories using .theme file in the given theme path if it exists

	
std::list<IconFinder::ThemeSubdirectory> themeDirSearchPaths(const std::string &basePath)

	Look into a theme directory and see if we can use the subdirectories as icon folders. This is a fallback, and is sadly inefficient.

	
std::list<IconFinder::ThemeSubdirectory> iconsFromThemePath(const gchar *themeDir)

	Gets all search paths from a given theme directory via theme file or manually scanning the directory.

	
std::list<IconFinder::ThemeSubdirectory> getSearchPaths(const std::string &basePath)

	Gets search paths based on common icon directories including themes and pixmaps.

	
struct ThemeSubdirectory

	
Public Members

	
std::string path

	

	
int size

	

Application Storage Base

	
class ubuntu::app_launch::app_store::Base

	Inherits from ubuntu::app_launch::info_watcher::Base

Subclassed by ubuntu::app_launch::app_store::Legacy, ubuntu::app_launch::app_store::Libertine, ubuntu::app_launch::app_store::Snap

Public Functions

	
Base()

	

	
~Base()

	

	
virtual bool verifyPackage(const AppID::Package &package, const std::shared_ptr<Registry> ®istry) = 0

	

	
virtual bool verifyAppname(const AppID::Package &package, const AppID::AppName &appname, const std::shared_ptr<Registry> ®istry) = 0

	

	
virtual AppID::AppName findAppname(const AppID::Package &package, AppID::ApplicationWildcard card, const std::shared_ptr<Registry> ®istry) = 0

	

	
virtual AppID::Version findVersion(const AppID::Package &package, const AppID::AppName &appname, const std::shared_ptr<Registry> ®istry) = 0

	

	
virtual bool hasAppId(const AppID &appid, const std::shared_ptr<Registry> ®istry) = 0

	

	
virtual std::list<std::shared_ptr<Application>> list(const std::shared_ptr<Registry> ®istry) = 0

	

	
virtual std::shared_ptr<app_impls::Base> create(const AppID &appid, const std::shared_ptr<Registry> ®istry) = 0

	

Public Static Functions

	
std::list<std::shared_ptr<Base>> allAppStores()

	

Application Storage Legacy

	
class ubuntu::app_launch::app_store::Legacy

	Inherits from ubuntu::app_launch::app_store::Base

Public Functions

	
Legacy()

	

	
~Legacy()

	

	
bool verifyPackage(const AppID::Package &package, const std::shared_ptr<Registry> ®istry)

	Ensure the package is empty

	Parameters

	
	package: Container name

	registry: persistent connections to use

	
bool verifyAppname(const AppID::Package &package, const AppID::AppName &appname, const std::shared_ptr<Registry> ®istry)

	Looks for an application by looking through the system and user application directories to find the desktop file.

	Parameters

	
	package: Container name

	appname: Application name to look for

	registry: persistent connections to use

	
AppID::AppName findAppname(const AppID::Package &package, AppID::ApplicationWildcard card, const std::shared_ptr<Registry> ®istry)

	We don’t really have a way to implement this for Legacy, any search wouldn’t really make sense. We just throw an error.

	Parameters

	
	package: Container name

	card: Application search paths

	registry: persistent connections to use

	
AppID::Version findVersion(const AppID::Package &package, const AppID::AppName &appname, const std::shared_ptr<Registry> ®istry)

	Function to return an empty string

	Parameters

	
	package: Container name (unused)

	appname: Application name (unused)

	registry: persistent connections to use (unused)

	
bool hasAppId(const AppID &appid, const std::shared_ptr<Registry> ®istry)

	Checks the AppID by ensuring the version and package are empty then looks for the application.

	Parameters

	
	appid: AppID to check

	registry: persistent connections to use

	
std::list<std::shared_ptr<Application>> list(const std::shared_ptr<Registry> ®istry)

	

	
std::shared_ptr<app_impls::Base> create(const AppID &appid, const std::shared_ptr<Registry> ®istry)

	

Application Storage Libertine

	
class ubuntu::app_launch::app_store::Libertine

	Inherits from ubuntu::app_launch::app_store::Base

Public Functions

	
Libertine()

	

	
~Libertine()

	

	
bool verifyPackage(const AppID::Package &package, const std::shared_ptr<Registry> ®istry)

	Verify a package name by getting the list of containers from liblibertine and ensuring it is in that list.

	Parameters

	
	package: Container name

	registry: persistent connections to use

	
bool verifyAppname(const AppID::Package &package, const AppID::AppName &appname, const std::shared_ptr<Registry> ®istry)

	Gets the list of applications from the container using liblibertine and see if is in that list.

	Parameters

	
	package: Container name

	appname: Application name to look for

	registry: persistent connections to use

	
AppID::AppName findAppname(const AppID::Package &package, AppID::ApplicationWildcard card, const std::shared_ptr<Registry> ®istry)

	We don’t really have a way to implement this for Libertine, any search wouldn’t really make sense. We just throw an error.

	Parameters

	
	package: Container name

	card: Application search paths

	registry: persistent connections to use

	
AppID::Version findVersion(const AppID::Package &package, const AppID::AppName &appname, const std::shared_ptr<Registry> ®istry)

	Function to return “0.0”

	Parameters

	
	package: Container name (unused)

	appname: Application name (unused)

	registry: persistent connections to use (unused)

	
bool hasAppId(const AppID &appid, const std::shared_ptr<Registry> ®istry)

	Checks the AppID by making sure the version is “0.0” and then calling verifyAppname() to check the rest.

	Parameters

	
	appid: AppID to check

	registry: persistent connections to use

	
std::list<std::shared_ptr<Application>> list(const std::shared_ptr<Registry> ®istry)

	

	
std::shared_ptr<app_impls::Base> create(const AppID &appid, const std::shared_ptr<Registry> ®istry)

	

Application Storage Snap

	
class ubuntu::app_launch::app_store::Snap

	Inherits from ubuntu::app_launch::app_store::Base

Public Functions

	
Snap()

	

	
~Snap()

	

	
bool verifyPackage(const AppID::Package &package, const std::shared_ptr<Registry> ®istry)

	Look to see if a package is a valid Snap package name

	Parameters

	
	package: Package name

	registry: Registry to use for persistent connections

	
bool verifyAppname(const AppID::Package &package, const AppID::AppName &appname, const std::shared_ptr<Registry> ®istry)

	Look to see if an appname is a valid for a Snap package

	Parameters

	
	package: Package name

	appname: Command name

	registry: Registry to use for persistent connections

	
AppID::AppName findAppname(const AppID::Package &package, AppID::ApplicationWildcard card, const std::shared_ptr<Registry> ®istry)

	Look for an application name on a Snap package based on a wildcard type.

	Parameters

	
	package: Package name

	card: Wildcard to use for finding the appname

	registry: Registry to use for persistent connections

	
AppID::Version findVersion(const AppID::Package &package, const AppID::AppName &appname, const std::shared_ptr<Registry> ®istry)

	Look for a version of a Snap package

	Parameters

	
	package: Package name

	appname: Not used for snaps

	registry: Registry to use for persistent connections

	
bool hasAppId(const AppID &appid, const std::shared_ptr<Registry> ®istry)

	Checks if an AppID could be a snap. Note it doesn’t look for a desktop file just the package, app and version. This is done to make the lookup quickly, as this function can be used to select which backend to use and we want to reject quickly.

	Parameters

	
	appid: Application ID of the snap

	registry: Registry to use for persistent connections

	
std::list<std::shared_ptr<Application>> list(const std::shared_ptr<Registry> ®istry)

	Lists all the Snappy apps that are using one of our supported interfaces. Also makes sure they’re valid.

	Parameters

	
	registry: Registry to use for persistent connections

	
std::shared_ptr<app_impls::Base> create(const AppID &appid, const std::shared_ptr<Registry> ®istry)

	

Helper Implementation Base

	
class ubuntu::app_launch::helper_impls::Base

	Inherits from ubuntu::app_launch::Helper

Public Functions

	
Base(const Helper::Type &type, const AppID &appid, const std::shared_ptr<Registry> ®istry)

	

	
AppID appId()

	Get the AppID for this helper

	
bool hasInstances()

	Check to see if there are any instances of this untrusted helper

	
std::vector<std::shared_ptr<Helper::Instance>> instances()

	Get the list of instances of this helper

	
std::shared_ptr<Helper::Instance> launch(std::vector<Helper::URL> urls = {})

	

	
std::shared_ptr<Helper::Instance> launch(MirPromptSession *session, std::vector<Helper::URL> urls = {})

	

	
std::shared_ptr<Helper::Instance> existingInstance(const std::string &instanceid)

	Find an instance that we already know the ID of

Private Functions

	
std::list<std::pair<std::string, std::string>> defaultEnv()

	Sets up the executable environment variable based on the appid and the type of helper. We look for the exec-tool, but if we can’t find it we’re cool with that and we just execute the helper. If we do find an exec-tool we’ll use that to fill in the parameters. For legacy appid’s we’ll allow the exec-tool to set everything.

Private Members

	
Helper::Type _type

	

	
AppID _appid

	

	
std::shared_ptr<Registry> _registry

	

Jobs Manager Base

	
class ubuntu::app_launch::jobs::manager::Base

	Subclassed by ubuntu::app_launch::jobs::manager::SystemD

Public Functions

	
Base(const std::shared_ptr<Registry> ®istry)

	

	
~Base()

	

	
virtual std::shared_ptr<Application::Instance> launch(const AppID &appId, const std::string &job, const std::string &instance, const std::vector<Application::URL> &urls, launchMode mode, std::function<std::list<std::pair<std::string, std::string>>(void)> &getenv) = 0

	

	
virtual std::shared_ptr<Application::Instance> existing(const AppID &appId, const std::string &job, const std::string &instance, const std::vector<Application::URL> &urls) = 0

	

	
std::list<std::shared_ptr<Application>> runningApps()

	Get application objects for all of the applications based on the appids associated with the application jobs

	
std::list<std::shared_ptr<Helper>> runningHelpers(const Helper::Type &type)

	Get application objects for all of the applications based on the appids associated with the application jobs

	
virtual std::list<std::string> runningAppIds(const std::list<std::string> &jobs) = 0

	

	
virtual std::vector<std::shared_ptr<instance::Base>> instances(const AppID &appID, const std::string &job) = 0

	

	
const std::list<std::string> &getAllApplicationJobs() const

	

	
core::Signal<const std::shared_ptr<Application>&, const std::shared_ptr<Application::Instance>&> &appStarted()

	

	
core::Signal<const std::shared_ptr<Application>&, const std::shared_ptr<Application::Instance>&> &appStopped()

	

	
core::Signal<const std::shared_ptr<Application>&, const std::shared_ptr<Application::Instance>&, Registry::FailureType> &appFailed()

	

	
core::Signal<const std::shared_ptr<Application>&, const std::shared_ptr<Application::Instance>&, const std::vector<pid_t>&> &appPaused()

	Grab the signal object for application paused. If we’re not already listing for those signals this sets up a listener for them.

	
core::Signal<const std::shared_ptr<Application>&, const std::shared_ptr<Application::Instance>&, const std::vector<pid_t>&> &appResumed()

	Grab the signal object for application resumed. If we’re not already listing for those signals this sets up a listener for them.

	
core::Signal<const std::shared_ptr<Helper>&, const std::shared_ptr<Helper::Instance>&> &helperStarted(Helper::Type type)

	

	
core::Signal<const std::shared_ptr<Helper>&, const std::shared_ptr<Helper::Instance>&> &helperStopped(Helper::Type type)

	

	
core::Signal<const std::shared_ptr<Helper>&, const std::shared_ptr<Helper::Instance>&, Registry::FailureType> &helperFailed(Helper::Type type)

	

	
virtual core::Signal<const std::string&, const std::string&, const std::string&> &jobStarted() = 0

	

	
virtual core::Signal<const std::string&, const std::string&, const std::string&> &jobStopped() = 0

	

	
virtual core::Signal<const std::string&, const std::string&, const std::string&, Registry::FailureType> &jobFailed() = 0

	

	
void setManager(std::shared_ptr<Registry::Manager> manager)

	Set the manager for the registry. This includes tracking the pointer as well as setting up the signals to call back into the manager. The signals are only setup once per registry even if the manager is cleared and changed again. They will just be no-op’s in those cases.

	
void clearManager()

	Clear the manager pointer

Public Static Functions

	
std::shared_ptr<Base> determineFactory(std::shared_ptr<Registry> registry)

	Should determine which jobs backend to use, but we only have one right now.

Protected Attributes

	
std::weak_ptr<Registry> registry_

	A link to the registry

	
std::list<std::string> allApplicationJobs_

	A set of all the job names used by applications

	
std::shared_ptr<GDBusConnection> dbus_

	The DBus connection we’re connecting to

	
std::shared_ptr<Registry::Manager> manager_

	Application manager instance

Private Functions

	
void pauseEventEmitted(core::Signal<const std::shared_ptr<Application>&, const std::shared_ptr<Application::Instance>&, const std::vector<pid_t>&> &signal, const std::shared_ptr<GVariant> ¶ms, const std::shared_ptr<Registry> ®)

	Core handler for pause and resume events. Includes turning the GVariant pid list into a std::vector and getting the application object.

Private Members

	
core::Signal<const std::shared_ptr<Application>&, const std::shared_ptr<Application::Instance>&> sig_appStarted

	Signal object for applications started

	
core::Signal<const std::shared_ptr<Application>&, const std::shared_ptr<Application::Instance>&> sig_appStopped

	Signal object for applications stopped

	
core::Signal<const std::shared_ptr<Application>&, const std::shared_ptr<Application::Instance>&, Registry::FailureType> sig_appFailed

	Signal object for applications failed

	
core::Signal<const std::shared_ptr<Application>&, const std::shared_ptr<Application::Instance>&, const std::vector<pid_t>&> sig_appPaused

	Signal object for applications paused

	
core::Signal<const std::shared_ptr<Application>&, const std::shared_ptr<Application::Instance>&, const std::vector<pid_t>&> sig_appResumed

	Signal object for applications resumed

	
std::map<std::string, std::shared_ptr<core::Signal<const std::shared_ptr<Helper>&, const std::shared_ptr<Helper::Instance>&>>> sig_helpersStarted

	

	
std::map<std::string, std::shared_ptr<core::Signal<const std::shared_ptr<Helper>&, const std::shared_ptr<Helper::Instance>&>>> sig_helpersStopped

	

	
std::map<std::string, std::shared_ptr<core::Signal<const std::shared_ptr<Helper>&, const std::shared_ptr<Helper::Instance>&, Registry::FailureType>>> sig_helpersFailed

	

	
ManagedDBusSignalConnection handle_managerSignalFocus = {
 DBusSignalUnsubscriber{}}

	GDBus signal watcher handle for app focused signal

	
ManagedDBusSignalConnection handle_managerSignalResume = {
 DBusSignalUnsubscriber{}}

	GDBus signal watcher handle for app resumed signal

	
ManagedDBusSignalConnection handle_managerSignalStarting = {
 DBusSignalUnsubscriber{}}

	GDBus signal watcher handle for app starting signal

	
ManagedDBusSignalConnection handle_appPaused = {
 DBusSignalUnsubscriber{}}

	GDBus signal watcher handle for app paused signal

	
ManagedDBusSignalConnection handle_appResumed = {
 DBusSignalUnsubscriber{}}

	GDBus signal watcher handle for app resumed signal

	
std::once_flag flag_managerSignals

	Variable to track to see if signal handlers are installed for the manager signals of focused, resumed and starting

	
std::once_flag flag_appStarted

	Variable to track to see if signal handlers are installed for application started

	
std::once_flag flag_appStopped

	Variable to track to see if signal handlers are installed for application stopped

	
std::once_flag flag_appFailed

	Variable to track to see if signal handlers are installed for application failed

	
std::once_flag flag_appPaused

	Variable to track to see if signal handlers are installed for application paused

	
std::once_flag flag_appResumed

	Variable to track to see if signal handlers are installed for application resumed

Private Static Functions

	
std::tuple<std::shared_ptr<Application>, std::shared_ptr<Application::Instance>> managerParams(const std::shared_ptr<GVariant> ¶ms, const std::shared_ptr<Registry> ®)

	Take the GVariant of parameters and turn them into an application and and instance. Easier to read in the smaller function

	
guint managerSignalHelper(const std::shared_ptr<Registry> ®, const std::string &signalname, std::function<void(const std::shared_ptr<Registry> ®, const std::shared_ptr<Application> &app, const std::shared_ptr<Application::Instance> &instance, const std::shared_ptr<GDBusConnection>&, const std::string&, const std::shared_ptr<GVariant>&)> responsefunc)

	Register for a signal for the manager. All of the signals needed this same code so it got pulled out into a function. Takes the same of the signal, the registry that we’re using and a function to call after we’ve messaged all the parameters into being something C++-ish.

Jobs Instance Base

	
class ubuntu::app_launch::jobs::instance::Base

	Inherits from ubuntu::app_launch::Application::Instance

Subclassed by ubuntu::app_launch::jobs::instance::SystemD

Public Functions

	
Base(const AppID &appId, const std::string &job, const std::string &instance, const std::vector<Application::URL> &urls, const std::shared_ptr<Registry> ®istry)

	

	
virtual ~Base()

	

	
bool isRunning()

	Checks to see if we have a primary PID for the instance

	
bool hasPid(pid_t pid)

	Looks at the PIDs in the instance cgroup and checks to see if is in the set.

	Parameters

	
	pid: PID to look for

	
void pause()

	Pauses this application by sending SIGSTOP to all the PIDs in the cgroup and tells Zeitgeist that we’ve left the application.

	
void resume()

	Resumes this application by sending SIGCONT to all the PIDs in the cgroup and tells Zeitgeist that we’re accessing the application.

	
void focus()

	Focuses this application by sending SIGCONT to all the PIDs in the cgroup and tells the Shell to focus the application.

	
const std::string &getInstanceId()

	

	
void setOomAdjustment(const oom::Score score)

	Sets the OOM adjustment by getting the list of PIDs and writing the value to each of their files in proc

	Parameters

	
	score: OOM Score to set

	
const oom::Score getOomAdjustment()

	Figures out the path to the primary PID of the application and then reads its OOM adjustment file.

Protected Functions

	
std::vector<pid_t> forAllPids(std::function<void(pid_t)> eachPid)

	Go through the list of PIDs calling a function and handling the issue with getting PIDs being a racey condition.

	Parameters

	
	eachPid: Function to run on each PID

Protected Attributes

	
const AppID appId_

	Application ID

	
const std::string job_

	Upstart job name

	
const std::string instance_

	Instance ID environment value, empty if none

	
std::vector<Application::URL> urls_

	The URLs that this was launched for. Only valid on launched jobs, we should look at perhaps changing that.

	
std::shared_ptr<Registry> registry_

	A link to the registry we’re using for connections

Protected Static Functions

	
void pidListToDbus(const std::shared_ptr<Registry> ®, const AppID &appid, const std::string &instanceid, const std::vector<pid_t> &pids, const std::string &signal)

	Send a signal that we’ve change the application. Do this on the registry thread in an idle so that we don’t block anyone.

	Parameters

	
	pids: List of PIDs to turn into variants to send

	signal: Name of the DBus signal to send

	
void signalToPid(pid_t pid, int signal)

	Sends a signal to a PID with a warning if we can’t send it. We could throw an exception, but we can’t handle it usefully anyway

	Parameters

	
	pid: PID to send the signal to

	signal: signal to send

	
void oomValueToPid(pid_t pid, const oom::Score oomvalue)

	Writes an OOM value to proc, assuming we have a string in the outer loop

	Parameters

	
	pid: PID to change the OOM value of

	oomvalue: OOM value to set

	
void oomValueToPidHelper(pid_t pid, const oom::Score oomvalue)

	Use a setuid root helper for setting the oom value of Chromium instances

	Parameters

	
	pid: PID to change the OOM value of

	oomvalue: OOM value to set

	
std::string pidToOomPath(pid_t pid)

	Get the path to the PID’s OOM adjust path, with allowing for an override for testing using the environment variable UBUNTU_APP_LAUNCH_OOM_PROC_PATH

	Parameters

	
	pid: PID to build path for

	
GCharVUPtr urlsToStrv(const std::vector<Application::URL> &urls)

	Reformat a C++ vector of URLs into a C GStrv of strings

	Parameters

	
	urls: Vector of URLs to make into C strings

Registry Implementation

	
class ubuntu::app_launch::Registry::Impl

	Private implementation of the Registry object.

Public Functions

	
Impl(Registry ®istry)

	

	
Impl(Registry ®istry, std::list<std::shared_ptr<app_store::Base>> appStores)

	

	
virtual ~Impl()

	

	
void clearManager()

	

	
std::shared_ptr<IconFinder> getIconFinder(std::string basePath)

	

	
void zgSendEvent(AppID appid, const std::string &eventtype)

	Send an event to Zietgeist using the registry thread so that the callback comes back in the right place.

	
const std::string &oomHelper() const

	

	
core::Signal<const std::shared_ptr<Application>&> &appInfoUpdated(const std::shared_ptr<Registry> ®)

	

	
std::list<std::shared_ptr<app_store::Base>> appStores()

	

	
void setAppStores(std::list<std::shared_ptr<app_store::Base>> &newlist)

	

Public Members

	
GLib::ContextThread thread

	Shared context thread for events and background tasks that UAL subtasks are doing

	
std::shared_ptr<GDBusConnection> _dbus

	DBus shared connection for the session bus

	
snapd::Info snapdInfo

	Snapd information object

	
std::shared_ptr<jobs::manager::Base> jobs

	

Public Static Functions

	
static void setManager(const std::shared_ptr<Registry::Manager> &manager, const std::shared_ptr<Registry> ®istry)

	

	
std::string printJson(std::shared_ptr<JsonObject> jsonobj)

	Helper function for printing JSON objects to debug output

	
std::string printJson(std::shared_ptr<JsonNode> jsonnode)

	Helper function for printing JSON nodes to debug output

	
void watchingAppStarting(bool rWatching)

	Variable to track if this program is watching app startup so that we can know to not wait on the response to that.

	
bool isWatchingAppStarting()

	Accessor for the internal variable to know whether an app is watching for app startup

	
static std::shared_ptr<info_watcher::Zeitgeist> getZgWatcher(const std::shared_ptr<Registry> ®)

	

Protected Attributes

	
std::shared_ptr<info_watcher::Zeitgeist> zgWatcher_

	ZG Info Watcher

	
std::once_flag zgWatcherOnce_

	Init checker for ZG Watcher

Private Members

	
Registry &_registry

	The Registry that we’re spawned from

	
std::shared_ptr<ZeitgeistLog> zgLog_

	Shared instance of the Zeitgeist Log

	
std::unordered_map<std::string, std::shared_ptr<IconFinder>> _iconFinders

	All of our icon finders based on the path that they’re looking into

	
std::string oomHelper_

	Path to the OOM Helper

	
std::list<std::shared_ptr<app_store::Base>> _appStores

	Application stores

	
core::Signal<const std::shared_ptr<Application>&> sig_appInfoUpdated

	Signal for application info changing

	
std::once_flag flag_appInfoUpdated

	Flag to see if we’ve initialized the info watcher list

	
std::list<std::pair<std::shared_ptr<info_watcher::Base>, core::ScopedConnection>> infoWatchers_

	List of info watchers along with a signal handle to our connection to their update signal

Snapd Info

	
class ubuntu::app_launch::snapd::Info

	Class that implements the connection to Snapd allowing us to get info from it in a C++ friendly way.

Public Functions

	
Info()

	Initializes the info object which mostly means checking what is overridden by environment variables (mostly for testing) and making sure there is a snapd socket available to us.

	
virtual ~Info()

	

	
std::shared_ptr<Info::PkgInfo> pkgInfo(const AppID::Package &package) const

	Gets package information out of snapd by using the REST interface and turning the JSON object into a C++ Struct

	Parameters

	
	package: Name of the package to look for

	
std::set<AppID> appsForInterface(const std::string &interface) const

	Gets all the apps that are available for a given interface. It asks snapd for the list of interfaces and then finds this one, turning it into a set of AppIDs

	Parameters

	
	in_interface: Which interface to get the set of apps for

	
std::set<std::string> interfacesForAppId(const AppID &appid) const

	Finds all the interfaces for a specific appid

	Parameters

	
	appid: AppID to search for

Private Functions

	
std::shared_ptr<JsonNode> snapdJson(const std::string &endpoint) const

	Asks the snapd process for some JSON. This function parses the basic response JSON that snapd returns and will error if a return code error is in the JSON. It then passes on the “result” part of the response to the caller.

	Parameters

	
	endpoint: End of the URL to pass to snapd

	
void forAllPlugs(std::function<void(JsonObject *plugobj)> plugfunc) const

	Looks through all the plugs in the interfaces and runs a function based on them. Avoids pulling objects out of the parsed JSON structure from Snappy and making sure they have the same lifecycle as the parser object which seems to destroy them when it dies.

	Parameters

	
	plugfunc: Function to execute on each plug

Private Members

	
std::string snapdSocket

	Path to the socket of snapd

	
std::string snapBasedir

	Directory to use as the base for all snap packages when making paths. This can be overridden with UBUNTU_APP_LAUNCH_SNAP_BASEDIR

	
bool snapdExists = false

	Result of a check at init to see if the socket is available. If not all functions will return null results.

	
struct PkgInfo

	Information that we can get from snapd about a package

Public Members

	
std::string name

	Name of the package

	
std::string version

	Version string provided by the package

	
std::string revision

	Numerical always incrementing revision of the package

	
std::string directory

	Directory that the snap is uncompressed into

	
std::set<std::string> appnames

	List of appnames in the snap

Type Tagger

	
template <typename Tag, typename T>

	
class ubuntu::app_launch::TypeTagger

	A small template to make it clearer when special types are being used.

The TypeTagger a small piece of C++ so that we can have custom types for things in the Ubuntu App Launch API that should be handled in special ways, but really have basic types at their core. In this way there is explicit code to convert these items into their fundamental type so that is obvious and can be easily searched for.

Public Functions

	
const T &value() const

	Getter to get the fundamental type out of the TypeTagger wrapper

	
operator T() const

	Getter to get the fundamental type out of the TypeTagger wrapper

	
bool operator==(const TypeTagger<Tag, T> &b) const

	

	
bool operator==(const T &b) const

	

	
~TypeTagger()

	

Public Static Functions

	
static TypeTagger<Tag, T> from_raw(const T &value)

	Function to build a TypeTagger object from a fundamental type

Private Functions

	
TypeTagger(const T &value)

	Private constructor used by from_raw()

Private Members

	
T _value

	The memory allocation for the fundamental type

Quality

Merge Requirements

This documents the expections that the project has on what both submitters
and reviewers should ensure that they’ve done for a merge into the project.

Submitter Responsibilities

	Ensure the project compiles and the test suite executes without error

	Ensure that non-obvious code has comments explaining it

Reviewer Responsibilities

	Did the Jenkins build compile? Pass? Run unit tests successfully?

	Are there appropriate tests to cover any new functionality?

	
	If this MR effects application startup:

	
	Run test case: ubuntu-app-launch/click-app

	Run test case: ubuntu-app-launch/legacy-app

	Run test case: ubuntu-app-launch/secondary-activation

	
	If this MR effect untrusted-helpers:

	
	Run test case: ubuntu-app-launch/helper-run

Index

 U

U

 	
 	ubuntu::app_launch::app_impls::Base (C++ class)

 	ubuntu::app_launch::app_impls::Base::_registry (C++ member)

 	ubuntu::app_launch::app_impls::Base::Base (C++ function)

 	ubuntu::app_launch::app_impls::Base::confinedEnv (C++ function)

 	ubuntu::app_launch::app_impls::Base::findInstance (C++ function), [1]

 	ubuntu::app_launch::app_impls::Base::getInstance (C++ function)

 	ubuntu::app_launch::app_impls::Base::hasInstances (C++ function)

 	ubuntu::app_launch::app_impls::Base::~Base (C++ function)

 	ubuntu::app_launch::app_impls::Legacy (C++ class)

 	ubuntu::app_launch::app_impls::Legacy::_appname (C++ member)

 	ubuntu::app_launch::app_impls::Legacy::_basedir (C++ member)

 	ubuntu::app_launch::app_impls::Legacy::_keyfile (C++ member)

 	ubuntu::app_launch::app_impls::Legacy::appId (C++ function)

 	ubuntu::app_launch::app_impls::Legacy::appinfo_ (C++ member)

 	ubuntu::app_launch::app_impls::Legacy::desktopPath_ (C++ member)

 	ubuntu::app_launch::app_impls::Legacy::findInstance (C++ function)

 	ubuntu::app_launch::app_impls::Legacy::info (C++ function)

 	ubuntu::app_launch::app_impls::Legacy::instanceRegex_ (C++ member)

 	ubuntu::app_launch::app_impls::Legacy::instances (C++ function)

 	ubuntu::app_launch::app_impls::Legacy::launch (C++ function)

 	ubuntu::app_launch::app_impls::Legacy::launchEnv (C++ function)

 	ubuntu::app_launch::app_impls::Legacy::launchTest (C++ function)

 	ubuntu::app_launch::app_impls::Legacy::Legacy (C++ function)

 	ubuntu::app_launch::app_impls::Libertine (C++ class)

 	ubuntu::app_launch::app_impls::Libertine::_appname (C++ member)

 	ubuntu::app_launch::app_impls::Libertine::_basedir (C++ member)

 	ubuntu::app_launch::app_impls::Libertine::_container (C++ member)

 	ubuntu::app_launch::app_impls::Libertine::_container_path (C++ member)

 	ubuntu::app_launch::app_impls::Libertine::_keyfile (C++ member)

 	ubuntu::app_launch::app_impls::Libertine::appId (C++ function)

 	ubuntu::app_launch::app_impls::Libertine::appinfo_ (C++ member)

 	ubuntu::app_launch::app_impls::Libertine::findDesktopFile (C++ function)

 	ubuntu::app_launch::app_impls::Libertine::findInstance (C++ function)

 	ubuntu::app_launch::app_impls::Libertine::info (C++ function)

 	ubuntu::app_launch::app_impls::Libertine::instances (C++ function)

 	ubuntu::app_launch::app_impls::Libertine::keyfileFromPath (C++ function)

 	ubuntu::app_launch::app_impls::Libertine::launch (C++ function)

 	ubuntu::app_launch::app_impls::Libertine::launchEnv (C++ function)

 	ubuntu::app_launch::app_impls::Libertine::launchTest (C++ function)

 	ubuntu::app_launch::app_impls::Libertine::Libertine (C++ function)

 	ubuntu::app_launch::app_impls::Snap (C++ class)

 	ubuntu::app_launch::app_impls::Snap::appId (C++ function)

 	ubuntu::app_launch::app_impls::Snap::appid_ (C++ member)

 	ubuntu::app_launch::app_impls::Snap::checkPkgInfo (C++ function)

 	ubuntu::app_launch::app_impls::Snap::findInstance (C++ function)

 	ubuntu::app_launch::app_impls::Snap::findInterfaceInfo (C++ function)

 	ubuntu::app_launch::app_impls::Snap::info (C++ function)

 	ubuntu::app_launch::app_impls::Snap::info_ (C++ member)

 	ubuntu::app_launch::app_impls::Snap::instances (C++ function)

 	ubuntu::app_launch::app_impls::Snap::InterfaceInfo (C++ type)

 	ubuntu::app_launch::app_impls::Snap::launch (C++ function)

 	ubuntu::app_launch::app_impls::Snap::launchEnv (C++ function)

 	ubuntu::app_launch::app_impls::Snap::launchTest (C++ function)

 	ubuntu::app_launch::app_impls::Snap::list (C++ function)

 	ubuntu::app_launch::app_impls::Snap::pkgInfo_ (C++ member)

 	ubuntu::app_launch::app_impls::Snap::Snap (C++ function), [1]

 	ubuntu::app_launch::app_impls::SnapInfo (C++ class)

 	ubuntu::app_launch::app_impls::SnapInfo::appId_ (C++ member)

 	ubuntu::app_launch::app_impls::SnapInfo::execLine (C++ function)

 	ubuntu::app_launch::app_impls::SnapInfo::SnapInfo (C++ function)

 	ubuntu::app_launch::app_info::Desktop (C++ class)

 	ubuntu::app_launch::app_info::Desktop::_basePath (C++ member)

 	ubuntu::app_launch::app_info::Desktop::_defaultDepartment (C++ member)

 	ubuntu::app_launch::app_info::Desktop::_description (C++ member)

 	ubuntu::app_launch::app_info::Desktop::_exec (C++ member)

 	ubuntu::app_launch::app_info::Desktop::_iconPath (C++ member)

 	ubuntu::app_launch::app_info::Desktop::_keyfile (C++ member)

 	ubuntu::app_launch::app_info::Desktop::_keywords (C++ member)

 	ubuntu::app_launch::app_info::Desktop::_name (C++ member)

 	ubuntu::app_launch::app_info::Desktop::_popularity (C++ member)

 	ubuntu::app_launch::app_info::Desktop::_rootDir (C++ member)

 	ubuntu::app_launch::app_info::Desktop::_rotatesWindow (C++ member)

 	ubuntu::app_launch::app_info::Desktop::_screenshotPath (C++ member)

 	ubuntu::app_launch::app_info::Desktop::_singleInstance (C++ member)

 	ubuntu::app_launch::app_info::Desktop::_splashInfo (C++ member)

 	ubuntu::app_launch::app_info::Desktop::_supportedOrientations (C++ member)

 	ubuntu::app_launch::app_info::Desktop::_ubuntuLifecycle (C++ member)

 	ubuntu::app_launch::app_info::Desktop::_xMirEnable (C++ member)

 	ubuntu::app_launch::app_info::Desktop::defaultDepartment (C++ function)

 	ubuntu::app_launch::app_info::Desktop::description (C++ function)

 	ubuntu::app_launch::app_info::Desktop::Desktop (C++ function)

 	ubuntu::app_launch::app_info::Desktop::Exec (C++ type)

 	ubuntu::app_launch::app_info::Desktop::execLine (C++ function)

 	ubuntu::app_launch::app_info::Desktop::iconPath (C++ function)

 	ubuntu::app_launch::app_info::Desktop::keywords (C++ function)

 	ubuntu::app_launch::app_info::Desktop::name (C++ function)

 	ubuntu::app_launch::app_info::Desktop::popularity (C++ function)

 	ubuntu::app_launch::app_info::Desktop::rotatesWindowContents (C++ function)

 	ubuntu::app_launch::app_info::Desktop::screenshotPath (C++ function)

 	ubuntu::app_launch::app_info::Desktop::singleInstance (C++ function)

 	ubuntu::app_launch::app_info::Desktop::SingleInstance (C++ type)

 	ubuntu::app_launch::app_info::Desktop::splash (C++ function)

 	ubuntu::app_launch::app_info::Desktop::supportedOrientations (C++ function)

 	ubuntu::app_launch::app_info::Desktop::supportsUbuntuLifecycle (C++ function)

 	ubuntu::app_launch::app_info::Desktop::xMirEnable (C++ function)

 	ubuntu::app_launch::app_info::Desktop::XMirEnable (C++ type)

 	ubuntu::app_launch::app_store::Base (C++ class)

 	ubuntu::app_launch::app_store::Base::allAppStores (C++ function)

 	ubuntu::app_launch::app_store::Base::Base (C++ function)

 	ubuntu::app_launch::app_store::Base::create (C++ function)

 	ubuntu::app_launch::app_store::Base::findAppname (C++ function)

 	ubuntu::app_launch::app_store::Base::findVersion (C++ function)

 	ubuntu::app_launch::app_store::Base::hasAppId (C++ function)

 	ubuntu::app_launch::app_store::Base::list (C++ function)

 	ubuntu::app_launch::app_store::Base::verifyAppname (C++ function)

 	ubuntu::app_launch::app_store::Base::verifyPackage (C++ function)

 	ubuntu::app_launch::app_store::Base::~Base (C++ function)

 	ubuntu::app_launch::app_store::Legacy (C++ class)

 	ubuntu::app_launch::app_store::Legacy::create (C++ function)

 	ubuntu::app_launch::app_store::Legacy::findAppname (C++ function)

 	ubuntu::app_launch::app_store::Legacy::findVersion (C++ function)

 	ubuntu::app_launch::app_store::Legacy::hasAppId (C++ function)

 	ubuntu::app_launch::app_store::Legacy::Legacy (C++ function)

 	ubuntu::app_launch::app_store::Legacy::list (C++ function)

 	ubuntu::app_launch::app_store::Legacy::verifyAppname (C++ function)

 	ubuntu::app_launch::app_store::Legacy::verifyPackage (C++ function)

 	ubuntu::app_launch::app_store::Legacy::~Legacy (C++ function)

 	ubuntu::app_launch::app_store::Libertine (C++ class)

 	ubuntu::app_launch::app_store::Libertine::create (C++ function)

 	ubuntu::app_launch::app_store::Libertine::findAppname (C++ function)

 	ubuntu::app_launch::app_store::Libertine::findVersion (C++ function)

 	ubuntu::app_launch::app_store::Libertine::hasAppId (C++ function)

 	ubuntu::app_launch::app_store::Libertine::Libertine (C++ function)

 	ubuntu::app_launch::app_store::Libertine::list (C++ function)

 	ubuntu::app_launch::app_store::Libertine::verifyAppname (C++ function)

 	ubuntu::app_launch::app_store::Libertine::verifyPackage (C++ function)

 	ubuntu::app_launch::app_store::Libertine::~Libertine (C++ function)

 	ubuntu::app_launch::app_store::Snap (C++ class)

 	ubuntu::app_launch::app_store::Snap::create (C++ function)

 	ubuntu::app_launch::app_store::Snap::findAppname (C++ function)

 	ubuntu::app_launch::app_store::Snap::findVersion (C++ function)

 	ubuntu::app_launch::app_store::Snap::hasAppId (C++ function)

 	ubuntu::app_launch::app_store::Snap::list (C++ function)

 	ubuntu::app_launch::app_store::Snap::Snap (C++ function)

 	ubuntu::app_launch::app_store::Snap::verifyAppname (C++ function)

 	ubuntu::app_launch::app_store::Snap::verifyPackage (C++ function)

 	ubuntu::app_launch::app_store::Snap::~Snap (C++ function)

 	ubuntu::app_launch::AppID (C++ class)

 	ubuntu::app_launch::AppID::AppID (C++ function), [1]

 	ubuntu::app_launch::AppID::ApplicationWildcard (C++ type)

 	ubuntu::app_launch::AppID::appname (C++ member)

 	ubuntu::app_launch::AppID::CURRENT_USER_VERSION (C++ class)

 	ubuntu::app_launch::AppID::discover (C++ function), [1], [2], [3], [4], [5]

 	ubuntu::app_launch::AppID::empty (C++ function)

 	ubuntu::app_launch::AppID::find (C++ function), [1]

 	ubuntu::app_launch::AppID::FIRST_LISTED (C++ class)

 	ubuntu::app_launch::AppID::LAST_LISTED (C++ class)

 	ubuntu::app_launch::AppID::ONLY_LISTED (C++ class)

 	ubuntu::app_launch::AppID::operator std::string (C++ function)

 	ubuntu::app_launch::AppID::package (C++ member)

 	ubuntu::app_launch::AppID::parse (C++ function)

 	ubuntu::app_launch::AppID::valid (C++ function)

 	ubuntu::app_launch::AppID::version (C++ member)

 	ubuntu::app_launch::AppID::VersionWildcard (C++ type)

 	ubuntu::app_launch::Application (C++ class)

 	ubuntu::app_launch::Application::appId (C++ function)

 	ubuntu::app_launch::Application::create (C++ function)

 	ubuntu::app_launch::Application::findInstance (C++ function)

 	ubuntu::app_launch::Application::hasInstances (C++ function)

 	ubuntu::app_launch::Application::Info (C++ class)

 	ubuntu::app_launch::Application::info (C++ function)

 	ubuntu::app_launch::Application::Info::defaultDepartment (C++ function)

 	ubuntu::app_launch::Application::Info::description (C++ function)

 	ubuntu::app_launch::Application::Info::iconPath (C++ function)

 	ubuntu::app_launch::Application::Info::keywords (C++ function)

 	ubuntu::app_launch::Application::Info::name (C++ function)

 	ubuntu::app_launch::Application::Info::Orientations (C++ class)

 	ubuntu::app_launch::Application::Info::Orientations::invertedLandscape (C++ member)

 	ubuntu::app_launch::Application::Info::Orientations::invertedPortrait (C++ member)

 	ubuntu::app_launch::Application::Info::Orientations::landscape (C++ member)

 	ubuntu::app_launch::Application::Info::Orientations::operator== (C++ function)

 	ubuntu::app_launch::Application::Info::Orientations::portrait (C++ member)

 	ubuntu::app_launch::Application::Info::popularity (C++ function)

 	ubuntu::app_launch::Application::Info::rotatesWindowContents (C++ function)

 	ubuntu::app_launch::Application::Info::screenshotPath (C++ function)

 	ubuntu::app_launch::Application::Info::Splash (C++ class)

 	ubuntu::app_launch::Application::Info::splash (C++ function)

 	ubuntu::app_launch::Application::Info::Splash::backgroundColor (C++ member)

 	ubuntu::app_launch::Application::Info::Splash::footerColor (C++ member)

 	ubuntu::app_launch::Application::Info::Splash::headerColor (C++ member)

 	ubuntu::app_launch::Application::Info::Splash::image (C++ member)

 	ubuntu::app_launch::Application::Info::Splash::showHeader (C++ member)

 	ubuntu::app_launch::Application::Info::Splash::title (C++ member)

 	ubuntu::app_launch::Application::Info::supportedOrientations (C++ function)

 	ubuntu::app_launch::Application::Info::supportsUbuntuLifecycle (C++ function)

 	ubuntu::app_launch::Application::Info::~Info (C++ function)

 	ubuntu::app_launch::Application::Instance (C++ class)

 	ubuntu::app_launch::Application::Instance::focus (C++ function)

 	ubuntu::app_launch::Application::Instance::getOomAdjustment (C++ function)

 	ubuntu::app_launch::Application::Instance::hasPid (C++ function)

 	ubuntu::app_launch::Application::Instance::isRunning (C++ function)

 	ubuntu::app_launch::Application::Instance::pause (C++ function)

 	ubuntu::app_launch::Application::Instance::pids (C++ function)

 	ubuntu::app_launch::Application::Instance::primaryPid (C++ function)

 	ubuntu::app_launch::Application::Instance::resume (C++ function)

 	ubuntu::app_launch::Application::Instance::setOomAdjustment (C++ function)

 	ubuntu::app_launch::Application::Instance::stop (C++ function)

 	
 	ubuntu::app_launch::Application::Instance::~Instance (C++ function)

 	ubuntu::app_launch::Application::instances (C++ function)

 	ubuntu::app_launch::Application::launch (C++ function)

 	ubuntu::app_launch::Application::launchTest (C++ function)

 	ubuntu::app_launch::Application::~Application (C++ function)

 	ubuntu::app_launch::Helper (C++ class)

 	ubuntu::app_launch::Helper::appId (C++ function)

 	ubuntu::app_launch::Helper::create (C++ function)

 	ubuntu::app_launch::Helper::hasInstances (C++ function)

 	ubuntu::app_launch::Helper::Instance (C++ class)

 	ubuntu::app_launch::Helper::Instance::isRunning (C++ function)

 	ubuntu::app_launch::Helper::Instance::stop (C++ function)

 	ubuntu::app_launch::Helper::instances (C++ function)

 	ubuntu::app_launch::Helper::launch (C++ function), [1]

 	ubuntu::app_launch::Helper::setExec (C++ function)

 	ubuntu::app_launch::helper_impls::Base (C++ class)

 	ubuntu::app_launch::helper_impls::Base::_appid (C++ member)

 	ubuntu::app_launch::helper_impls::Base::_registry (C++ member)

 	ubuntu::app_launch::helper_impls::Base::_type (C++ member)

 	ubuntu::app_launch::helper_impls::Base::appId (C++ function)

 	ubuntu::app_launch::helper_impls::Base::Base (C++ function)

 	ubuntu::app_launch::helper_impls::Base::defaultEnv (C++ function)

 	ubuntu::app_launch::helper_impls::Base::existingInstance (C++ function)

 	ubuntu::app_launch::helper_impls::Base::hasInstances (C++ function)

 	ubuntu::app_launch::helper_impls::Base::instances (C++ function)

 	ubuntu::app_launch::helper_impls::Base::launch (C++ function), [1]

 	ubuntu::app_launch::IconFinder (C++ class)

 	ubuntu::app_launch::IconFinder::_basePath (C++ member)

 	ubuntu::app_launch::IconFinder::_searchPaths (C++ member)

 	ubuntu::app_launch::IconFinder::addSubdirectoryByType (C++ function)

 	ubuntu::app_launch::IconFinder::find (C++ function)

 	ubuntu::app_launch::IconFinder::findExistingIcon (C++ function)

 	ubuntu::app_launch::IconFinder::getSearchPaths (C++ function)

 	ubuntu::app_launch::IconFinder::hasImageExtension (C++ function)

 	ubuntu::app_launch::IconFinder::IconFinder (C++ function)

 	ubuntu::app_launch::IconFinder::iconsFromThemePath (C++ function)

 	ubuntu::app_launch::IconFinder::searchIconPaths (C++ function)

 	ubuntu::app_launch::IconFinder::themeDirSearchPaths (C++ function)

 	ubuntu::app_launch::IconFinder::themeFileSearchPaths (C++ function)

 	ubuntu::app_launch::IconFinder::ThemeSubdirectory (C++ class)

 	ubuntu::app_launch::IconFinder::ThemeSubdirectory::path (C++ member)

 	ubuntu::app_launch::IconFinder::ThemeSubdirectory::size (C++ member)

 	ubuntu::app_launch::IconFinder::validDirectories (C++ function)

 	ubuntu::app_launch::IconFinder::~IconFinder (C++ function)

 	ubuntu::app_launch::jobs::instance::Base (C++ class)

 	ubuntu::app_launch::jobs::instance::Base::appId_ (C++ member)

 	ubuntu::app_launch::jobs::instance::Base::Base (C++ function)

 	ubuntu::app_launch::jobs::instance::Base::focus (C++ function)

 	ubuntu::app_launch::jobs::instance::Base::forAllPids (C++ function)

 	ubuntu::app_launch::jobs::instance::Base::getInstanceId (C++ function)

 	ubuntu::app_launch::jobs::instance::Base::getOomAdjustment (C++ function)

 	ubuntu::app_launch::jobs::instance::Base::hasPid (C++ function)

 	ubuntu::app_launch::jobs::instance::Base::instance_ (C++ member)

 	ubuntu::app_launch::jobs::instance::Base::isRunning (C++ function)

 	ubuntu::app_launch::jobs::instance::Base::job_ (C++ member)

 	ubuntu::app_launch::jobs::instance::Base::oomValueToPid (C++ function)

 	ubuntu::app_launch::jobs::instance::Base::oomValueToPidHelper (C++ function)

 	ubuntu::app_launch::jobs::instance::Base::pause (C++ function)

 	ubuntu::app_launch::jobs::instance::Base::pidListToDbus (C++ function)

 	ubuntu::app_launch::jobs::instance::Base::pidToOomPath (C++ function)

 	ubuntu::app_launch::jobs::instance::Base::registry_ (C++ member)

 	ubuntu::app_launch::jobs::instance::Base::resume (C++ function)

 	ubuntu::app_launch::jobs::instance::Base::setOomAdjustment (C++ function)

 	ubuntu::app_launch::jobs::instance::Base::signalToPid (C++ function)

 	ubuntu::app_launch::jobs::instance::Base::urls_ (C++ member)

 	ubuntu::app_launch::jobs::instance::Base::urlsToStrv (C++ function)

 	ubuntu::app_launch::jobs::instance::Base::~Base (C++ function)

 	ubuntu::app_launch::jobs::manager::Base (C++ class)

 	ubuntu::app_launch::jobs::manager::Base::allApplicationJobs_ (C++ member)

 	ubuntu::app_launch::jobs::manager::Base::appFailed (C++ function)

 	ubuntu::app_launch::jobs::manager::Base::appPaused (C++ function)

 	ubuntu::app_launch::jobs::manager::Base::appResumed (C++ function)

 	ubuntu::app_launch::jobs::manager::Base::appStarted (C++ function)

 	ubuntu::app_launch::jobs::manager::Base::appStopped (C++ function)

 	ubuntu::app_launch::jobs::manager::Base::Base (C++ function)

 	ubuntu::app_launch::jobs::manager::Base::clearManager (C++ function)

 	ubuntu::app_launch::jobs::manager::Base::dbus_ (C++ member)

 	ubuntu::app_launch::jobs::manager::Base::determineFactory (C++ function)

 	ubuntu::app_launch::jobs::manager::Base::existing (C++ function)

 	ubuntu::app_launch::jobs::manager::Base::flag_appFailed (C++ member)

 	ubuntu::app_launch::jobs::manager::Base::flag_appPaused (C++ member)

 	ubuntu::app_launch::jobs::manager::Base::flag_appResumed (C++ member)

 	ubuntu::app_launch::jobs::manager::Base::flag_appStarted (C++ member)

 	ubuntu::app_launch::jobs::manager::Base::flag_appStopped (C++ member)

 	ubuntu::app_launch::jobs::manager::Base::flag_managerSignals (C++ member)

 	ubuntu::app_launch::jobs::manager::Base::getAllApplicationJobs (C++ function)

 	ubuntu::app_launch::jobs::manager::Base::handle_appPaused (C++ member)

 	ubuntu::app_launch::jobs::manager::Base::handle_appResumed (C++ member)

 	ubuntu::app_launch::jobs::manager::Base::handle_managerSignalFocus (C++ member)

 	ubuntu::app_launch::jobs::manager::Base::handle_managerSignalResume (C++ member)

 	ubuntu::app_launch::jobs::manager::Base::handle_managerSignalStarting (C++ member)

 	ubuntu::app_launch::jobs::manager::Base::helperFailed (C++ function)

 	ubuntu::app_launch::jobs::manager::Base::helperStarted (C++ function)

 	ubuntu::app_launch::jobs::manager::Base::helperStopped (C++ function)

 	ubuntu::app_launch::jobs::manager::Base::instances (C++ function)

 	ubuntu::app_launch::jobs::manager::Base::jobFailed (C++ function)

 	ubuntu::app_launch::jobs::manager::Base::jobStarted (C++ function)

 	ubuntu::app_launch::jobs::manager::Base::jobStopped (C++ function)

 	ubuntu::app_launch::jobs::manager::Base::launch (C++ function)

 	ubuntu::app_launch::jobs::manager::Base::manager_ (C++ member)

 	ubuntu::app_launch::jobs::manager::Base::managerParams (C++ function)

 	ubuntu::app_launch::jobs::manager::Base::managerSignalHelper (C++ function)

 	ubuntu::app_launch::jobs::manager::Base::pauseEventEmitted (C++ function)

 	ubuntu::app_launch::jobs::manager::Base::registry_ (C++ member)

 	ubuntu::app_launch::jobs::manager::Base::runningAppIds (C++ function)

 	ubuntu::app_launch::jobs::manager::Base::runningApps (C++ function)

 	ubuntu::app_launch::jobs::manager::Base::runningHelpers (C++ function)

 	ubuntu::app_launch::jobs::manager::Base::setManager (C++ function)

 	ubuntu::app_launch::jobs::manager::Base::sig_appFailed (C++ member)

 	ubuntu::app_launch::jobs::manager::Base::sig_appPaused (C++ member)

 	ubuntu::app_launch::jobs::manager::Base::sig_appResumed (C++ member)

 	ubuntu::app_launch::jobs::manager::Base::sig_appStarted (C++ member)

 	ubuntu::app_launch::jobs::manager::Base::sig_appStopped (C++ member)

 	ubuntu::app_launch::jobs::manager::Base::sig_helpersFailed (C++ member)

 	ubuntu::app_launch::jobs::manager::Base::sig_helpersStarted (C++ member)

 	ubuntu::app_launch::jobs::manager::Base::sig_helpersStopped (C++ member)

 	ubuntu::app_launch::jobs::manager::Base::~Base (C++ function)

 	ubuntu::app_launch::Registry (C++ class)

 	ubuntu::app_launch::Registry::appFailed (C++ function)

 	ubuntu::app_launch::Registry::appInfoUpdated (C++ function)

 	ubuntu::app_launch::Registry::appPaused (C++ function)

 	ubuntu::app_launch::Registry::appResumed (C++ function)

 	ubuntu::app_launch::Registry::appStarted (C++ function)

 	ubuntu::app_launch::Registry::appStopped (C++ function)

 	ubuntu::app_launch::Registry::clearDefault (C++ function)

 	ubuntu::app_launch::Registry::clearManager (C++ function)

 	ubuntu::app_launch::Registry::CRASH (C++ class)

 	ubuntu::app_launch::Registry::FailureType (C++ type)

 	ubuntu::app_launch::Registry::getDefault (C++ function)

 	ubuntu::app_launch::Registry::helperFailed (C++ function)

 	ubuntu::app_launch::Registry::helperStarted (C++ function)

 	ubuntu::app_launch::Registry::helperStopped (C++ function)

 	ubuntu::app_launch::Registry::Impl (C++ class)

 	ubuntu::app_launch::Registry::Impl::_appStores (C++ member)

 	ubuntu::app_launch::Registry::Impl::_dbus (C++ member)

 	ubuntu::app_launch::Registry::Impl::_iconFinders (C++ member)

 	ubuntu::app_launch::Registry::Impl::_registry (C++ member)

 	ubuntu::app_launch::Registry::Impl::appInfoUpdated (C++ function)

 	ubuntu::app_launch::Registry::Impl::appStores (C++ function)

 	ubuntu::app_launch::Registry::Impl::clearManager (C++ function)

 	ubuntu::app_launch::Registry::Impl::flag_appInfoUpdated (C++ member)

 	ubuntu::app_launch::Registry::Impl::getIconFinder (C++ function)

 	ubuntu::app_launch::Registry::Impl::getZgWatcher (C++ function)

 	ubuntu::app_launch::Registry::Impl::Impl (C++ function), [1]

 	ubuntu::app_launch::Registry::Impl::infoWatchers_ (C++ member)

 	ubuntu::app_launch::Registry::Impl::isWatchingAppStarting (C++ function)

 	ubuntu::app_launch::Registry::Impl::jobs (C++ member)

 	ubuntu::app_launch::Registry::Impl::oomHelper (C++ function)

 	ubuntu::app_launch::Registry::Impl::oomHelper_ (C++ member)

 	ubuntu::app_launch::Registry::Impl::printJson (C++ function), [1]

 	ubuntu::app_launch::Registry::Impl::setAppStores (C++ function)

 	ubuntu::app_launch::Registry::Impl::setManager (C++ function)

 	ubuntu::app_launch::Registry::Impl::sig_appInfoUpdated (C++ member)

 	ubuntu::app_launch::Registry::Impl::snapdInfo (C++ member)

 	ubuntu::app_launch::Registry::Impl::thread (C++ member)

 	ubuntu::app_launch::Registry::Impl::watchingAppStarting (C++ function)

 	ubuntu::app_launch::Registry::Impl::zgLog_ (C++ member)

 	ubuntu::app_launch::Registry::Impl::zgSendEvent (C++ function)

 	ubuntu::app_launch::Registry::Impl::zgWatcher_ (C++ member)

 	ubuntu::app_launch::Registry::Impl::zgWatcherOnce_ (C++ member)

 	ubuntu::app_launch::Registry::Impl::~Impl (C++ function)

 	ubuntu::app_launch::Registry::installedApps (C++ function)

 	ubuntu::app_launch::Registry::Manager (C++ class)

 	ubuntu::app_launch::Registry::Manager::focusRequest (C++ function)

 	ubuntu::app_launch::Registry::Manager::resumeRequest (C++ function)

 	ubuntu::app_launch::Registry::Manager::startingRequest (C++ function)

 	ubuntu::app_launch::Registry::Registry (C++ function)

 	ubuntu::app_launch::Registry::runningApps (C++ function)

 	ubuntu::app_launch::Registry::runningHelpers (C++ function)

 	ubuntu::app_launch::Registry::setManager (C++ function)

 	ubuntu::app_launch::Registry::START_FAILURE (C++ class)

 	ubuntu::app_launch::Registry::~Registry (C++ function)

 	ubuntu::app_launch::snapd::Info (C++ class)

 	ubuntu::app_launch::snapd::Info::appsForInterface (C++ function)

 	ubuntu::app_launch::snapd::Info::forAllPlugs (C++ function)

 	ubuntu::app_launch::snapd::Info::Info (C++ function)

 	ubuntu::app_launch::snapd::Info::interfacesForAppId (C++ function)

 	ubuntu::app_launch::snapd::Info::PkgInfo (C++ class)

 	ubuntu::app_launch::snapd::Info::pkgInfo (C++ function)

 	ubuntu::app_launch::snapd::Info::PkgInfo::appnames (C++ member)

 	ubuntu::app_launch::snapd::Info::PkgInfo::directory (C++ member)

 	ubuntu::app_launch::snapd::Info::PkgInfo::name (C++ member)

 	ubuntu::app_launch::snapd::Info::PkgInfo::revision (C++ member)

 	ubuntu::app_launch::snapd::Info::PkgInfo::version (C++ member)

 	ubuntu::app_launch::snapd::Info::snapBasedir (C++ member)

 	ubuntu::app_launch::snapd::Info::snapdExists (C++ member)

 	ubuntu::app_launch::snapd::Info::snapdJson (C++ function)

 	ubuntu::app_launch::snapd::Info::snapdSocket (C++ member)

 	ubuntu::app_launch::snapd::Info::~Info (C++ function)

 	ubuntu::app_launch::TypeTagger (C++ class)

 	ubuntu::app_launch::TypeTagger::_value (C++ member)

 	ubuntu::app_launch::TypeTagger::from_raw (C++ function)

 	ubuntu::app_launch::TypeTagger::operator T (C++ function)

 	ubuntu::app_launch::TypeTagger::operator== (C++ function), [1]

 	ubuntu::app_launch::TypeTagger::TypeTagger (C++ function)

 	ubuntu::app_launch::TypeTagger::value (C++ function)

 	ubuntu::app_launch::TypeTagger::~TypeTagger (C++ function)

 nav.xhtml

 Table of Contents

 		Overview

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down.png

