

 Navigation

 	
 index

 	
 next |

 	Next Generation TypoScript Parser (tsp) 1.0.1 documentation

Next Generation TypoScript Parser

	Classification:	tsp

	Version:	1.0.1

	Language:	en

	Description:	Next Generation TypoScript Parser (tsp)

	Keywords:	typoscript, performance, parser

	Copyright:	2016

	Author:	Elmar Hinz

	Email:	t3elmar@gmail.com

	License:	This document is published under the Open Content License
available from http://www.opencontent.org/opl.shtml

	Rendered:	June 18, 2016

The content of this document is related to TYPO3,
a GNU/GPL CMS/Framework available from www.typo3.org [http://www.typo3.org/].

Table of Contents

	Introduction

	Screenshots

	Administration

	Known Issues

Appendix

	Architecture

	Exceptions

	Tokens

	Research

	Lessons Learned

	TODO

 Copyright 2016, Elmar Hinz.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Next Generation TypoScript Parser (tsp) 1.0.1 documentation

Introduction

This extensions ships a TypoScript parser, that is suited to replace the
original TypoScript parser for frontend rendering. In fact a family of
parsers has been introduced, specialized on different tasks.

	FE: TypoScriptConditionsPreProcessor

	FE: TypoScriptProductionParser

	BE: TypoScriptSyntaxParser

What it is not

No Boost in Performance

The parsing of TypoScript just takes a few milliseconds. Hence, it’s not the
primary goal to speed up the performance but to improve the architecture.
The algorithm is twice as fast as the original algorithm, but with the
split into conditions preprocessor and processor the time is about the same
again.

What it is

Public Presentation

First of all this extension is a public presentation of the rewritten parser.
Should it replace the old parser of the core? If yes, it needs to be tested in
the wild before until it is really stable.

Standalone Usage

It’s possible to use the TypoScript parser outside of the TYPO3 CMS, if you
like the TypoScript syntax and want to use it for configuration in other
fields. This is possible with or without the conditions preprocessor.

Improving the error detection

The error detection covers the error detection of the origional parser and
tries be be a little better already. Also the displaying of the line numbers
has been worked upon. See Screenshots!

Planned improvements in future versions:

	CLI interface to check TS within continuous integration workflows.

	Do syntax highlighting of conditions, instead of printing them in one
color.

	Detect the difference of objects and properties, because only objects are
allowed ot be copied by reference.

	(Related) Throw verbose errors from TS objects, catch them and and display
them into the backend.

New Architecture

The reason to write a new TypoScript parser is, to get a modern architecture
for it:

	easy to understand

	easy to debug

	easy to extend

A modern parser makes it more easy to get rid of flaws in TypoScript, enhance
error detection and add new features like if-else conditions, that work the way
you are used to from other languages.

Condition Preprocessor

Condition evaluation has been separated into a preprocessor class. It becomes
possible to use the TypoScript parser without bothering with conditions at all
or apply different types of preprocessors. It’s more simple to enhance the
condition preprocessing, as an example think of a fullblown
IF-ELSEIF-ELSE-END structure.

As with the old parser the condition matching is handled by a third object.
Exchanging this object enables the development of conditions, that address a
completly different field than the TYPO3 CMS.

Differences

	Escaping of dots by backslash is not supported.

 Copyright 2016, Elmar Hinz.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Next Generation TypoScript Parser (tsp) 1.0.1 documentation

Screenshots

Line numbering

[image: _images/TowKindsOfLineNumbers.png]
The line numbers show the numbering of the template and the overall
numbering within the template tree.

[image: _images/ErrorsWithLineNumberingTurnedOff.png]
When line numbering is turned off the error messages contain the
line number instead.

[image: _images/ErrorsWithLineNumberingTurnedOn.png]
When line numbering is turned on the error messages don’t duplicate the
information.

Types of errors

[image: _images/KeyValueErrors.png]
For invalid lines it is assumed that the user want’s to enter an operator
line. It is checked for invalid key and operator.

[image: _images/BracesInExess.png]
Braces in access are shown in the line where they occur.

[image: _images/BracesMissing.png]
Missing closing braces are detected at conditions and at the end of the
template.

[image: _images/UnclosedComment.png]
An unclosed multiline comment is detected at the end of the template.
Multiline comments can be used to comment out parts of the script. Included
elements like conditions don’t result in an error.

[image: _images/UnclosedValue.png]
An unclosed multiline value is detected at the end of the template.

 Copyright 2016, Elmar Hinz.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Next Generation TypoScript Parser (tsp) 1.0.1 documentation

Administration

Install the extension, clear caches and check if your frontend is rendered as
expected and if you get the advanced error feedback in the backend.

If anything goes wrong, uninstall and report the issue.

https://github.com/elmar-hinz/TX.tsp/issues

 Copyright 2016, Elmar Hinz.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Next Generation TypoScript Parser (tsp) 1.0.1 documentation

Known Issues

No Exceptions are Thrown

The TypoScript production parser currently doesn’t throw execptions. It expects
valid TS as input. To check if your input is valid use the syntax higlighting
parser in the BE.

No exceptions are thrown because the original parser doesn’t throw exceptions
either. Modules of the backend are not prepared to catch exeptions from the
parser and break if execeptions would be thrown from invalid TS.

Intolerant for Invalid TS

The TypoScript production parser will silently break, if feed with invalid TS.
It is optimized for speed and is less tolerant for invalid TS than the
origional parser.

This means in rare cases code that works for the original parser may break with
the TypoScript production parser. Use the syntax highlighting parser to fix the
TS code.

XCLASS issues

The origional parser is not fully replaced but extended by XCLASS registration.
The extended class serves as adapter to the standalone classes. Conflicts may
occur with extensions, that also XCLASS the core parser.

 Copyright 2016, Elmar Hinz.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Next Generation TypoScript Parser (tsp) 1.0.1 documentation

Architecture

The major goal of the architecture is flexibility, to enable the development
of new features and to enable the user to customize the parsers to his needs.
The main devices to reach this goal are:

	Separation of concerns

	Programming against interfaces

	Dependency injection

	Classes as identifiers

Separtion of Concerns

The classes are rather small to encapsulate a single concern.

The syntax tracker is the most complex example. It focuses on the parsing
algorithm, while it delegates the representation of tokens and execptions to
dedicated classes. The collecting of tokens and exeptions is done by tracker
classes. The tracker objects are finally accessed by a formatter class to
produce the highlighted output.

Concerns represented by one class each:

	Parsing

	Representation of a token

	Representation of an exception

	Tracking tokens

	Tracking exceptions

	Formatting the report

Programming against Interfaces

Whereever two classes cooperate, there is an interface between them. A class
can have multiple interfaces, if it cooperates with multiple other classes. All
this interfaces are defined as PHP interfaces, that are stored into the folder
Classes/Interfaces.

A class should not depend on other classes to cooperate, but on interfaces. It
is free to cooperate with every class that implements the matching interface.
Each class can be exchanged by a customized class, as long as the customized
class provides the interfaces, that the given classes can talk to.

An example usage of this interfaces are the mock objects of the unit tests.
While testing a single class it is decoupled from other classes, by using mock
objects, that implement the interface to test against.

Dependency Injection

Dependency injection is related to programming against interfaces. If a class
must not depend on other classes, it must not create classes by the keyword
new itself. Instead objects, that implement the required interface, are
injected.

For sure a place is needed where all this dependency injection is done, where
the objects are created and wired up. This is done in the main application
classes that are stored in the folder Main/. You can think of an
application class as a kind of configuration, that composes objects according
to your taste. You write a new one of this main configuration classes, to
compose your own application or to alter an existing one.

Classes as Identifieres

An exception from the rule, to not use the keyword new, are the tokens and
exceptions. Each class is designed to serve as an identifier. You can think of
them as constants. The object is created by the keyword new as you mean
exactly it’s class as identifier, not the interface. They are final.

Nonetheless there is flexibilty. The exceptions and tokens are created by
parsers and you can exchange the parser creating them. That means you can
exchange the part, that contains the new keywords.

You can create your own exceptions and tokens by writing new classes. It’s just
a few lines each, because they inherit almoust all from abstract classes. The
freedom to easily add new tokens and exceptions is one reason, why they are not
implemented as constants, apart from the additional functionality a class
offers.

 Copyright 2016, Elmar Hinz.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Next Generation TypoScript Parser (tsp) 1.0.1 documentation

Exceptions

The Exception Hierarchy

	
	Exception

	
	
	TypoScriptParsetimeException (abstract)

	
	TypoScriptBraceInExcessException

	TypoScriptKeysException

	TypoScriptUnclosedConditionException

	TypoScriptBracesMissingAtConditionE

	TypoScriptOperatorException

	TypoScriptUnclosedValueException

	TypoScriptBracesMissingAtEndOfT

	TypoScriptParsetimeException

	TypoScriptUnclosedCommentException

Where is the TypoScriptRuntimeException?

Where is a TypoScriptParsetimeException there should also be a
TypoScriptRuntimeException, shouldn’t it?

TypoScript pasetime exceptions occur while parsing TypoScript into a PHP array
tree. Runtime exceptions would make sense in the ContentObjectRenderer, when
the PHP array tree is used to render the page.

Both parts are connected by the PHP array tree, but apart from that, they are
not connected. The array tree could come from a differnt source. The parser
could render an array tree for a completly different purpose.

Follows:

1.) A TypoScriptParsetimeException doesn’t belong into the parser package.
2.) Both types of exceptions should not inherit from a common

TypoScriptException to not introduce an unnecessary dependency of the
packages. Instead both directly inherit from Exception.

 Copyright 2016, Elmar Hinz.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Next Generation TypoScript Parser (tsp) 1.0.1 documentation

Tokens

The Token Hierarchy

	
	AbstractTypoScriptToken

	
	TypoScriptIgnoredToken

	TypoScriptOperatorToken

	TypoScriptValueToken

	TypoScriptCommentContextToken

	TypoScriptKeysPostspaceToken

	TypoScriptPrespaceToken

	TypoScriptCommentToken

	TypoScriptKeysToken

	TypoScriptValueContextToken

	TypoScriptConditionToken

	TypoScriptOperatorPostspaceToken

	TypoScriptValueCopyToken

Tokens as Type

First of all the token object is a device to ship a type and a value. The Type
is the class itself, the value is set with the constructor and accessible by
the method getValue().

Tokens to Format Token Tags

The token object represents a token type, not a formatting class. Despite of
this, by calling the method toTag() a HTML tag representation of the token
can be created. This is just additional sugar in addition to the primary
function. String representations of the token can be created by external
methods as well. The tag creation can be customized by the methodes
setTag() and setClasses(). The default values are chosen to match the
CSS classes of the existing syntax highlighting of the backend.

 Copyright 2016, Elmar Hinz.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Next Generation TypoScript Parser (tsp) 1.0.1 documentation

Research

\Core\TypoScript\Parser\TyposcriptParser

Overview

The method parse() is a preprocessor that handels including and
excluding of template parts by condtions.

It doesn’t parse the incoming lines to end first, but delegates the parts
immediately to parseSub() (a kind of depth-first parsing of the template
tree).

The method doSyntaxHighlight() is responsible to generate a syntax
highlighted HTML string. It also calls the preprocessor parse() but
sets a flag, that disables the coditions, so that all parts are evaluated.

The latter is strange in two aspects. It doesn’t make sense to send syntax
highlighting through a conditioning preprocessor. It doesn’t make sense to
parse into an array tree, when one actually want’s a HTML string as result.

Conditions

In the method parse() the template is branched into rendered and
non-rendered parts based on conditions. The condition evalutation is delegated
to a $matchObj, that is injected by parameter.

For each condition the method creates a hash and stores it into
$this->sections array. This are used by the TemplateService, to cache
the rendered templates matching combinations of conditions, that evaluate to
true.

Line numbering

There is a line number offset, that sums up the line numbers of previously
rendered templates. It is advanced at end of parse().

The line numbers of the current template are tracked by $this->rawP in the
main loop of parseSub() and also for the condition sections, that evaluate
to false in the method nextDivider(). $this->rawP is reset to zero at
the beginning of the rendering of the current template in the method
parse().

Error handling

method error($errorString, $severity = 2).

This method collects into $this->errors[] = [a, b, c, d] with:

	a = error message

	b = severity

	c = line number

	d = template line number offset

Collected messages:

	‘Script is short of XXX braces.’

	‘An end brace is in excess.’

	‘On return to [GLOBAL] scope, the script was short of XXX braces.’

	‘A multiline value section is not ended with a parenthesis!’

	‘Object Name String, contains invalid character XXX. Must be alphanumeric or
one of: “_:-.”.’

	‘Object Name String XXX was not followed by any operator, =<>({‘

	‘### ERROR: XXX’ (Error to be extract from an error comment created in
previous parsing steps like during template includes.)

Syntax highlighting

Highlighted parsing is controlled by the method doSyntaxHighlight().

It sets the flag $this->syntaxHighLight to true and the template string is
parsed. The flag activates the additional highlighting functionality during the
process of parsing. Finally the method syntaxHighlight_print() is called to
format the collected results including the error messages.

Registration of highlighted parts of lines is done during parsing by the method
regHighLight() if the above flag is set. The parts are collected into

	$this->highLightData

	$this->highLightData_bracelevel

Both arrays count per line, the first one the higlighted sections of the line,
the second one the depth of brace nesting.

Breakpoints

A breakpoint is a line number in $this->breakPointLN to break the
execution of the rendering. The method parseSub() returns with a marker
[_BREAK]. This marker stops the further execution of the main loop
in parse().

TemplateService

TemplateService is a service that makes use of the parser. A main task of
TemplateService is, to cache the rendered template for different combinations
of conditions of a page.

ExtendedTemplateService

The class ExtendedTemplateService contains method for the TS module in TYPO3
backend. It extends TemplateService.

 Copyright 2016, Elmar Hinz.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Next Generation TypoScript Parser (tsp) 1.0.1 documentation

Lessons Learned

The overall time to parse the TypoScript of a website takes just a few
milliseconds. It is not a critical part of the overall page rendering time. Yet
the development of this extension was also focused on performance.

Time to parse the templates vs. time to parse TypoScript

When measured with the TYPO3 core time tracker (admin panel) the template
parsing takes a few hundred milliseconds. When measuring and summing up all
calls to the TypoScript parse function (TypoScriptParser::parse()) it takes
just a few milliseconds. The difference is most likley to be explained by I/O
calls to read the templates.

Non-Recursive Parser

The Non-Recursive Parser is the approach taken by this parser. The whole
rendering happens within one function by using simple loop structures. Calls to
itself or other methods are avoided as far as reasonable. This turns out to be
twice as fast as the recursive Original TypoScript Parser.

Original TypoScript Parser

The original parser of the TYPO3 core uses recursive calls to handle the
nesting of the braces of the object name pathes.

JSON Parser

The idea of the JSON Parser was, to use the PHP function json_decode to
create the large TypoScript tree consisting of hundreds of PHP arrays on
the binary level. TypoScript was rewritten to a valid JSON string as
input.

Unfortunately json_decode does merging but not recursive merging. As
overwriting is a feature of TypoScript this requires to prepare the
JSON rendering by any approach to do the overwriting in advance. An array
was created, containing the full object path as key and the value as value to
solve this. Although this creates no nested tree, it takes time.

Together with the conversion to a JSON string in the second step, there is
no advantage in speed. Taking the non-recursive approach to handle the two
steps, it ends up in a similar speed as the Original TypoScript Parser.

 Copyright 2016, Elmar Hinz.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Next Generation TypoScript Parser (tsp) 1.0.1 documentation

TODO

	Class hierarchies

	Update the screenshots.

	CLI interface

	Hash sections for the TemplateService.

	Breakpoints

	Errors from previous parsing steps (see: research)

 Copyright 2016, Elmar Hinz.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Next Generation TypoScript Parser (tsp) 1.0.1 documentation

Index

 Copyright 2016, Elmar Hinz.
 Created using Sphinx 1.3.5.

 _static/plus.png

Index.html

 Navigation

 		
 index

 		Next Generation TypoScript Parser (tsp) 1.0.1 documentation »

Next Generation TypoScript Parser

		Classification:		tsp

		Version:		1.0.1

		Language:		en

		Description:		Next Generation TypoScript Parser (tsp)

		Keywords:		typoscript, performance, parser

		Copyright:		2016

		Author:		Elmar Hinz

		Email:		t3elmar@gmail.com

		License:		This document is published under the Open Content License
available from http://www.opencontent.org/opl.shtml

		Rendered:		June 18, 2016

The content of this document is related to TYPO3,
a GNU/GPL CMS/Framework available from www.typo3.org [http://www.typo3.org/].

Table of Contents

		Introduction

		Screenshots

		Administration

		Known Issues

Appendix

		Architecture

		Exceptions

		Tokens

		Research

		Lessons Learned

		TODO

 © Copyright 2016, Elmar Hinz.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/comment.png

_images/UnclosedComment.png
/* A comment about the
[CONDITION]

was not closed.

_images/BracesMissing.png
one {
two {
three {
value = value

one {
two {
three {
value = value

/* A comment about the
[CONDITION]

was not closed.

_images/KeyValueErrors.png

_images/UnclosedValue.png
page.10.info (
A text about the

[CONDITION]

was not closed.

_images/BracesInExess.png
one.two.three {
value = value

} [ERROR (Line 26): A closing brace in excess.!
} [ERROR (line 27): A closing brace in excess.;

[l

_images/ErrorsWithLineNumberingTurnedOn.png
23|0963 one.two.three {

24|0964 value = value

25|0965 }

26l006) [BRROR: A Glosing biace in excasss
2710967) [ERROR: A closing brace in sxcess.

28[0968

[l

search.html

 Navigation

 		
 index

 		Next Generation TypoScript Parser (tsp) 1.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Elmar Hinz.
 Created using Sphinx 1.3.5.

_images/ErrorsWithLineNumberingTurnedOff.png
one.two.three {
value = value

} [ERROR (Line 26): A closing brace in excess.!
} [ERROR (line 27): A closing brace in excess.;

[l

_static/up-pressed.png

_static/comment-bright.png

_images/TowKindsOfLineNumbers.png
37[0977 one {

38|0978
39]0979
40]0980

two {
three {
value

value

_static/minus.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down.png

