

Typecraft Python

Contents:

	Typecraft Python
	Installation

	Features

	Usage

	Credits

	Installation
	Stable release

	From sources

	Usage
	CLI

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.1.1 (2016-08-15)

	0.1.0 (2016-08-14)

Indices and tables

	Index

	Module Index

	Search Page

Typecraft Python

[image: _images/typecraft_python.svg]
 [https://pypi.python.org/pypi/typecraft_python][image: _images/typecraft_python1.svg]
 [https://travis-ci.org/Typecraft/typecraft_python][image: Documentation Status]
 [https://typecraft_python.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/Typecraft/typecraft_python/]This repository contains an IGT model based on the Typecraft IGT format. It also contains a simple CLI for
performing various NLP tasks, interfacing with both NLTK and other tools such as the TreeTagger.

	Free software: MIT license

	Full Documentation: https://typecraft_python.readthedocs.io.

Installation

pip install typecraft_python

Features

	Parsing of the Typecraft XML format.

	
	Manipulation of the Typecraft IGT model format.

	
	Integrating with NLTK

	Integrating with TreeTagger

	Provides a CLI that can be used to load, convert and manipulate raw text and Typecraft XML files.

Usage

Usage: tpy [OPTIONS] COMMAND [ARGS]...

Options:
 --help Show this message and exit.

Commands:
 convert
 ntexts This command lists the number of texts in a...
 raw
 xml

Examples

Load a raw file, tokenize and tag it, and output xml (to stdout):

$ tpy raw your_file.txt

To save to a file

$ tpy raw your_file.txt -o output.xml
or
$ tpy raw your_file.txt > output.xml

To tag using a specific tagger:

$ tpy raw your_file.txt --tagger=tree # Tags using the tree tagger

To load a Typecraft xml file and tag it:

$ tpy xml your_file.xml --tag --tagger=nltk -o tagged_output.xml

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install Typecraft XML Python, run this command in your terminal:

$ pip install typecraft_python

This is the preferred method to install Typecraft XML Python, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Typecraft XML Python can be downloaded from the Github repo [https://github.com/Typecraft/tc_xml_python].

You can either clone the public repository:

$ git clone git://github.com/Typecraft/tc_xml_python

Or download the tarball [https://github.com/Typecraft/tc_xml_python/tarball/master]:

$ curl -OL https://github.com/Typecraft/tc_xml_python/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

The system can be used in two ways: As a CLI, and as a library.

CLI

The CLI currently has 4 active commands:

	raw

	xml

	ntexts

	par

raw loads raw texts, and performs a number of operations on it. It will always convert the result to a TC-XML file.
xml loads TC-xml files, and performs a number of operations on it.
ntexts loads TC-xml files, and reports how many text-objects exist in the file.
par parses parallel corpora.

All file inputs in the commands accepts “-” as input, which specifies that the input should be read from stdin.
The examples in Combined examples gives some examples of this.

raw

The raw command always loads raw text, and always outputs TC-XML files.

Usage: tpy raw [OPTIONS] [INPUT]...

Options:
 --sent-tokenize / --no-sent-tokenize
 Will sentence tokenize if true.
 --tokenize / --no-tokenize Will tokenize if true.
 --tag / --no-tag Will tag if true.
 --tagger TEXT The tagger to use.
 --title TEXT Title to attach to generated texts.
 --language TEXT The language of the input text(s).
 --meta <TEXT TEXT>... Metadata to attach to generated text(s)
 --tagset TEXT If set, the tags in the output will be
 converted into this tagset.
 -o, --output PATH If given, the output will be written to this
 file, instead of stdout.
 --help Show this message and exit.

By default, the command will perform

	Sentence-tokenization

	Tokenization

	Tagging using NLTK

	All the above assuming the language is English.

Examples

Load a raw file, tokenize and tag it, and output xml (to stdout):

$ tpy raw your_file.txt

To save to a file

$ tpy raw your_file.txt -o output.xml
or
$ tpy raw your_file.txt > output.xml

To tag using a specific tagger:

$ tpy raw your_file.txt --tagger=tree # Tags using the tree tagger

Attach “Annotator” metadata:

$ tpy raw your_file.txt --meta Annotator "Tormod Haugland"

Tags a german text

$ tpy raw your_file.txt --language=de

Tags a german text using the TreeTagger and converts all tags to the Typecraft tagset:

$ tpy raw your_file.txt --tagger=tree --tagset=tc --language=de

Suppose you have the file input.txt with the following contents:

Ich bin glucklich.

You now run the command

$ tpy raw input.txt --tagger=tree --language=de --tagset=tc

Your output (after prettifying) will be:

<?xml version="1.0" encoding="UTF-8"?>
<typecraft xmlns="http://typecraft.org/typecraft" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="https://typecraft.org/typecraft.xsd">
 <text lang="de">
 <title>Automatically generated text from tpy</title>
 <titleTranslation />
 <body />
 <phrase valid="EMPTY">
 <original>Ich bin glucklich.</original>
 <translation />
 <translation2 />
 <globaltags id="1" tagset="DEFAULT" />
 <description />
 <word head="false" text="Ich">
 <pos>PN</pos>
 <morpheme baseform="ich" meaning="" text="Ich" />
 </word>
 <word head="false" text="bin">
 <pos>AUX</pos>
 <morpheme baseform="sein" meaning="" text="bin" />
 </word>
 <word head="false" text="glücklich">
 <pos>ADJ</pos>
 <morpheme baseform="glücklich" meaning="" text="glücklich" />
 </word>
 <word head="false" text=".">
 <pos>PUN</pos>
 <morpheme baseform="." meaning="" text="." />
 </word>
 </phrase>
 </text>
</typecraft>

xml

The xml command loads a TC-XML file, and performs a number of specified operations on it.

Usage: tpy xml [OPTIONS] [INPUT]...

Options:
 --tokenize / --no-tokenize Will re-tokenize all phrases if true.
 --tag / --no-tag Will tag if true.
 --tagger TEXT The tagger to use.
 --split INTEGER If greater than 1, the output will be split into
 the given value number of texts.
 --merge / --no-merge If true, will merge all files.
 --title TEXT Title to attach to generated texts.
 --override-language TEXT If set, will override the language used in all
 calculations and set the language for all texts.
 --meta <TEXT TEXT>... Metadata to attach to generated text(s)
 --tagset TEXT If set, the tags in the output will be converted
 into this tagset.
 -o, --output PATH If given, the output will be written to this
 file, instead of stdout.
 --help Show this message and exit.

By default the command will do nothing but re-output the input. The “-o” flag behaves identically to the
one in raw.

Notes

	Split will split into the given number of files, even if the given number is larger than the number of phrases.

Examples

Load a text and splits it into 10 smaller texts (all contained in one file):

$ tpy xml your_file.xml --split 10

Load a text and convert the tagset:

$ tpy xml your_file.xml --tagset=tc

Tag or re-tag a text:

$ tpy xml your_file.xml --tag --tagger=tree

Change language and set some metadata:

$ tpy xml --override-language=nob \
 --meta Annotator "Tormod Haugland" \
 --meta "Content description" "This is some cool content"

par

par will parse parallel corpora files. Currently there is only one supported format,
named continuous or linear. The output is always Typecraft XML. This format requires there to
to be n consecutive lines in the file, one per language, for each phrase that is to be translated.

Note that the Typecraft XML format only supports two translation tiers.

Usage: tpy par [OPTIONS] [INPUT]... │
 │
 The `par` command attempts to parse raw text as parallel corpora. │
 │
 The input is one or more files containing raw text, in some parallel │
 format. │
 │
Options: │
 -f, --format TEXT The format of the parallel file. │
 -n, --num-langs INTEGER The number of languages present. │
 -o, --output PATH If given, the output will be written to this file, │
 instead of stdout. │
 --help Show this message and exit.

Examples

Given the file input.txt with the contents below:

Hi this is a nice sentence.
Hei dette er en fin setning.
This is sentence number two.
Dette er setning nummber to.

Which is a parallel corpus file with two languages (Norwegian and English).
We can call the command

$ tpy par -n 2 input.txt

The resulting output will be Typecraft XML with a single text with two phrases. The phrases will not
be tokenized, with the appropriate amount of free translations tiers set.

ntexts

ntexts will output the number of texts in a TC-XML file.

Examples

Usage: tpy ntexts [OPTIONS] INPUT

 This command lists the number of texts in a TCXml file. :param input:
 :return:

Options:
 --help Show this message and exit.

Examples

$ tpy ntexts input_with_10_texts.xml
10

Combined examples

Load and treat a raw file, then split it into 10 texts:

The "-" in the xml command reads the piped input
$ tpy raw input.txt | tpy xml - --split 10

Load and treat a raw file, then merge it with an existing files texts.

$ tpy raw append_this.txt | tpy xml - to_this.xml --merge

Make sure ntexts behaves correctly:

$ tpy raw input.txt | tpy xml - --split 50 | tpy ntexts -
100

Merge files then re-split:

$ tpy xml corpus{1..100}.xml --merge | tpy xml - -split 1000

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/Typecraft/typecraft_python/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Typecraft XML Python could always use more documentation, whether as part of the
official Typecraft XML Python docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/Typecraft/typecraft_python/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up typecraft_python for local development.

	Fork the typecraft_python repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/typecraft_python.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv typecraft_python
$ cd typecraft_python/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b feature/name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 typecraft_python tests
$ py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin feature/name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.5 and 3.6. Check
https://travis-ci.org/Typecraft/typecraft_python/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_typecraft_python

Credits

Development Lead

	Tormod Haugland <tormod.haugland@gmail.com>

Contributors

None yet. Why not be the first?

History

0.1.1 (2016-08-15)

	Fixed some small bugs.

0.1.0 (2016-08-14)

	
	First release. Added main bulk of initial code:

	
	Parser works in its most basic inception and parses TC-XML documents into its object-tree

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Typecraft Python

 		
 Typecraft Python

 		
 Installation

 		
 Features

 		
 Usage

 		
 Examples

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 CLI

 		
 raw

 		
 xml

 		
 par

 		
 ntexts

 		
 Combined examples

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.1 (2016-08-15)

 		
 0.1.0 (2016-08-14)

_static/up.png

_static/up-pressed.png

