

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	txfixtures 0.2.1 documentation

Twisted integration with Python Testfixtures

txfixtures hooks into the testtools test fixture [http://testtools.readthedocs.io/en/latest/for-test-authors.html#fixtures] interface, so that you can
write tests that rely on having an external Twisted daemon.

See:

	https://launchpad.net/txfixtures

	https://launchpad.net/testtools

Contents:

	Run asynchronous code from test cases

	Spawn, control and monitor test services

	Setup a phantomjs Selenium driver

	API documentation

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Free Ekanayaka.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	txfixtures 0.2.1 documentation

Run asynchronous code from test cases

The Reactor fixture can be used to drive
asynchronous Twisted code from a regular synchronous Python
TestCase [https://testtools.readthedocs.io/en/latest/api.html#testtools.TestCase].

The approach differs from trial [http://twistedmatrix.com/trac/wiki/TwistedTrial] or testtools twisted support [https://testtools.readthedocs.io/en/latest/twisted-support.html]:
instead of starting the reactor in the main thread and letting it spin
for a while waiting for the Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html]
returned by the test to fire, this fixture will keep the reactor
running in a background thread until cleanup.

When used with testresources [https://pypi.python.org/pypi/testresources]‘s FixtureResource and
OptimisingTestSuite, this fixture makes it possible to have
full control and monitoring over long-running processes that should be
up for the whole test suite run, and maybe produce output useful for
the test itself.

The typical use case is integration testing.

>>> from testtools import TestCase

>>> from twisted.internet import reactor
>>> from twisted.internet.threads import blockingCallFromThread
>>> from twisted.internet.utils import getProcessOutput

>>> from txfixtures import Reactor

>>> class TestUsingAsyncAPIs(TestCase):
...
... def setUp(self):
... super().setUp()
... self.useFixture(Reactor())
...
... def test_uptime(self):
... out = blockingCallFromThread(reactor, getProcessOutput, b"uptime")
... self.assertIn("load average", out.decode("utf-8"))
...
>>> test = TestUsingAsyncAPIs(methodName="test_uptime")
>>> test.run().wasSuccessful()
True

 Copyright 2016, Free Ekanayaka.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	txfixtures 0.2.1 documentation

Spawn, control and monitor test services

The Service fixture can be used to spawn
a background service process (for instance a web application), and
leave it running for the duration of the test suite (see
testresources-integration).

It supports real-time streaming of the service standard output to Python’s
logging [https://docs.python.org/3.5/library/logging.html#module-logging] system.

Spawn a simple service fixture listening to a port

Let’s create a test that spawns a dummy HTTP server that listens to
port 8080:

>>> import socket

>>> from testtools import TestCase
>>> from txfixtures import Reactor, Service

>>> HTTP_SERVER = "python3 -m http.server 8080".split(" ")

>>> class HTTPServerTest(TestCase):
...
... def setUp(self):
... super().setUp()
... self.useFixture(Reactor())
...
... # Create a service fixture that will spawn the HTTP server
... # and wait for it to listen to port 8080.
... self.service = Service(HTTP_SERVER)
... self.service.expectPort(8080)
...
... self.useFixture(self.service)
...
... def test_connect(self):
... connection = socket.socket()
... connection.connect(("127.0.0.1", 8080))
... self.assertEqual(connection.getsockname()[0], "127.0.0.1")

>>> test = HTTPServerTest(methodName="test_connect")
>>> test.run().wasSuccessful()
True

Forward standard output to the Python logging system

Let’s spawn a simple HTTP server and have its standard output forwarded to
the Python logging system:

>>> import requests

>>> from fixtures import FakeLogger

>>> TWIST_COMMAND = "twistd -n web".split(" ")

This format string will be used to build a regular expression to parse
each output line of the service, and map it to a Python LogRecord. A
sample output line from the twistd web command looks like:
#
2016-11-17T22:18:36+0000 [-] Site starting on 8080
#
>>> TWIST_FORMAT = "{Y}-{m}-{d}T{H}:{M}:{S}\+0000 \[{name}\] {message}"

This output string will be used as a "marker" indicating that the service
has initialized, and should shortly start listening to the expected port (if
one was given). The fixture.setUp() method will intercept this marker and
then wait for the service to actually open the port.
>>> TWIST_OUTPUT = "Site starting on 8080"

>>> class TwistedWebTest(TestCase):
...
... def setUp(self):
... super().setUp()
... self.logger = self.useFixture(FakeLogger())
... self.useFixture(Reactor())
... self.service = Service(TWIST_COMMAND)
... self.service.setOutputFormat(TWIST_FORMAT)
... self.service.expectOutput(TWIST_OUTPUT)
... self.service.expectPort(8080)
... self.useFixture(self.service)
...
... def test_request(self):
... response = requests.get("http://localhost:8080")
... self.assertEqual(200, response.status_code)
... self.assertIn('"GET / HTTP/1.1" 200', self.logger.output)
...
>>> test = TwistedWebTest(methodName="test_request")
>>> test.run().wasSuccessful()
True

 Copyright 2016, Free Ekanayaka.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	txfixtures 0.2.1 documentation

Setup a phantomjs Selenium driver

The PhantomJS fixture starts a
phantomjs [http://phantomjs.org] service in the background and exposes it via its
webdriver attribute, which can then be used by test cases for
Selenium [http://selenium-python.readthedocs.io/]-based assertions:

>>> from fixtures import FakeLogger
>>> from testtools import TestCase
>>> from txfixtures import Reactor, Service, PhantomJS

>>> TWIST_COMMAND = "twistd -n web".split(" ")

>>> class HTTPServerTest(TestCase):
...
... def setUp(self):
... super().setUp()
... self.logger = self.useFixture(FakeLogger())
... self.useFixture(Reactor())
...
... # Create a sample web server
... self.service = Service(TWIST_COMMAND)
... self.service.expectPort(8080)
... self.useFixture(self.service)
...
... self.phantomjs = self.useFixture(PhantomJS())
...
... def test_home_page(self):
... self.phantomjs.webdriver.get("http://localhost:8080")
... self.assertEqual("Twisted Web Demo", self.phantomjs.webdriver.title)

>>> test = HTTPServerTest(methodName="test_home_page")
>>> test.run().wasSuccessful()
True

 Copyright 2016, Free Ekanayaka.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	txfixtures 0.2.1 documentation

API documentation

Generated reference documentation for all the public functionality of
txfixtures.

txfixtures.reactor

	
class txfixtures.reactor.Reactor(reactor=None, timeout=5)[source]

	A fixture to run the Twisted reactor in a separate thread.

This fixture will spawn a new thread in the test process and run the
Twisted reactor in it. Test code can then invoke asynchronous APIs
by using blockingCallFromThread() [http://twistedmatrix.com/documents/current/api/twisted.internet.threads.html#blockingCallFromThread].

	Parameters:	
	reactor – The Twisted reactor to run.

	timeout – Raise an exception if the reactor or the thread is
it runs in doesn’t start (at setUp time) or doesn’t stop (at
cleanUp time) in this amount of seconds.

	Variables:	thread – The Thread [https://docs.python.org/3.5/library/threading.html#threading.Thread] that the reactor runs in.

	
call(timeout, f, *a, **kw)[source]

	Convenience around blockingCallFromThread [http://twistedmatrix.com/documents/current/api/twisted.internet.threads.html#blockingCallFromThread],
with timeout support.

The function f will be invoked in the reactor’s thread with the
given arguments and keyword arguments. If f returns a Deferred, the
calling code will block until it has fired.

	Returns:	The value returned by f or the value fired by the Deferred
it returned. If f traces back or the Deferred it returned
errbacks, the relevant exception will be propagated to the caller
of this method.

	Raises:	CallFromThreadTimeout – If timeout seconds have
elapsed and the Deferred returned by f hasn’t fired yet.

	
reset()[source]

	Make sure that the reactor is still running.

If the reactor and its thread have died, this method will try to
recover them by creating a new thread and starting the reactor again.

txfixtures.service

	
class txfixtures.service.Service(command, reactor=None, timeout=15, env=None)[source]

	Spawn, control and monitor a background service.

	
allocatePort()[source]

	Allocate an unused port.

This method can be used by subclasses to allocate a random ports for
the service they spawn.

There is a small race condition here (between the time we allocate the
port, and the time it actually gets used), but for the purposes for
which this method gets used it isn’t a problem in practice.

	
class txfixtures.service.ServiceOutputParser(service, logger=None, pattern=None)[source]

	Parse the standard output stream of a service and forward it to the Python
logging system.

The stream is assumed to be a UTF-8 sequence of lines each delimited by
a (configurable) delimiter character.

Each received line is tested against the RegEx pattern provided in the
constructor. If a match is found, a LogRecord [https://docs.python.org/3.5/library/logging.html#logging.LogRecord] is built
using the information from the groups of the match object, otherwise
default values will be used.

The record is then passed to the Logger [https://docs.python.org/3.5/library/logging.html#logging.Logger] provided in the
constructor.

Match objects that result from the RegEx pattern are supposed to provide
groups named after the substitutions below.

	Parameters:	service – A string identifying the service whose output is being
parsed. It will be attached as ‘service’ attribute to all log
records emitted.

	
delimiter = '\n'

	The delimiter character identifying the end of a line.

	
lineLengthExceeded(line)[source]

	Simply truncate the line.

	
lineReceived(line)[source]

	Foward the received line to the Python logging system.

	
substitutions = {'M': '(?P<M>\\d{2})', 'S': '(?P<S>\\d{2})', 'd': '(?P<d>\\d{2})', 'Y': '(?P<Y>\\d{4})', 'H': '(?P<H>\\d{2})', 'message': '(?P<message>.+)', 'm': '(?P<m>\\d{2})', 'levelname': '(?P<levelname>[a-zA-Z]+)', 'msecs': '(?P<msecs>\\d{3})', 'name': '(?P<name>.+)'}

	Substitutions for commonly used groups in line match patterns. For
example, this allows you to use “{Y}-{m}-{S}” as pattern snippet, as

	
whenLineContains(text, callback)[source]

	Fire the given callback when a line contains the given text.

The callback will be fired only once when and if a match is found.

	
class txfixtures.service.ServiceProtocol(reactor=None, parser=None, timeout=15)[source]

	Start and stop a background service process.

This ProcessProtocol [http://twistedmatrix.com/documents/current/api/twisted.internet.protocol.ProcessProtocol.html] manages the start
up and termination phases of a background service process. The process is
considered ‘running’ when it has stayed up for at least 0.1 seconds (or any
other non default value which minUptime is set too), and optionally when
it has emitted a certain string and/or it has started listening to a
certain port.

	
expectedOutput = None

	Optional text that we expect the process to emit in standard output
before we consider it ready.

	
expectedPort = None

	Optional port number that we expect the service process to listen,
before we consider it ready.

	
minUptime = 0.1

	The service process must stay up at least this amount of seconds, before
it’s considered running. This allows to catch common issues like the
service process executable not being in PATH or not being executable.

	
ready = None

	Deferred that will fire when the service is considered ready, i.e.
it has stayed up for at least minUptime seconds, has produced the
expected output (if any), and is listening to the expected port (if
any). Upon cancellation, any waiting activity will be stopped.

	
terminated = None

	Deferred that will fire when the service has fully terminated, i.e.
it has exited and we parent process have read any outstanding data
in the pipes and have closed them.

	
timeout = None

	Maximum amount of seconds to wait for the service to be ready. After
that, the ‘ready’ deferred will errback with a TimeoutError.

txfixtures.phantomjs

 Copyright 2016, Free Ekanayaka.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	txfixtures 0.2.1 documentation

 Python Module Index

 t

 			

 		
 t	

 	[image: -]
 	
 txfixtures	

 	
 	
 txfixtures.reactor	

 	
 	
 txfixtures.service	

 Copyright 2016, Free Ekanayaka.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	txfixtures 0.2.1 documentation

Index

 A
 | C
 | D
 | E
 | L
 | M
 | R
 | S
 | T
 | W

A

 	

 	allocatePort() (txfixtures.service.Service method)

C

 	

 	call() (txfixtures.reactor.Reactor method)

D

 	

 	delimiter (txfixtures.service.ServiceOutputParser attribute)

E

 	

 	expectedOutput (txfixtures.service.ServiceProtocol attribute)

 	

 	expectedPort (txfixtures.service.ServiceProtocol attribute)

L

 	

 	lineLengthExceeded() (txfixtures.service.ServiceOutputParser method)

 	

 	lineReceived() (txfixtures.service.ServiceOutputParser method)

M

 	

 	minUptime (txfixtures.service.ServiceProtocol attribute)

R

 	

 	Reactor (class in txfixtures.reactor)

 	ready (txfixtures.service.ServiceProtocol attribute)

 	

 	reset() (txfixtures.reactor.Reactor method)

S

 	

 	Service (class in txfixtures.service)

 	ServiceOutputParser (class in txfixtures.service)

 	

 	ServiceProtocol (class in txfixtures.service)

 	substitutions (txfixtures.service.ServiceOutputParser attribute)

T

 	

 	terminated (txfixtures.service.ServiceProtocol attribute)

 	timeout (txfixtures.service.ServiceProtocol attribute)

 	

 	txfixtures.reactor (module)

 	txfixtures.service (module)

W

 	

 	whenLineContains() (txfixtures.service.ServiceOutputParser method)

 Copyright 2016, Free Ekanayaka.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		txfixtures 0.2.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Free Ekanayaka.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_modules/txfixtures/reactor.html

 Navigation

 		
 index

 		
 modules |

 		txfixtures 0.2.1 documentation »

 		Module code »

 Source code for txfixtures.reactor

import sys
import signal
import logging
import threading

from six.moves.queue import Queue

from fixtures import Fixture

from twisted.internet import reactor as defaultTwistedReactor
from twisted.internet.posixbase import _SIGCHLDWaker

from txfixtures._twisted.threading import (
 CallFromThreadTimeout,
 interruptableCallFromThread,
)

TIMEOUT = 5

[docs]class Reactor(Fixture):
 """A fixture to run the Twisted reactor in a separate thread.

 This fixture will spawn a new thread in the test process and run the
 Twisted reactor in it. Test code can then invoke asynchronous APIs
 by using :func:`~twisted.internet.threads.blockingCallFromThread`.
 """

 def __init__(self, reactor=None, timeout=TIMEOUT):
 """
 :param reactor: The Twisted reactor to run.
 :param timeout: Raise an exception if the reactor or the thread is
 it runs in doesn't start (at setUp time) or doesn't stop (at
 cleanUp time) in this amount of seconds.

 :ivar thread: The `~threading.Thread` that the reactor runs in.
 """
 super(Reactor, self).__init__()
 self.reactor = reactor or defaultTwistedReactor
 self.timeout = timeout
 self.thread = None

[docs] def call(self, timeout, f, *a, **kw):
 """
 Convenience around `~twisted.internet.threads.blockingCallFromThread`,
 with timeout support.

 The function `f` will be invoked in the reactor's thread with the
 given arguments and keyword arguments. If `f` returns a Deferred, the
 calling code will block until it has fired.

 :return: The value returned by `f` or the value fired by the Deferred
 it returned. If `f` traces back or the Deferred it returned
 errbacks, the relevant exception will be propagated to the caller
 of this method.

 :raises CallFromThreadTimeout: If `timeout` seconds have
 elapsed and the Deferred returned by `f` hasn't fired yet.
 """
 return interruptableCallFromThread(self.reactor, timeout, f, *a, **kw)

[docs] def reset(self):
 """Make sure that the reactor is still running.

 If the reactor and its thread have died, this method will try to
 recover them by creating a new thread and starting the reactor again.
 """

 if not self.thread.isAlive():
 # The thread died, let's try our best to recover.
 logging.warning("Twisted reactor thread died, trying to recover")
 self._stop() # Resets the reactor in case it's in a broken state.
 self._start()
 else:
 # The thread is still running, make sure the reactor as well.
 self._assertReactorRunning()

 def _setUp(self):
 logging.info("Starting Twisted reactor in a separate thread")
 self._start()

 def _start(self):
 ready = Queue() # Will be put None as soon as the reactor starts

 self.reactor.callWhenRunning(ready.put, None)
 self.thread = threading.Thread(
 target=self.reactor.run,
 # Don't let the reactor try to install signal handlers, since they
 # can only be installed from the main thread (we'll do it by hand
 # just below).
 kwargs=dict(installSignalHandlers=False),
)
 self.addCleanup(self._stop)

 # Run in daemon mode. No matter what happens, when the test process
 # exists we don't want to hang waitng for the reactor thread to
 # terminate.
 self.thread.daemon = True

 self.thread.start()

 # Wait for the reactor to actually start and double check it's spinning
 ready.get(timeout=self.timeout)
 assert self.reactor.running, "Could not start the reactor"

 # Add the SIGCHLD waker as reactor reader. This needs to run in the
 # reactor thread as it's not thread-safe. The SIGCHLD waker will
 # react to SIGCHLD signals by writing to a dummy pipe, which will
 # wake up epoll() calls.
 self.call(1, self._addSIGCHLDWaker)

 # Install the actual signal hander (this needs to happen in the main
 # thread).
 self.reactor._childWaker.install()

 # Handle SIGINT (ctrl-c) and SIGTERM. This mimics the regular Twisted
 # code in _SignalReactorMixin._handleSignals (which can't be called
 # from a non-main thread).
 signal.signal(signal.SIGINT, self._handleSigInt)
 signal.signal(signal.SIGTERM, self._handleSigTerm)

 logging.info("Reactor started")

 def _stop(self):

 if self.thread.isAlive():
 # The thread is running, let's attempt a clean shutdown.
 logging.info("Stopping Twisted reactor and wait for its thread")

 # Assert that the reactor is still running, because, if not, it
 # means that it's basically hung, and there's nothing we can
 # do to stop it (we're in a different thread here).
 self._assertReactorRunning()

 # Use reactor.crash(), since calling reactor.stop() makes it
 # impossible to re-start it.
 try:
 self.call(self.timeout, self.reactor.crash)
 except CallFromThreadTimeout:
 raise RuntimeError("Could not stop the reactor")

 # The thread should exit almost immediately, try to wait a bit, and
 # fail if it doesn't.
 self.thread.join(timeout=self.timeout)
 if self.thread.isAlive():
 raise RuntimeError("Could not stop the reactor thread")

 elif self.reactor.running:
 # If the thread is dead but the reactor is still "running", it
 # probably means that the thread crashed badly, let's clean up
 # the reactor's state as much as we can and hope for the best.
 # It's thread-safe to invoke crash() from here since the reactor
 # thread isn't running anymore.
 logging.warning(
 "Twisted reactor has broken state, trying to reset it")
 self.reactor.crash()

 logging.info("Reactor stopped")

 def _assertReactorRunning(self):
 """Check if self.reactor is still running.

 This method is called by _stop() and _reset() in case the reactor's
 thread is still runnning. It will make sure that the reactor is still
 running as well, or raise an exception otherwise (since in that
 situation the thread is basically hung and there's nothing we can do
 for recovering).
 """
 if not self.reactor.running:
 raise RuntimeError("Hung reactor thread detected")

 def _addSIGCHLDWaker(self):
 """Add a `_SIGNCHLDWaker` to wake up the reactor when a child exits."""
 self.reactor._childWaker = _SIGCHLDWaker(self.reactor)
 self.reactor._internalReaders.add(self.reactor._childWaker)
 self.reactor.addReader(self.reactor._childWaker)

 # TODO: the signal handling code below is not tested, probably the best way
 # would be to have an integration test that spawns a separate test
 # process and send signals to it (using subunit.IsolatedTestCase?).

 def _handleSigInt(self, *args): # pragma: no cover
 """
 Called when a SIGINT signal is received (for example user hit ctrl-c).
 """
 self.reactor.sigInt(*args)
 self._maybeFixReactorThreadRace()
 signal.default_int_handler()

 def _handleSigTerm(self, *args): # pragma: no cover
 """
 Called when a SIGTERM signal is received.
 """
 self.reactor.sigTerm(*args)
 self._maybeFixReactorThreadRace()
 raise sys.exit(args[0])

 def _maybeFixReactorThreadRace(self): # pragma: no cover
 # XXX For some obscure reason, this is needed in order to have the
 # reactor properly wait for the shutdown sequence. It's probably
 # a race between this thread and the reactor thread. Needs
 # investigation.
 spin = Queue()
 self.reactor.callFromThread(self.reactor.callLater, 0, spin.put, None)
 spin.get(timeout=self.timeout)

 © Copyright 2016, Free Ekanayaka.
 Created using Sphinx 1.3.5.

_modules/txfixtures/service.html

 Navigation

 		
 index

 		
 modules |

 		txfixtures 0.2.1 documentation »

 		Module code »

 Source code for txfixtures.service

import logging
import os
import re
import signal
import socket
import logging

from datetime import datetime

from psutil import Process

from fixtures import Fixture

from twisted.internet import reactor as defaultTwistedReactor
from twisted.internet.protocol import (
 Factory,
 Protocol,
 ProcessProtocol,
)
from twisted.internet.defer import (
 Deferred,
 inlineCallbacks,
)
from twisted.internet.task import LoopingCall
from twisted.internet.endpoints import TCP4ClientEndpoint
from twisted.internet.error import (
 ConnectionRefusedError,
 ConnectingCancelledError,
)
from twisted.protocols.basic import LineOnlyReceiver

from txfixtures._twisted.threading import interruptableCallFromThread

TIMEOUT = 15

Some processes (like mongodb) use an abbreviated code for level names. We
keep a mapping for transparently convert between them and standard Python
level names.
SHORT_LEVELS = {
 "C": "CRITICAL",
 "E": "ERROR",
 "W": "WARNING",
 "I": "INFO",
 "D": "DEBUG",
}

[docs]class Service(Fixture):
 """Spawn, control and monitor a background service."""

 def __init__(self, command, reactor=None, timeout=TIMEOUT, env=None):
 super(Service, self).__init__()
 self.command = command
 self.env = _encodeDictValues(env or os.environ.copy())
 parser = ServiceOutputParser(self._executable)

 # XXX Set the reactor as private, since the public 'reactor' attribute
 # is typically a Reactor fixture, set by testresources as
 # dependency.
 if reactor is None:
 reactor = defaultTwistedReactor
 self._reactor = reactor

 self.protocol = ServiceProtocol(
 reactor=self._reactor, parser=parser, timeout=timeout)

 self._eventTriggerID = None

 def reset(self):
 if self.protocol.terminated.called:
 raise RuntimeError("Service died")

 def expectOutput(self, data):
 self.protocol.expectedOutput = data

 def expectPort(self, port):
 self.protocol.expectedPort = port

 def setOutputFormat(self, outFormat):
 self.protocol.parser.pattern = outFormat

[docs] def allocatePort(self):
 """Allocate an unused port.

 This method can be used by subclasses to allocate a random ports for
 the service they spawn.

 There is a small race condition here (between the time we allocate the
 port, and the time it actually gets used), but for the purposes for
 which this method gets used it isn't a problem in practice.
 """
 sock = socket.socket()
 try:
 sock.bind(("localhost", 0))
 _, port = sock.getsockname()
 return port
 finally:
 sock.close()

 def _setUp(self):
 logging.info("Spawning service process %s", self.command)
 self.addCleanup(self._stop)
 self._callFromThread(self._start)

 @property
 def _executable(self):
 return self.command[0]

 @property
 def _args(self):
 return self.command

 @property
 def _name(self):
 return os.path.basename(self._executable)

 @inlineCallbacks
 def _start(self):
 self._reactor.spawnProcess(
 self.protocol, self._executable, args=self._args, env=self.env)

 # This cleanup handler will be triggered in case of SIGTERM and SIGINT,
 # when the reactor will initiate an unexpected shutdown sequence.
 self._eventTriggerID = self._reactor.addSystemEventTrigger(
 "before", "shutdown", self._terminateProcess)

 yield self.protocol.ready

 def _stop(self):
 logging.info("Stopping service process %s", self.command)

 try:
 self._callFromThread(self._terminateProcess)
 except:
 if self.protocol.transport.pid:
 # In case something goes wrong let's try our best to not leave
 # running processes around.
 logging.info(
 "Service process didn't terminate, trying to kill it")
 process = Process(self.protocol.transport.pid)
 process.kill()
 process.wait(timeout=1)

 def _callFromThread(self, f):
 # Set an additional timeout for the callFromThread call itself. We
 # want this timeout to be greater than the 'ready' deferred timeout
 # set in _start(), so if the reactor thread is hung or dies we still
 # properly timeout.
 timeout = self.protocol.timeout + 1
 interruptableCallFromThread(self._reactor, timeout, f)

 @inlineCallbacks
 def _terminateProcess(self):
 if self._eventTriggerID:
 # Clear the shutdown event trigger, since we're going to cleanup
 # normally.
 self._reactor.removeSystemEventTrigger(self._eventTriggerID)
 if self.protocol.transport.pid:
 logging.info("Sending SIGTERM to service process '%s'", self._name)
 self.protocol.transport.signalProcess(signal.SIGTERM)
 logging.info("Waiting for service process to terminate")
 yield self.protocol.terminated

[docs]class ServiceProtocol(ProcessProtocol):
 """Start and stop a background service process.

 This :class:`~twisted.internet.protocol.ProcessProtocol` manages the start
 up and termination phases of a background service process. The process is
 considered 'running' when it has stayed up for at least 0.1 seconds (or any
 other non default value which `minUptime` is set too), and optionally when
 it has emitted a certain string and/or it has started listening to a
 certain port.
 """

 #: The service process must stay up at least this amount of seconds, before
 #: it's considered running. This allows to catch common issues like the
 #: service process executable not being in PATH or not being executable.
 minUptime = 0.1

 def __init__(self, reactor=None, parser=None, timeout=TIMEOUT):
 self.reactor = reactor or defaultTwistedReactor
 self.parser = parser or ServiceOutputParser("")

 #: Maximum amount of seconds to wait for the service to be ready. After
 #: that, the 'ready' deferred will errback with a TimeoutError.
 self.timeout = timeout

 #: Optional text that we expect the process to emit in standard output
 #: before we consider it ready.
 self.expectedOutput = None

 #: Optional port number that we expect the service process to listen,
 #: before we consider it ready.
 self.expectedPort = None

 #: Deferred that will fire when the service is considered ready, i.e.
 #: it has stayed up for at least minUptime seconds, has produced the
 #: expected output (if any), and is listening to the expected port (if
 #: any). Upon cancellation, any waiting activity will be stopped.
 self.ready = Deferred(lambda _: self._stopWaitingForReady())

 #: Deferred that will fire when the service has fully terminated, i.e.
 #: it has exited and we parent process have read any outstanding data
 #: in the pipes and have closed them.
 self.terminated = Deferred()

 # Delayed call that gets started right after the process has been
 # spawned. Its purpose is to make the protocol "sleep" for a minUptime
 # seconds (typically 0.1 seconds): if the process exits before this
 # little time has elapsed, an error gets raised.
 self._minUptimeCall = None

 # Deferred that will be fired when the process emits the expected
 # output (if any).
 self._expectedOutputReady = Deferred()

 # A LoopingCall instance that will periodically try to open the port
 # that the process is supposed to start listening to.
 self._probePortLoop = None

 # A connector as returned by TCP4ClientEndpoint.connect() that can be
 # used to abort an ongoing connection attempt as performed by the
 # port probe loop.
 self._probePortAttempt = None

 def connectionMade(self):
 # Called (indirectly) by `spawnProcess` after the `os.fork` call has
 # succeeded.

 logging.info("Service process spawned")

 self.ready.addTimeout(self.timeout, self.reactor)

 # The twisted.protocols.basic.LineOnlyReceiver class expects to know
 # when the transport is disconnecting.
 self.disconnecting = False

 # Let's see if the process stays running for at least
 self._minUptimeCall = self.reactor.callLater(
 self.minUptime, self._minUptimeElapsed)

 if self.expectedOutput:
 # From this point on, be prepared to receive the expected output at
 # any time.
 self.parser.whenLineContains(
 self.expectedOutput, self._expectedOutputReceived)
 else:
 # There's no output we expect, so we fire this Deferred right away.
 # When _minUptimeElapsed will be called, the callback that gets
 # attached to this Deferred will fire synchronously.
 self._expectedOutputReady.callback(None)

 self.parser.makeConnection(self)

 def outReceived(self, data):
 # Called when we receive data from the standard output of the service.
 self.parser.dataReceived(data)

 errReceived = outReceived

 def processExited(self, reason):
 # Called when the service process exited.

 logging.info("Service process exited: %s", reason.getErrorMessage())

 # If we did not reach the 'ready' state yet, the let's fire the 'ready'
 # Deferred with an error.
 if not self.ready.called:
 self._stopWaitingForReady(reason)

 def processEnded(self, reason):
 # Called when the process has been reaped.
 logging.info("Service process reaped")
 self.terminated.callback(None)

 def _minUptimeElapsed(self):
 """
 Called if the process didn't exit in the first `minUptime` seconds
 after having been spawned.
 """
 logging.info("Service process alive for %.1f seconds", self.minUptime)

 # Now wait for the expected output and then start polling the port
 # we expect the service to listen to (if there's no expected output
 # and/or no expected port, these deferreds will fire synchronously).
 if self.expectedPort:
 self._expectedOutputReady.addCallback(self._startProbePortLoop)
 self._expectedOutputReady.addCallback(self._maybeFireReady)

 def _expectedOutputReceived(self):
 """
 Called after `_minUptimeElapsed` and the service process has emitted
 the expected output string.
 """
 # Let's fire the relevant deferred, so we can move forward to polling
 # the expected port, or declaring the service as ready (if there's no
 # expected port).
 logging.info("Service process emitted '%s'", self.expectedOutput)
 self._expectedOutputReady.callback(None)

 @inlineCallbacks
 def _startProbePortLoop(self, _):
 """
 Called when the service process has stayed up for at least `minUptime`
 seconds and it has emitted the expected output string (or there was no
 expected output string at all).
 """

 self._probePortLoop = LoopingCall(self._probePort)
 self._probePortLoop.clock = self.reactor

 # The LoopingCall.start() method returns a deferred that will fire
 # when the loop stops, i.e. when we successfully probe the port.
 yield self._probePortLoop.start(0.1)

 @inlineCallbacks
 def _probePort(self):
 """Perform a single attempt to connect to the expected port.

 If the probe succeeds the probe loop will be stoped.

 If the probe fails with a connection error, we'll just return
 gracefully (we'll be invoked again at the next loop iteration).
 """
 logging.info("Polling service port '%s'", self.expectedPort)

 endpoint = TCP4ClientEndpoint(
 self.reactor, "localhost", self.expectedPort)

 try:
 factory = Factory()
 factory.protocol = Protocol
 self._probePortAttempt = endpoint.connect(factory)
 yield self._probePortAttempt
 except ConnectionRefusedError as error:
 logging.info("Service port probe failed: %s", error)
 except ConnectingCancelledError as error:
 # This happens if _stopWaitingForReady gets called while we are
 # waiting for the enpoint connect() to succeed or fail.
 logging.info("Service port probe cancelled: %s", error)
 else:
 if self._probePortLoop.running:
 self._probePortLoop.stop()
 logging.info("Service opened port %d", self.expectedPort)
 finally:
 self._probePortAttempt = None

 def _maybeFireReady(self, result):
 """Fire the 'ready' deferred, unless we're aborting the startup.

 If the startup sequence is aborting (either because the `ready`
 deferred was cancelled by user code, or because the process died and
 `processExited` was called), this will just be a no-op, as we rely
 on the aborting code to errback the `ready` deferred.
 """
 if not self.disconnecting:
 logging.info("Service process ready")
 self.ready.callback(result)

 def _stopWaitingForReady(self, reason=None):
 """
 Stop any delayed call or activity associated with the initial waiting
 for the service to be ready.

 If `reason` is passed, the `ready` deferred will errback with the given
 failure.
 """
 # This will prevent the ServiceOutputParser protocol from firing any
 # further lineReceived event, so we don't fire _expectedOutputReady.
 #
 # It will also prevent _maybeFireReady from firing the 'ready'
 # deferred, since we want to do it ourselves with the given reason (if
 # any).
 self.disconnecting = True

 message = None

 if self._minUptimeCall.active():
 self._minUptimeCall.cancel()
 message = "minimum uptime not yet elapsed"

 elif self.expectedOutput and not self._expectedOutputReady.called:
 message = "expected output not yet received"

 elif self.expectedPort:
 if self._probePortAttempt:
 self._probePortAttempt.cancel()

 self._probePortLoop.stop()
 message = "expected port not yet open"

 # We can safely assume that one of the conditions above is holding,
 # because otherwise the 'ready' deferred would have already fired. In
 # any case let's put an explicit assertion here for good measure.
 assert message, "Unexpected protocol state while cancelling wait"

 logging.info(
 "Give up waiting for the service to be ready: %s", message)

 if reason:
 self.ready.callback(reason)

[docs]class ServiceOutputParser(LineOnlyReceiver):
 """
 Parse the standard output stream of a service and forward it to the Python
 logging system.

 The stream is assumed to be a UTF-8 sequence of lines each delimited by
 a (configurable) delimiter character.

 Each received line is tested against the RegEx pattern provided in the
 constructor. If a match is found, a :class:`~logging.LogRecord` is built
 using the information from the groups of the match object, otherwise
 default values will be used.

 The record is then passed to the :class:`~logging.Logger` provided in the
 constructor.

 Match objects that result from the RegEx pattern are supposed to provide
 groups named after the substitutions below.
 """

 #: The delimiter character identifying the end of a line.
 delimiter = b"\n"

 #: Substitutions for commonly used groups in line match patterns. For
 #: example, this allows you to use "{Y}-{m}-{S}" as pattern snippet, as
 # opposed to an explicit "(?P<Y>\d{4})-(?P<m>\d{2})-(?P<d>\d{2})".
 substitutions = {
 "Y": "(?P<Y>\d{4})",
 "m": "(?P<m>\d{2})",
 "d": "(?P<d>\d{2})",
 "H": "(?P<H>\d{2})",
 "M": "(?P<M>\d{2})",
 "S": "(?P<S>\d{2})",
 "msecs": "(?P<msecs>\d{3})",
 "levelname": "(?P<levelname>[a-zA-Z]+)",
 "name": "(?P<name>.+)",
 "message": "(?P<message>.+)",
 }

 def __init__(self, service, logger=None, pattern=None):
 """
 :param service: A string identifying the service whose output is being
 parsed. It will be attached as 'service' attribute to all log
 records emitted.
 """
 self.service = service
 self.pattern = pattern or "{message}"
 self.logger = logger or logging.getLogger("")
 self._callbacks = {}

[docs] def whenLineContains(self, text, callback):
 """Fire the given callback when a line contains the given text.

 The callback will be fired only once when and if a match is found.
 """
 self._callbacks[text] = callback

[docs] def lineReceived(self, line):
 """Foward the received line to the Python logging system."""
 message = line.decode("utf-8")
 params = {
 "levelname": "NOTSET",
 "levelno": 0,
 "msg": message,
 "processName": self.service,
 }

 match = re.match(self.pattern.format(**self.substitutions), message)
 if match:
 params.update(self._getLogRecordParamsForMatch(match))

 record = logging.makeLogRecord(params)
 self.logger.handle(record)

 for text in list(self._callbacks.keys()):
 if text in record.msg:
 self._callbacks.pop(text)()

[docs] def lineLengthExceeded(self, line):
 """Simply truncate the line."""
 self.lineReceived(line[:self.MAX_LENGTH])

 def _getLogRecordParamsForMatch(self, match):
 """
 Use the given `match` regex object to create a dict of parameters
 to be passed to `logging.makeLogRecord`.

 This method will try to use all the information extracted by the
 match. If some of it is missing or incomplete, it will be discarded.
 """
 groups = _filterNoneValues(match.groupdict())
 params = {
 "name": groups.get("name"),
 "msg": groups.get("message"),
 }

 if "levelname" in groups:
 levelname = groups["levelname"].upper()
 if len(levelname) == 1:
 levelname = SHORT_LEVELS.get(levelname, "INFO")
 params["levelname"] = levelname
 params["levelno"] = logging.getLevelName(params["levelname"])

 # Only set creation time if all date-related groups are there.
 if set(groups.keys()).issuperset({"Y", "m", "d", "H", "M", "S"}):
 params["created"] = float(datetime(
 int(groups["Y"]),
 int(groups["m"]),
 int(groups["d"]),
 int(groups["H"]),
 int(groups["M"]),
 int(groups["S"]),
).strftime("%s"))

 if "msecs" in groups:
 params["msecs"] = float(groups["msecs"])

 return params

def _filterNoneValues(d):
 """
 Return a dict which is the same as `d`, except for keys with None values,
 which get discarded.
 """
 return dict([(k, v) for k, v in d.items() if v is not None])

def _encodeDictValues(d):
 """
 Return a dict whose unicode values get UTF-8 encoded to bytes.
 """
 return dict(
 [(_maybeEncode(k), _maybeEncode(v))
 for k, v in d.items() if v is not None])

def _maybeEncode(x):
 """
 If x is a string, encode it to bytes using UTF-8.
 """
 if isinstance(x, str):
 x = x.encode("utf-8")
 return x

 © Copyright 2016, Free Ekanayaka.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		txfixtures 0.2.1 documentation »

 All modules for which code is available

		txfixtures.reactor

		txfixtures.service

 © Copyright 2016, Free Ekanayaka.
 Created using Sphinx 1.3.5.

