
twosheds Documentation
Release 0.1.0

Ceasar Bautista

August 14, 2015

Contents

1 Features 3

2 User Guide 5
2.1 Installation . 5
2.2 Quickstart . 5
2.3 Advanced . 7

3 Community Guide 11
3.1 Support . 11
3.2 Community Updates . 11
3.3 Software Updates . 12

4 API Documentation 13
4.1 Developer Interface . 13

5 Contributor Guide 17
5.1 How to Help . 17
5.2 Authors . 17

Python Module Index 19

i

ii

twosheds Documentation, Release 0.1.0

Release v0.1.0. (Installation)

twosheds is a library for making command language interpreters, or shells.

While shells like bash and zsh are powerful, extending them and customizing them is hard; you need to write in arcane
inexpressive languages, such as bash script or C. twosheds helps you write and customize your own shell, in pure
Python:

>>> import twosheds
>>> shell = twosheds.Shell()
>>> shell.serve_forever()
$ ls
AUTHORS.rst build requirements.txt test_twosheds.py
LICENSE dist scripts tests
Makefile docs setup.cfg twosheds
README.rst env setup.py twosheds.egg-info

Contents 1

twosheds Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Features

• Highly extensible

• History

• Completion

3

twosheds Documentation, Release 0.1.0

4 Chapter 1. Features

CHAPTER 2

User Guide

This part of the documentation focuses on step-by-step instructions for getting the most of twosheds.

2.1 Installation

This part of the documentation covers the installation of twosheds.

The first step to using any software package is getting it properly installed.

2.1.1 Distribute & Pip

Installing twosheds is simple with pip:

$ pip install twosheds

2.1.2 Get the Code

twosheds is actively developed on GitHub, where the code is always available.

You can clone the public repository:

git clone git://github.com/Ceasar/twosheds.git

Once you have a copy of the source, you can embed it in your Python package, or install it into your site-packages
easily:

$ python setup.py install

2.2 Quickstart

Eager to get started? This page gives a good introduction in how to get started with twosheds. This assumes you
already have twosheds installed. If you do not, head over to the Installation section.

5

http://www.pip-installer.org/
https://github.com/Ceasar/twosheds

twosheds Documentation, Release 0.1.0

2.2.1 Start a Shell

Interacting with a shell with twosheds is very simple:

>>> import twosheds
>>> shell = twosheds.Shell()
>>> shell.serve_forever()
$ ls
AUTHORS.rst build requirements.txt test_twosheds.py
LICENSE dist scripts tests
Makefile docs setup.cfg twosheds
README.rst env setup.py twosheds.egg-info

The Shell is the main interface for twosheds. To quit the shell, just press CTRL+D.

2.2.2 Configuring a shell

If we want to configure our shell, it’s useful to store our code in a script:

#!/usr/bin/env python -i
import twosheds

shell = twosheds.Shell()
shell.serve_forever()

Just copy that into twosheds (or whatever you want to call your shell) and make it executable:

$ chmod a+x ./twosheds

Then execute it to interact:

$./twosheds
$ ls
twosheds

2.2.3 Aliases

To add aliases, we just revise our script to pass in a dictionary full of the aliases we want to use to the shell:

#!/usr/bin/env python
import twosheds

aliases = {'..': 'cd ..'}

shell = twosheds.Shell(aliases=aliases)
shell.interact()

Then we can test it:

$./twosheds
$ ls
AUTHORS.rst build requirements.txt test_twosheds.py
LICENSE dist scripts tests
Makefile docs setup.cfg twosheds
README.rst env setup.py twosheds.egg-info

6 Chapter 2. User Guide

twosheds Documentation, Release 0.1.0

$..
$ ls
Desktop/twosheds

2.2.4 Environmental Variables

To set environment variables, just use os.environ:

PATH = ["/Users/ceasarbautista/local/bin",
"/Users/ceasarbautista/bin",
"/usr/local/bin",
"/usr/bin",
"/usr/sbin",
"/bin",
"/sbin",
]

os.environ['PATH'] = ":".join(PATH)

Make sure to insert code like this before you execute interact.

2.2.5 Change the prompt

The default prompt for twosheds is just $. We can change that by setting $PS1 before each interaction:

import os

@shell.before_request
def primary_prompt_string():

os.environ["PS1"] = os.getcwd().replace(os.environ["HOME"], "~") + " "

This may be more typing then the export PS1=\w equivalent in bash, but it is easier to follow what is happening,
which becomes important as the prompt becomes more complex.

2.3 Advanced

This section of the docs shows you how to do useful but advanced things with twosheds.

2.3.1 Change your login shell

Replacing your login shell the shell you just wrote is simple.

Let’s assume your shell is named $SHELLPATH. First you need to add your shell to the list of valid shells, and then
you need to actually change it.

To add your shell to the list of valid shells, you need to add it to /etc/shells, a list of paths to valid login shells
on the system. By default, it looks something like this:

List of acceptable shells for chpass(1).
Ftpd will not allow users to connect who are not using
one of these shells.

/bin/bash

2.3. Advanced 7

twosheds Documentation, Release 0.1.0

/bin/csh
/bin/ksh
/bin/sh
/bin/tcsh
/bin/zsh

So to add your shell, simply:

$ sudo bash -c "echo $SHELLPATH >> /etc/shells"

Finally, change your login shell:

$ chsh -s $SHELLPATH

2.3.2 Add git branch to prompt

Add the current git branch to the prompt:

def git_branch():
"""Get the current git branch or None."""
try:

return check_output("git symbolic-ref --short HEAD 2> /dev/null",
shell=True).strip()

except CalledProcessError:
return None

@shell.before_request
def primary_prompt_string():

pwd = os.getcwd().replace(os.environ["HOME"], "~")
branch = git_branch()
ps1 = "%s " % pwd if branch is None else "%s(%s) " % (pwd, branch)
os.environ["PS1"] = ps1

2.3.3 Automate ls

We so frequently type ls that sometimes it seems like it would be nice to automate it.

In other shells, there are either prebuilt hooks from which we can execute arbitrary code or we can devise impressive
aliases to automatically ls whenever the state of the directory changes:

automate ls in zsh
If the contents of the current working directory have changed, `ls`.
function precmd() {

a=$(cat ~/.contents)
b=$(ls)
if [$a = $b]
then
else

emulate -L zsh
ls

fi
ls > ~/.contents

}

With twosheds it’s much simpler:

8 Chapter 2. User Guide

twosheds Documentation, Release 0.1.0

from subprocess import check_output

import twosheds

shell = twosheds.Shell()
last_ls = ""

@shell.before_request
def ls():

global last_ls
ls = check_output("ls", shell=True)
if ls != last_ls:

last_ls = ls
shell.eval("ls")

This code reads the contents of the current directory before every command and checks if its different from whatever
the contents were before the last command. If they’re different, it runs ls.

2.3.4 Automate git status

Automating git status is similar to automating ls:

from subprocess import check_output, CalledProcessError

import twosheds

shell = twosheds.Shell()
last_gs = ""

@shell.before_request
def gs():

global last_gs
try:

gs = check_output("git status --porcelain 2> /dev/null", shell=True)
except CalledProcessError:

pass
else:

if gs != last_gs:
last_gs = gs
show status concisely
shell.eval("git status -s")

2.3.5 Auto-complete Git branches

To extend the completer, you can use the Shell.completes decorator. It takes a generator which given a string
representing the word the user is trying to complete, generates possible matches. For example, the following shows
how to extend the completer to match Git branches:

@shell.completes
def git_branches(word):

branches = sh("git branch --list {}* 2> /dev/null".format(word)).split()
try:

2.3. Advanced 9

twosheds Documentation, Release 0.1.0

branches.remove("*")
except ValueError:

pass
for branch in branches:

yield branch

10 Chapter 2. User Guide

CHAPTER 3

Community Guide

This part of the documentation, which is mostly prose, details the Requests ecosystem and community.

3.1 Support

If you have questions or issues, there are several options:

3.1.1 File an Issue

If you notice some unexpected behavior, or want to see support for a new feature, file an issue on GitHub.

3.1.2 Send a Tweet

If your question is less than 140 characters, feel free to send a tweet to the maintainer.

3.1.3 E-mail

If your question is personal or in-depth, feel free to email the maintainer.

3.2 Community Updates

If you’d like to stay up to date on the community and development of twosheds, there are several options:

3.2.1 GitHub

The best way to track the development of twosheds is through the GitHub repo.

3.2.2 Twitter

I often tweet about new features and releases of twosheds.

Follow @Ceasar_Bautista for updates.

11

https://github.com/Ceasar/twosheds/issues
https://twitter.com/Ceasar_Bautista
mailto:cbautista@gmail.com
https://github.com/Ceasar/twosheds
https://twitter.com/Ceasar_Bautista

twosheds Documentation, Release 0.1.0

3.3 Software Updates

3.3.1 Release History

0.1.1 (2013-12-04)

• Rewrite Transform (previously Transformation) interface.

0.1.0 (2013-12-01)

• Initial release.

12 Chapter 3. Community Guide

CHAPTER 4

API Documentation

If you are looking for information on a specific function, class, or method, this part of the documentation is for you.

4.1 Developer Interface

This part of the documentation covers all the interfaces of twosheds.

4.1.1 Main Interface

All of twoshed’s functionality can be accessed by an instance of the Shell object.

class twosheds.Shell(environ, aliases=None, echo=False, histfile=None, use_suffix=True, ex-
clude=None)

A facade encapsulating the high-level logic of a command language interpreter.

Parameters

• aliases – dictionary of aliases

• builtins – dictionary of builtins

• echo – set True to print commands immediately before execution

• environ – a dictionary containing environmental variables. This must include PS1 and
PS2, which are used to define the prompts.

• histfile – the location in which to look for a history file. if unset,
DEFAULT_HISTFILE is used. histfile is useful when sharing the same home directory
between different machines, or when saving separate histories on different terminals.

• use_suffix – add a / to completed directories and a space to the end of other completed
words, to speed typing and provide a visual indicator of successful completion.

• exclude – list of regexes to be ignored by completion.

Usage:

>>> import twosheds
>>> shell = twosheds.Shell()
>>> shell.interact()

after_interaction(f)
Register a function to be run after each interaction.

13

twosheds Documentation, Release 0.1.0

Parameters f – The function to run after each interaction. This function must not take any
parameters.

before_interaction(f)
Register a function to be run before each interaction.

Parameters f – The function to run after each interaction. This function must not take any
parameters.

completes(g)
Register a generator to extend the capabilities of the completer.

Parameters g – A generator which, when invoked with a string representing the word the user
is trying to complete, should generate strings that the user might find relevant.

eval(text)
Respond to text entered by the user.

Parameters text – the user’s input

read()
The shell shall read its input in terms of lines from a file, from a terminal in the case of an interactive shell,
or from a string in the case of sh -c or system(). The input lines can be of unlimited length.

serve_forever(banner=None)
Interact with the user.

Parameters banner – (optional) the banner to print before the first interaction. Defaults to
None.

4.1.2 Completion

class twosheds.completer.Completer(transforms, use_suffix=True, exclude=None, exten-
sions=None)

A Completer completes words when given a unique abbreviation.

Type part of a word (for example ls /usr/lost) and hit the tab key to run the completer.

The shell completes the filename /usr/lost to /usr/lost+found/, replacing the incomplete word with
the complete word in the input buffer.

Note: Completion adds a / to the end of completed directories and a space to the end of other completed
words, to speed typing and provide a visual indicator of successful completion. Completer.use_suffix can be set
False to prevent this.

If no match is found (perhaps /usr/lost+found doesn’t exist), then no matches will appear.

If the word is already complete (perhaps there is a /usr/lost on your system, or perhaps you were thinking
too far ahead and typed the whole thing) a / or space is added to the end if it isn’t already there.

The shell will list the remaining choices (if any) below the unfinished command line whenever completion fails,
for example:

$ ls /usr/l[tab]
lbin/ lib/ local/ lost+found/

Completion will always happen on the shortest possible unique match, even if more typing might result in a
longer match. Therefore:

14 Chapter 4. API Documentation

twosheds Documentation, Release 0.1.0

$ ls
fodder foo food foonly
$ rm fo[tab]

just beeps, because fo could expand to fod or foo, but if we type another o:

$ rm foo[tab]
$ rm foo

the completion completes on foo, even though food and foonly also match.

Note: excludes_patterns can be set to a list of regular expression patterns to be ignored by completion.

Consider that the completer were initialized to ignore [r’.*~’, r’.*.o’]:

$ ls
Makefile condiments.h~ main.o side.c
README main.c meal side.o
condiments.h main.c~
$ emacs ma[tab]
main.c

Parameters

• use_suffix – add a / to completed directories and a space to the end of other completed
words, to speed typing and provide a visual indicator of successful completion. Defaults to
True.

• excludes – a list of regular expression patterns to be ignored by completion.

• extensions – A sequence of generators which can extend the matching capabilities of
the completer. Generators must accept a string “word” as the sole argument, representing
the word that the user is trying to complete, and use it to generate possible matches.

complete(word, state)
Return the next possible completion for word.

This is called successively with state == 0, 1, 2, ... until it returns None.

The completion should begin with word.

Parameters

• word – the word to complete

• state – an int, used to iterate over the choices

exclude_matches(matches)
Filter any matches that match an exclude pattern.

Parameters matches – a list of possible completions

gen_filename_completions(word, filenames)
Generate a sequence of filenames that match word.

Parameters word – the word to complete

gen_matches(word)
Generate a sequence of possible completions for word.

Parameters word – the word to complete

4.1. Developer Interface 15

twosheds Documentation, Release 0.1.0

gen_variable_completions(word, env)
Generate a sequence of possible variable completions for word.

Parameters

• word – the word to complete

• env – the environment

get_matches(word)
Get a list of filenames with match word.

inflect(filename)
Inflect a filename to indicate its type.

If the file is a directory, the suffix “/” is appended, otherwise a space is appended.

Parameters filename – the name of the file to inflect

16 Chapter 4. API Documentation

CHAPTER 5

Contributor Guide

If you want to contribute to the project, this part of the documentation is for you.

5.1 How to Help

twosheds is under active development, and contribution are more than welcome!

1. Check for open issues or open a fresh issue to start a discussion around a feature idea or a bug.

2. Fork the repository on GitHub to start making your changes to the master branch (or branch off of it).

3. Send a pull request and bug the maintainer until it gets merged and published. :) Make sure to add yourself to
AUTHORS.

5.2 Authors

twosheds is written and maintained by Ceasar Bautista and various contributors:

5.2.1 Development Lead

• Ceasar Bautista <cbautista2010@gmail.com>

5.2.2 Patches and Suggestions

• rheber

17

https://github.com/Ceasar/twosheds
https://github.com/Ceasar/twosheds/blob/master/AUTHORS.rst
mailto:cbautista2010@gmail.com
https://github.com/rheber

twosheds Documentation, Release 0.1.0

18 Chapter 5. Contributor Guide

Python Module Index

t
twosheds, 13

19

twosheds Documentation, Release 0.1.0

20 Python Module Index

Index

A
after_interaction() (twosheds.Shell method), 13

B
before_interaction() (twosheds.Shell method), 14

C
complete() (twosheds.completer.Completer method), 15
Completer (class in twosheds.completer), 14
completes() (twosheds.Shell method), 14

E
eval() (twosheds.Shell method), 14
exclude_matches() (twosheds.completer.Completer

method), 15

G
gen_filename_completions()

(twosheds.completer.Completer method),
15

gen_matches() (twosheds.completer.Completer method),
15

gen_variable_completions()
(twosheds.completer.Completer method),
15

get_matches() (twosheds.completer.Completer method),
16

I
inflect() (twosheds.completer.Completer method), 16

R
read() (twosheds.Shell method), 14

S
serve_forever() (twosheds.Shell method), 14
Shell (class in twosheds), 13

T
twosheds (module), 13

21

	Features
	User Guide
	Installation
	Quickstart
	Advanced

	Community Guide
	Support
	Community Updates
	Software Updates

	API Documentation
	Developer Interface

	Contributor Guide
	How to Help
	Authors

	Python Module Index

