

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	twosheds 0.1.0 documentation

twosheds

Release v0.1.0. (Installation)

twosheds is a library for making command language interpreters, or shells.

While shells like bash and zsh are powerful, extending them and customizing them
is hard; you need to write in arcane inexpressive languages, such as bash script
or C. twosheds helps you write and customize your own shell, in pure Python:

>>> import twosheds
>>> shell = twosheds.Shell()
>>> shell.serve_forever()
$ ls
AUTHORS.rst build requirements.txt test_twosheds.py
LICENSE dist scripts tests
Makefile docs setup.cfg twosheds
README.rst env setup.py twosheds.egg-info

Features

	Highly extensible

	History

	Completion

User Guide

This part of the documentation focuses on step-by-step instructions for getting
the most of twosheds.

	Installation
	Distribute & Pip

	Get the Code

	Quickstart
	Start a Shell

	Configuring a shell

	Aliases

	Environmental Variables

	Change the prompt

	Advanced
	Change your login shell

	Add git branch to prompt

	Automate ls

	Automate git status

	Auto-complete Git branches

Community Guide

This part of the documentation, which is mostly prose, details the
Requests ecosystem and community.

	Support

	Community Updates

	Software Updates

API Documentation

If you are looking for information on a specific function, class, or method,
this part of the documentation is for you.

	Developer Interface
	Main Interface

	Completion

Contributor Guide

If you want to contribute to the project, this part of the documentation is for
you.

	How to Help

	Authors

 Copyright 2013, Ceasar Bautista.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	twosheds 0.1.0 documentation

Installation

This part of the documentation covers the installation of twosheds.

The first step to using any software package is getting it properly installed.

Distribute & Pip

Installing twosheds is simple with pip [http://www.pip-installer.org/]:

$ pip install twosheds

Get the Code

twosheds is actively developed on GitHub, where the code is
always available [https://github.com/Ceasar/twosheds].

You can clone the public repository:

git clone git://github.com/Ceasar/twosheds.git

Once you have a copy of the source, you can embed it in your Python package,
or install it into your site-packages easily:

$ python setup.py install

 Copyright 2013, Ceasar Bautista.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	twosheds 0.1.0 documentation

Quickstart

Eager to get started? This page gives a good introduction in how to get started
with twosheds. This assumes you already have twosheds installed. If you do not,
head over to the Installation section.

Start a Shell

Interacting with a shell with twosheds is very simple:

>>> import twosheds
>>> shell = twosheds.Shell()
>>> shell.serve_forever()
$ ls
AUTHORS.rst build requirements.txt test_twosheds.py
LICENSE dist scripts tests
Makefile docs setup.cfg twosheds
README.rst env setup.py twosheds.egg-info

The Shell is the main interface for twosheds. To quit the shell, just press CTRL+D.

Configuring a shell

If we want to configure our shell, it’s useful to store our code in a script:

#!/usr/bin/env python -i
import twosheds

shell = twosheds.Shell()
shell.serve_forever()

Just copy that into twosheds (or whatever you want to call your shell) and
make it executable:

$ chmod a+x ./twosheds

Then execute it to interact:

$./twosheds
$ ls
twosheds

Aliases

To add aliases, we just revise our script to pass in a dictionary full of the
aliases we want to use to the shell:

#!/usr/bin/env python
import twosheds

aliases = {'..': 'cd ..'}

shell = twosheds.Shell(aliases=aliases)
shell.interact()

Then we can test it:

$./twosheds
$ ls
AUTHORS.rst build requirements.txt test_twosheds.py
LICENSE dist scripts tests
Makefile docs setup.cfg twosheds
README.rst env setup.py twosheds.egg-info
$..
$ ls
Desktop/twosheds

Environmental Variables

To set environment variables, just use os.environ:

PATH = ["/Users/ceasarbautista/local/bin",
 "/Users/ceasarbautista/bin",
 "/usr/local/bin",
 "/usr/bin",
 "/usr/sbin",
 "/bin",
 "/sbin",
]

os.environ['PATH'] = ":".join(PATH)

Make sure to insert code like this before you execute interact.

Change the prompt

The default prompt for twosheds is just $. We can change that by setting
$PS1 before each interaction:

import os

@shell.before_request
def primary_prompt_string():
 os.environ["PS1"] = os.getcwd().replace(os.environ["HOME"], "~") + " "

This may be more typing then the export PS1=\w equivalent in bash, but
it is easier to follow what is happening, which becomes important as the prompt
becomes more complex.

 Copyright 2013, Ceasar Bautista.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	twosheds 0.1.0 documentation

Advanced

This section of the docs shows you how to do useful but advanced things with
twosheds.

Change your login shell

Replacing your login shell the shell you just wrote is simple.

Let’s assume your shell is named $SHELLPATH. First you need to add your
shell to the list of valid shells, and then you need to actually change it.

To add your shell to the list of valid shells, you need to add it to
/etc/shells, a list of paths to valid login shells on the system. By
default, it looks something like this:

List of acceptable shells for chpass(1).
Ftpd will not allow users to connect who are not using
one of these shells.

/bin/bash
/bin/csh
/bin/ksh
/bin/sh
/bin/tcsh
/bin/zsh

So to add your shell, simply:

$ sudo bash -c "echo $SHELLPATH >> /etc/shells"

Finally, change your login shell:

$ chsh -s $SHELLPATH

Add git branch to prompt

Add the current git branch to the prompt:

def git_branch():
 """Get the current git branch or None."""
 try:
 return check_output("git symbolic-ref --short HEAD 2> /dev/null",
 shell=True).strip()
 except CalledProcessError:
 return None

@shell.before_request
def primary_prompt_string():
 pwd = os.getcwd().replace(os.environ["HOME"], "~")
 branch = git_branch()
 ps1 = "%s " % pwd if branch is None else "%s(%s) " % (pwd, branch)
 os.environ["PS1"] = ps1

Automate ls

We so frequently type ls that sometimes it seems like it would be nice to
automate it.

In other shells, there are either prebuilt hooks from which we can execute
arbitrary code or we can devise impressive aliases to automatically ls
whenever the state of the directory changes:

automate ls in zsh
If the contents of the current working directory have changed, `ls`.
function precmd() {

 a=$(cat ~/.contents)
 b=$(ls)
 if [$a = $b]
 then
 else
 emulate -L zsh
 ls
 fi
 ls > ~/.contents
}

With twosheds it’s much simpler:

from subprocess import check_output

import twosheds

shell = twosheds.Shell()
last_ls = ""

@shell.before_request
def ls():
 global last_ls
 ls = check_output("ls", shell=True)
 if ls != last_ls:
 last_ls = ls
 shell.eval("ls")

This code reads the contents of the current directory before every command
and checks if its different from whatever the contents were before the last
command. If they’re different, it runs ls.

Automate git status

Automating git status is similar to automating ls:

from subprocess import check_output, CalledProcessError

import twosheds

shell = twosheds.Shell()
last_gs = ""

@shell.before_request
def gs():
 global last_gs
 try:
 gs = check_output("git status --porcelain 2> /dev/null", shell=True)
 except CalledProcessError:
 pass
 else:
 if gs != last_gs:
 last_gs = gs
 # show status concisely
 shell.eval("git status -s")

Auto-complete Git branches

To extend the completer, you can use the Shell.completes decorator. It takes
a generator which given a string representing the word the user is trying to
complete, generates possible matches. For example, the following shows how to
extend the completer to match Git branches:

@shell.completes
def git_branches(word):
 branches = sh("git branch --list {}* 2> /dev/null".format(word)).split()
 try:
 branches.remove("*")
 except ValueError:
 pass
 for branch in branches:
 yield branch

 Copyright 2013, Ceasar Bautista.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	twosheds 0.1.0 documentation

Support

If you have questions or issues, there are several options:

File an Issue

If you notice some unexpected behavior, or want to see support for
a new feature, file an issue on GitHub [https://github.com/Ceasar/twosheds/issues].

Send a Tweet

If your question is less than 140 characters, feel free to send a tweet to
the maintainer [https://twitter.com/Ceasar_Bautista].

E-mail

If your question is personal or in-depth, feel free to email the maintainer.

 Copyright 2013, Ceasar Bautista.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	twosheds 0.1.0 documentation

Community Updates

If you’d like to stay up to date on the community and development of twosheds,
there are several options:

GitHub

The best way to track the development of twosheds is through
the GitHub repo [https://github.com/Ceasar/twosheds].

Twitter

I often tweet about new features and releases of twosheds.

Follow @Ceasar_Bautista [https://twitter.com/Ceasar_Bautista] for updates.

Software Updates

Release History

0.1.1 (2013-12-04)

	Rewrite Transform (previously Transformation) interface.

0.1.0 (2013-12-01)

	Initial release.

 Copyright 2013, Ceasar Bautista.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	twosheds 0.1.0 documentation

Developer Interface

This part of the documentation covers all the interfaces of twosheds.

Main Interface

All of twoshed’s functionality can be accessed by an instance of the Shell object.

	
class twosheds.Shell(environ, aliases=None, echo=False, histfile=None, use_suffix=True, exclude=None)

	A facade encapsulating the high-level logic of a command language
interpreter.

	Parameters:	
	aliases – dictionary of aliases

	builtins – dictionary of builtins

	echo – set True to print commands immediately before execution

	environ – a dictionary containing environmental variables. This must include PS1
and PS2, which are used to define the prompts.

	histfile – the location in which to look for a history file. if
unset, DEFAULT_HISTFILE is used. histfile is useful
when sharing the same home directory between different
machines, or when saving separate histories on different
terminals.

	use_suffix – add a / to completed directories and a space to the
end of other completed words, to speed typing and
provide a visual indicator of successful completion.

	exclude – list of regexes to be ignored by completion.

Usage:

>>> import twosheds
>>> shell = twosheds.Shell()
>>> shell.interact()

	
after_interaction(f)

	Register a function to be run after each interaction.

	Parameters:	f – The function to run after each interaction. This function must not
take any parameters.

	
before_interaction(f)

	Register a function to be run before each interaction.

	Parameters:	f – The function to run after each interaction. This function must not
take any parameters.

	
completes(g)

	Register a generator to extend the capabilities of the completer.

	Parameters:	g – A generator which, when invoked with a string representing the word
the user is trying to complete, should generate strings that the
user might find relevant.

	
eval(text)

	Respond to text entered by the user.

	Parameters:	text – the user’s input

	
read()

	The shell shall read its input in terms of lines from a file, from a
terminal in the case of an interactive shell, or from a string in the
case of sh -c or system(). The input lines can be of unlimited length.

	
serve_forever(banner=None)

	Interact with the user.

	Parameters:	banner – (optional) the banner to print before the first
interaction. Defaults to None.

Completion

	
class twosheds.completer.Completer(transforms, use_suffix=True, exclude=None, extensions=None)

	A Completer completes words when given a unique abbreviation.

Type part of a word (for example ls /usr/lost) and hit the tab key to
run the completer.

The shell completes the filename /usr/lost to /usr/lost+found/,
replacing the incomplete word with the complete word in the input buffer.

Note

Completion adds a / to the end of completed directories and a
space to the end of other completed words, to speed typing and provide
a visual indicator of successful completion. Completer.use_suffix can
be set False to prevent this.

If no match is found (perhaps /usr/lost+found doesn’t exist), then no
matches will appear.

If the word is already complete (perhaps there is a /usr/lost on your
system, or perhaps you were thinking too far ahead and typed the whole
thing) a / or space is added to the end if it isn’t already there.

The shell will list the remaining choices (if any) below the unfinished
command line whenever completion fails, for example:

$ ls /usr/l[tab]
lbin/ lib/ local/ lost+found/

Completion will always happen on the shortest possible unique match, even
if more typing might result in a longer match. Therefore:

$ ls
fodder foo food foonly
$ rm fo[tab]

just beeps, because fo could expand to fod or foo, but if we
type another o:

$ rm foo[tab]
$ rm foo

the completion completes on foo, even though food and foonly
also match.

Note

excludes_patterns can be set to a list of regular expression
patterns to be ignored by completion.

Consider that the completer were initialized to ignore
[r'.*~', r'.*.o']:

$ ls
Makefile condiments.h~ main.o side.c
README main.c meal side.o
condiments.h main.c~
$ emacs ma[tab]
main.c

	Parameters:	
	use_suffix – add a / to completed directories and a space to the
end of other completed words, to speed typing and
provide a visual indicator of successful completion.
Defaults to True.

	excludes – a list of regular expression patterns to be ignored by
completion.

	extensions – A sequence of generators which can extend the matching capabilities of
the completer. Generators must accept a string “word” as the sole
argument, representing the word that the user is trying to complete,
and use it to generate possible matches.

	
complete(word, state)

	Return the next possible completion for word.

This is called successively with state == 0, 1, 2, ... until it
returns None.

The completion should begin with word.

	Parameters:	
	word – the word to complete

	state – an int, used to iterate over the choices

	
exclude_matches(matches)

	Filter any matches that match an exclude pattern.

	Parameters:	matches – a list of possible completions

	
gen_filename_completions(word, filenames)

	Generate a sequence of filenames that match word.

	Parameters:	word – the word to complete

	
gen_matches(word)

	Generate a sequence of possible completions for word.

	Parameters:	word – the word to complete

	
gen_variable_completions(word, env)

	Generate a sequence of possible variable completions for word.

	Parameters:	
	word – the word to complete

	env – the environment

	
get_matches(word)

	Get a list of filenames with match word.

	
inflect(filename)

	Inflect a filename to indicate its type.

If the file is a directory, the suffix “/” is appended, otherwise
a space is appended.

	Parameters:	filename – the name of the file to inflect

 Copyright 2013, Ceasar Bautista.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	twosheds 0.1.0 documentation

How to Help

twosheds is under active development, and contribution are more than welcome!

	Check for open issues or open a fresh issue to start a discussion around a feature idea or a bug.

	Fork the repository [https://github.com/Ceasar/twosheds] on GitHub to start making your changes to the master branch (or branch off of it).

	Send a pull request and bug the maintainer until it gets merged and published. :) Make sure to add yourself to AUTHORS [https://github.com/Ceasar/twosheds/blob/master/AUTHORS.rst].

 Copyright 2013, Ceasar Bautista.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	twosheds 0.1.0 documentation

Authors

twosheds is written and maintained by Ceasar Bautista and
various contributors:

Development Lead

	Ceasar Bautista <cbautista2010@gmail.com>

Patches and Suggestions

	rheber [https://github.com/rheber]

 Copyright 2013, Ceasar Bautista.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	twosheds 0.1.0 documentation

 Python Module Index

 t

 			

 		
 t	

 	
 	
 twosheds	

 Copyright 2013, Ceasar Bautista.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	twosheds 0.1.0 documentation

Index

 A
 | B
 | C
 | E
 | G
 | I
 | R
 | S
 | T

A

 	

 	after_interaction() (twosheds.Shell method)

B

 	

 	before_interaction() (twosheds.Shell method)

C

 	

 	complete() (twosheds.completer.Completer method)

 	Completer (class in twosheds.completer)

 	

 	completes() (twosheds.Shell method)

E

 	

 	eval() (twosheds.Shell method)

 	

 	exclude_matches() (twosheds.completer.Completer method)

G

 	

 	gen_filename_completions() (twosheds.completer.Completer method)

 	gen_matches() (twosheds.completer.Completer method)

 	

 	gen_variable_completions() (twosheds.completer.Completer method)

 	get_matches() (twosheds.completer.Completer method)

I

 	

 	inflect() (twosheds.completer.Completer method)

R

 	

 	read() (twosheds.Shell method)

S

 	

 	serve_forever() (twosheds.Shell method)

 	

 	Shell (class in twosheds)

T

 	

 	twosheds (module)

 Copyright 2013, Ceasar Bautista.
 Created using Sphinx 1.3.1.

 _static/comment.png

_static/minus.png

_static/comment-close.png

_static/up.png

_static/plus.png

_static/up-pressed.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		twosheds 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Ceasar Bautista.
 Created using Sphinx 1.3.1.

_static/comment-bright.png

_static/file.png

_static/down.png

_static/ajax-loader.gif

