

Twiggy: A Pythonic Logger

Who, What, When, Where

Twiggy is a more Pythonic logger. It aims to be easy to setup:

>>> from twiggy import quick_setup
>>> quick_setup()

And fun to use!

>>> from twiggy import log
>>> log.name('frank').fields(number=42).info("hello {who}, it's a {0} day", 'sunny', who='world')
INFO:frank:number=42|hello world, it's a sunny day

	author

	Peter Fein [https://wearpants.org/about]

	email

	pete@wearpants.org

	twitter

	@petecode [https://twitter.com/petecode]

	homepage

	http://twiggy.readthedocs.io/en/latest/

	hosting

	https://github.com/wearpants/twiggy

	IRC

	irc://irc.freenode.net/#twiggy [http://irc.lc/freenode/twiggy/]

	license

	BSD [https://opensource.org/licenses/bsd-license.php]

	Python

	2.6, 2.7

Twiggy was born at Pycon 2010 [http://pyvideo.org/events/pycon-us-2010.html] after I whined about the standard library’s logging [https://docs.python.org/3/library/logging.html] and Jesse Noller “invited” me to do something about it.

Install straight with distutils from the Cheeseshop [https://pypi.python.org/pypi/Twiggy] or:

pip install Twiggy

easy_install -U Twiggy

Get the latest version:

git clone https://github.com/wearpants/twiggy.git

Why Twiggy Should Be Your New Logger

You should use Twiggy because it is awesome. For more information, see this blog post [https://wearpants.org/petecode/meet-twiggy/].

Warning

Twiggy works great, but is not rock solid (yet); do not use for nuclear power plants, spaceships or mortgage derivatives trading (not that it’d matter).

Documentation

	Logging Messages
	The Magic log

	Better output

	Structured Logging

	Partial Binding

	Sample Output

	Configuring Output
	Quick Setup

	twiggy_setup.py

	Outputs

	Formats

	Filtering Output

	dict_config()

	Reference Guide
	Dynamic Logging

	Features!

	Stays Out of Your Way

	Concurrency

	Use by Libraries

	Tips And Tricks

	Technical Details

	Extending Twiggy

	API Reference
	Global Objects

	Configuration

	Features

	Filters

	Formats

	Levels

	Library

	Logger

	Message

	Outputs

	Testing
	Requirements

	Running Tests

	Glossary

	Changelog
	0.5.0

	0.4.7

	0.4.6

	0.4.5

	0.4.4

	0.4.3

	0.4.2

	0.4.1

	0.4.0

	Contributors

 Logging Messages

Logging Messages

This part describes how user code can log messages with twiggy.

To get started quickly, use quick_setup().:

>>> import twiggy
>>> twiggy.quick_setup()

See also

Full details on Configuring Output.

The Magic log

The main interface is the the magic log.

>>> from twiggy import log
>>> log
<twiggy.logger.Logger object at 0x...>

It works out of the box, using typical levels. Arbitrary levels are not supported. Note that when logging, you never need to refer to any level object; just use the methods on the log.

>>> log.debug('You may not care')
DEBUG|You may not care
>>> log.error('OMFG! Pants on fire!')
ERROR|OMFG! Pants on fire!

The log can handle messages in several styles of format strings, defaulting to new-style [https://docs.python.org/3/library/string.html#format-string-syntax].

>>> log.info('I wear {0} on my {where}', 'pants', where='legs')
INFO|I wear pants on my legs

You can name your loggers.

>>> mylog = log.name('alfredo')
>>> mylog.debug('hello')
DEBUG:alfredo|hello

Better output

Twiggy’s default output strives to be user-friendly and to avoid pet peeves.

Newlines are suppressed by default; that can be turned off per-message.

>>> log.info('user\ninput\nannoys\nus')
INFO|user\ninput\nannoys\nus
>>> log.options(suppress_newlines=False).info('we\ndeal')
INFO|we
deal

Exceptions are prefixed by TRACE. By default, tracing will use the current exception, but you can also pass an exc_info tuple.

>>> try:
... 1/0
... except:
... log.trace('error').warning('oh noes')
WARNING|oh noes
TRACE Traceback (most recent call last):
TRACE File "<doctest better-output[...]>", line 2, in <module>
TRACE 1/0
TRACE ZeroDivisionError: division by zero

See also

How to fold exceptions to a single line

Structured Logging

I like this method chaining style a lot.

>>> log.name('benito').info('hi there')
INFO:benito|hi there

It makes structured logging easy. In the past, fielded data was stuffed in the text of your message:

>>> log.info('Going for a walk. path: {0} roads: {1}', "less traveled", 42)
INFO|Going for a walk. path: less traveled roads: 42

Instead, you can use fields() to add arbitrary key-value pairs. Output is easily parseable.

>>> log.fields(path="less traveled", roads=42).info('Going for a walk')
INFO:path=less traveled:roads=42|Going for a walk

The struct() is a short cut for only logging fields. This is great for runtime statistics gathering.

>>> log.struct(paths=42, dolphins='thankful')
INFO:dolphins=thankful:paths=42|

Partial Binding

Each call to fields() or options() creates a new, independent log instance that inherits all of the data of the parent. This incremental binding can be useful for webapps.

>>> ## an application-level log
... webapp_log = log.name("myblog")
>>> ## a log for the individual request
... current_request_log = webapp_log.fields(request_id='12345')
>>> current_request_log.fields(rows=100, user='frank').info('frobnicating database')
INFO:myblog:request_id=12345:rows=100:user=frank|frobnicating database
>>> current_request_log.fields(bytes=5678).info('sending page over tubes')
INFO:myblog:bytes=5678:request_id=12345|sending page over tubes
>>> ## a log for a different request
... another_log = webapp_log.fields(request_id='67890')
>>> another_log.debug('Client connected')
DEBUG:myblog:request_id=67890|Client connected

Chained style is awesome. It allows you to create complex yet parsable log messages in a concise way.

>>> log.name('donjuan').fields(pants='sexy').info("hello, {who} want to {what}?", who='ladies', what='dance')
INFO:donjuan:pants=sexy|hello, ladies want to dance?

Sample Output

Routed to a file, the above produces the following:

2010-03-28T14:23:34Z:DEBUG:You may not care
2010-03-28T14:23:34Z:ERROR:OMFG! Pants on fire!
2010-03-28T14:23:34Z:INFO:I like bikes
2010-03-28T14:23:34Z:INFO:I wear pants on my legs
2010-03-28T14:23:34Z:DEBUG:alfredo:hello
2010-03-28T14:23:34Z:INFO:user\ninput\nannoys\nus
2010-03-28T14:23:34Z:INFO:we
deal
2010-03-28T14:23:34Z:WARNING:oh noes
TRACE Traceback (most recent call last):
TRACE File "<doctest better-output[...]>", line 35, in <module>
TRACE ZeroDivisionError: integer division or modulo by zero
2010-03-28T14:23:34Z:INFO:benito:hi there
2010-03-28T14:23:34Z:INFO:Going for a walk. path: less traveled roads: 42
2010-03-28T14:23:34Z:INFO:path=less traveled:roads=42:Going for a walk
2010-03-28T14:23:34Z:INFO:dolphins=thankful:paths=42:
2010-03-28T14:23:34Z:INFO:myblog:request_id=12345:rows=100:user=frank:frobnicating database
2010-03-28T14:23:34Z:INFO:myblog:bytes=5678:request_id=12345:sending page over tubes
2010-03-28T14:23:34Z:INFO:myblog:request_id=67890:Client connected
2010-03-28T14:23:34Z:INFO:donjuan:pants=sexy:hello, ladies want to dance?
2010-03-28T14:23:34Z:INFO:myblog:request_id=12345:rows=100:user=frank:frobnicating database
2010-03-28T14:23:34Z:INFO:myblog:bytes=5678:request_id=12345:sending page over tubes
2010-03-28T14:23:34Z:DEBUG:myblog:request_id=67890:Client connected

 Configuring Output

Configuring Output

This part discusses how to configure twiggy’s output of messages. You should do this once, near the
start of your application’s __main__. It’s particularly important to set up Twiggy before
spawning new processes.

Quick Setup

quick_setup() quickly configures output with reasonable defaults. Use it when you don’t need
a lot of customizability or as the default configuration that the user can override via
programatic configuration or dict_config().

The defaults will emit log messages of DEBUG level or higher to stderr:

from twiggy import quick_setup
quick_setup()

See also

The API docs for complete information on quick_setup()’s parameters.

twiggy_setup.py

Twiggy’s output side features modern, loosely coupled design. The easiest way to understand what
that means is to look at how to configure twiggy programmatically.

Note

Prior to Twiggy 0.5, by convention twiggy was programmatically set up in a separate file in your
application called twiggy_setup.py in a function called twiggy_setup(). This allowed
sites to override the configuration via their configuration management systems by replacing the
file. In Twiggy 0.5 and later, the dict_config() function provides a more natural way
for to allow users to override the logging configuration using a config file.

Programmatically configuring Twiggy involves creating an output which defines where the log
messages will be sent and then creating an Emitter which associates a subset of your
application’s logs with the output. Here’s what an example twiggy_setup() function would look
like:

from twiggy import add_emitters, outputs, levels, filters, formats, emitters # import * is also ok
def twiggy_setup():
 alice_output = outputs.FileOutput("alice.log", format=formats.line_format)
 bob_output = outputs.FileOutput("bob.log", format=formats.line_format)

 add_emitters(
 # (name, min_level, filter, output),
 ("alice", levels.DEBUG, None, alice_output),
 ("betty", levels.INFO, filters.names("betty"), bob_output),
 ("brian.*", levels.DEBUG, filters.glob_names("brian.*"), bob_output),
)

near the top of your __main__
twiggy_setup()

In this example, we create two log Outputs: alice_output and bob_output. These
outputs are twiggy.outputs.FileOutput`s. They tell twiggy to write messages directed to
the output into the named file, in this case, ``alice.log` and bob.log. All outputs have
a formatter associated with them. The formatter is responsible for turning Twiggy’s
Structured Logging calls into a suitable form for the output. In this example, both
alice_output and bob_output use twiggy.formats.line_format() to format their
messages.

Emitters associate Outputs with a set of messages via levels and
Filtering Output. Here we configure three emitters to two outputs. alice_output will receive all
messages and bob_output will receive two sets of messages:

	messages with the name field equal to betty and level >= INFO

	messages with the name field glob-matching brian.*

The convenience function, add_emitters(), takes the emitter information as a tuple of emitter
name, minimum log level, optional filters, and the output that the logs should be written to. It
creates the Emitters from that information and populates the emitters dictionary:

>>> sorted(emitters.keys())
['alice', 'betty', 'brian.*']

Emitters can be removed by deleting them from this dict. filter and min_level may be modified during the running of the application, but outputs cannot be changed. Instead, remove the emitter and re-add it.

>>> # bump level
... emitters['alice'].min_level = levels.WARNING
>>> # change filter
... emitters['alice'].filter = filters.names('alice', 'andy')
>>> # remove entirely
... del emitters['alice']

We’ll examine the various parts in more detail below.

Note

Remember to import and run twiggy_setup near the top of your application.

Outputs

Outputs are the destinations to which log messages are written (files, databases, etc.). Several implementations are provided. Once created, outputs cannot be modified. Each output has an associated format.

Asynchronous Logging

Many outputs can be configured to use a separate, dedicated process to log messages. This is known as asynchronous logging and is enabled with the msg_buffer argument. Asynchronous mode dramatically reduces the cost of logging, as expensive formatting and writing operations are moved out of the main thread of control.

Formats

Formats transform a log message into a form that can be written by an output. The result of formatting is output dependent; for example, an output that posts to an HTTP server may take a format that provides JSON, whereas an output that writes to a file may produce text.

Line-oriented formatting

LineFormat formats messages for text-oriented outputs such as a file or standard error. It uses a ConversionTable to stringify the arbitrary fields in a message. To customize, copy the default line_format and modify:

in your twiggy_setup
import copy
my_format = copy.copy(formats.line_format)
my_format.conversion.add(key = 'address', # name of the field
 convert_value = hex, # gets original value
 convert_item = "{0}={1}".format, # gets called with: key, converted_value
 required = True)

output messages with name 'memory' to stderr
add_emitters(('memory', levels.DEBUG, filters.names('memory'), outputs.StreamOutput(format = my_format)))

Filtering Output

The messages output by an emitter are determined by its min_level and filter (a function which take a Message and returns bool). These attributes may be changed while the application is running. The filter attribute of emitters is intelligent; you may assign strings, bools or functions and it will magically do the right thing. Assigning a list indicates that all of the filters must pass for the message to be output.

e = emitters['memory']
e.min_level = levels.WARNING
True allows all messages through (None works as well)
e.filter = True
False blocks all messages
e.filter = False
Strings are interpreted as regexes (regex objects ok too)
e.filter = "^mem.*y$"
functions are passed the message; return True to emit
e.filter = lambda msg: msg.fields['address'] > 0xDECAF
lists are all()'d
e.filter = ["^mem.y$", lambda msg: msg.fields['address'] > 0xDECAF]

See also

Available filters

dict_config()

Twiggy 0.5 features a new convenience method, dict_config() for configuring
Emitters that takes a a dictionary with the configuration information. The
dictionary can be constructed programmatically, loaded from a configuration file, or hardcoded
into an application. This allows the programmer to easily set defaults and allow the user to
override those from a configuration file. Here’s an example:

from twiggy import dict_config

twiggy_config = {'version': '1.0',
 'outputs': {
 'alice_output': {
 'output': 'twiggy.outputs.FileOutput',
 'args': ['alice.log']
 },
 'bob_output': {
 'output': 'twiggy.outputs.FileOutput',
 'args': ['bob.log'],
 'format': 'twiggy.formats.line_format'
 }
 },
 'emitters': {
 'alice': {
 'level': 'DEBUG',
 'output_name': 'alice_output'
 },
 'betty': {
 'level': 'INFO',
 'filters': [{
 'filter': 'twiggy.filters.names',
 'args': ['betty']
 }
],
 'output_name': 'bob_output'
 },
 'brian.*': {
 'level': 'DEBUG',
 'filters': [{
 'filter': 'twiggy.filters.glob_names',
 'args': ['brian.*']
 }
],
 'output_name': 'bob_output'
 }
 }
 }

dict_config(twiggy_config)

In this example, the programmer creates a twiggy configuration in the application’s code and uses it
to configure twiggy. The configuration closely mirrors the objects that were created in the
twiggy_setup.py section. The outputs field contains definitions of alice_output and
bob_output that write to the alice.log and bob.log files respectively. The emitters
field defines three emitters, their levels and filters to output to the

The configuration should be done near the start of your application. It’s
particularly important to set up Twiggy before spawning new processes.

With this configuration, twiggy.dict_config() will create two log destinations (Outputs):
alice.log and bob.log. These Outputs are then associated with the set of messages
that they will receive in the emitters section. alice.log will receive all messages and
bob.log will receive two sets of messages:

	messages with the name field equal to betty and level >= INFO

	messages with the name field glob-matching brian.*

See the Twiggy Config Schema documentation for details of what each of the fields in the
configuration dictionary mean.

User Overrides

Each site that runs an application is likely to have different logging needs. Using
dict_config it is easy to let the user override the configuration specified by the program. For
instance, the application could have a yaml configuration file with a logging_config section:

import yaml
config = yaml.safe_load('config_file.yml')
if 'logging_config' in config:
 try:
 twiggy.dict_config(config['logging_config'])
 except Exception as e:
 print('User provided logging configuration was flawed: {0}'.format(e))

Twiggy Config Schema

The dict taken by twiggy.dict_config() may contain the following keys:

	version

	Set to the value representing the schema version as a string. Currently, the only valid value
is “1.0”.

	incremental

	(Optional) If True, the dictionary will update any existing configuration. If False, this
will override any existing configuration. This allows user defined logging configuration to
decide whether to override the logging configuration set be the application or merely supplement
it. The default is False.

	outputs

	(Optional) Mapping of output names to outputs. Outputs consist of

	output

	A twiggy.outputs.Output or the string representation with which to import
a Output. For instance, to use the builtin,
twiggy.outputs.FileOutput either set output directly to the class or the string
twiggy.outputs.FileOutput.

	args

	(Optional) A list of arguments to pass to the Twiggy.outputs.Output class
constructor. For instance, FileOutput takes the filename of a file
to log to. So args could be set to: ["logfile.log"].

	kwargs

	(Optional) A dict of keyword arguments to pass to the Twiggy.outputs.Output class
constructor. For instance, StreamOutput takes a stream as
a keyword argument so kwargs could be set to: {"stream": "ext://sys.stdout"}.

	format

	(Optional) A formatter function which transforms the log message for the output. This can
either be a string name of the formatter of the formatter itself. The default is
twiggy.formats.line_format()

If both outputs and emitters are None and incremental is False then
twiggy.emitters will be cleared.

	emitters

	(Optional) Mapping of emitter names to emitters. Emitters consist of:

	level

	String name of the log level at which log messages will be passed to this emitter.
May be one of (In order of severity) CRITICAL, ERROR, WARNING, NOTICE,
INFO, DEBUG, DISABLED.

	output_name

	The name of an output in this configuration dict.

	filters

	(Optional) A list of filters which filter out messages which will go to this emitter.
Each filter is a mapping which consists of:

	filter

	Name for a twiggy filter function. This can either be a string name for the function or
the function itself.

	args

	(Optional) A list of arguments to pass to the Twiggy.outputs.Output class
constructor. For instance, FileOutput takes the filename of a file
to log to. So args could be set to: ["logfile.log"].

	kwargs

	(Optional) A dict of keyword arguments to pass to the Twiggy.outputs.Output class
constructor. For instance, StreamOutput takes a stream as
a keyword argument so kwargs could be set to: {"stream": "ext://sys.stdout"}.

If both emitters and output are None and incremental is False then
twiggy.emitters will be cleared.

Sometimes you want to have an entry in args or kwargs that is a python object. For
instance, StreamOutput takes a stream keyword argument so you may want to
give sys.stdout to it. If you are building the configuration dictionary in Python code you can
simply use the actual object. However, if you are writing in a text configuration file, you can
specify existing objects by prefixing the string with ext://. When Twiggy sees that the string
starts with ext:// it will strip off the prefix and then try to import an object with the rest
of the name.

Here’s an example config that you might find in a YAML config file:

version: '1.0'
outputs:
 alice_output:
 output: 'twiggy.outputs.FileOutput'
 args:
 - 'alice.log'
 bob_output:
 output: 'twiggy.outputs.StreamOutput'
 kwargs:
 stream: 'ext://sys.stdout'
 format: 'twiggy.formats.line_format'
emitters:
 alice:
 level: 'DEBUG'
 output_name: 'alice_output'
 betty:
 level: 'INFO'
 filters:
 filter: 'twiggy.filters.names'
 args:
 - 'betty'
 output_name: 'bob_output'
 brian.*:
 levels: 'DEBUG'
 filters:
 filter: 'twiggy.filters.glob_names'
 args:
 -'brian.*'
 output_name: 'bob_output'

 Reference Guide

Reference Guide

Dynamic Logging

Any functions in message args/fields are called and the value substitued.

>>> import os
>>> from twiggy.lib import thread_name
>>> thread_name()
'MainThread'
>>> log.fields(pid=os.getpid).info("I'm in thread {0}", thread_name)
INFO:pid=...|I'm in thread MainThread

This can be useful with partially-bound loggers, which lets us do some cool stuff. Here’s a proxy class that logs which thread accesses attributes.

class ThreadTracker(object):
 """a proxy that logs attribute access"""
 def __init__(self, obj):
 self.__obj = obj
 # a partially bound logger
 self.__log = log.name("tracker").fields(obj_id=id(obj), thread=thread_name)
 self.__log.debug("started tracking")
 def __getattr__(self, attr):
 self.__log.debug("accessed {0}", attr)
 return getattr(self.__obj, attr)

class Bunch(object):
 pass

Let’s see it in action.

>>> foo = Bunch()
>>> foo.bar = 42
>>> tracked = ThreadTracker(foo)
DEBUG:tracker:obj_id=...:thread=MainThread|started tracking
>>> tracked.bar
DEBUG:tracker:obj_id=...:thread=MainThread|accessed bar
42
>>> import threading
>>> t=threading.Thread(target = lambda: tracked.bar * 2, name = "TheDoubler")
>>> t.start(); t.join()
DEBUG:tracker:obj_id=...:thread=TheDoubler|accessed bar

If you really want to log a callable, repr() it or wrap it in lambda.

See also

procinfo feature

Features!

Features are optional additons of logging functionality to the log. They encapsulate common logging patterns. Code can be written using a feature, enhancing what information is logged. The feature can be disabled at runtime if desired.

Warning

Features are currently deprecated, pending a reimplementation in version 0.5

>>> from twiggy.features import socket as socket_feature
>>> log.addFeature(socket_feature.socket)
>>> import socket
>>> s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
>>> s.connect(('www.python.org', 80))
>>> log.socket(s).debug("connected")
DEBUG:host=...:ip_addr=...:port=80:service=http|connected
>>> # turn off the feature - the name is still available
... log.disableFeature('socket')
>>> log.socket(s).debug("connected")
DEBUG|connected
>>> # use a different implementation
... log.addFeature(socket_feature.socket_minimal, 'socket')
>>> log.socket(s).debug("connected")
DEBUG:ip_addr=...:port=80|connected

Stays Out of Your Way

Twiggy tries to stay out of your way. Specifically, an error in logging should never propogate outside the logging subsystem and cause your main application to crash. Instead, errors are trapped and reported by the internal_log.

Instances of InternalLogger only have a single Output - they do not use emitters. By default, these messages are sent to standard error. You may assign an alternate ouput (such as a file) to twiggy.internal_log.output if desired, with the following conditions:

	the output should be failsafe - any errors that occur during internal logging will be dumped to standard error, and suppressed, causing the original message to be discarded.

	accordingly, networked or asynchronous outputs are not recommended.

	make sure someone is reading these log messages!

Concurrency

Locking in twiggy is as fine-grained as possible. Each individual output has its own lock (if necessary), and only holds that lock when writing. Using redundant outputs (ie, pointing to the same file) is not supported and will cause logfile corruption.

Asynchronous loggers never lock.

Use by Libraries

Libraries require special care to be polite and usable by application code. The library should have a single bound in its top-level package that’s used by modules. Library logging should generally be silent by default.

in mylib/__init__.py
log = twiggy.log.name('mylib')
log.min_level = twiggy.levels.DISABLED

in mylib/some_module.py
from . import log
log.debug("hi there")

This allows application code to enable/disable all of library’s logging as needed.

in twiggy_setup
import mylib
mylib.log.min_level = twiggy.levels.INFO

In addition to min_level, loggers also have a filter. This filter operates only on the format string, and is intended to allow users to selectively disable individual messages in a poorly-written library.

in mylib:
for i in xrange(1000000):
 log.warning("blah blah {0}", 42)

in twiggy_setup: turn off stupidness
mylib.log.filter = lambda format_spec: format_spec != "blah blah {0}"

Note that using a filter this way is an optimization - in general, application code should use emitters instead.

Tips And Tricks

Alternate Styles

In addition to the default new-style (braces) format specs, twiggy also supports old-style (percent, aka printf) and templates (dollar). The aliases {}, % and $ are also supported.

>>> log.options(style='percent').info('I like %s', "bikes")
INFO|I like bikes
>>> log.options(style='dollar').info('$what kill', what='Cars')
INFO|Cars kill

Use Fields

Use fields() to include key-value data in a message instead of embedding it the human-readable string.

do this:
log.fields(key1='a', key2='b').info("stuff happenend")

not this:
log.info("stuff happened. key1: {0} key2: {1}", 'a', 'b')

Technical Details

Independence of logger instances

Each log instance created by partial binding is independent from each other. In particular, a logger’s name() has no relation to the object; it’s just for human use.

>>> log.name('bob') is log.name('bob')
False

Optimizations

Twiggy has been written to be fast, minimizing the performance impact on the main execution path. In particular, messages that will cause no output are handled as quickly as possible. Users are therefore encouraged to add lots of logging for development/debugging purposes and then turn them off in production.

The emit methods can be hidden behind an appropriate assert. Python will eliminate the statement entirely when run with bytecode optimization (python -O).

assert log.debug("This goes away with python -O") is None
assert not log.debug("So does this")

Note

The author doesn’t particularly care for code written like this, but likes making his users happy more.

Extending Twiggy

When developing extensions to twiggy, use the devel_log. An InternalLogger, the devel_log is completely separate from the main log. By default, messages logged to the devel_log are discarded; assigning an appropriate Output to its output attribute before using.

Writing Features

Warning

Features are currently deprecated, pending a reimplementation in version 0.5

Features are used to encapsulate common logging patterns. They are implemented as methods added to the Logger class. They receive an instance as the first argument (ie, self). Enable the feature before using.

Features come in two flavors: those that add information to a message’s fields or set options, and those that cause output.

Features which only add fields/set options should simply call the appropriate method on self and return the resultant object.:

def dimensions(self, shape):
 return self.fields(height=shape.height, width=shape.width)

Features can also emit messages as usual. Do not return from these methods.:

def sayhi(self, lang):
 if lang == 'en':
 self.info("Hello world")
 elif lang == 'fr':
 self.info("Bonjour tout le monde")

If the feature should add fields and emit in the same step (like struct()), use the emit() decorators. Here’s a prototype feature that dumps information about a WSGI environ [https://www.python.org/dev/peps/pep-0333/#environ-variables].:

from twiggy.logger import emit

@emit.info
def dump_wsgi(self, wsgi_environ):
 keys = ['SERVER_PROTOCOL', 'SERVER_PORT', 'SERVER_NAME', 'CONTENT_LENGTH', 'CONTENT_TYPE', 'QUERY_STRING', 'PATH_INFO', 'SCRIPT_NAME', 'REQUEST_METHOD']
 d = {}
 for k in keys:
 d[k] = wsgi_environ.get(k, '')

 for k, v in wsgi_environ.iteritems():
 if k.startswith('HTTP_'):
 k = k[5:].title().replace('_', '-')
 d[k] = v

 # if called on an unnamed logger, add a name
 if name not in self._fields:
 self = self.name('dumpwsgi')

 return self.fields_dict(d)

Writing Outputs and Formats

Outputs do the work of writing a message to an external resource (file, socket, etc.). User-defined outputs should inherit from Output or AsyncOutput if they wish to support asynchronous logging (preferred).

An Output subclass’s __init__ should take a format and any parameters needed to acquire resources (filename, hostname, etc.), but not the resources themselves. These are created in _open(). Implementations supporting asynchronous logging should also take a msg_buffer argument.

Outputs should define the following:

	
Output._open()

	Acquire any resources needed for writing (files, sockets, etc.)

	
Output._close()

	Release any resources acquired in _open

	
Output._write(x)

	Do the work of writing

	Parameters

	x – an implementation-dependent object to be written.

If the output requires locking to be thread-safe, set the class attribute use_locks to True (the default). Turning off may give slightly higher throughput.

The format callable is Output-specific; it should take a Message and return an appropriate object (string, database row, etc.) to be written. Do not modify the received message - it is shared by all outputs.

ConversionTables are particulary useful for formatting fields. They are commonly used with LineFormat to format messages for text-oriented output.

from twiggy.lib.converter import ConversionTable
conversion = ConversionTable()

fields = {'shape': 'square',
 'height': 10,
 'width': 5,
 'color': 'blue'}

hide shape field name
uppercase value
make mandatory
conversion.add(key = 'shape',
 convert_value = str.upper,
 convert_item = '{1}'.format, # stringify 2nd item (value)
 required = True)

format height value with two decimal places
show as "<key> is <value>"
conversion.add('height', '{0:.2f}'.format, "{0} is {1}".format)

separate fields in final output by colons
conversion.aggregate = ':'.join

unknown items are sorted by key

unknown values are stringified
conversion.generic_value = str

show unknown items as "<key>=<value>"
conversion.generic_item = "{0}={1}".format

convert!
print(conversion.convert(fields))

SQUARE:height is 10.00:color=blue:width=5

 API Reference

API Reference

Global Objects

	
twiggy.log

	the magic log object

	
twiggy.internal_log

	InternalLogger for reporting errors within Twiggy itself

	
twiggy.devel_log

	InternalLogger for use by developers writing extensions to Twiggy

	
twiggy.emitters

	the global emitters dictionary, tied to the log

Configuration

	
twiggy.add_emitters(*tuples)

	Add multiple emitters

tuples should be (name_of_emitter, min_level, filter, output).
The last three are passed to Emitter.

	
twiggy.dict_config(config)

	Configure twiggy logging via a dictionary

	Parameters

	config – a dictionary which configures twiggy’s outputs and emitters. See
TWIGGY_CONFIG_SCHEMA for details of the format of the dict.

See also

dict_config() for a thorough explaination of the outputs and emitters
concepts from the dictionary

	
twiggy.quick_setup(min_level=<LogLevel DEBUG>, file=None, msg_buffer=0)

	Quickly set up emitters.

quick_setup() quickly sets up logging with reasonable defaults and minimal customizablity.
Quick setup is limited to sending all messages to a file, sys.stdout or sys.stderr.
A timestamp will be prefixed when logging to a file.

	Parameters

	
	min_level (LogLevel) – lowest message level to cause output

	file (string) – filename to log to, or sys.stdout, or sys.stderr. None means
standard error.

	msg_buffer (int) – number of messages to buffer, see outputs.AsyncOutput.msg_buffer

Features

Optional additions of logging functionality

procinfo

Logging feature to add information about process, etc.

	
twiggy.features.procinfo.procinfo(self)

	Adds the following fields:

	Hostname

	current hostname

	Pid

	current process id

	Thread

	current thread name

socket

Logging feature to add information about a socket

	
twiggy.features.socket.socket(self, s)

	Adds the following fields:

	ip_addr

	numeric IP address

	port

	port number

	host

	peer hostname, as returned by getnameinfo()

	service

	the human readable name of the service on port

	Parameters

	s (socket) – the socket to extract information from

	
twiggy.features.socket.socket_minimal(self, s)

	Like socket, but only log ip_addr and port

Filters

	
twiggy.filters.filter(msg : Message) → bool

	A filter is any function that takes a Message and returns True if it should be emitted.

	
twiggy.filters.msg_filter(x) → filter

	create a filter intelligently

You may pass:

	None, True

	the filter will always return True

	False

	the filter will always return False

	string

	compiled into a regex

	regex

	match() against the message text

	callable

	returned as is

	list

	apply msg_filter to each element, and all() the results

	Return type

	filter function

	
twiggy.filters.names(*names) → filter

	create a filter, which gives True if the messsage’s name equals any of those provided

names will be stored as an attribute on the filter.

	Parameters

	names (strings) – names to match

	Return type

	filter function

	
twiggy.filters.glob_names(*names) → filter

	create a filter, which gives True if the messsage’s name globs those provided.

names will be stored as an attribute on the filter.

This is probably quite a bit slower than names().

	Parameters

	names (strings) – glob patterns.

	Return type

	filter function

	
class twiggy.filters.Emitter

	Hold and manage an Output and associated filter()

	
min_level

	only emit if greater than this LogLevel

	
filter

	arbitrary filter() on message contents. Assigning to this attribute is intelligent.

	
_output

	Output to emit messages to. Do not modify.

Formats

Formats are single-argument callables that take a Message and return an object appropriate for the Output they are assigned to.

	
class twiggy.formats.LineFormat(separator=':', traceback_prefix='\nTRACE', conversion=line_conversion)

	
	
separator

	string to separate line parts. Defaults to :.

	
traceback_prefix

	string to prepend to traceback lines. Defaults to \nTRACE.

Set to '\\n' (double backslash n) to roll up tracebacks to a single line.

	
conversion

	ConversionTable used to format fields. Defaults to line_conversion

	
format_text(msg)

	format the text part of a message

	
format_fields(msg)

	format the fields of a message

	
format_traceback(msg)

	format the traceback part of a message

	
twiggy.formats.line_conversion

	a default line-oriented ConversionTable. Produces a nice-looking string from fields.

Fields are separated by a colon (:). Resultant string includes:

	time

	in iso8601 format (required)

	level

	message level (required)

	name

	logger name

Remaining fields are sorted alphabetically and formatted as key=value

	
twiggy.formats.line_format

	a default LineFormat for output to a file. Sample output.

Fields are formatted using line_conversion and separated from the message text by a colon (:). Traceback lines are prefixed by TRACE.

	
twiggy.formats.shell_conversion

	a default line-oriented ConversionTable for use in the shell. Returns the same string as line_conversion but drops the time field.

	
twiggy.formats.shell_format

	a default LineFormat for use in the shell. Same as line_format but uses shell_conversion for fields.

Levels

Levels include (increasing severity): DEBUG, INFO, NOTICE, WARNING, ERROR,
CRITICAL, DISABLED

	
class twiggy.levels.LogLevel(name, value)

	A log level. Users should not create new instances.

Levels are opaque; they may be compared to each other, but nothing else.

	
class twiggy.levels.LogLevelMeta

	Metaclass that aids in making comparisons work the same in Python2 and Python3

Python3 raises TypeError when unorderable types are compared via lt, gt, le, ge.
Python2 picks an order but it doesn’t always make much sense.

In Python3, we only need the rich comparison operators to get this behaviour.

In Python2, we use the __cmp__ function to raise TypeError for lt, gt, le, and ge.
We define __eq__ and __ne__ on their own since those should just say that a LogLevel is never
equal to a non-LogLevel.

	
twiggy.levels.name2level(name)

	return a LogLevel from a case-insensitve string

Library

	
twiggy.lib.iso8601time(gmtime=None)

	convert time to ISO 8601 format - it sucks less!

	Parameters

	gmtime (time.struct_time) – time tuple. If None, use time.gmtime() (UTC)

XXX timezone is not supported

	
twiggy.lib.thread_name()

	return the name of the current thread

Converter

	
class twiggy.lib.converter.Converter(key, convert_value, convert_item, required=False)

	Holder for ConversionTable items

	Variables

	
	key – the key to apply the conversion to

	convert_value (function) – one-argument function to convert the value

	convert_item (function) – two-argument function converting the key and converted value

	required (bool) – is the item required to present. Items are optional by default.

	
twiggy.lib.converter.same_value(v)

	return the value unchanged

	
twiggy.lib.converter.same_item(k, v)

	return the item unchanged

	
twiggy.lib.converter.drop(k, v)

	return None, indicating the item should be dropped

New in version 0.5.0: Add same_value, same_item, drop.

	
class twiggy.lib.converter.ConversionTable(seq)

	Convert data dictionaries using Converters

For each item in the dictionary to be converted:

	Find one or more corresponding converters c by matching key.

	Build a list of converted items by calling c.convertItem(item_key, c.convertValue(item_value)). The list will have items in the same order as converters were supplied.

	Dict items for which no converter was found are sorted by key and passed to generic_value / generic_item. These items are appended to the list from step 2.

	If any required items are missing, ValueError is raised.

	The resulting list of converted items is passed to aggregate. The value it returns is the result of the conversion.

Users may override generic_value/generic_item/aggregate by subclassing or assigning a new function on a ConversionTable instance.

Really, it’s pretty intuitive.

	
__init__(seq=None)

	
	Parameters

	seq – a sequence of Converters

You may also pass 3-or-4 item arg tuples or kwarg dicts (which will be used to create
Converters)

	
convert(d)

	do the conversion

	Parameters

	d (dict) – the data to convert. Keys should be strings.

	
generic_value(value)

	convert values for which no specific Converter is supplied

	
generic_item(key, value)

	convert items for which no specific Converter is supplied

	
aggregate(converteds)

	aggregate list of converted items. The return value of convert

	
copy()

	make an independent copy of this ConversionTable

	
get(key)

	return the first converter for key

	
get_all(key)

	return a list of all converters for key

	
add(*args, **kwargs)

	Append a Converter.

args & kwargs will be passed through to its constructor

	
delete(key)

	delete the all of the converters for key

Logger

Loggers should not be created directly by users; use the global log instead.

	
class twiggy.logger.BaseLogger(fields=None, options=None, min_level=None)

	Base class for loggers

	
_fields

	dictionary of bound fields for structured logging.
By default, contains a single field time with value time.gmtime(). This function will be called for each message emitted, populating the field with the current time.struct_time.

	
_options

	dictionary of bound options.

	
min_level

	minimum LogLevel for which to emit. For optimization purposes only.

	
fields(**kwargs) → bound Logger

	bind fields for structured logging. kwargs are interpreted as names/values of fields.

	
fields_dict(d) → bound Logger

	bind fields for structured logging. Use this instead of fields if you have keys which are not valid Python identifiers.

	Parameters

	d (dict) – dictionary of fields. Keys should be strings.

	
options(**kwargs) → bound Logger

	bind options for message creation.

	
trace(trace='error') → bound Logger

	convenience method to enable traceback logging

	
name(name) → bound Logger

	convenvience method to bind name field

	
struct(**kwargs) → bound Logger

	convenience method for structured logging. Calls fields() and emits at info

	
struct_dict(d) → bound Logger

	convenience method for structured logging. Use instead of struct if you have keys which are not valid Python identifiers.

	Parameters

	d (dict) – dictionary of fields. Keys should be strings.

The following methods cause messages to be emitted. format_spec is a template string into which args and kwargs will be substitued.

	
debug(format_spec='', *args, **kwargs)

	Emit at DEBUG level

	
info(format_spec='', *args, **kwargs)

	Emit at INFO level

	
notice(format_spec='', *args, **kwargs)

	Emit at NOTICE level

	
warning(format_spec='', *args, **kwargs)

	Emit at WARNING level

	
error(format_spec='', *args, **kwargs)

	Emit at ERROR level

	
critical(format_spec='', *args, **kwargs)

	Emit at CRITICAL level

	
class twiggy.logger.Logger(fields=None, options=None, min_level=None)

	Logger for end-users. The type of the magic log

	
filter

	Filter on format_spec. For optimization purposes only. Should have the following signature:

	
func(format_spec : string) → bool

	Should the message be emitted.

	
classmethod addFeature(func, name=None)

	add a feature to the class

	Parameters

	
	func – the function to add

	name (string) – the name to add it under. If None, use the function’s name.

	
classmethod disableFeature(name)

	disable a feature.

A method will still exist by this name, but it won’t do anything.

	Parameters

	name (string) – the name of the feature to disable.

	
classmethod delFeature(name)

	delete a feature entirely

	Parameters

	name (string) – the name of the feature to remove

	
class twiggy.logger.InternalLogger(output, fields=None, options=None, min_level=None)

	Special-purpose logger for internal uses

Sends messages directly to output, bypassing emitters.

	Variables

	output (Output) – an output to write to

	
twiggy.logger.emit(level)

	a decorator that emits at level after calling the method. The method
should return a Logger instance.

For convenience, decorators for the various levels are available as
emit.debug, emit.info, etc..

Message

	
class twiggy.message.Message(level, format_spec, fields, options, args, kwargs)

	A logging message. Users never create these directly.

Changed in version 0.4.1: Pass args/kwargs as list/dict instead of via */** expansion.

The constructor takes a dict of options to control message creation. In addition to suppress_newlines, the following options are recognized:

	trace

	control traceback inclusion. Either a traceback tuple, or one of the strings always, error, in which case a traceback will be extracted from the current stack frame.

	style

	the style of template used for format_spec. One of braces, percent, dollar. The aliases {}, % and $ are also supported.

Any callables passed in fields, args or kwargs will be called and the returned value used instead. See dynamic messages.

All attributes are read-only.

	
fields

	dictionary of structured logging fields. Keys are string, values are arbitrary. A level item is required.

	
suppress_newlines

	should newlines be escaped in output. Boolean.

	
traceback

	a stringified traceback, or None.

	
text

	the human-readable message. Constructed by substituting args/kwargs into format_spec. String.

	
__init__(level, format_spec, fields, options, args, kwargs)

	
	Parameters

	
	level (LogLevel) – the level of the message

	format_spec (string) – the human-readable message template. Should match the style
in options.

	fields (dict) – dictionary of fields for structured logging

	args (tuple) – substitution arguments for format_spec.

	kwargs (dict) – substitution keyword arguments for format_spec.

	options (dict) – a dictionary of options to control message
creation.

Outputs

	
class twiggy.outputs.Output(format=None, close_atexit=True)

	
	
_format

	a callable taking a Message and formatting it for output. None means return the message unchanged.

	
use_locks

	Class variable, indicating that locks should be used when running in a synchronous, multithreaded environment. Threadsafe subclasses may disable locking for higher throughput. Defaults to True.

	
__init__(format=None, close_atexit=True)

	
	Parameters

	
	format (format) – the format to use. If None, return the message unchanged.

	close_atexit (bool) – should close() be registered with atexit. If False,
the user is responsible for closing the output.

New in version 0.4.1: Add the close_atexit parameter.

	
close()

	Finalize the output.

The following methods should be implemented by subclasses.

	
_open()

	Acquire any resources needed for writing (files, sockets, etc.)

	
_close()

	Release any resources acquired in _open

	
_write(x)

	Do the work of writing

	Parameters

	x – an implementation-dependent object to be written.

	
class twiggy.outputs.AsyncOutput(msg_buffer=0)

	An Output with support for asynchronous logging.

Inheriting from this class transparently adds support for asynchronous logging using the multiprocessing module. This is off by default, as it can cause log messages to be dropped.

	Parameters

	msg_buffer (int) – number of messages to buffer in memory when using asynchronous logging. 0 turns asynchronous output off, a negative integer means an unlimited buffer, a positive integer is the size of the buffer.

	
class twiggy.outputs.FileOutput(name, format, mode='a', buffering=1, msg_buffer=0, close_atexit=True)

	Output messages to a file

name, mode, buffering are passed to open()

	
class twiggy.outputs.StreamOutput(format, stream=sys.stderr)

	Output to an externally-managed stream.

The stream will be written to, but otherwise left alone (i.e., it will not be closed).

	
class twiggy.outputs.NullOutput(format=None, close_atexit=True)

	An output that just discards its messages

	
class twiggy.outputs.ListOutput(format=None, close_atexit=True)

	an output that stuffs messages in a list

Useful for unittesting.

	Variables

	messages (list) – messages that have been emitted

Changed in version 0.4.1: Replace DequeOutput with more useful ListOutput.

 Testing

Testing

This part discusses how to test Twiggy to ensure that Twiggy is built and installed correctly.

Requirements

The following need to be installed prior to testing:

	Python 2.7.1 or greater.

	The coverage [https://pypi.python.org/pypi/coverage] module.

	sphinx [http://www.sphinx-doc.org/en/stable/] 1.0.8 or greater. You’ll need to get and build the sphinx source [https://bitbucket.org/birkenfeld/sphinx/].

	Twiggy source [https://github.com/wearpants/twiggy/].

Running Tests

Note: Tests must be run from the Twiggy root directory to work.

To run all tests (unittest and Sphinx doctests):

./scripts/run-twiggy-tests.sh

To run coverage tests, run:

./scripts/cover-twiggy-tests.sh discover -b

To run coverage tests on a specific module, run:

./scripts/cover-twiggy-tests.sh tests.test_levels

 Glossary

Glossary

	asynchronous logging

	performance enhancement that moves formatting and writing messages to a separate process. See Asynchronous Logging.

	structured logging

	logging information in easy-to-parse key-value pairs, instead of embedded in a human-readable message. See an example

 Changelog

Changelog

0.5.0

XXX Unreleased

	add a NOTICE level between INFO and WARNING

	add sameValue, sameItem, drop helper functions to lib.converter

	support {}, %, $ as style aliases.

	PEP8 name compliance

	add logging_compat module for compatibility with stdlib’s logging

	add dict_config to configure logging from user configuration

0.4.7

03/09/2015
- add missing classifiers to setup.py

0.4.6

03/09/2015
- also suppress newlines in fields output
- Python 3 support

0.4.5

03/18/2013
- documentation update, move to Github

0.4.4

07/12/2011
- support Python 2.6

0.4.3

12/20/2010
- add check for Python >= 2.7 to setup.py, to reduce invalid bug reports.

0.4.2

11/11/2010
- fix broken installer

0.4.1

11/8/2010

	full test coverage; numerous bug fixes

	add close_atexit parameter to Outputs

	replace DequeOutput with ListOutput

	deprecate features, pending a rewrite in 0.5

	minor internal API changes

0.4.0

10/18/2010

First serious public release

 Contributors

Contributors

Twiggy would not be possible without the support of the following people. You have our thanks.

	Peter Fein pfein@pobox.com

	Ian Foote ianfoote@f2s.com

	Kyle Rickey kwkard@gmail.com

	Lin O’Driscoll nzlinus@gmail.com

 Python Module Index

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 twiggy	

 	
 	
 twiggy.features	

 	
 	
 twiggy.features.procinfo	

 	
 	
 twiggy.features.socket	

 	
 	
 twiggy.filters	

 	
 	
 twiggy.formats	

 	
 	
 twiggy.levels	

 	
 	
 twiggy.lib	

 	
 	
 twiggy.lib.converter	

 	
 	
 twiggy.logger	

 	
 	
 twiggy.message	

 	
 	
 twiggy.outputs	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | S
 | T
 | U
 | W

_

 	
 	__init__() (twiggy.lib.converter.ConversionTable method)

 	(twiggy.message.Message method)

 	(twiggy.outputs.Output method)

 	_close() (twiggy.outputs.Output method)

 	_fields (twiggy.logger.BaseLogger attribute)

 	
 	_format (twiggy.outputs.Output attribute)

 	_open() (twiggy.outputs.Output method)

 	_options (twiggy.logger.BaseLogger attribute)

 	_output (twiggy.filters.Emitter attribute)

 	_write() (twiggy.outputs.Output method)

A

 	
 	add() (twiggy.lib.converter.ConversionTable method)

 	add_emitters() (in module twiggy)

 	addFeature() (twiggy.logger.Logger class method)

 	
 	aggregate() (twiggy.lib.converter.ConversionTable method)

 	asynchronous logging

 	AsyncOutput (class in twiggy.outputs)

B

 	
 	BaseLogger (class in twiggy.logger)

C

 	
 	close() (twiggy.outputs.Output method)

 	conversion (twiggy.formats.LineFormat attribute)

 	ConversionTable (class in twiggy.lib.converter)

 	
 	convert() (twiggy.lib.converter.ConversionTable method)

 	Converter (class in twiggy.lib.converter)

 	copy() (twiggy.lib.converter.ConversionTable method)

 	critical() (twiggy.logger.BaseLogger method)

D

 	
 	debug() (twiggy.logger.BaseLogger method)

 	delete() (twiggy.lib.converter.ConversionTable method)

 	delFeature() (twiggy.logger.Logger class method)

 	
 	devel_log (in module twiggy)

 	dict_config() (in module twiggy)

 	disableFeature() (twiggy.logger.Logger class method)

 	drop() (in module twiggy.lib.converter)

E

 	
 	emit() (in module twiggy.logger)

 	Emitter (class in twiggy.filters)

 	
 	emitters (in module twiggy)

 	error() (twiggy.logger.BaseLogger method)

F

 	
 	fields (twiggy.message.Message attribute)

 	fields() (twiggy.logger.BaseLogger method)

 	fields_dict() (twiggy.logger.BaseLogger method)

 	FileOutput (class in twiggy.outputs)

 	filter (twiggy.filters.Emitter attribute)

 	(twiggy.logger.Logger attribute)

 	
 	filter() (in module twiggy.filters)

 	format_fields() (twiggy.formats.LineFormat method)

 	format_text() (twiggy.formats.LineFormat method)

 	format_traceback() (twiggy.formats.LineFormat method)

G

 	
 	generic_item() (twiggy.lib.converter.ConversionTable method)

 	generic_value() (twiggy.lib.converter.ConversionTable method)

 	
 	get() (twiggy.lib.converter.ConversionTable method)

 	get_all() (twiggy.lib.converter.ConversionTable method)

 	glob_names() (in module twiggy.filters)

I

 	
 	info() (twiggy.logger.BaseLogger method)

 	internal_log (in module twiggy)

 	
 	InternalLogger (class in twiggy.logger)

 	iso8601time() (in module twiggy.lib)

L

 	
 	line_conversion (in module twiggy.formats)

 	line_format (in module twiggy.formats)

 	LineFormat (class in twiggy.formats)

 	ListOutput (class in twiggy.outputs)

 	
 	log (in module twiggy)

 	Logger (class in twiggy.logger)

 	LogLevel (class in twiggy.levels)

 	LogLevelMeta (class in twiggy.levels)

M

 	
 	Message (class in twiggy.message)

 	min_level (twiggy.filters.Emitter attribute)

 	(twiggy.logger.BaseLogger attribute)

