

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Tubing 0.2 documentation

Welcome to Tubing’s documentation!

[image: https://imgur.com/Q9Lv0xo.png]
 [https://github.com/dokipen/tubing]

[image: https://travis-ci.org/dokipen/tubing.svg?branch=master]
 [https://travis-ci.org/dokipen/tubing/][image: https://coveralls.io/repos/github/dokipen/tubing/badge.svg?branch=master]
 [https://coveralls.io/github/dokipen/tubing?branch=master]
 [https://pypi.python.org/pypi/tubing/]
 [https://pypi.python.org/pypi/tubing/]
 [https://pypi.python.org/pypi/tubing/]
 [https://pypi.python.org/pypi/tubing/]
 [https://pypi.python.org/pypi/tubing/][image: https://readthedocs.org/projects/tubing/badge/?version=latest]
 [http://tubing.readthedocs.org/en/latest][image: Code Health]
 [https://landscape.io/github/dokipen/tubing/master]Tubing is a Python I/O library. What makes tubing so freakin’ cool is the
gross abuse of the bit-wise OR operator (|). Have you ever been writing python
code and thought to yourself, “Man, this is great, but I really wish it was a
little more like bash.” Whelp, we’ve made python a little more like bash.If you
are a super lame nerd-kid, you can replace any of the bit-wise ORs with the
tube() function and pray we don’t overload any other operators in future
versions. Here’s how you install tubing:

$ pip install tubing

Tubing is pretty bare-bones at the moment. We’ve tried to make it easy to add
your own functionality. Hopefully you find it not all that unpleasant. There
are three sections below for adding sources, tubes and sink. If you do make
some additions, think about committing them back upstream. We’d love to have
a full suite of tools.

Now, witness the power of this fully operational I/O library.

from tubing import sources, tubes, sinks

objs = [
 dict(
 name="Bob Corsaro",
 birthdate="08/03/1977",
 alignment="evil",
),
 dict(
 name="Tom Brady",
 birthdate="08/03/1977",
 alignment="good",
),
]
sources.Objects(objs) \
 | tubes.JSONDumps() \
 | tubes.Joined(by=b"\n") \
 | tubes.Gzip() \
 | sinks.File("output.gz", "wb")

Then in our old friend bash.

$ zcat output.gz
{"alignment": "evil", "birthdate": "08/03/1977", "name": "Bob Corsaro"}
{"alignment": "good", "birthdate": "08/03/1977", "name": "Tom Brady"}
$

You can find more documentation on readthedocs [https://tubing.readthedocs.org/]

Catalog

Sources

	Objects
	Takes a list of python objects.

	File
	Creates a stream from a file.

	Bytes
	Takes a byte string.

	IO
	Takes an object with a read function.

	Socket
	Takes an addr, port and socket() args. .

	HTTP
	Takes an method, url and any args that can be passed
to requests library.

Tubes

	Gunzip
	Unzips a binary stream.

	Gzip
	Zips a binary stream.

	JSONLoads
	Parses a byte string stream of raw JSON objects. Will
try to use ujson, then built-in json.

	JSONDumps
	Serializes an object stream using json.dumps. Will
try to use ujson, then built-in json.

	Split
	Splits a stream that supports the split method.

	Joined
	Joins a stream of the same type as the by argument.

	Tee
	Takes a sink and passes chunks along apparatus.

	Map
	Takes a transformer function for single items in
stream.

	Filter
	Takes a filter test callback and only forwards items
that pass.

	ChunkMap
	Takes a transformer function for batch of stream
items.

Sinks

	Objects
	A list that stores all passed items to self.

	Bytes
	Saves each chunk self.results.

	File
	Writes each chunk to a file.

	HTTPPost
	Writes data via HTTPPost.

	Hash
	Takes algorithm name, updates hash with contents.

	Debugger
	Writes each chunk to the tubing.tubes debugger with level DEBUG.

Extensions

	s3.S3Source
	Create stream from an S3 object.

	s3.MultipartUploader
	Stream data to S3 object.

	elasticsearch.BulkSink
	Stream elasticsearch.DocUpdate objects to the
elasticsearch _bulk endpoint.

Sources

To make your own source, create a Reader class with the following interface.

class MyReader(object):
 """
 MyReader returns count instances of data.
 """
 def __init__(self, data="hello world\n", count=10):
 self.data = data
 self.count = count

 def read(self, amt):
 """
 read(amt) returns $amt of data and a boolean indicating EOF.
 """
 if not amt:
 amt = self.count
 r = self.data * min(amt, self.count)
 self.count -= amt
 return r, self.count <= 0

The important thing to remember is that your read function should return an
iterable of units of data, not a single piece of data. Then wrap your reader in
the loving embrace of MakeSourceFactory.

from tubing import sources

MySource = sources.MakeSourceFactory(MyReader)

Now it can be used in a apparatus!

from __future__ import print_function

from tubing import tubes
sink = MySource(data="goodbye cruel world!", count=1) \
 | tubes.Joined(by=b"\n") \
 | sinks.Bytes()

print(sinks.result)
Output: goodbye cruel world!

Tubes

Making your own tube is a lot more fun, trust me. First make a Transformer.

class OptimusPrime(object):
 def transform(self, chunk):
 return list(reversed(chunk))

chunk is an iterable with a len() of whatever type of data the stream is
working with. In Transformers, you don’t need to worry about buffer size or
closing or exception, just transform an iterable to another iterable. There are
lots of examples in tubes.py.

Next give Optimus Prime a hug.

from tubing import tubes

AllMixedUp = tubes.MakeTranformerTubeFactory(OptimusPrime)

Ready to mix up some data?

from __future__ import print_function

import json
from tubing import sources, sinks

objs = [{"number": i} for i in range(0, 10)]

sink = sources.Objects(objs) \
 | AllMixedUp(chunk_size=2) \
 | sinks.Objects()

print(json.dumps(sink))
Output: [{"number": 1}, {"number": 0}, {"number": 3}, {"number": 2}, {"number": 5}, {"number": 4}, {"number": 7}, {"number": 6}, {"number": 9}, {"number": 8}]

Sinks

Really getting tired of making documentation... Maybe I’ll finish later. I have real work to do.

Well.. I’m this far, let’s just push through.

from __future__ import print_function
from tubing import sources, tubes, sinks

class StdoutWriter(object):
 def write(self, chunk):
 for part in chunk:
 print(part)

 def close(self):
 # this function is optional
 print("That's all folks!")

 def abort(self):
 # this is also optional
 print("Something terrible has occurred.")

Debugger = sinks.MakeSinkFactory(StdoutWriter)

objs = [{"number": i} for i in range(0, 10)]

sink = sources.Objects(objs) \
 | AllMixedUp(chunk_size=2) \
 | tubes.JSONDumps() \
 | tubes.Joined(by=b"\n") \
 | Debugger()
Output:
#{"number": 1}
#{"number": 0}
#{"number": 3}
#{"number": 2}
#{"number": 5}
#{"number": 4}
#{"number": 7}
#{"number": 6}
#{"number": 9}
#{"number": 8}
#That's all folks!

Table of Contents

	 API Docs
	Tubes
	TransformerTubeFactory

	Sources

	Sinks

	Things You Can’t do with Tubing

	Subpackages
	tubing.ext package
	Submodules

	tubing.ext.elasticsearch module

	tubing.ext.s3 module

	Module contents

	Submodules

	tubing.compat module

	tubing.sinks module

	tubing.sources module

	tubing.tubes module

 Copyright 2016, Bob Corsaro.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tubing 0.2 documentation

API Docs

There are two types of tubing users. Irish users, and users who wish they were
Irish. j/k. Really, they are:

	casual users want to use whatever we have in tubing.

	advanced users who want to extend tubing to their own devices.

	contributor users want to contribute to tubing.

Our most important users are the casual users. They are also the easiest to
satisfy. For them, we have tubes. Tubes are easy to use and understand.

Advanced users are very important too, but harder to satisfy. We never know
what crazy plans they’ll have in mind, so we must be ready. They need the tools
to build new tubes that extend our apparatus in unexpected ways.

For the benefit of the contributors, and ourselves, we’re going to outline exactly
how things work now. This documentation is also an exercise in understanding
and simplifying the code base.

We’ll call a tubing pipeline an apparatus. An apparatus has a Source, zero to
many Tubes, and a Sink.

A stream is what we call the units flowing through our Tubes. The units can be
bytes, characters, strings or objects.

Tubes

For most users, they simply want to transform elements of data as it goes through the stream. This can be achieved simply with the following idiom:

SomeSource | [Tubes ..] | tubes.Map(lambda x: transform(x)) | [Tubes ..] | SomeSink

Sometimes you’d like to transform an entire chunk of data at a time, instead of one element at a time:

SomeSource | [Tubes ..] | tubes.ChunkMap(lambda x: transform(x)) | [Tubes ..] | SomeSink

Other times you just want to filter out some data:

SomeSource | [Tubes ..] | tubes.Filter(lambda x: x > 10) | [Tubes ..] | SomeSink

All of these general tube tools also take close_fn and abort_fn params and are
shorthand for creating your own Tube class.

Of course, if you need to keep state, you can create a closure, but at some point, that can become cumbersome. You might also want to make a reusable Tube, in that case it could be nice to make a

The easiest way to extend tubing is to create a Transformer, and use TransformerTubeFactory
decorator to turn it into a Tube. A Transformer has the following interface:

@tubes.TransformerTubeFactory()
class NewTube(object):
 def transform(self, chunk):
 return new_chunk

 def close(self):
 return last_chunk or None

 def abort(self):
 pass

A chunk is an iterable of whatever type of stream we are working on, whether it
be bytes, Unicode characters, strings or python objects. We can index it,
slice it, or iterate over it. transform simple takes a chunk, and makes a new
chunk out of it. TransformerTubeFactory will take care of all the dirty
work. Transformers are enough for most tasks, but if you need to do something
more complex, you may need to go deeper.

[image: http://i.imgur.com/DyPouyL.pngalt:LeonardoDiCaprio]
First let’s describe how tubes work in more detail. Here’s the Tube interface:

tube factory can be a class

class TubeFactory(object):
 # This is what we export, and what is called when users create a tube.
 # The syntax looks like this:
 # SourceFactory() | [TubeFactory()...] | SinkFactory()
 def __call__(self, *args, **kwargs):
 return Tube()

or a function

def TubeFactory(*args, **kwargs):
 return Tube()

class Tube(object):
 def receive(self, source):
 # return a TubeWorker
 tw = TubeWorker
 tw.source = source
 return tw

class TubeWorker(object):
 def tube(self, receiver):
 # receiver is they guy who will call our `read` method. Either
 # another Tube or a Sink.
 return receiver.receive(self)

 def __or__(self, *args, **kwargs):
 # Our reason for existing.
 return self.tube(*args, **kwargs)

 def read(self):
 # our receiver will call this guy. We return a tuple here of
 # `chunk, eof`. We should return a chunk of len amt of whatever
 # type of object we produce. If we've exhausted our upstream
 # source, then we should return True as the second element of our
 # tuple. The chunk size should be configuratable and read should
 # return a len() of chunk size or less.
 return [], True

A TubeFactory is what casual users deal with. As you can see, it can be an
object or a function, depending on your style. It’s easier for me to reason
about state with an object, but if you prefer a closure, go for it! Classes are
just closures with more verbose states, after all.

When a casual is setting up some tubing, the TubeFactory returns a Tube, but
this isn’t the last object we’ll create. The Tube doesn’t have a source
connected, so it’s sort of useless. It’s just a placeholder waiting for a
source. As soon as it gets a source, it will hand off all of it’s duties to a
TubeWorker.

A TubeWorker is ready to read from it’s source, but it doesn’t. TubeWorkers are
pretty lazy and need someone else to tell them what to do. That’s where a receiver
comes in to play. A receiver can be another Tube, or a Sink. If it’s another
Tube, you know the drill. It’s just another lazy guy that will only tell his
source to read when his boss tells him to read. Ultimately, the only guy who
wants to do any work is the Sink. At the end of the chain, a sink’s receive
function will be called, and he’ll get everyone to work.

Technically, we could split the TubeWorker interface into two parts, but it’s
not really necessary since they share the same state. We could also combine
TubeFactory, Tube and TubeWorker, and just build up state overtime. I’ve
seriously consider this, but I don’t know, this feels better. I admit, it is a
little complicated, but one advantage you get is that you can do something like
this:

from tubing import tubes

tube = tubes.GZip(chunk_size=2**32)

source | tube | output1
source | tube | output2

Since tube is a factory and not an object, each tubeline will have it’s own
state. tubeline.... I just made that up. That’s an execution pipeline in
tubing. But we don’t want to call it a pipeline, it’s a tubeline. Maybe there’s
a better name? I picture a chemistry lab with a bunch of transparent tubes
connected to beakers and things like that.

[image: chemistry lab]
Let’s call it an apparatus.

TransformerTubeFactory

So how does TransformerTubeFactory turn a Transformer into a TubeFactory?
TransformerTubeFactory is a utility that creates a function that wrap a
transformer in a tube. Sort of complicate, eh? I’m sorry about that, but let’s
see if we can break it down.

TransformerTubeFactory returns a partial function out of the TransformerTube
instantiation. For the uninitiated, a partial is just a new version of a
function with some of the parameters already filled in. So we’re currying the
transformer_cls and the default_chunk_size back to the casuals. They can fill
in the rest of the details and get back a TransformerTube.

The TransformerTubeWorker is where most of the hard work happens. There’s a
bunch of code related to reading just enough chunks from our source to satisfy
our receiver. Remember, Workers are lazy, that’s good because we won’t waste a
bunch of space doing work we don’t need to and then waiting for our work to
be consumed.

default_chunk_size is sort of important, by default it’s something like 2**18.
It’s the size of the chunks that we request from upstream, in the read function
(amt). That’s great for byte streams(maybe?), but it’s not that great for
large objects. You’ll probably want to set it if you are using something other
than bytes. It can be overridden by plebes, this is just the default if they
don’t specify it. Remember, we should be making the plebes job easy, so try
and be a nice noble and set it to something sensible. In our own tests, using
2**3 for string or object streams and 2**18 for bytes streams seemed to give
the best trade off between speed and memory usage. YMMV.

We’ve explained Tubes, very well I might add. And it’s a good thing. They are
the most complicated bit in tubing. All that’s left is Sources and Sinks.

Sources

TODO

Sinks

TODO

Things You Can’t do with Tubing

	Tee to another apparatus

	async programming

	your laundry

Subpackages

	tubing.ext package
	Submodules

	tubing.ext.elasticsearch module

	tubing.ext.s3 module

	Module contents

Submodules

tubing.compat module

compat provides tools to make code compatible across python versions.

	
tubing.compat.python_2_unicode_compatible(klass)

	lifted from Django
A decorator that defines __unicode__ and __str__ methods under Python 2.
Under Python 3 it does nothing.

To support Python 2 and 3 with a single code base, define a __str__ method
returning text and apply this decorator to the class.

tubing.sinks module

	
class tubing.sinks.HTTPPost(url, username=None, password=None, chunks_per_post=1024, response_handler=<function <lambda>>)

	Bases: object

HTTPPost doesn’t support the write method, and therefore can not be used
with tubes.Tee.

	
gen()

	We have to do this goofy shit because requests.post doesn’t give
access to the socket directly. In order to stream, we need to pass
a generator object to requests.

tubing.sources module

	
class tubing.sources.MakeSourceFactory(reader_cls, default_chunk_size=65536)

	Bases: object

MakeSourceFactory takes a reader object and returns a Source factory.

	
class tubing.sources.Source(reader, chunk_size)

	Bases: object

Source is a wrapper for Readers that allows piping.

tubing.tubes module

	
tubing.tubes.MakeTransformerTubeFactory(transformer_cls, default_chunk_size=262144)

	Returns a TransformerTubeFactory, which in turn, returns a TransformerTube.

	
class tubing.tubes.TransformerTube(transformer_cls, default_chunk_size, *args, **kwargs)

	Bases: object

TransformerTube is what is returned by a TransformerTubeFactory. It
manages the initialization of the TransformerTubeWorker.

	
tubing.tubes.TransformerTubeFactory(default_chunk_size=262144)

	TransformerTubeFactory is a decorator to turn a Transformer class into a
TransformerTubeFactory.

	
class tubing.tubes.TransformerTubeWorker(apparatus, chunk_size, transformer)

	Bases: object

TransformerTubeWorker wraps a Transformer and does all the grunt work that
most tubes need to do. Transformers should implement transform(chunk), and
optionally close() and abort().

	
append(chunk)

	append to the buffer, creating it if it doesn’t exist.

	
buffer_len()

	buffer_len even if buffer is None.

	
read()

	This is where the rubber meets the snow.

	
read_complete()

	read_complete tells us if the current request is fulfilled. It’s fulfilled
if we’ve reached the EOF in the source, or we have $amt parts. If amt is
None, we should read to the source’s EOF.

	
shift_buffer(amt)

	Remove $amt data from the front of the buffer and return it.

	
class tubing.tubes.TubeIterator(tube)

	Bases: object

TubeIterator wraps a tube in an iterator object.

 Copyright 2016, Bob Corsaro.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Tubing 0.2 documentation

 	API Docs

tubing.ext package

Submodules

tubing.ext.elasticsearch module

	
tubing.ext.elasticsearch.BulkUpdate(base_url, index, username=None, password=None, chunks_per_post=512, fail_on_error=True)

	Docs per post is source.chunk_size * chunks_per_post.

	
class tubing.ext.elasticsearch.DocUpdate(doc, doc_type, esid=None, parent_esid=None, doc_as_upsert=True)

	Bases: object

DocUpdate is an ElasticSearch document update object. It is meant to be
used with BulkBatcher and returns an action and update.

	
action(encoding)

	

	
serialize(encoding)

	

	
update(encoding)

	

	
exception tubing.ext.elasticsearch.ElasticSearchError

	Bases: exceptions.Exception

ElasticSearchError message is the text response from the elasticsearch
server.

	
class tubing.ext.elasticsearch.Scroller(base_url, index, typ, query, timeout='10m', scroll_id=None, username=None, password=None)

	Bases: object

	
get_hits()

	

tubing.ext.s3 module

Module contents

 Copyright 2016, Bob Corsaro.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Tubing 0.2 documentation

 Python Module Index

 t

 			

 		
 t	

 	[image: -]
 	
 tubing	

 	
 	
 tubing.compat	

 	
 	
 tubing.ext	

 	
 	
 tubing.ext.elasticsearch	

 	
 	
 tubing.sinks	

 	
 	
 tubing.sources	

 	
 	
 tubing.tubes	

 Copyright 2016, Bob Corsaro.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Tubing 0.2 documentation

Index

 A
 | B
 | D
 | E
 | G
 | H
 | M
 | P
 | R
 | S
 | T
 | U

A

 	

 	action() (tubing.ext.elasticsearch.DocUpdate method)

 	

 	append() (tubing.tubes.TransformerTubeWorker method)

B

 	

 	buffer_len() (tubing.tubes.TransformerTubeWorker method)

 	

 	BulkUpdate() (in module tubing.ext.elasticsearch)

D

 	

 	DocUpdate (class in tubing.ext.elasticsearch)

E

 	

 	ElasticSearchError

G

 	

 	gen() (tubing.sinks.HTTPPost method)

 	

 	get_hits() (tubing.ext.elasticsearch.Scroller method)

H

 	

 	HTTPPost (class in tubing.sinks)

M

 	

 	MakeSourceFactory (class in tubing.sources)

 	

 	MakeTransformerTubeFactory() (in module tubing.tubes)

P

 	

 	python_2_unicode_compatible() (in module tubing.compat)

R

 	

 	read() (tubing.tubes.TransformerTubeWorker method)

 	

 	read_complete() (tubing.tubes.TransformerTubeWorker method)

S

 	

 	Scroller (class in tubing.ext.elasticsearch)

 	serialize() (tubing.ext.elasticsearch.DocUpdate method)

 	

 	shift_buffer() (tubing.tubes.TransformerTubeWorker method)

 	Source (class in tubing.sources)

T

 	

 	TransformerTube (class in tubing.tubes)

 	TransformerTubeFactory() (in module tubing.tubes)

 	TransformerTubeWorker (class in tubing.tubes)

 	TubeIterator (class in tubing.tubes)

 	tubing (module)

 	tubing.compat (module)

 	

 	tubing.ext (module)

 	tubing.ext.elasticsearch (module)

 	tubing.sinks (module)

 	tubing.sources (module)

 	tubing.tubes (module)

U

 	

 	update() (tubing.ext.elasticsearch.DocUpdate method)

 Copyright 2016, Bob Corsaro.
 Created using Sphinx 1.3.5.

 _static/up.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Tubing 0.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Bob Corsaro.
 Created using Sphinx 1.3.5.

_static/comment-close.png

modules.html

 Navigation

 		
 index

 		
 modules |

 		Tubing 0.2 documentation »

tubing

		API Docs
		Tubes
		TransformerTubeFactory

		Sources

		Sinks

		Things You Can’t do with Tubing

		Subpackages
		tubing.ext package
		Submodules

		tubing.ext.elasticsearch module

		tubing.ext.s3 module

		Module contents

		Submodules

		tubing.compat module

		tubing.sinks module

		tubing.sources module

		tubing.tubes module

 © Copyright 2016, Bob Corsaro.
 Created using Sphinx 1.3.5.

_static/file.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

