

 Navigation

 	
 index

 	
 next |

 	tsuru-admin 1.0.0 documentation

 tsuru-admin is the command line utility used by cloud operators to execute
administrative operations on a tsuru server.

Note

This documentation is a reference of tsuru-admin command line interface.
If you want know about how to use tsuru, you should see the tsuru documentation [http://docs.tsuru.io].

	Installing
	Downloading binaries (Mac OS X and Linux)

	Using homebrew (Mac OS X only)

	Using the PPA (Ubuntu only)

	Using AUR (ArchLinux only)

	Build from source (Linux and Mac OS X)

	Reference
	Managing remote tsuru server endpoints

	Check current version

	Container management

	Node management

	Node Containers management

	Machine management

	Pool management

	Healer

	Platform management

	Plan management

	Auto Scale

	Application Logging

	Quota management

	Other commands

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru-admin 1.0.0 documentation

Installing

There are several ways to install tsuru-admin:

	Downloading binaries (Mac OS X and Linux)

	Using homebrew (Mac OS X only)

	Using the PPA (Ubuntu only)

	Using AUR (ArchLinux only)

	Build from source (Linux and Mac OS X)

Downloading binaries (Mac OS X and Linux)

We provide pre-built binaries for OS X and Linux, only for the amd64
architecture. You can download these binaries directly from the releases page:

	tsuru-admin: https://github.com/tsuru/tsuru-admin/releases

Using homebrew (Mac OS X only)

If you use Mac OS X and homebrew [http://mxcl.github.com/homebrew/], you may
use a custom tap to install tsuru-admin. First you need to add the tap:

$ brew tap tsuru/homebrew-tsuru

Now you can install tsuru-admin:

$ brew install tsuru-admin

Whenever a new version of tsuru-admin is out, you can just run:

$ brew update
$ brew upgrade tsuru-admin

For more details on taps, check homebrew documentation [https://github.com/Homebrew/homebrew/wiki/brew-tap].

Note

tsuru-admin requires Go 1.4. Make sure you have the last version
of Go installed in your system.

Using the PPA (Ubuntu only)

Ubuntu users can install tsuru clients using apt-get and the tsuru PPA [https://launchpad.net/~tsuru/+archive/ppa]. You’ll need to add the PPA
repository locally and run an apt-get update:

$ sudo apt-add-repository ppa:tsuru/ppa
$ sudo apt-get update

Now you can install tsuru-admin clients:

$ sudo apt-get install tsuru-admin

Using AUR (ArchLinux only)

Archlinux users can build and install tsuru admin from AUR repository,
Is needed to have installed yaourt [http://archlinux.fr/yaourt-en] program.

You can run:

$ yaourt -S tsuru

Build from source (Linux and Mac OS X)

Note

If you’re feeling adventurous, you can try it on other systems, like
FreeBSD, OpenBSD or even Windows. Please let us know about your progress!

tsuru admin source [https://github.com/tsuru/tsuru-admin] is written in Go [http://golang.org], so before installing tsuru from source, please make sure
you have installed and configured Go [http://golang.org/doc/install].

With Go installed and configured, you will need to install godep and then
download and compile tsuru-admin source. You can do that with the following
commands:

$ GO15VENDOREXPERIMENT=1 go get github.com/tsuru/tsuru-admin

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	tsuru-admin 1.0.0 documentation

Reference

Managing remote tsuru server endpoints

In tsuru, a target is the address of the remote tsuru server.

Each target is identified by a label and a HTTP/HTTPS address. The client
requires at least one target to connect to, there’s no default target. A user
may have multiple targets, but he/she will be able to use only per session.

Add a new target

$ tsuru-admin target-add <label> <target> [--set-current|-s]

Adds a new entry to the list of available targets

Flags:

	
-s, --set-current

		(= false)
Add and define the target as the current target

Minimum # of arguments: 2

List existing targets

$ tsuru-admin target-list

Displays the list of targets, marking the current.

Other commands related to target:

	target-add: adds a new target to the list of targets

	target-set: defines one of the targets in the list as the current target

	target-remove: removes one target from the list

Set a target as current

$ tsuru-admin target-set <label>

Change current target (tsuru server)

Minimum # of arguments: 1

Removes an existing target

$ tsuru-admin target-remove

Remove a target from target-list (tsuru server)

Minimum # of arguments: 1

Check current version

$ tsuru-admin version

display the current version

Container management

All the container commands below only exist when using the docker
provisioner.

Moves single container

$ tsuru-admin container-move <container id> <to host>

Move specified container to another host.
This command allow you to specify a container id and a destination host, this
will create a new container on the destination host and remove the container
from its previous host.

Minimum # of arguments: 2

Moves all containers from on node

$ tsuru-admin containers-move <from host> <to host>

Move all containers from one host to another.
This command allows you to move all containers from one host to another. This
is useful when doing maintenance on hosts. <from host> and <to host> must be
host names of existing docker nodes.

This command will go through the following steps:

	Enumerate all units at the origin host;

	For each unit, create a new unit at the destination host;

	Erase each unit from the origin host.

Minimum # of arguments: 2

Rebalance containers in nodes

$ tsuru-admin containers-rebalance [--dry] [-y/--assume-yes] [-m/--metadata <metadata>=<value>]... [-a/--app <appname>]...

Move containers creating a more even distribution between docker nodes.
Instead of specifying hosts as in the containers-move command, this command
will automatically choose to which host each unit should be moved, trying to
distribute the units as evenly as possible.

The –dry flag runs the balancing algorithm without doing any real
modification. It will only print which units would be moved and where they
would be created.

Flags:

	
-a, --app
	(= [])
Filter by app name

	
--dry
	(= false)
Dry run, only shows what would be done

	
-m, --metadata
	(= {})
Filter by host metadata

	
-y, --assume-yes

		(= false)
Don’t ask for confirmation.

Node management

Add a new docker node

$ tsuru-admin docker-node-add [param_name=param_value]... [--register]

Creates or registers a new node in the cluster.
By default, this command will call the configured IaaS to create a new
machine. Every param will be sent to the IaaS implementation.

IaaS providers should have been previously configured in the tsuru.conf
file. See tsuru.conf reference docs for more information.

If using an IaaS to create a node is not wanted it’s possible to simply
register an existing docker node with the --register flag.

	Parameters with special meaning:

	
	iaas=<iaas name>

	Which iaas provider should be used, if not set tsuru will use the default
iaas specified in tsuru.conf file.

	template=<template name>

	A machine template with predefined parameters, additional parameters will
override template ones. See ‘machine-template-add’ command.

	address=<docker api url>

	Only used if --register flag is used. Should point to the endpoint of
a working docker server.

	pool=<pool name>

	Mandatory parameter specifying to which pool the added node will belong.
Available pools can be lister with the pool-list command.

Flags:

	
--register
	(= false)
Registers an existing docker endpoint, the IaaS won’t be called.

List docker nodes in cluster

$ tsuru-admin docker-node-list [--filter/-f <metadata>=<value>]...

Lists nodes in the cluster. It will also show you metadata associated to each
node and the IaaS ID if the node was added using tsuru IaaS providers.

Using the -f/--filter flag, the user is able to filter the nodes that
appear in the list based on the key pairs displayed in the metadata column.
Users can also combine filters using -f multiple times.

Flags:

	
-f, --filter
	(= {})
Filter by metadata name and value

	
-q
	(= false)
Display only nodes IP address

Update a docker node

$ tsuru-admin docker-node-update <address> [param_name=param_value...] [--disable] [--enable]

Modifies metadata associated to a docker node. If a parameter is set to an
empty value, it will be removed from the node’s metadata.

If the --disable flag is used, the node will be marked as disabled and the
scheduler won’t consider it when selecting a node to receive containers.

Flags:

	
--disable
	(= false)
Disable node in scheduler.

	
--enable
	(= false)
Enable node in scheduler.

Minimum # of arguments: 1

Remove a docker node

$ tsuru-admin docker-node-remove <address> [--no-rebalance] [--destroy] [-y]

Removes a node from the cluster.

By default tsuru will redistribute all containers present on the removed node
among other nodes. This behavior can be inhibited using the --no-rebalance
flag.

If the node being removed was created using a IaaS provider tsuru will NOT
destroy the machine on the IaaS, unless the --destroy flag is used.

Flags:

	
--destroy
	(= false)
Destroy node from IaaS

	
--no-rebalance
	(= false)
Do not rebalance containers from removed node.

	
-y, --assume-yes

		(= false)
Don’t ask for confirmation.

Minimum # of arguments: 1

Node Containers management

Add a new node container

$ tsuru-admin node-container-add <name> [-p/--pool poolname] [-r/--raw path=value]... [docker run flags]...

Add new node container or overwrite existing one. If the pool name is omitted
the node container will be valid for all pools.

Flags:

	
-e, --env
	(= [])
Set environment variables

	
--image
	(= “”)
Image that will be used

	
--log-driver
	(= “”)
Logging driver for container

	
--log-opt
	(= {})
Log driver options

	
--net
	(= “”)
Connect a container to a network

	
-o, --pool
	(= “”)
Pool to add container config. If empty it’ll be a default entry to all pools.

	
-p, --publish
	(= [])
Publish a container’s port(s) to the host

	
--privileged
	(= false)
Give extended privileges to this container

	
-r, --raw
	(= {})
Add raw parameter to node container api call

	
--restart
	(= “”)
Restart policy to apply when a container exits

	
-v, --volume
	(= [])
Bind mount a volume

Minimum # of arguments: 1
Maximum # of arguments: 1

Delete an existing node container

$ tsuru-admin node-container-delete <name> [-p/--pool poolname] [-y]

Delete existing node container.

Flags:

	
-p, --pool
	(= “”)
Pool to remove container config. If empty the default node container will be removed.

	
-y, --assume-yes

		(= false)
Don’t ask for confirmation.

Minimum # of arguments: 1
Maximum # of arguments: 1

Update an existing node container

$ tsuru-admin node-container-update <name> [-p/--pool poolname] [-r/--raw path=value]... [docker run flags]...

Update an existing node container. If the pool name is omitted the default
configuration will be updated. When updating node containers the specified
configuration will be merged with the existing configuration.

Flags:

	
-e, --env
	(= [])
Set environment variables

	
--image
	(= “”)
Image that will be used

	
--log-driver
	(= “”)
Logging driver for container

	
--log-opt
	(= {})
Log driver options

	
--net
	(= “”)
Connect a container to a network

	
-o, --pool
	(= “”)
Pool to update container config. If empty it’ll be a default entry to all pools.

	
-p, --publish
	(= [])
Publish a container’s port(s) to the host

	
--privileged
	(= false)
Give extended privileges to this container

	
-r, --raw
	(= {})
Add raw parameter to node container api call

	
--restart
	(= “”)
Restart policy to apply when a container exits

	
-v, --volume
	(= [])
Bind mount a volume

Minimum # of arguments: 1
Maximum # of arguments: 1

List existing node containers

$ tsuru-admin node-container-list

List all existing node containers.

Flags:

	
-q
	(= false)
Show only names of existing node containers.

Show information abort a node container

$ tsuru-admin node-container-info <name>

Show details about a single node container.

Minimum # of arguments: 1
Maximum # of arguments: 1

Upgrade node container version on docker nodes

$ tsuru-admin node-container-upgrade <name> [-p/--pool poolname] [-y]

Upgrade version and restart node containers.

Flags:

	
-y, --assume-yes

		(= false)
Don’t ask for confirmation.

Minimum # of arguments: 1
Maximum # of arguments: 1

Machine management

List IaaS machines

$ tsuru-admin machine-list

Lists all machines created using an IaaS provider.
These machines were created with the docker-node-add command.

Destroy IaaS machine

$ tsuru-admin machine-destroy <machine id>

Destroys an existing machine created using a IaaS.

Minimum # of arguments: 1

List machine templates

$ tsuru-admin machine-template-list

Lists all machine templates.

Add machine template

$ tsuru-admin machine-template-add <name> <iaas> <param>=<value>...

Creates a new machine template.

Templates can be used with the docker-node-add command running it with
the template=<template name> parameter. Templates can contain a list of
parameters that will be sent to the IaaS provider.

Minimum # of arguments: 3

Remove machine template

$ tsuru-admin machine-template-remove <name>

Removes an existing machine template.

Minimum # of arguments: 1

Pool management

Add a new pool

$ tsuru-admin pool-add <pool> [-p/--public] [-d/--default] [-f/--force]

Adds a new pool.

Each docker node added using docker-node-add command belongs to one pool.
Also, when creating a new application a pool must be chosen and this means
that all units of the created application will be spawned in nodes belonging
to the chosen pool.

Flags:

	
-d, --default
	(= false)
Make pool default (when none is specified during app-create this pool will be used)

	
-f, --force
	(= false)
Force overwrite default pool

	
-p, --public
	(= false)
Make pool public (all teams can use it)

Minimum # of arguments: 1

Update pool attributes

$ tsuru-admin pool-update <pool> [--public=true/false] [--default=true/false] [-f/--force]

Updates attributes for a pool.

Flags:

	
--default
	(= not set)
Make pool default (when none is specified during app-create this pool will be used)

	
-f, --force
	(= false)
Force pool to be default.

	
--public
	(= not set)
Make pool public (all teams can use it)

Minimum # of arguments: 1

Remove a pool

$ tsuru-admin pool-remove <pool> [-y]

Remove an existing pool.

Flags:

	
-y, --assume-yes

		(= false)
Don’t ask for confirmation.

Minimum # of arguments: 1

Add team to a pool

$ tsuru-admin pool-teams-add <pool> <teams>...

Adds teams to a pool. This will make the specified pool available when
creating a new application for one of the added teams.

Minimum # of arguments: 2

Remove a team from a pool

$ tsuru-admin pool-teams-remove <pool> <teams>...

Removes teams from a pool. Listed teams will be no longer able to use this
pool when creating a new application.

Minimum # of arguments: 2

Healer

List latest healing events

$ tsuru-admin docker-healing-list [--node] [--container]

List healing history for nodes or containers.

Flags:

	
--container
	(= false)
List only healing process started for containers

	
--node
	(= false)
List only healing process started for nodes

Show node healing config information

$ tsuru-admin docker-healing-info

Show the current configuration for active healing nodes.

Update node healing configuration

$ tsuru-admin docker-healing-update [-p/--pool pool] [--enable] [--disable] [--max-unresponsive <seconds>] [--max-unsuccessful <seconds>]

Update node healing configuration

Flags:

	
--disable
	(= false)
Disable active node healing

	
--enable
	(= false)
Enable active node healing

	
--max-unresponsive

		(= -1)
Number of seconds tsuru will wait for the node to notify it’s alive

	
--max-unsuccessful

		(= -1)
Number of seconds tsuru will wait for the node to run successul checks

	
-p, --pool
	(= “”)
The pool name to which the configuration will apply. If unset it’ll be set as default for all pools.

Delete node healing configuration

$ tsuru-admin docker-healing-delete [-p/--pool pool] [--enabled] [--max-unresponsive] [--max-unsuccessful]

Delete a node healing configuration entry.

If --pool is provided the configuration entries from the specified pool
will be removed and the default value will be used.

If --pool is not provided the configuration entry will be removed from the
default configuration.

Flags:

	
--enabled
	(= false)
Remove the ‘enabled’ configuration option

	
--max-unresponsive

		(= false)
Remove the ‘max-unresponsive’ configuration option

	
--max-unsuccessful

		(= false)
Remove the ‘max-unsuccessful’ configuration option

	
-p, --pool
	(= “”)
The pool name from where the configuration will be removed. If unset it’ll delete the default healing configuration.

	
-y, --assume-yes

		(= false)
Don’t ask for confirmation.

Platform management

Warning

All the platform commands below only exist when using the docker
provisioner.

Add a new platform

$ tsuru-admin platform-add <platform name> [--dockerfile/-d Dockerfile] [--image/-i image]

Adds a new platform to tsuru.

The name of the image can be automatically inferred in case you’re using an
official platform. Check https://github.com/tsuru/platforms for a list of
official platforms and instructions on how to create a custom platform.

Examples:

tsuru-admin platform-add java # uses official tsuru/java image from docker hub
tsuru-admin platform-add java -i registry.company.com/tsuru/java # uses custom Java image
tsuru-admin platform-add java -d /data/projects/java/Dockerfile # uses local Dockerfile
tsuru-admin platform-add java -d https://platforms.com/java/Dockerfile # uses remote Dockerfile

Flags:

	
-d, --dockerfile

		(= “”)
URL or path to the Dockerfile used for building the image of the platform

	
-i, --image
	(= “”)
Name of the prebuilt Docker image

Minimum # of arguments: 1

Update an existing platform

$ tsuru-admin platform-update <platform name> [--dockerfile/-d Dockerfile] [--disable/--enable] [--image/-i image]

Updates a platform in tsuru.

The name of the image can be automatically inferred in case you’re using an
official platform. Check https://github.com/tsuru/platforms for a list of
official platforms.

The flags –enable and –disable can be used for enabling or disabling a
platform.

Examples:

tsuru-admin platform-update java # uses official tsuru/java image from docker hub
tsuru-admin platform-update java -i registry.company.com/tsuru/java # uses custom Java image
tsuru-admin platform-update java -d /data/projects/java/Dockerfile # uses local Dockerfile
tsuru-admin platform-update java -d https://platforms.com/java/Dockerfile # uses remote Dockerfile

Flags:

	
-d, --dockerfile

		(= “”)
URL or path to the Dockerfile used for building the image of the platform

	
--disable
	(= false)
Disable the platform

	
--enable
	(= false)
Enable the platform

	
-i, --image
	(= “”)
Name of the prebuilt Docker image

Minimum # of arguments: 1

Remove an existing platform

$ tsuru-admin platform-remove <platform name> [-y]

Remove a platform from tsuru. This command will fail if there are application
still using the platform.

Flags:

	
-y, --assume-yes

		(= false)
Don’t ask for confirmation.

Minimum # of arguments: 1

Plan management

Create a new plan

$ tsuru-admin plan-create <name> -c cpushare [-m memory] [-s swap] [-r router] [--default]

Creates a new plan for being used when creating apps.

Flags:

	
-c, --cpushare
	(= 0)
Relative cpu share each unit will have available. This value is unitless and
relative, so specifying the same value for all plans means all units will
equally share processing power.

	
-d, --default
	(= false)
Set plan as default, this will remove the default flag from any other plan.
The default plan will be used when creating an application without explicitly
setting a plan.

	
-m, --memory
	(= “0”)
Amount of available memory for units in bytes or an integer value followed
by M, K or G for megabytes, kilobytes or gigabytes respectively.

	
-r, --router
	(= “”)
The name of the router used by this plan.

	
-s, --swap
	(= “0”)
Amount of available swap space for units in bytes or an integer value followed
by M, K or G for megabytes, kilobytes or gigabytes respectively.

Minimum # of arguments: 1

Remove an existing plan

$ tsuru-admin plan-remove <name>

Removes an existing plan. It will no longer be available for newly created
apps. However, this won’t change anything for existing apps that were created
using the removed plan. They will keep using the same value amount of
resources described by the plan.

Minimum # of arguments: 1

List available routers

$ tsuru-admin router-list

List all routers available for plan creation.

Auto Scale

List auto scale events

$ tsuru-admin docker-autoscale-list [--page/-p 1]

List node auto scale history.

Flags:

	
-p, --page
	(= 1)
Current page

Run auto scale process algorithm once

$ tsuru-admin docker-autoscale-run [-y/--assume-yes]

Run node auto scale checks once. This command will work even if docker:auto-
scale:enabled config entry is set to false. Auto scaling checks may trigger
the addition, removal or rebalancing of docker nodes, as long as these nodes
were created using an IaaS provider registered in tsuru.

Flags:

	
-y, --assume-yes

		(= false)
Don’t ask for confirmation.

Show auto scale rules

$ tsuru-admin docker-autoscale-info

Display the current configuration for tsuru autoscale,
including the set of rules and the current metadata filter.

The metadata filter is the value that defines which node metadata will be used
to group autoscale rules. A common approach is to use the “pool” as the
filter. Then autoscale can be configured for each matching rule value.

Set a new auto scale rule

$ tsuru-admin docker-autoscale-rule-set [-f/--filter-value <pool name>] [-c/--max-container-count 0] [-m/--max-memory-ratio 0.9] [-d/--scale-down-ratio 1.33] [--no-rebalance-on-scale] [--enable] [--disable]

Creates or update an auto-scale rule. Using resources limitation (amount of container or memory usage).

Flags:

	
-c, --max-container-count

		(= 0)
The maximum amount of containers on every node. Might be zero, which means no maximum value. Whenever this value is reached, tsuru will trigger a new auto scale event.

	
-d, --scale-down-ratio

		(= 1.33)
The ratio for triggering an scale down event. The default value is 1.33, which mean that whenever it gets one third of the resource utilization (memory ratio or container count).

	
--disable
	(= false)
A boolean flag indicating whether the rule should be disabled

	
--enable
	(= false)
A boolean flag indicating whether the rule should be enabled

	
-f, --filter-value

		(= “”)
The pool name matching the rule. This is the unique identifier of the rule.

	
-m, --max-memory-ratio

		(= 0)
The maximum memory usage per node. 0 means no limit, 1 means 100%. It is fine to use values greater than 1, which means that tsuru will overcommit memory in Docker nodes. Keep in mind that container count has higher precedence than memory ratio, so if –max-container-count is defined, the value of –max-memory-ratio will be ignored.

	
--no-rebalance-on-scale

		(= false)
A boolean flag indicating whether containers should NOT be rebalanced after running an scale. The default behavior is to always rebalance the containers.

Remove an auto scale rule

$ tsuru-admin docker-autoscale-rule-remove [rule-name] [-y/--assume-yes]

Removes an auto-scale rule. The name of the rule may be omited, which means “remove the default rule”.

Flags:

	
-y, --assume-yes

		(= false)
Don’t ask for confirmation.

Application Logging

Update logging configuration

$ tsuru-admin docker-log-update [-r/--restart] [-p/--pool poolname] --log-driver <driver> [--log-opt name=value]...

Set custom configuration for container logs. By default tsuru configures
application containers to send all logs to the tsuru/bs container through
syslog.

Setting a custom log-driver allow users to change this behavior and make
containers send their logs directly using the driver bypassing tsuru/bs
completely. In this situation the ‘tsuru app-log’ command will not work
anymore.

The –log-driver option accepts either the value ‘bs’ restoring tsuru default
behavior or any log-driver supported by docker along with their –log-opt. See
https://docs.docker.com/engine/reference/logging/overview/ for more details.

If –pool is specified the log-driver will only be used on containers started
on the chosen pool.

Flags:

	
--log-driver
	(= “”)
Chosen log driver. Supported log drivers depend on the docker version running on nodes.

	
--log-opt
	(= {})
Log options send to the specified log-driver

	
-p, --pool
	(= “”)
Pool name where log options will be used.

	
-r, --restart
	(= false)
Whether tsuru should restart all apps on the specified pool.

Show logging configuration

$ tsuru-admin docker-log-info

Prints information about docker log configuration for each pool.

Quota management

Quotas are handled per application and user. Every user has a quota number for
applications. For example, users may have a default quota of 2 applications, so
whenever a user tries to create more than two applications, he/she will receive
a quota exceeded error. There are also per applications quota. This one limits
the maximum number of units that an application may have.

tsuru-admin can be used to see and change quota data.

Change application quota

$ tsuru-admin app-quota-change <app-name> <new-limit>

Changes the limit of units that an app can have.

The new limit must be an integer, it may also be “unlimited”.

Minimum # of arguments: 2

Change user quota

$ tsuru-admin user-quota-change <user-email> <new-limit>

Changes the limit of apps that a user can create.

The new limit must be an integer, it may also be “unlimited”.

Minimum # of arguments: 2

View application quota

$ tsuru-admin app-quota-view <app-name>

Displays the current usage and limit of the given app.

Minimum # of arguments: 1

View user quota

$ tsuru-admin user-quota-view <user-email>

Displays the current usage and limit of the user.

Minimum # of arguments: 1

Other commands

Unlock an application

$ tsuru-admin app-unlock -a <app-name> [-y]

Forces the removal of an application lock.
Use with caution, removing an active lock may cause inconsistencies.

Flags:

	
-a, --app
	(= “”)
The name of the app.

	
-y, --assume-yes

		(= false)
Don’t ask for confirmation.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	tsuru-admin 1.0.0 documentation

Index

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		tsuru-admin 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Globo.com.
 Created using Sphinx 1.3.5.

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

