
Molecule Documentation
Release 3.1.5

AUTHORS.rst

November 12, 2020

CONTENTS

1 About Ansible Molecule 3

2 Installation and Upgrade 5

3 Using Molecule 9

4 Common Molecule Use Cases 41

5 Contributing to Molecule 49

6 References and Appendices 53

7 External Resources 55

Index 57

i

ii

Molecule Documentation, Release 3.1.5

CONTENTS 1

https://pypi.org/project/molecule/
https://molecule.readthedocs.io/en/latest/
https://github.com/ansible-community/molecule/actions
https://github.com/ansible-community/molecule/discussions

Molecule Documentation, Release 3.1.5

2 CONTENTS

CHAPTER

ONE

ABOUT ANSIBLE MOLECULE

Molecule project is designed to aid in the development and testing of Ansible roles.

Molecule provides support for testing with multiple instances, operating systems and distributions, virtualization
providers, test frameworks and testing scenarios.

Molecule encourages an approach that results in consistently developed roles that are well-written, easily understood
and maintained.

Molecule supports only the latest two major versions of Ansible (N/N-1), meaning that if the latest version is 2.9.x,
we will also test our code with 2.8.x.

Once installed, the command line can be called using any of the methods below:

molecule ...
mol ... # same as above, introduced in 3.0.5
python3 -m molecule ... # python module calling method

3

https://ansible.com

Molecule Documentation, Release 3.1.5

4 Chapter 1. About Ansible Molecule

CHAPTER

TWO

INSTALLATION AND UPGRADE

2.1 Installation

This document assumes the developer has a basic understanding of python packaging, and how to install and manage
python on the system executing Molecule.

2.1.1 Requirements

Depending on the driver chosen, you may need to install additional OS packages. See INSTALL.rst, which is
created when initializing a new scenario.

• Python >= 3.6 with Ansible >= 2.8

CentOS 8

$ sudo yum install -y gcc python3-pip python3-devel openssl-devel python3-libselinux

Ubuntu 16.x

$ sudo apt-get update
$ sudo apt-get install -y python3-pip libssl-dev

2.1.2 Pip

pip is the only supported installation method.

Warning: Ansible is not listed as a direct dependency of molecule package because we only call it as a command
line tool. You may want to install it using your distribution package installer. If you want to also install a compatible
version of ansible, make use of provided ansible or ansible-base extras:

$ python3 -m pip install "molecule[ansible]" # or molecule[ansible-base]

Keep in mind that on selinux supporting systems, if you install into a virtual environment, you may face issue even if
selinux is not enabled or is configured to be permissive.

It is your responsibility to assure that soft dependencies of Ansible are available on your controller or host machines.

5

https://docs.ansible.com/ansible/latest/index.html
https://pip.pypa.io/en/latest/usage/
https://github.com/ansible/ansible/issues/34340

Molecule Documentation, Release 3.1.5

Warning: It is highly recommended that you install molecule in a virtual environment. This will provide a modern
copy of setuptools which is mandatory in order for molecule to be installed successfully and function correctly. If
you cannot use a virtual environment then you can attempt a package upgrade with the following:

$ python3 -m pip install --upgrade --user setuptools

Warning: Pip v19 series has an isolation bug of setuptools being exposed to the package build env. That is why
it’s highly recommended to upgrade user setuptools even when using a proper virtualenv as shown above.

Requirements

Depending on the driver chosen, you may need to install additional python packages. See the driver’s documentation
or INSTALL.rst, which is created when initializing a new scenario.

Install

Install Molecule:

$ python3 -m pip install --user "molecule[lint]"

Molecule uses the “delegated” driver by default. Other drivers can be installed seperately from PyPI, such as the
molecule-docker driver. If you would like to use docker as the molecule driver, the installation command would look
like this:

$ python3 -m pip install --user "molecule[docker,lint]"

Other drivers, such as molecule-podman, molecule-vagrant, molecule-azure or
molecule-hetzner are also available.

Installing molecule package also installed its main script molecule, usually in PATH. Users should know that
molecule can also be called as a python module, using python -m molecule This alternative method
has some benefits:

• allows to explicitly control which python interpreter is used by molecule

• allows molecule installation at user level without even needing to have the script in PATH.

Note: We also have a continuous pre-release process which is provided for early adoption and feedback purposes
only. It is available from test.pypi.org/project/molecule and can be installed like so:

python3 -m pip install \
--index-url https://test.pypi.org/simple \
--extra-index-url https://pypi.org/simple \
molecule==2.21.dev46

Where 2.21.dev46 is the latest available pre-release version. Please check the release history listing for the avail-
able releases.

6 Chapter 2. Installation and Upgrade

https://virtualenv.pypa.io/en/latest/user_guide.html
https://pypi.org/project/setuptools/
https://github.com/pypa/pip/issues/6264
https://test.pypi.org/project/molecule/
https://test.pypi.org/project/molecule/#history

Molecule Documentation, Release 3.1.5

2.1.3 Docker

We publish molecule images via quay.io where the following tags are available:

• latest: latest master branch build, which should be viewed as unstable

• 2.20: Git based tags

• 2.20a1: Pre-releases tags

Please see the tags listing for available tags.

Please see Docker for usage.

2.1.4 Source

Due to the rapid pace of development on this tool, you might want to install and update a bleeding-edge version of
Molecule from Git.

Follow the instructions below to do the initial install and subsequent updates.

The package distribution that you’ll get installed will be autogenerated and will contain a commit hash information
making it easier to refer to certain unstable version should the need to send a bug report arise.

Warning: Please avoid using --editable/-e development mode when installing Molecule with Pip. This not
very well supported and only needed when doing development. For contributing purposes, you can rely on the tox
command line interface. Please see our testing guide for further details.

Requirements

CentOS 8

$ sudo yum install -y libffi-devel git

Ubuntu 16.x

$ sudo apt-get install -y libffi-dev git

Install

$ python3 -m pip install -U git+https://github.com/ansible-community/molecule

2.1. Installation 7

https://quay.io/repository/ansible/molecule
https://quay.io/repository/ansible/molecule?tab=tags
https://setuptools.readthedocs.io/en/latest /setuptools.html#development-mode

Molecule Documentation, Release 3.1.5

8 Chapter 2. Installation and Upgrade

CHAPTER

THREE

USING MOLECULE

3.1 Getting Started Guide

The following guide will step through an example of developing and testing a new Ansible role. After reading this
guide, you should be familiar with the basics of how to use Molecule and what it can offer.

Contents

• Getting Started Guide

– Creating a new role

– Molecule Scenarios

– The Scenario Layout

– Inspecting the molecule.yml

– Run test sequence commands

– Run a full test sequence

Note: In order to complete this guide by hand, you will need to additionally install Docker. Molecule requires an
external Python dependency for the Docker driver which is provided when installing Molecule using pip install
'molecule[docker]'.

3.1.1 Creating a new role

Molecule uses galaxy under the hood to generate conventional role layouts. If you’ve ever worked with Ansible roles
before, you’ll be right at home. If not, please review the Roles guide to see what each folder is responsible for.

To generate a new role with Molecule, simply run:

$ molecule init role my-new-role

You should then see a my-new-role folder in your current directory.

Note: For future reference, if you want to initialize Molecule within an existing role, you would use the molecule
init scenario -r my-role-name command from within the role’s directory (e.g. my-role-name/).

9

https://docs.docker.com/
https://docs.ansible.com/ansible/2.9/galaxy/dev_guide.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_reuse_roles.html

Molecule Documentation, Release 3.1.5

3.1.2 Molecule Scenarios

You will notice one new folder which is the molecule folder.

In this folder is a single Scenario called default.

Scenarios are the starting point for a lot of powerful functionality that Molecule offers. For now, we can think of a
scenario as a test suite for your newly created role. You can have as many scenarios as you like and Molecule will run
one after the other.

3.1.3 The Scenario Layout

Within the molecule/default folder, we find a number of files and directories:

$ ls
INSTALL.rst molecule.yml converge.yml verify.yml

• INSTALL.rst contains instructions on what additional software or setup steps you will need to take in order
to allow Molecule to successfully interface with the driver.

• molecule.yml is the central configuration entrypoint for Molecule. With this file, you can configure each
tool that Molecule will employ when testing your role.

• converge.yml is the playbook file that contains the call for your role. Molecule will invoke this playbook
with ansible-playbook and run it against an instance created by the driver.

• verify.yml is the Ansible file used for testing as Ansible is the default Verifier. This allows you to write
specific tests against the state of the container after your role has finished executing. Other verifier tools are
available (Note that TestInfra was the default verifier prior to molecule version 3).

3.1.4 Inspecting the molecule.yml

The molecule.yml is for configuring Molecule. It is a YAML file whose keys represent the high level components
that Molecule provides. These are:

• The Dependency manager. Molecule uses galaxy by default to resolve your role dependencies.

• The Driver provider. Molecule uses Docker by default. Molecule uses the driver to delegate the task of creating
instances.

• The Lint command. Molecule can call external commands to ensure that best practices are encouraged.

• The Platforms definitions. Molecule relies on this to know which instances to create, name and to which group
each instance belongs. If you need to test your role against multiple popular distributions (CentOS, Fedora,
Debian), you can specify that in this section.

• The Provisioner. Molecule only provides an Ansible provisioner. Ansible manages the life cycle of the instance
based on this configuration.

• The Scenario definition. Molecule relies on this configuration to control the scenario sequence order.

• The Verifier framework. Molecule uses Ansible by default to provide a way to write specific state checking tests
(such as deployment smoke tests) on the target instance.

10 Chapter 3. Using Molecule

https://testinfra.readthedocs.io/en/latest/index.html
https://yaml.org/
https://docs.ansible.com/ansible/2.9/galaxy/dev_guide.html
https://docs.docker.com/

Molecule Documentation, Release 3.1.5

3.1.5 Run test sequence commands

Let’s create the first Molecule managed instance with the Docker driver.

First, ensure that Docker is running with the typical sanity check:

$ docker run hello-world

Now, we can tell Molecule to create an instance with:

$ molecule create

We can verify that Molecule has created the instance and they’re up and running with:

$ molecule list

Now, let’s add a task to our tasks/main.yml like so:

- name: Molecule Hello World!
debug:
msg: Hello, World!

We can then tell Molecule to test our role against our instance with:

$ molecule converge

If we want to manually inspect the instance afterwards, we can run:

$ molecule login

We now have a free hand to experiment with the instance state.

Finally, we can exit the instance and destroy it with:

$ molecule destroy

Note: If Molecule reports any errors, it can be useful to pass the --debug option to get more verbose output.

3.1.6 Run a full test sequence

Molecule provides commands for manually managing the lifecyle of the instance, scenario, development and testing
tools. However, we can also tell Molecule to manage this automatically within a Scenario sequence.

The full lifecycle sequence can be invoked with:

$ molecule test

Note: It can be particularly useful to pass the --destroy=never flag when invoking molecule test so that
you can tell Molecule to run the full sequence but not destroy the instance if one step fails.

3.1. Getting Started Guide 11

https://docs.docker.com/

Molecule Documentation, Release 3.1.5

3.2 Continuous integration

Molecule output will use ANSI colors if stdout is an interactive TTY and TERM value seems to support it. You can
define PY_COLORS=1 to force use of ANSI colors, which can be handly for some CI systems.

3.2.1 GitHub Actions

GitHub Actions runs a CI pipeline, much like any others, that’s built into GitHub.

An action to clone a repo as molecule_demo, and run molecule test in ubuntu.

name: Molecule Test
on: [push, pull_request]
jobs:
build:
runs-on: ubuntu-latest
strategy:

max-parallel: 4
matrix:

python-version: [3.6, 3.7]

steps:
- uses: actions/checkout@v2

with:
path: molecule_demo

- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}

- name: Install dependencies
run: |
sudo apt install docker
python3 -m pip install --upgrade pip
python3 -m pip install -r requirements.txt

- name: Test with molecule
run: |
molecule test

If you need access to requirements in private repositories, create a token with the required privileges, then define a
GIT_CREDENTIALS secret for your repository with a value looking like https://username:token@github.com/, and
finaly add the following step before Test with molecule

- name: Setup git credentials
uses: fusion-engineering/setup-git-credentials@v2
with:
credentials: ${{secrets.GIT_CREDENTIALS}}

12 Chapter 3. Using Molecule

https://github.com/features/actions
https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token-for-the-command-line

Molecule Documentation, Release 3.1.5

3.2.2 Travis CI

Travis is a CI platform, which can be used to test Ansible roles.

A .travis.yml testing a role named foo1 with the Docker driver.

sudo: required
language: python
services:

- docker
install:
- python3 -m pip install molecule
- python3 -m pip install required driver (e.g. docker, shade, boto, apache-

→˓libcloud)
script:

- molecule test

A .travis.yml using Tox as described below.

sudo: required
language: python
services:

- docker
install:
- python3 -m pip install tox-travis

script:
- tox

3.2.3 Gitlab CI

Gitlab includes its own CI. Pipelines are usually defined in a .gitlab-ci.yml file in the top folder of a repository,
to be run on Gitlab Runners.

Here is an example using Docker in Docker

image: docker:stable-dind

services:
- docker:dind

before_script:
- apk add --no-cache
python3 python3-dev py3-pip gcc git curl build-base
autoconf automake py3-cryptography linux-headers
musl-dev libffi-dev openssl-dev openssh

- docker info
- python3 --version
- python3 -m pip install ansible molecule[docker]
- ansible --version
- molecule --version

molecule:
stage: test

(continues on next page)

3.2. Continuous integration 13

https://travis-ci.com/
https://tox.readthedocs.io/en/latest
https://gitlab.com

Molecule Documentation, Release 3.1.5

(continued from previous page)

script:
- cd roles/testrole && molecule test

GitLab Runner is used to run your jobs and send the results back to GitLab. By tagging a Runner for the types of jobs
it can handle, you can make sure shared Runners will only run the jobs they are equipped to run.

Here is another example using Docker, virtualenv and tags on Centos 7.

stages:

- test

variables:
PIP_CACHE_DIR: "$CI_PROJECT_DIR/.pip"
GIT_STRATEGY: clone

cache:
paths:
- .pip/
- virtenv/

before_script:
- python -V
- pip install virtualenv
- virtualenv virtenv
- source virtenv/bin/activate
- pip install ansible molecule docker
- ansible --version
- molecule --version
- docker --version

molecule:
stage: test
tags:
- molecule-jobs

script:
- molecule test

3.2.4 Jenkins Pipeline

Jenkins projects can also be defined in a file, by default named Jenkinsfile in the top folder of a repository. Two syntax
are available, Declarative and Scripted. Here is an example using the declarative syntax, setting up a virtualenv and
testing an Ansible role via Molecule.

pipeline {

agent {
// Node setup : minimal centos7, plugged into Jenkins, and
// git config --global http.sslVerify false
// sudo yum -y install https://centos7.iuscommunity.org/ius-release.rpm
// sudo yum -y install python36u python36u-pip python36u-devel git curl gcc
// git config --global http.sslVerify false
// sudo curl -fsSL get.docker.com | bash
label 'Molecule_Slave'

}

(continues on next page)

14 Chapter 3. Using Molecule

https://jenkins.io/doc/book/pipeline/jenkinsfile

Molecule Documentation, Release 3.1.5

(continued from previous page)

stages {

stage ('Get latest code') {
steps {

checkout scm
}

}

stage ('Setup Python virtual environment') {
steps {

sh '''
export HTTP_PROXY=http://10.123.123.123:8080
export HTTPS_PROXY=http://10.123.123.123:8080
pip3.6 install virtualenv
virtualenv virtenv
source virtenv/bin/activate
python3 -m pip install --upgrade ansible molecule docker

'''
}

}

stage ('Display versions') {
steps {

sh '''
source virtenv/bin/activate
docker -v
python -V
ansible --version
molecule --version

'''
}

}

stage ('Molecule test') {
steps {

sh '''
source virtenv/bin/activate
molecule test

'''
}

}

}

}

The following Jenkinsfile uses the official ‘quay.io/ansible/molecule’ image.

pipeline {
agent {
docker {

image 'quay.io/ansible/molecule'
args '-v /var/run/docker.sock:/var/run/docker.sock'

}
}

(continues on next page)

3.2. Continuous integration 15

Molecule Documentation, Release 3.1.5

(continued from previous page)

stages {

stage ('Display versions') {
steps {

sh '''
docker -v
python -V
ansible --version
molecule --version

'''
}

}

stage ('Molecule test') {
steps {

sh 'sudo molecule test --all'
}

}

} // close stages
} // close pipeline

Note: For Jenkins to work properly using a Multibranch Pipeline or a GitHub Organisation - as used by Blue Ocean,
the role name in the scenario converge.yml should be changed to perform a lookup of the role root directory. For
example :

- name: Converge

hosts: all
roles:
- role: "{{ lookup('env', 'MOLECULE_PROJECT_DIRECTORY') | basename }}"

This is the cleaner of the current choices. See issue1567_comment for additional detail.

3.2.5 Tox

Tox is a generic virtualenv management, and test command line tool. Tox can be used in conjunction with Factors and
Molecule, to perform scenario tests.

To test the role against multiple versions of Ansible.

[tox]
minversion = 1.8
envlist = py{27}-ansible{20,21,22}
skipsdist = true

[testenv]
passenv = *
deps =

-rrequirements.txt
ansible20: ansible==2.0.2.0
ansible21: ansible==2.1.2.0
ansible22: ansible==2.2.0.0

(continues on next page)

16 Chapter 3. Using Molecule

https://github.com/ansible-community/molecule/issues/1567#issuecomment-436876722
https://tox.readthedocs.io/en/latest
https://tox.readthedocs.io/en/latest
http://tox.readthedocs.io/en/latest/config.html#factors-and-factor-conditional-settings

Molecule Documentation, Release 3.1.5

(continued from previous page)

commands =
molecule test

To view the factor generated tox environments run tox -l.

If using the –parallel functionality of Tox (version 3.7 onwards), Molecule must be made aware of the parallel testing
by setting a MOLECULE_EPHEMERAL_DIRECTORY environment variable per environment. In addition, we export
a TOX_ENVNAME environment variable, it’s the name of our tox env.

[tox]
minversion = 3.7
envlist = py{36}_ansible{23,24}
skipsdist = true

[testenv]
deps =

-rrequirements.txt
ansible23: ansible==2.3
ansible24: ansible==2.4

commands =
molecule test

setenv =
TOX_ENVNAME={envname}
MOLECULE_EPHEMERAL_DIRECTORY=/tmp/{envname}

You also must include the TOX_ENVNAME variable in name of each platform in molecule.yml configuration file.
This way, their names won’t create any conflict.

dependency:

name: galaxy
driver:

name: docker
platforms:

- name: instance1-$TOX_ENVNAME
image: mariadb

- name: instance2-$TOX_ENVNAME
image: retr0h/centos7-systemd-ansible:latest
privileged: True
command: /usr/sbin/init

provisioner:
name: ansible

verifier:
name: testinfra

3.3 Command Line Reference

3.3.1 Check

class molecule.command.check.Check
Check Command Class.

molecule check
Target the default scenario.

3.3. Command Line Reference 17

https://tox.readthedocs.io/en/latest/config.html#cmdoption-tox-p

Molecule Documentation, Release 3.1.5

molecule check --scenario-name foo
Targeting a specific scenario.

molecule --debug check
Executing with debug.

molecule --base-config base.yml check
Executing with a base-config.

molecule --env-file foo.yml check
Load an env file to read variables from when rendering molecule.yml.

molecule check --parallel
Run in parallelizable mode.

Initialize code for all command classes.

Parameters c – An instance of a Molecule config.

Returns None

3.3.2 Clean Up

class molecule.command.cleanup.Cleanup
Cleanup Command Class.

This action has cleanup and is not enabled by default. See the provisioner’s documentation for further details.

molecule cleanup
Target the default scenario.

molecule cleanup --scenario-name foo
Targeting a specific scenario.

molecule --debug cleanup
Executing with debug.

molecule --base-config base.yml cleanup
Executing with a base-config.

molecule --env-file foo.yml cleanup
Load an env file to read variables when rendering molecule.yml.

Initialize code for all command classes.

Parameters c – An instance of a Molecule config.

Returns None

3.3.3 Converge

Converge will execute the sequence necessary to converge the instances.

class molecule.command.converge.Converge
Converge Command Class.

molecule converge
Target the default scenario.

molecule converge --scenario-name foo
Targeting a specific scenario.

18 Chapter 3. Using Molecule

Molecule Documentation, Release 3.1.5

molecule converge -- -vvv --tags foo,bar
Providing additional command line arguments to the ansible-playbook command. Use this option with
care, as there is no sanitation or validation of input. Options passed on the CLI override options provided
in provisioner’s options section of molecule.yml.

molecule --debug converge
Executing with debug.

molecule --base-config base.yml converge
Executing with a base-config.

molecule --env-file foo.yml converge
Load an env file to read variables from when rendering molecule.yml.

Initialize code for all command classes.

Parameters c – An instance of a Molecule config.

Returns None

3.3.4 Create

class molecule.command.create.Create
Create Command Class.

molecule create
Target the default scenario.

molecule create --scenario-name foo
Targeting a specific scenario.

molecule create --driver-name foo
Targeting a specific driver.

molecule --debug create
Executing with debug.

molecule --base-config base.yml create
Executing with a base-config.

molecule --env-file foo.yml create
Load an env file to read variables from when rendering molecule.yml.

Initialize code for all command classes.

Parameters c – An instance of a Molecule config.

Returns None

3.3.5 Dependency

class molecule.command.dependency.Dependency
Dependency Command Class.

molecule dependency
Target the default scenario.

molecule dependency --scenario-name foo
Targeting a specific scenario.

3.3. Command Line Reference 19

Molecule Documentation, Release 3.1.5

molecule --debug dependency
Executing with debug.

molecule --base-config base.yml dependency
Executing with a base-config.

molecule --env-file foo.yml dependency
Load an env file to read variables from when rendering molecule.yml.

Initialize code for all command classes.

Parameters c – An instance of a Molecule config.

Returns None

3.3.6 Destroy

class molecule.command.destroy.Destroy
Destroy Command Class.

molecule destroy
Target the default scenario.

molecule destroy --scenario-name foo
Targeting a specific scenario.

molecule destroy --all
Target all scenarios.

molecule destroy --driver-name foo
Targeting a specific driver.

molecule --debug destroy
Executing with debug.

molecule --base-config base.yml destroy
Executing with a base-config.

molecule --env-file foo.yml destroy
Load an env file to read variables from when rendering molecule.yml.

molecule destroy --parallel
Run in parallelizable mode.

Initialize code for all command classes.

Parameters c – An instance of a Molecule config.

Returns None

3.3.7 Idempotence

class molecule.command.idempotence.Idempotence
Runs the converge step a second time. If no tasks will be marked as changed the scenario will be considered
idempotent.

molecule idempotence
Target the default scenario.

molecule idempotence --scenario-name foo
Targeting a specific scenario.

20 Chapter 3. Using Molecule

Molecule Documentation, Release 3.1.5

molecule --debug idempotence
Executing with debug.

molecule --base-config base.yml idempotence
Executing with a base-config.

molecule --env-file foo.yml idempotence
Load an env file to read variables from when rendering molecule.yml.

Initialize code for all command classes.

Parameters c – An instance of a Molecule config.

Returns None

3.3.8 Init

class molecule.command.init.role.Role
Init Role Command Class.

molecule init role foo
Initialize a new role.

Initialize a new role using ansible-galaxy and include default molecule directory. Please refer to the init
scenario command in order to generate a custom molecule scenario.

Construct Role.

class molecule.command.init.scenario.Scenario
Scenario Class.

molecule init scenario bar --role-name foo
Initialize a new scenario. In order to customise the role, please refer to the init role command.

cd foo; molecule init scenario bar --role-name foo
Initialize an existing role with Molecule:

cd foo; molecule init scenario bar --role-name foo
Initialize a new scenario using a local cookiecutter template for the driver configuration.

Construct Scenario.

3.3.9 Lint

class molecule.command.lint.Lint
Lint command executes external linters.

You need to remember to install those linters. For convenience, there is a package extra that installs the most
common ones, use it like python3 -m pip install "molecule[lint]".

molecule lint
Target the default scenario.

molecule lint --scenario-name foo
Targeting a specific scenario.

molecule --debug lint
Executing with debug.

molecule --base-config base.yml lint
Executing with a base-config.

3.3. Command Line Reference 21

Molecule Documentation, Release 3.1.5

molecule --env-file foo.yml lint
Load an env file to read variables from when rendering molecule.yml.

Initialize code for all command classes.

Parameters c – An instance of a Molecule config.

Returns None

3.3.10 List

class molecule.command.list.List
List command shows information about current scenarios.

molecule list
Target the default scenario.

molecule list --scenario-name foo
Targeting a specific scenario.

molecule list --format plain
Machine readable plain text output.

molecule list --format yaml
Machine readable yaml output.

molecule --debug list
Executing with debug.

molecule --base-config base.yml list
Executing with a base-config.

molecule --env-file foo.yml list
Load an env file to read variables from when rendering molecule.yml.

Initialize code for all command classes.

Parameters c – An instance of a Molecule config.

Returns None

3.3.11 Login

class molecule.command.login.Login
Login Command Class.

molecule login
Target the default scenario.

molecule login --scenario-name foo
Targeting a specific scenario.

molecule login --host hostname
Targeting a specific running host.

molecule login --host hostname --scenario-name foo
Targeting a specific running host and scenario.

molecule --debug login
Executing with debug.

22 Chapter 3. Using Molecule

Molecule Documentation, Release 3.1.5

molecule --base-config base.yml login
Executing with a base-config.

molecule --env-file foo.yml login
Load an env file to read variables from when rendering molecule.yml.

Construct Login.

3.3.12 Matrix

Matrix will display the subcommand’s ordered list of actions, which can be changed in scenario configuration.

class molecule.command.matrix.Matrix
Matric Command Class.

molecule matrix subcommand
Target the default scenario.

molecule matrix --scenario-name foo subcommand
Targeting a specific scenario.

molecule --debug matrix subcommand
Executing with debug.

molecule --base-config base.yml matrix subcommand
Executing with a base-config.

molecule --env-file foo.yml matrix subcommand
Load an env file to read variables from when rendering molecule.yml.

Initialize code for all command classes.

Parameters c – An instance of a Molecule config.

Returns None

3.3.13 Prepare

class molecule.command.prepare.Prepare
This action is for the purpose of preparing a molecule managed instance before the molecule.command.
converge.Converge action is run.

Tasks contained within the prepare.yml playbook in the scenario directory will be run remotely on the
managed instance. This action is run only once per test sequence.

molecule prepare
Target the default scenario.

molecule prepare --scenario-name foo
Targeting a specific scenario.

molecule prepare --driver-name foo
Targeting a specific driver.

molecule prepare --force
Force the execution fo the prepare playbook.

molecule --debug prepare
Executing with debug.

3.3. Command Line Reference 23

https://molecule.readthedocs.io/en/latest/configuration.html#scenario

Molecule Documentation, Release 3.1.5

molecule --base-config base.yml prepare
Executing with a base-config.

molecule --env-file foo.yml prepare
Load an env file to read variables from when rendering molecule.yml.

Initialize code for all command classes.

Parameters c – An instance of a Molecule config.

Returns None

3.3.14 Side Effect

class molecule.command.side_effect.SideEffect
This action has side effects and not enabled by default.

See the provisioners documentation for further details.

molecule side-effect
Target the default scenario.

molecule side-effect --scenario-name foo
Targeting a specific scenario.

molecule --debug side-effect
Executing with debug.

molecule --base-config base.yml side-effect
Executing with a base-config.

molecule --env-file foo.yml side-effect
Load an env file to read variables from when rendering molecule.yml.

Initialize code for all command classes.

Parameters c – An instance of a Molecule config.

Returns None

3.3.15 Syntax

class molecule.command.syntax.Syntax
Syntax Command Class.

molecule syntax
Target the default scenario.

molecule syntax --scenario-name foo
Targeting a specific scenario.

molecule --debug syntax
Executing with debug.

molecule --base-config base.yml syntax
Executing with a base-config.

molecule --env-file foo.yml syntax
Load an env file to read variables from when rendering molecule.yml.

Initialize code for all command classes.

24 Chapter 3. Using Molecule

Molecule Documentation, Release 3.1.5

Parameters c – An instance of a Molecule config.

Returns None

3.3.16 Test

Test will execute the sequence necessary to test the instances.

class molecule.command.test.Test
Test Command Class.

molecule test
Target the default scenario.

molecule test --scenario-name foo
Targeting a specific scenario.

molecule test --all
Target all scenarios.

molecule test --destroy=always
Always destroy instances at the conclusion of a Molecule run.

molecule --debug test
Executing with debug.

molecule --base-config base.yml test
Executing with a base-config.

molecule --env-file foo.yml test
Load an env file to read variables from when rendering molecule.yml.

molecule test --parallel
Run in parallelizable mode.

Initialize code for all command classes.

Parameters c – An instance of a Molecule config.

Returns None

3.3.17 Verify

class molecule.command.verify.Verify
Verify Command Class.

molecule verify
Target the default scenario.

molecule verify --scenario-name foo
Targeting a specific scenario.

molecule --debug verify
Executing with debug.

molecule --base-config base.yml verify
Executing with a base-config.

molecule --env-file foo.yml verify
Load an env file to read variables from when rendering molecule.yml.

Initialize code for all command classes.

3.3. Command Line Reference 25

Molecule Documentation, Release 3.1.5

Parameters c – An instance of a Molecule config.

Returns None

3.4 Configuration

class molecule.config.Config
Config Class.

Molecule searches the current directory for molecule.yml files by globbing molecule/*/molecule.yml. The
files are instantiated into a list of Molecule Config objects, and each Molecule subcommand operates on this
list.

The directory in which the molecule.yml resides is the Scenario’s directory. Molecule performs most func-
tions within this directory.

The Config object instantiates Dependency, Driver, Lint, Platforms, Provisioner, Verifier, Scenario, and State
references.

Initialize a new config class and returns None.

Parameters

• molecule_file – A string containing the path to the Molecule file to be parsed.

• args – An optional dict of options, arguments and commands from the CLI.

• command_args – An optional dict of options passed to the subcommand from the CLI.

• ansible_args – An optional tuple of arguments provided to the ansible-playbook
command.

Returns None

3.4.1 Variable Substitution

class molecule.interpolation.Interpolator
Configuration options may contain environment variables.

For example, suppose the shell contains VERIFIER_NAME=testinfra and the following molecule.yml is
supplied.

verifier:
- name: ${VERIFIER_NAME}

Molecule will substitute $VERIFIER_NAME with the value of the VERIFIER_NAME environment variable.

Warning: If an environment variable is not set, Molecule substitutes with an empty string.

Both $VARIABLE and ${VARIABLE} syntax are supported. Extended shell-style features, such as
${VARIABLE-default} and ${VARIABLE:-default} are also supported. Even the default as another
environment variable is supported like ${VARIABLE-$DEFAULT} or ${VARIABLE:-$DEFAULT}. An
empty string is returned when both variables are undefined.

If a literal dollar sign is needed in a configuration, use a double dollar sign ($$).

Molecule will substitute special MOLECULE_ environment variables defined in molecule.yml.

26 Chapter 3. Using Molecule

Molecule Documentation, Release 3.1.5

Important: Remember, the MOLECULE_ namespace is reserved for Molecule. Do not prefix your own vari-
ables with MOLECULE_.

A file may be placed in the root of the project as .env.yml, and Molecule will read variables when rendering
molecule.yml. See command usage.

Construct Interpolator.

There are following environment variables available in molecule.yml:

Variable Description
MOLECULE_DEBUG If debug is turned on or off
MOLECULE_FILE Path to molecule config file
MOLECULE_ENV_FILE Path to molecule environment file
MOLECULE_STATE_FILE ?
MOLECULE_INVENTORY_FILE Path to generated inventory file
MOLECULE_EPHEMERAL_DIRECTORYPath to generated directory, usually ~/.cache/molecule/

<scenario-name>
MOLECULE_SCENARIO_DIRECTORY Path to scenario directory
MOLECULE_PROJECT_DIRECTORY Path to your project directory
MOLECULE_INSTANCE_CONFIG ?
MOLECULE_DEPENDENCY_NAME Dependency type name, usually ‘galaxy’
MOLECULE_DRIVER_NAME Name of the molecule scenario driver
MOLECULE_PROVISIONER_NAME Name of the provisioner tool (usually ‘ansible’)
MOLECULE_SCENARIO_NAME Name of the scenario
MOLECULE_VERIFIER_NAME Name of the verifier tool (usually ‘ansible’)
MOLECULE_VERIFIER_TEST_DIRECTORY?

3.4.2 Dependency

Testing roles may rely upon additional dependencies. Molecule handles managing these dependencies by invoking
configurable dependency managers.

Ansible Galaxy

class molecule.dependency.ansible_galaxy.AnsibleGalaxy
Galaxy is the default dependency manager.

Additional options can be passed to ansible-galaxy install through the options dict. Any option set
in this section will override the defaults.

Note: Molecule will remove any options matching ‘^[v]+$’, and pass -vvv to the underlying
ansible-galaxy command when executing molecule –debug.

dependency:
name: galaxy
options:
ignore-certs: True
ignore-errors: True

(continues on next page)

3.4. Configuration 27

https://docs.ansible.com/ansible/2.9/galaxy/user_guide.html

Molecule Documentation, Release 3.1.5

(continued from previous page)

role-file: requirements.yml
requirements-file: collections.yml

Use “role-file” if you have roles only. Use the “requirements-file” if you need to install collections. Note that,
with Ansible Galaxy’s collections support, you can now combine the two lists into a single requirement if your
file looks like this

roles:
- dep.role1
- dep.role2

collections:
- ns.collection
- ns2.collection2

If you want to combine them, then just point your role-file and requirements-file to the same path.
This is not done by default because older role-file only required a list of roles, while the collections must
be under the collections: key within the file and pointing both to the same file by default could break
existing code.

The dependency manager can be disabled by setting enabled to False.

dependency:
name: galaxy
enabled: False

Environment variables can be passed to the dependency.

dependency:
name: galaxy
env:

FOO: bar

Construct AnsibleGalaxy.

Shell

class molecule.dependency.shell.Shell
Shell is an alternate dependency manager.

It is intended to run a command in situations where Ansible Galaxy don’t suffice.

The command to execute is required, and is relative to Molecule’s project directory when referencing a script
not in $PATH.

Note: Unlike the other dependency managers, options are ignored and not passed to shell. Additional
flags/subcommands should simply be added to the command.

dependency:
name: shell
command: path/to/command --flag1 subcommand --flag2

The dependency manager can be disabled by setting enabled to False.

28 Chapter 3. Using Molecule

Molecule Documentation, Release 3.1.5

dependency:
name: shell
command: path/to/command --flag1 subcommand --flag2
enabled: False

Environment variables can be passed to the dependency.

dependency:
name: shell
command: path/to/command --flag1 subcommand --flag2
env:

FOO: bar

Construct Shell.

3.4.3 Driver

Molecule uses Ansible to manage instances to operate on. Molecule supports any provider Ansible supports. This
work is offloaded to the provisioner.

The driver’s name is specified in molecule.yml, and can be overridden on the command line. Molecule will remember
the last successful driver used, and

continue to use the driver for all subsequent subcommands, or until the instances are destroyed by Molecule.

Important: The verifier must support the Ansible provider for proper Molecule integration.

The driver’s python package requires installation.

Delegated

class molecule.driver.delegated.Delegated
The class responsible for managing delegated instances.

Delegated is not the default driver used in Molecule.

Under this driver, it is the developers responsibility to implement the create and destroy playbooks. Managed
is the default behaviour of all drivers.

driver:
name: delegated

However, the developer must adhere to the instance-config API. The developer’s create playbook must provide
the following instance-config data, and the developer’s destroy playbook must reset the instance-config.

- address: ssh_endpoint
identity_file: ssh_identity_file # mutually exclusive with password
instance: instance_name
port: ssh_port_as_string
user: ssh_user
password: ssh_password # mutually exclusive with identity_file
become_method: valid_ansible_become_method # optional
become_pass: password_if_required # optional

(continues on next page)

3.4. Configuration 29

https://docs.ansible.com
https://docs.ansible.com

Molecule Documentation, Release 3.1.5

(continued from previous page)

- address: winrm_endpoint
instance: instance_name
connection: 'winrm'
port: winrm_port_as_string
user: winrm_user
password: winrm_password
winrm_transport: ntlm/credssp/kerberos
winrm_cert_pem: <path to the credssp public certificate key>
winrm_cert_key_pem: <path to the credssp private certificate key>
winrm_server_cert_validation: validate/ignore

This article covers how to configure and use WinRM with Ansible: https://docs.ansible.com/ansible/latest/user_
guide/windows_winrm.html

Molecule can also skip the provisioning/deprovisioning steps. It is the developers responsibility to manage the
instances, and properly configure Molecule to connect to said instances.

driver:
name: delegated
options:
managed: False
login_cmd_template: 'docker exec -ti {instance} bash'
ansible_connection_options:
ansible_connection: docker

platforms:
- name: instance-docker

$ docker run \
-d \
--name instance-docker \
--hostname instance-docker \
-it molecule_local/ubuntu:latest sleep infinity & wait

Use Molecule with delegated instances, which are accessible over ssh.

Important: It is the developer’s responsibility to configure the ssh config file.

driver:
name: delegated
options:
managed: False
login_cmd_template: 'ssh {instance} -F /tmp/ssh-config'
ansible_connection_options:
ansible_connection: ssh
ansible_ssh_common_args: '-F /path/to/ssh-config'

platforms:
- name: instance

Provide the files Molecule will preserve post destroy action.

driver:
name: delegated
safe_files:

- foo

30 Chapter 3. Using Molecule

https://docs.ansible.com/ansible/latest/user_guide/windows_winrm.html
https://docs.ansible.com/ansible/latest/user_guide/windows_winrm.html

Molecule Documentation, Release 3.1.5

And in order to use localhost as molecule’s target:

driver:
name: delegated
options:
managed: False
ansible_connection_options:
ansible_connection: local

Construct Delegated.

3.4.4 Lint

Starting with v3, Molecule handles project linting by invoking and external lint commands as exemplified below.

The decision to remove the complex linting support was not easily taken as we do find it very useful. The issue was
that molecule runs on scenarios and linting is usually performed at repository level.

It makes little sense to perform linting in more than one place per project. Molecule was able to use up to three linters
and while it was aimed to flexible about them, it ended up creating more confusions to the users. We decided to
maximize flexibility by just calling an external shell command.

lint: |
set -e
yamllint .
ansible-lint
flake8

The older format is no longer supported and you have to update the molecule.yml when you upgrade. If you don’t
want to do any linting, it will be enough to remove all lint related sections from the file.

old v2 format, no longer supported
lint:
name: yamllint
enabled: true

provisioner:
lint:
name: ansible-lint

options: ...
env: ...

verifier:
lint:
name: flake8

3.4.5 Platforms

class molecule.platforms.Platforms
Platforms define the instances to be tested, and the groups to which the instances belong.

platforms:
- name: instance-1

Multiple instances can be provided.

3.4. Configuration 31

Molecule Documentation, Release 3.1.5

platforms:
- name: instance-1
- name: instance-2

Mapping instances to groups. These groups will be used by the Provisioner for orchestration purposes.

platforms:
- name: instance-1

groups:
- group1
- group2

Children allow the creation of groups of groups.

platforms:
- name: instance-1

groups:
- group1
- group2

children:
- child_group1

Initialize a new platform class and returns None.

Parameters config – An instance of a Molecule config.

Returns None

3.4.6 Provisioner

Molecule handles provisioning and converging the role.

Ansible

class molecule.provisioner.ansible.Ansible
Ansible is the default provisioner. No other provisioner will be supported.

Molecule’s provisioner manages the instances lifecycle. However, the user must provide the create, destroy, and
converge playbooks. Molecule’s init subcommand will provide the necessary files for convenience.

Molecule will skip tasks which are tagged with either molecule-notest or notest. With the tag molecule-
idempotence-notest tasks are only skipped during the idempotence action step.

Important: Reserve the create and destroy playbooks for provisioning. Do not attempt to gather facts or
perform operations on the provisioned nodes inside these playbooks. Due to the gymnastics necessary to sync
state between Ansible and Molecule, it is best to perform these tasks in the prepare or converge playbooks.

It is the developers responsiblity to properly map the modules’s fact data into the instance_conf_dict fact in the
create playbook. This allows Molecule to properly configure Ansible inventory.

Additional options can be passed to ansible-playbook through the options dict. Any option set in this
section will override the defaults.

Important: Options do not affect the create and destroy actions.

32 Chapter 3. Using Molecule

https://docs.ansible.com

Molecule Documentation, Release 3.1.5

Note: Molecule will remove any options matching ‘^[v]+$’, and pass -vvv to the underlying
ansible-playbook command when executing molecule –debug.

Molecule will silence log output, unless invoked with the --debug flag. However, this results in quite a bit of
output. To enable Ansible log output, add the following to the provisioner section of molecule.yml.

provisioner:
name: ansible
log: True

The create/destroy playbooks for Docker and Podman are bundled with Molecule. These playbooks have a clean
API from molecule.yml, and are the most commonly used. The bundled playbooks can still be overridden.

The playbook loading order is:

1. provisioner.playbooks.$driver_name.$action

2. provisioner.playbooks.$action

3. bundled_playbook.$driver_name.$action

provisioner:
name: ansible
options:
vvv: True

playbooks:
create: create.yml
converge: converge.yml
destroy: destroy.yml

Share playbooks between roles.

provisioner:
name: ansible
playbooks:

create: ../default/create.yml
destroy: ../default/destroy.yml
converge: converge.yml

Multiple driver playbooks. In some situations a developer may choose to test the same role against different
backends. Molecule will choose driver specific create/destroy playbooks, if the determined driver has a key in
the playbooks section of the provisioner’s dict.

Important: If the determined driver has a key in the playbooks dict, Molecule will use this dict to resolve all
provisioning playbooks (create/destroy).

provisioner:
name: ansible
playbooks:

docker:
create: create.yml
destroy: destroy.yml

create: create.yml
destroy: destroy.yml
converge: converge.yml

3.4. Configuration 33

Molecule Documentation, Release 3.1.5

Important: Paths in this section are converted to absolute paths, where the relative parent is the $sce-
nario_directory.

The side effect playbook executes actions which produce side effects to the instances(s). Intended to test HA
failover scenarios or the like. It is not enabled by default. Add the following to the provisioner’s playbooks
section to enable.

provisioner:
name: ansible
playbooks:

side_effect: side_effect.yml

Important: This feature should be considered experimental.

The prepare playbook executes actions which bring the system to a given state prior to converge. It is executed
after create, and only once for the duration of the instances life.

This can be used to bring instances into a particular state, prior to testing.

provisioner:
name: ansible
playbooks:

prepare: prepare.yml

The cleanup playbook is for cleaning up test infrastructure that may not be present on the instance that will
be destroyed. The primary use-case is for “cleaning up” changes that were made outside of Molecule’s test
environment. For example, remote database connections or user accounts. Intended to be used in conjunction
with prepare to modify external resources when required.

The cleanup step is executed directly before every destroy step. Just like the destroy step, it will be run twice. An
initial clean before converge and then a clean before the last destroy step. This means that the cleanup playbook
must handle failures to cleanup resources which have not been created yet.

Add the following to the provisioner’s playbooks section to enable.

provisioner:
name: ansible
playbooks:

cleanup: cleanup.yml

Important: This feature should be considered experimental.

Environment variables. Molecule does its best to handle common Ansible paths. The defaults are as follows.

ANSIBLE_ROLES_PATH:
$ephemeral_directory/roles/:$project_directory/../:~/.ansible/roles:/usr/share/

→˓ansible/roles:/etc/ansible/roles
ANSIBLE_LIBRARY:
$ephemeral_directory/modules/:$project_directory/library/:~/.ansible/plugins/

→˓modules:/usr/share/ansible/plugins/modules
ANSIBLE_FILTER_PLUGINS:
$ephemeral_directory/plugins/filter/:$project_directory/filter/plugins/:~/.

→˓ansible/plugins/filter:/usr/share/ansible/plugins/modules

34 Chapter 3. Using Molecule

Molecule Documentation, Release 3.1.5

Environment variables can be passed to the provisioner. Variables in this section which match the names above
will be appened to the above defaults, and converted to absolute paths, where the relative parent is the $sce-
nario_directory.

Important: Paths in this section are converted to absolute paths, where the relative parent is the $sce-
nario_directory.

provisioner:
name: ansible
env:

FOO: bar

Modifying ansible.cfg.

provisioner:
name: ansible
config_options:
defaults:
fact_caching: jsonfile

ssh_connection:
scp_if_ssh: True

Important: The following keys are disallowed to prevent Molecule from improperly functioning. They can be
specified through the provisioner’s env setting described above, with the exception of the privilege_escalation.

provisioner:
name: ansible
config_options:
defaults:
roles_path: /path/to/roles_path
library: /path/to/library
filter_plugins: /path/to/filter_plugins

privilege_escalation: {}

Roles which require host/groups to have certain variables set. Molecule uses the same variables defined in a
playbook syntax as Ansible.

provisioner:
name: ansible
inventory:

group_vars:
foo1:
foo: bar

foo2:
foo: bar
baz:
qux: zzyzx

host_vars:
foo1-01:
foo: bar

Molecule automatically generates the inventory based on the hosts defined under Platforms. Using the hosts
key allows to add extra hosts to the inventory that are not managed by Molecule.

3.4. Configuration 35

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#defining-variables-in-a-playbook
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#defining-variables-in-a-playbook
https://docs.ansible.com

Molecule Documentation, Release 3.1.5

A typical use case is if you want to access some variables from another host in the inventory (using hostvars)
without creating it.

Note: The content of hosts should follow the YAML based inventory syntax: start with the all group and
have hosts/vars/children entries.

provisioner:
name: ansible
inventory:

hosts:
all:
extra_host:

foo: hello

Important: The extra hosts added to the inventory using this key won’t be created/destroyed by Molecule. It is
the developers responsibility to target the proper hosts in the playbook. Only the hosts defined under Platforms
should be targetted instead of all.

An alternative to the above is symlinking. Molecule creates symlinks to the specified directory in the inventory
directory. This allows ansible to converge utilizing its built in host/group_vars resolution. These two forms of
inventory management are mutually exclusive.

Like above, it is possible to pass an additional inventory file (or even dynamic inventory script), using the hosts
key. Ansible will automatically merge this inventory with the one generated by molecule. This can be useful if
you want to define extra hosts that are not managed by Molecule.

Important: Again, it is the developers responsibility to target the proper hosts in the playbook. Only the hosts
defined under Platforms should be targetted instead of all.

Note: The source directory linking is relative to the scenario’s directory.

The only valid keys are hosts, group_vars and host_vars. Molecule’s schema validator will enforce
this.

provisioner:
name: ansible
inventory:

links:
hosts: ../../../inventory/hosts
group_vars: ../../../inventory/group_vars/
host_vars: ../../../inventory/host_vars/

Override connection options:

provisioner:
name: ansible
connection_options:

ansible_ssh_user: foo
ansible_ssh_common_args: -o IdentitiesOnly=no

Add arguments to ansible-playbook when running converge:

36 Chapter 3. Using Molecule

https://docs.ansible.com

Molecule Documentation, Release 3.1.5

provisioner:
name: ansible
ansible_args:
- --inventory=mygroups.yml
- --limit=host1,host2

Initialize a new ansible class and returns None.

Parameters config – An instance of a Molecule config.

Returns None

3.4.7 Scenario

Molecule treats scenarios as a first-class citizens, with a top-level configuration syntax.

class molecule.scenario.Scenario
A scenario allows Molecule test a role in a particular way, this is a fundamental change from Molecule v1.

A scenario is a self-contained directory containing everything necessary for testing the role in a particular way.
The default scenario is named default, and every role should contain a default scenario.

Unless mentioned explicitly, the scenario name will be the directory name hosting the files.

Any option set in this section will override the defaults.

scenario:
create_sequence:
- dependency
- create
- prepare

check_sequence:
- dependency
- cleanup
- destroy
- create
- prepare
- converge
- check
- destroy

converge_sequence:
- dependency
- create
- prepare
- converge

destroy_sequence:
- dependency
- cleanup
- destroy

test_sequence:
- dependency
- lint
- cleanup
- destroy
- syntax
- create
- prepare
- converge

(continues on next page)

3.4. Configuration 37

Molecule Documentation, Release 3.1.5

(continued from previous page)

- idempotence
- side_effect
- verify
- cleanup
- destroy

Initialize a new scenario class and returns None.

Parameters config – An instance of a Molecule config.

Returns None

3.4.8 State

An internal bookkeeping mechanism.

class molecule.state.State
A class which manages the state file.

Intended to be used as a singleton throughout a given Molecule config. The initial state is serialized to disk
if the file does not exist, otherwise is deserialized from the existing state file. Changes made to the object are
immediately serialized.

State is not a top level option in Molecule’s config. It’s purpose is for bookkeeping, and each Config object
has a reference to a State object.

Note: Currently, it’s use is significantly smaller than it was in v1 of Molecule.

Initialize a new state class and returns None.

Parameters config – An instance of a Molecule config.

Returns None

3.4.9 Verifier

Molecule handles role testing by invoking configurable verifiers.

Ansible

class molecule.verifier.ansible.Ansible
Ansible is the default test verifier.

Molecule executes a playbook (verify.yml) located in the role’s scenario.directory.

verifier:
name: ansible

The testing can be disabled by setting enabled to False.

verifier:
name: ansible
enabled: False

Environment variables can be passed to the verifier.

38 Chapter 3. Using Molecule

https://docs.ansible.com

Molecule Documentation, Release 3.1.5

verifier:
name: ansible
env:

FOO: bar

Initialize code for all Verifier classes.

Parameters config – An instance of a Molecule config.

Returns None

Testinfra

class molecule.verifier.testinfra.Testinfra
Testinfra is no longer the default test verifier since version 3.0.

Additional options can be passed to testinfra through the options dict. Any option set in this section will
override the defaults.

Note: Molecule will remove any options matching ‘^[v]+$’, and pass -vvv to the underlying pytest com-
mand when executing molecule --debug.

verifier:
name: testinfra
options:
n: 1

The testing can be disabled by setting enabled to False.

verifier:
name: testinfra
enabled: False

Environment variables can be passed to the verifier.

verifier:
name: testinfra
env:

FOO: bar

Change path to the test directory.

verifier:
name: testinfra
directory: /foo/bar/

Additional tests from another file or directory relative to the scenario’s tests directory (supports regexp).

verifier:
name: testinfra
additional_files_or_dirs:
- ../path/to/test_1.py
- ../path/to/test_2.py
- ../path/to/directory/*

Set up the requirements to execute testinfra and returns None.

3.4. Configuration 39

https://testinfra.readthedocs.io

Molecule Documentation, Release 3.1.5

Parameters config – An instance of a Molecule config.

Returns None

40 Chapter 3. Using Molecule

CHAPTER

FOUR

COMMON MOLECULE USE CASES

4.1 Common Molecule Use Cases

4.1.1 Docker

Molecule can be executed via an Alpine Linux container by bind-mounting the Docker socket. Currently, we only
build images for the latest version of Ansible and Molecule. In the future we may break this out into Molecule/
Ansible versioned pairs. The images are located on quay.io.

To test a role, change directory into the role to test, and execute Molecule as follows.

docker run --rm -it \
-v "$(pwd)":/tmp/$(basename "${PWD}"):ro \
-v /var/run/docker.sock:/var/run/docker.sock \
-w /tmp/$(basename "${PWD}") \
quay.io/ansible/molecule:3.0.8 \
molecule test

4.1.2 Docker With Non-Privileged User

The default Molecule Docker driver executes Ansible playbooks as the root user. If your workflow requires a non-
privileged user, then adapt molecule.yml and Dockerfile.j2 as follows.

Append the following code block to the end of Dockerfile.j2. It creates an ansible user with passwordless
sudo privileges.

The variable SUDO_GROUP depends on the target distribution. centos:8 uses wheel.

Create `ansible` user with sudo permissions and membership in `DEPLOY_GROUP`
ENV ANSIBLE_USER=ansible SUDO_GROUP=wheel DEPLOY_GROUP=deployer
RUN set -xe \
&& groupadd -r ${ANSIBLE_USER} \
&& groupadd -r ${DEPLOY_GROUP} \
&& useradd -m -g ${ANSIBLE_USER} ${ANSIBLE_USER} \
&& usermod -aG ${SUDO_GROUP} ${ANSIBLE_USER} \
&& usermod -aG ${DEPLOY_GROUP} ${ANSIBLE_USER} \
&& sed -i "/^%${SUDO_GROUP}/s/ALL\$/NOPASSWD:ALL/g" /etc/sudoers

Modify provisioner.inventory in molecule.yml as follows:

platforms:
- name: instance

(continues on next page)

41

https://quay.io/repository/ansible/molecule

Molecule Documentation, Release 3.1.5

(continued from previous page)

image: centos:8
...

provisioner:
name: ansible
...
inventory:
host_vars:

setting for the platform instance named 'instance'
instance:
ansible_user: ansible

Make sure to use your platform instance name. In this case instance.

An example for a different platform instance name:

platforms:
- name: centos8
image: centos:8
...

provisioner:
name: ansible
...
inventory:
host_vars:

setting for the platform instance named 'centos8'
centos8:
ansible_user: ansible

To test it, add the following task to tasks/main.yml. It fails, because the non-privileged user is not allowed to
create a folder in /opt/. This needs to be performed using sudo.

To perform the task using sudo, uncomment become: yes. Now the task will succeed.

- name: Create apps dir
file:
path: /opt/examples
owner: ansible
group: deployer
mode: 0775
state: directory

become: yes

Don’t forget to run molecule destroy if image has already been created.

42 Chapter 4. Common Molecule Use Cases

Molecule Documentation, Release 3.1.5

4.1.3 Podman inside Docker

Sometimes your CI system comes prepared to run with Docker but you want to test podman into it. This prepare.
yml playbook would let podman run inside a privileged Docker host by adding some required settings:

- name: prepare
hosts: podman-in-docker
tasks:
- name: install fuse-overlayfs

package:
name:
- fuse-overlayfs

- name: create containers config dir
file:
group: root
mode: a=rX,u+w
owner: root
path: /etc/containers
state: directory

- name: make podman use fuse-overlayfs storage
copy:
content: |
See man 5 containers-storage.conf for more information
[storage]
driver = "overlay"
[storage.options.overlay]
mount_program = "/usr/bin/fuse-overlayfs"
mountopt = "nodev,metacopy=on"

dest: /etc/containers/storage.conf
group: root
mode: a=r,u+w
owner: root

- name: make podman use cgroupfs cgroup manager
copy:
content: |
See man 5 libpod.conf for more information
cgroup_manager = "cgroupfs"

dest: /etc/containers/libpod.conf
group: root
mode: a=r,u+w
owner: root

Another option is to configure the same settings directly into the molecule.yml definition:

driver:
name: podman

platforms:
- name: podman-in-docker
... other options
cgroup_manager: cgroupfs
storage_opt: overlay.mount_program=/usr/bin/fuse-overlayfs
storage_driver: overlay

At the time of writing, Gitlab CI shared runners run privileged Docker hosts and are suitable for these workarounds.

4.1. Common Molecule Use Cases 43

https://docs.gitlab.com/ee/user/gitlab_com/#shared-runners

Molecule Documentation, Release 3.1.5

4.1.4 Systemd Container

To start a service which requires systemd, in a non-privileged container, configure molecule.yml with a systemd
compliant image, tmpfs, volumes, and command as follows.

platforms:
- name: instance
image: centos:8
command: /sbin/init
tmpfs:

- /run
- /tmp

volumes:
- /sys/fs/cgroup:/sys/fs/cgroup:ro

Note that centos:8 image contains a seccomp security profile for Docker which enables the use of systemd. When
needed, such security profiles can be reused (for example the one available in Fedora):

platforms:
- name: instance
image: debian:stretch
command: /sbin/init
security_opts:

- seccomp=path/to/seccomp.json
tmpfs:

- /run
- /tmp

volumes:
- /sys/fs/cgroup:/sys/fs/cgroup:ro

The developer can also opt to start the container with extended privileges, by either giving it SYS_ADMIN capabilities
or running it in privileged mode.

Important: Use caution when using privileged mode or SYS_ADMIN capabilities as it grants the container
elevated access to the underlying system.

To limit the scope of the extended privileges, grant SYS_ADMIN capabilities along with the same image, command,
and volumes as shown in the non-privileged example.

platforms:
- name: instance
image: centos:8
command: /sbin/init
capabilities:
- SYS_ADMIN

volumes:
- /sys/fs/cgroup:/sys/fs/cgroup:ro

To start the container in privileged mode, set the privileged flag along with the same image and command as
shown in the non-privileged example.

platforms:
- name: instance
image: centos:8
command: /sbin/init
privileged: True

44 Chapter 4. Common Molecule Use Cases

https://developers.redhat.com/blog/2016/09/13/running-systemd-in-a-non-privileged-container/
https://docs.docker.com/engine/security/seccomp/
https://src.fedoraproject.org/rpms/docker/raw/88fa030b904d7af200b150e10ea4a700f759cca4/f/seccomp.json
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/

Molecule Documentation, Release 3.1.5

4.1.5 Monolith Repo

Molecule is generally used to test roles in isolation. However, it can also test roles from a monolith repo.

The role initialized with Molecule (baz in this case) would simply reference the dependant roles via it’s converge.
yml or meta dependencies.

Molecule can test complex scenarios leveraging this technique.

$ cd monolith-repo/roles/baz
$ molecule test

Molecule is simply setting the ANSIBLE_* environment variables. To view the environment variables set during a
Molecule operation pass the --debug flag.

$ molecule --debug test

DEBUG: ANSIBLE ENVIRONMENT

ANSIBLE_CONFIG: /private/tmp/monolith-repo/roles/baz/molecule/default/.molecule/
→˓ansible.cfg
ANSIBLE_FILTER_PLUGINS: /Users/jodewey/.pyenv/versions/2.7.13/lib/python2.7/site-
→˓packages/molecule/provisioner/ansible/plugins/filters:/private/tmp/monolith-repo/
→˓roles/baz/plugins/filters:/private/tmp/monolith-repo/roles/baz/molecule/default/.
→˓molecule/plugins/filters
ANSIBLE_LIBRARY: /Users/jodewey/.pyenv/versions/2.7.13/lib/python2.7/site-packages/
→˓molecule/provisioner/ansible/plugins/libraries:/private/tmp/monolith-repo/roles/baz/
→˓library:/private/tmp/monolith-repo/roles/baz/molecule/default/.molecule/library
ANSIBLE_ROLES_PATH: /private/tmp/monolith-repo/roles:/private/tmp/monolith-repo/roles/
→˓baz/molecule/default/.molecule/roles

Molecule can be customized any number of ways. Updating the provisioner’s env section in molecule.yml to suit
the needs of the developer and layout of the project.

provisioner:
name: ansible
env:
ANSIBLE_$VAR: $VALUE

4.1.6 Sharing Across Scenarios

Playbooks and tests can be shared across scenarios.

$ tree shared-tests
shared-tests

molecule
centos

molecule.yml
resources

playbooks
Dockerfile.j2 (optional)
create.yml
destroy.yml
converge.yml # <-- previously called playbook.yml
prepare.yml

tests

(continues on next page)

4.1. Common Molecule Use Cases 45

Molecule Documentation, Release 3.1.5

(continued from previous page)

test_default.py
ubuntu

molecule.yml
ubuntu-upstart

molecule.yml

Tests and playbooks can be shared across scenarios.

In this example the tests directory lives in a shared location and molecule.yml points to the shared tests.

verifier:
name: testinfra
directory: ../resources/tests/

In this second example the actions create, destroy, converge and prepare are loaded from a shared directory.

provisioner:
name: ansible
playbooks:
create: ../resources/playbooks/create.yml
destroy: ../resources/playbooks/destroy.yml
converge: ../resources/playbooks/converge.yml
prepare: ../resources/playbooks/prepare.yml

4.1.7 Running Molecule processes in parallel mode

Important: This functionality should be considered experimental. It is part of ongoing work towards enabling
parallelizable functionality across all moving parts in the execution of the Molecule feature set.

Note: Only the following sequences support parallelizable functionality:

• check_sequence: molecule check --parallel

• destroy_sequence: molecule destroy --parallel

• test_sequence: molecule test --parallel

It is currently only available for use with the Docker driver.

When Molecule receives the --parallel flag it will generate a UUID for the duration of the testing sequence and
will use that unique identifier to cache the run-time state for that process. The parallel Molecule processes cached state
and created instances will therefore not interfere with each other.

Molecule uses a new and separate caching folder for this in the $HOME/.cache/molecule_parallel location.
Molecule exposes a new environment variable MOLECULE_PARALLEL which can enable this functionality.

It is possible to run Molecule processes in parallel using another tool to orchestrate the parallelization (such as
GNU Parallel or Pytest). If you do so, make sure Molecule knows it is running in parallel mode by specifying
the --parallel flag to your command(s) to avoid concurrency issues.

46 Chapter 4. Common Molecule Use Cases

https://en.wikipedia.org/wiki/Universally_unique_identifier
https://www.gnu.org/software/parallel/
https://docs.pytest.org/en/latest/

Molecule Documentation, Release 3.1.5

4.2 FAQ

4.2.1 Why is my idempotence action failing?

It is important to understand that Molecule does not do anything further than the default functionality of Ansible when
determining if your tasks are idempotent or not. Molecule will simply run the converge action twice and check against
Ansible’s standard output.

Therefore, if you are seeing idempotence failures, it is typically related to the underlying Ansible report and not
Molecule.

If you are facing idempotence failures and intend to raise a bug on our issue tracker, please first manually run
molecule converge twice and confirm that Ansible itself is reporting task idempotence (changed=0).

4.2.2 Why does Molecule make so many shell calls?

Ansible provides a Python API. However, it is not intended for direct consumption. We wanted to focus on making
Molecule useful, so our efforts were spent consuming Ansible’s CLI.

Since we already consume Ansible’s CLI, we decided to call additional binaries through their respective CLI.

Note: This decision may be reevaluated later.

4.2.3 Why does Molecule only support Ansible versions 2.2 and later?

• Ansible 2.2 is the first good release in the Ansible 2 lineup.

• The modules needed to support the drivers did not exist pre 2.2 or were not sufficient.

4.2.4 Why are playbooks used to provision instances?

Simplicity. Ansible already supports numerous cloud providers. Too much time was spent in Molecule v1, re-
implementing a feature that already existed in the core Ansible modules.

4.2.5 Have you thought about using Ansible’s python API instead of playbooks?

This was evaluated early on. It was a toss up. It would provide simplicity in some situations and complexity in others.
Developers know and understand playbooks. Decided against a more elegant and sexy solution.

4.2.6 Why are there multiple scenario directories and molecule.yml files?

Again, simplicity. Rather than defining an all encompassing config file opted to normalize. Molecule simply loops
through each scenario applying the scenario’s molecule.yml.

Note: This decision may be reevaluated later.

4.2. FAQ 47

https://docs.ansible.com/ansible/latest/dev_guide/developing_api.html
https://github.com/kireledan/molecule/tree/playbook_proto

Molecule Documentation, Release 3.1.5

4.2.7 Are there similar tools to Molecule?

• Ansible’s own Testing Strategies

• ansible-test (abandoned?)

• RoleSpec

4.2.8 Can I run Molecule processes in parallel?

Please see Running Molecule processes in parallel mode for usage.

4.2.9 Can I specify random instance IDs in my molecule.yml?

This depends on the CI provider but the basic recipe is as follows.

Setup your molecule.yml to look like this:

platforms:
- name: "instance-${INSTANCE_UUID}"

Then in your CI provider environment, for example, Gitlab CI, setup:

variables:
INSTANCE_UUID: "$CI_JOB_ID"

Where CI_JOB_ID is the random variable that Gitlab provides.

Molecule will resolve the INSTANCE_UUID environment variable when creating and looking up the instance name.
You can confirm all is in working order by running molecule list.

4.2.10 Can I test Ansible Collections with Molecule?

This is not currently officially supported. Also, collections remain in “tech preview” status. However, you can take a
look at this blog post outlining a workable “DIY” solution as a stop gap for now.

4.2.11 Does Molecule support monorepos?

Yes, roles contained in a monorepo with other roles are automatically picked up and ANSIBLE_ROLES_PATH is set
accordingly. See this page for more information.

4.2.12 How can I add development/testing-only dependencies?

Sometimes, it’s desirable to only run a dependency role when developing your role with molecule, but not impose a
hard dependency on the role itself; for example when you rely on one of its side effects. This can be achieved by an
approach like this in your role’s meta/main.yml:

dependencies:
- role: <your-dependee-role>
when: lookup('env', 'MOLECULE_FILE')

48 Chapter 4. Common Molecule Use Cases

https://docs.ansible.com/ansible/latest/reference_appendices/test_strategies.html
https://github.com/nylas/ansible-test
https://github.com/nylas/ansible-test/issues/14
https://github.com/nickjj/rolespec
https://www.jeffgeerling.com/blog/2019/how-add-integration-tests-ansible-collection-molecule
https://en.wikipedia.org/wiki/Monorepo
https://molecule.readthedocs.io/en/latest/examples.html#monolith-repo

CHAPTER

FIVE

CONTRIBUTING TO MOLECULE

5.1 Contributing

• To see what’s planned see the Molecule Project Board.

• Join the Molecule community working group if you would like to influence the direction of the project.

5.1.1 Talk to us

Join us in #ansible-molecule on freenode, or molecule-users Forum.

The full list of Ansible email lists and IRC channels can be found in the communication page.

Guidelines

• We are interested in various different kinds of improvement for Molecule; please feel free to raise an Issue if
you would like to work on something major to ensure efficient collaboration and avoid duplicate effort.

• Create a topic branch from where you want to base your work.

• Make sure you have added tests for your changes.

• Although not required, it is good to sign off commits using git commit --signoff, and agree that usage
of --signoff constitutes agreement with the terms of DCO 1.1.

• Run all the tests to ensure nothing else was accidentally broken.

• Reformat the code by following the formatting section below.

• Submit a pull request.

Code Of Conduct

Please see our Code of Conduct document.

49

https://github.com/ansible-community/molecule/projects
https://github.com/ansible/community/wiki/molecule
https://freenode.net
https://groups.google.com/forum/#!forum/molecule-users
https://docs.ansible.com/ansible/latest/community/communication.html
https://github.com/ansible-community/molecule/issues/new/choose
https://github.com/ansible-community/molecule/blob/master/DCO_1_1.md
https://github.com/ansible-community/molecule/blob/master/.github/CODE_OF_CONDUCT.md

Molecule Documentation, Release 3.1.5

Pull Request Life Cycle and Governance

• If your PRs get stuck join us on IRC or add to the working group agenda.

• The code style is what is enforced by CI, everything else is off topic.

• All PRs must be reviewed by one other person. This is enforced by GitHub. Larger changes require +2.

Testing

Molecule has an extensive set of unit and functional tests. Molecule uses Tox factors to generate a matrix of python x
Ansible x unit/functional tests. Manual setup required as of this time.

5.1.2 Dependencies

Tests will be skipped when the driver’s binary is not present.

Install the test framework Tox.

$ python3 -m pip install tox

5.1.3 Full

Run all tests, including linting and coverage reports. This should be run prior to merging or submitting a pull request.

$ tox

5.1.4 List available scenarios

List all available scenarios. This is useful to target specific Python and Ansible version for the functional and unit
tests.

$ tox -av

5.1.5 Unit

Run all unit tests with coverage.

$ tox -e 'py{27,35,36,37,38}-unit'

Run all unit tests for a specific version of Python .

$ tox -e py37-unit

50 Chapter 5. Contributing to Molecule

https://github.com/ansible/community/wiki/Molecule#join-the-discussion
https://github.com/ansible/community/wiki/Molecule#meetings
https://tox.readthedocs.io/en/latest/
https://tox.readthedocs.io/en/latest/

Molecule Documentation, Release 3.1.5

5.1.6 Linting

Linting is performed by a combination of linters.

Run all the linters (some perform changes to conform the code to the style rules).

$ tox -e lint

5.1.7 Documentation

Generate the documentation, using sphinx.

$ tox -e docs

5.1.8 Build container images

Build the container images with docker or podman.

$ tox -e build-containers

Documentation

5.1.9 Working with InterSphinx

In the conf.py, we define an intersphinx_mapping which provides the base URLs for conveniently linking to
other Sphinx documented projects. In order to find the correct link syntax and text you can link to, you can quickly
inspect the reference from the command line.

For example, if we would like to link to a specific part of the Ansible documentation, we could first run the following
command:

python -m sphinx.ext.intersphinx https://docs.ansible.com/ansible/latest/objects.inv

And then see the entire Sphinx listing. We see entries that look like:

py:attribute
AnsibleModule._debug api/index.html#AnsibleModule._debug

With which we can link out to using the following syntax:

:py:attribute:`AnsibleModule._debug`

Credits

Based on the good work of John Dewey (@retr0h) and other contributors. Active member list can be seen at Molecule
working group.

5.1. Contributing 51

http://www.sphinx-doc.org
../source/conf.py
https://github.com/retr0h
https://github.com/ansible-community/molecule/graphs/contributors
https://github.com/ansible/community/wiki/Molecule
https://github.com/ansible/community/wiki/Molecule

Molecule Documentation, Release 3.1.5

52 Chapter 5. Contributing to Molecule

CHAPTER

SIX

REFERENCES AND APPENDICES

• genindex

53

Molecule Documentation, Release 3.1.5

54 Chapter 6. References and Appendices

CHAPTER

SEVEN

EXTERNAL RESOURCES

Below you can see a list of useful articles and presentations, recently updated being listed first:

• Ansible Collections: Role Tests with Molecule @ericsysmin

• Molecule v3 Slides @ssbarnea.

• Testing your Ansible roles with Molecule @geerlinguy

• How to test Ansible and don’t go nuts @ultral

55

https://ericsysmin.com/2020/04/30/ansible-collections-role-tests-with-molecule/
https://sbarnea.com/slides/molecule/#/
https://www.jeffgeerling.com/blog/2018/testing-your-ansible-roles-molecule
https://www.goncharov.xyz/it/ansible-testing-en.html

Molecule Documentation, Release 3.1.5

56 Chapter 7. External Resources

INDEX

Symbols
-molecule-init-scenario-bar---role-name-foo

command line option; cd foo;
molecule init scenario bar
--role-name foo

cd-foo, 21

A
Ansible (class in molecule.provisioner.ansible), 32
Ansible (class in molecule.verifier.ansible), 38
AnsibleGalaxy (class in

molecule.dependency.ansible_galaxy), 27

C
cd-foo

-molecule-init-scenario-bar---role-name-foo
command line option; cd foo;
molecule init scenario bar
--role-name foo, 21

Check (class in molecule.command.check), 17
Cleanup (class in molecule.command.cleanup), 18
Config (class in molecule.config), 26
Converge (class in molecule.command.converge), 18
Create (class in molecule.command.create), 19

D
Delegated (class in molecule.driver.delegated), 29
Dependency (class in molecule.command.dependency),

19
Destroy (class in molecule.command.destroy), 20

I
Idempotence (class in

molecule.command.idempotence), 20
Interpolator (class in molecule.interpolation), 26

L
Lint (class in molecule.command.lint), 21
List (class in molecule.command.list), 22
Login (class in molecule.command.login), 22

M
Matrix (class in molecule.command.matrix), 23
molecule --base-config base.yml check

molecule---base-config-base.yml-check
command line option, 18

molecule --base-config base.yml
cleanup

molecule---base-config-base.yml-cleanup
command line option, 18

molecule --base-config base.yml
converge

molecule---base-config-base.yml-converge
command line option, 19

molecule --base-config base.yml create
molecule---base-config-base.yml-create

command line option, 19
molecule --base-config base.yml

dependency
molecule---base-config-base.yml-dependency

command line option, 20
molecule --base-config base.yml

destroy
molecule---base-config-base.yml-destroy

command line option, 20
molecule --base-config base.yml

idempotence
molecule---base-config-base.yml-idempotence

command line option, 21
molecule --base-config base.yml lint

molecule---base-config-base.yml-lint
command line option, 21

molecule --base-config base.yml list
molecule---base-config-base.yml-list

command line option, 22
molecule --base-config base.yml login

molecule---base-config-base.yml-login
command line option, 22

molecule --base-config base.yml matrix
subcommand

molecule---base-config-base.yml-matrix-subcommand
command line option, 23

molecule --base-config base.yml

57

Molecule Documentation, Release 3.1.5

prepare
molecule---base-config-base.yml-prepare

command line option, 23
molecule --base-config base.yml

side-effect
molecule---base-config-base.yml-side-effect

command line option, 24
molecule --base-config base.yml syntax

molecule---base-config-base.yml-syntax
command line option, 24

molecule --base-config base.yml test
molecule---base-config-base.yml-test

command line option, 25
molecule --base-config base.yml verify

molecule---base-config-base.yml-verify
command line option, 25

molecule --debug check
molecule---debug-check command

line option, 18
molecule --debug cleanup

molecule---debug-cleanup command
line option, 18

molecule --debug converge
molecule---debug-converge command

line option, 19
molecule --debug create

molecule---debug-create command
line option, 19

molecule --debug dependency
molecule---debug-dependency

command line option, 19
molecule --debug destroy

molecule---debug-destroy command
line option, 20

molecule --debug idempotence
molecule---debug-idempotence

command line option, 20
molecule --debug lint

molecule---debug-lint command line
option, 21

molecule --debug list
molecule---debug-list command line

option, 22
molecule --debug login

molecule---debug-login command
line option, 22

molecule --debug matrix subcommand
molecule---debug-matrix-subcommand

command line option, 23
molecule --debug prepare

molecule---debug-prepare command
line option, 23

molecule --debug side-effect
molecule---debug-side-effect

command line option, 24
molecule --debug syntax

molecule---debug-syntax command
line option, 24

molecule --debug test
molecule---debug-test command line

option, 25
molecule --debug verify

molecule---debug-verify command
line option, 25

molecule --env-file foo.yml check
molecule---env-file-foo.yml-check

command line option, 18
molecule --env-file foo.yml cleanup

molecule---env-file-foo.yml-cleanup
command line option, 18

molecule --env-file foo.yml converge
molecule---env-file-foo.yml-converge

command line option, 19
molecule --env-file foo.yml create

molecule---env-file-foo.yml-create
command line option, 19

molecule --env-file foo.yml dependency
molecule---env-file-foo.yml-dependency

command line option, 20
molecule --env-file foo.yml destroy

molecule---env-file-foo.yml-destroy
command line option, 20

molecule --env-file foo.yml
idempotence

molecule---env-file-foo.yml-idempotence
command line option, 21

molecule --env-file foo.yml lint
molecule---env-file-foo.yml-lint

command line option, 21
molecule --env-file foo.yml list

molecule---env-file-foo.yml-list
command line option, 22

molecule --env-file foo.yml login
molecule---env-file-foo.yml-login

command line option, 23
molecule --env-file foo.yml matrix

subcommand
molecule---env-file-foo.yml-matrix-subcommand

command line option, 23
molecule --env-file foo.yml prepare

molecule---env-file-foo.yml-prepare
command line option, 24

molecule --env-file foo.yml
side-effect

molecule---env-file-foo.yml-side-effect
command line option, 24

molecule --env-file foo.yml syntax
molecule---env-file-foo.yml-syntax

58 Index

Molecule Documentation, Release 3.1.5

command line option, 24
molecule --env-file foo.yml test

molecule---env-file-foo.yml-test
command line option, 25

molecule --env-file foo.yml verify
molecule---env-file-foo.yml-verify

command line option, 25
molecule check

molecule-check command line option,
17

molecule check --parallel
molecule-check---parallel command

line option, 18
molecule check --scenario-name foo

molecule-check---scenario-name-foo
command line option, 17

molecule cleanup
molecule-cleanup command line

option, 18
molecule cleanup --scenario-name foo

molecule-cleanup---scenario-name-foo
command line option, 18

molecule converge
molecule-converge command line

option, 18
molecule converge -- -vvv --tags

foo,bar
molecule-converge-----vvv---tags-foo,bar

command line option, 18
molecule converge --scenario-name foo

molecule-converge---scenario-name-foo
command line option, 18

molecule create
molecule-create command line

option, 19
molecule create --driver-name foo

molecule-create---driver-name-foo
command line option, 19

molecule create --scenario-name foo
molecule-create---scenario-name-foo

command line option, 19
molecule dependency

molecule-dependency command line
option, 19

molecule dependency --scenario-name
foo

molecule-dependency---scenario-name-foo
command line option, 19

molecule destroy
molecule-destroy command line

option, 20
molecule destroy --all

molecule-destroy---all command
line option, 20

molecule destroy --driver-name foo
molecule-destroy---driver-name-foo

command line option, 20
molecule destroy --parallel

molecule-destroy---parallel
command line option, 20

molecule destroy --scenario-name foo
molecule-destroy---scenario-name-foo

command line option, 20
molecule idempotence

molecule-idempotence command line
option, 20

molecule idempotence --scenario-name
foo

molecule-idempotence---scenario-name-foo
command line option, 20

molecule init role foo
molecule-init-role-foo command

line option, 21
molecule init scenario bar --role-name

foo
molecule-init-scenario-bar---role-name-foo

command line option, 21
molecule lint

molecule-lint command line option,
21

molecule lint --scenario-name foo
molecule-lint---scenario-name-foo

command line option, 21
molecule list

molecule-list command line option,
22

molecule list --format plain
molecule-list---format-plain

command line option, 22
molecule list --format yaml

molecule-list---format-yaml
command line option, 22

molecule list --scenario-name foo
molecule-list---scenario-name-foo

command line option, 22
molecule login

molecule-login command line option,
22

molecule login --host hostname
molecule-login---host-hostname

command line option, 22
molecule login --host hostname

--scenario-name foo
molecule-login---host-hostname---scenario-name-foo

command line option, 22
molecule login --scenario-name foo

molecule-login---scenario-name-foo
command line option, 22

Index 59

Molecule Documentation, Release 3.1.5

molecule matrix --scenario-name foo
subcommand

molecule-matrix---scenario-name-foo-subcommand
command line option, 23

molecule matrix subcommand
molecule-matrix-subcommand command

line option, 23
molecule prepare

molecule-prepare command line
option, 23

molecule prepare --driver-name foo
molecule-prepare---driver-name-foo

command line option, 23
molecule prepare --force

molecule-prepare---force command
line option, 23

molecule prepare --scenario-name foo
molecule-prepare---scenario-name-foo

command line option, 23
molecule side-effect

molecule-side-effect command line
option, 24

molecule side-effect --scenario-name
foo

molecule-side-effect---scenario-name-foo
command line option, 24

molecule syntax
molecule-syntax command line

option, 24
molecule syntax --scenario-name foo

molecule-syntax---scenario-name-foo
command line option, 24

molecule test
molecule-test command line option,

25
molecule test --all

molecule-test---all command line
option, 25

molecule test --destroy=always
molecule-test---destroy=always

command line option, 25
molecule test --parallel

molecule-test---parallel command
line option, 25

molecule test --scenario-name foo
molecule-test---scenario-name-foo

command line option, 25
molecule verify

molecule-verify command line
option, 25

molecule verify --scenario-name foo
molecule-verify---scenario-name-foo

command line option, 25
molecule---base-config-base.yml-check

command line option
molecule --base-config base.yml

check, 18
molecule---base-config-base.yml-cleanup

command line option
molecule --base-config base.yml

cleanup, 18
molecule---base-config-base.yml-converge

command line option
molecule --base-config base.yml

converge, 19
molecule---base-config-base.yml-create

command line option
molecule --base-config base.yml

create, 19
molecule---base-config-base.yml-dependency

command line option
molecule --base-config base.yml

dependency, 20
molecule---base-config-base.yml-destroy

command line option
molecule --base-config base.yml

destroy, 20
molecule---base-config-base.yml-idempotence

command line option
molecule --base-config base.yml

idempotence, 21
molecule---base-config-base.yml-lint

command line option
molecule --base-config base.yml

lint, 21
molecule---base-config-base.yml-list

command line option
molecule --base-config base.yml

list, 22
molecule---base-config-base.yml-login

command line option
molecule --base-config base.yml

login, 22
molecule---base-config-base.yml-matrix-subcommand

command line option
molecule --base-config base.yml

matrix subcommand, 23
molecule---base-config-base.yml-prepare

command line option
molecule --base-config base.yml

prepare, 23
molecule---base-config-base.yml-side-effect

command line option
molecule --base-config base.yml

side-effect, 24
molecule---base-config-base.yml-syntax

command line option
molecule --base-config base.yml

60 Index

Molecule Documentation, Release 3.1.5

syntax, 24
molecule---base-config-base.yml-test

command line option
molecule --base-config base.yml

test, 25
molecule---base-config-base.yml-verify

command line option
molecule --base-config base.yml

verify, 25
molecule---debug-check command line

option
molecule --debug check, 18

molecule---debug-cleanup command line
option

molecule --debug cleanup, 18
molecule---debug-converge command line

option
molecule --debug converge, 19

molecule---debug-create command line
option

molecule --debug create, 19
molecule---debug-dependency command

line option
molecule --debug dependency, 19

molecule---debug-destroy command line
option

molecule --debug destroy, 20
molecule---debug-idempotence command

line option
molecule --debug idempotence, 20

molecule---debug-lint command line
option

molecule --debug lint, 21
molecule---debug-list command line

option
molecule --debug list, 22

molecule---debug-login command line
option

molecule --debug login, 22
molecule---debug-matrix-subcommand

command line option
molecule --debug matrix subcommand,

23
molecule---debug-prepare command line

option
molecule --debug prepare, 23

molecule---debug-side-effect command
line option

molecule --debug side-effect, 24
molecule---debug-syntax command line

option
molecule --debug syntax, 24

molecule---debug-test command line
option

molecule --debug test, 25
molecule---debug-verify command line

option
molecule --debug verify, 25

molecule---env-file-foo.yml-check
command line option

molecule --env-file foo.yml check,
18

molecule---env-file-foo.yml-cleanup
command line option

molecule --env-file foo.yml
cleanup, 18

molecule---env-file-foo.yml-converge
command line option

molecule --env-file foo.yml
converge, 19

molecule---env-file-foo.yml-create
command line option

molecule --env-file foo.yml create,
19

molecule---env-file-foo.yml-dependency
command line option

molecule --env-file foo.yml
dependency, 20

molecule---env-file-foo.yml-destroy
command line option

molecule --env-file foo.yml
destroy, 20

molecule---env-file-foo.yml-idempotence
command line option

molecule --env-file foo.yml
idempotence, 21

molecule---env-file-foo.yml-lint
command line option

molecule --env-file foo.yml lint, 21
molecule---env-file-foo.yml-list

command line option
molecule --env-file foo.yml list, 22

molecule---env-file-foo.yml-login
command line option

molecule --env-file foo.yml login,
23

molecule---env-file-foo.yml-matrix-subcommand
command line option

molecule --env-file foo.yml matrix
subcommand, 23

molecule---env-file-foo.yml-prepare
command line option

molecule --env-file foo.yml
prepare, 24

molecule---env-file-foo.yml-side-effect
command line option

molecule --env-file foo.yml
side-effect, 24

Index 61

Molecule Documentation, Release 3.1.5

molecule---env-file-foo.yml-syntax
command line option

molecule --env-file foo.yml syntax,
24

molecule---env-file-foo.yml-test
command line option

molecule --env-file foo.yml test, 25
molecule---env-file-foo.yml-verify

command line option
molecule --env-file foo.yml verify,

25
molecule-check command line option

molecule check, 17
molecule-check---parallel command line

option
molecule check --parallel, 18

molecule-check---scenario-name-foo
command line option

molecule check --scenario-name foo,
17

molecule-cleanup command line option
molecule cleanup, 18

molecule-cleanup---scenario-name-foo
command line option

molecule cleanup --scenario-name
foo, 18

molecule-converge command line option
molecule converge, 18

molecule-converge-----vvv---tags-foo,bar
command line option

molecule converge -- -vvv --tags
foo,bar, 18

molecule-converge---scenario-name-foo
command line option

molecule converge --scenario-name
foo, 18

molecule-create command line option
molecule create, 19

molecule-create---driver-name-foo
command line option

molecule create --driver-name foo,
19

molecule-create---scenario-name-foo
command line option

molecule create --scenario-name
foo, 19

molecule-dependency command line
option

molecule dependency, 19
molecule-dependency---scenario-name-foo

command line option
molecule dependency

--scenario-name foo, 19
molecule-destroy command line option

molecule destroy, 20
molecule-destroy---all command line

option
molecule destroy --all, 20

molecule-destroy---driver-name-foo
command line option

molecule destroy --driver-name foo,
20

molecule-destroy---parallel command
line option

molecule destroy --parallel, 20
molecule-destroy---scenario-name-foo

command line option
molecule destroy --scenario-name

foo, 20
molecule-idempotence command line

option
molecule idempotence, 20

molecule-idempotence---scenario-name-foo
command line option

molecule idempotence
--scenario-name foo, 20

molecule-init-role-foo command line
option

molecule init role foo, 21
molecule-init-scenario-bar---role-name-foo

command line option
molecule init scenario bar

--role-name foo, 21
molecule-lint command line option

molecule lint, 21
molecule-lint---scenario-name-foo

command line option
molecule lint --scenario-name foo,

21
molecule-list command line option

molecule list, 22
molecule-list---format-plain command

line option
molecule list --format plain, 22

molecule-list---format-yaml command
line option

molecule list --format yaml, 22
molecule-list---scenario-name-foo

command line option
molecule list --scenario-name foo,

22
molecule-login command line option

molecule login, 22
molecule-login---host-hostname command

line option
molecule login --host hostname, 22

molecule-login---host-hostname---scenario-name-foo
command line option

62 Index

Molecule Documentation, Release 3.1.5

molecule login --host hostname
--scenario-name foo, 22

molecule-login---scenario-name-foo
command line option

molecule login --scenario-name foo,
22

molecule-matrix---scenario-name-foo-subcommand
command line option

molecule matrix --scenario-name
foo subcommand, 23

molecule-matrix-subcommand command
line option

molecule matrix subcommand, 23
molecule-prepare command line option

molecule prepare, 23
molecule-prepare---driver-name-foo

command line option
molecule prepare --driver-name foo,

23
molecule-prepare---force command line

option
molecule prepare --force, 23

molecule-prepare---scenario-name-foo
command line option

molecule prepare --scenario-name
foo, 23

molecule-side-effect command line
option

molecule side-effect, 24
molecule-side-effect---scenario-name-foo

command line option
molecule side-effect

--scenario-name foo, 24
molecule-syntax command line option

molecule syntax, 24
molecule-syntax---scenario-name-foo

command line option
molecule syntax --scenario-name

foo, 24
molecule-test command line option

molecule test, 25
molecule-test---all command line

option
molecule test --all, 25

molecule-test---destroy=always command
line option

molecule test --destroy=always, 25
molecule-test---parallel command line

option
molecule test --parallel, 25

molecule-test---scenario-name-foo
command line option

molecule test --scenario-name foo,
25

molecule-verify command line option
molecule verify, 25

molecule-verify---scenario-name-foo
command line option

molecule verify --scenario-name
foo, 25

P
Platforms (class in molecule.platforms), 31
Prepare (class in molecule.command.prepare), 23

R
Role (class in molecule.command.init.role), 21

S
Scenario (class in molecule.command.init.scenario),

21
Scenario (class in molecule.scenario), 37
Shell (class in molecule.dependency.shell), 28
SideEffect (class in molecule.command.side_effect),

24
State (class in molecule.state), 38
Syntax (class in molecule.command.syntax), 24

T
Test (class in molecule.command.test), 25
Testinfra (class in molecule.verifier.testinfra), 39

V
Verify (class in molecule.command.verify), 25

Index 63

	About Ansible Molecule
	Installation and Upgrade
	Using Molecule
	Common Molecule Use Cases
	Contributing to Molecule
	References and Appendices
	External Resources
	Index

