
Trixy Documentation
Release 2.0.0b0pre

Austin Hartzheim

April 22, 2015

Contents

1 Getting Started 1
1.1 Installing Trixy . 1
1.2 The Basics: Theory . 1
1.3 Modifying Data: Custom Processors . 2

2 Examples 3
2.1 Passthrough Proxy . 3
2.2 Changing Website Responses . 3
2.3 More Eamples Soon . 4

3 Trixy Code Documentation 5
3.1 trixy . 5
3.2 trixy.encryption . 8
3.3 trixy.proxy . 9

4 What is Trixy? 13

5 Other Documentation 15

6 Indices and tables 17

Python Module Index 19

i

ii

CHAPTER 1

Getting Started

Here are some instructions for getting started with Trixy.

1.1 Installing Trixy

Installing Trixy is just a simple command. Note that you should use the Python 3 version:

sudo pip install trixy

Alternatively, you can download a source tarball or zip file from PyPI or Github. Then, you can extract it and install it
by running:

sudo python3 setup.py install

1.2 The Basics: Theory

Trixy is structured into four component classes: servers, inputs, outputs, and processors. Servers are responsible for
capturing incoming connections and passing them to an input class. The input class then takes these connections and
builds processing chains for them. These processing chains consist of processors, which modify data passing through
them, and outputs, which forward the data stream (including any modifications) to a remote host.

To use Trixy, you should import it into your Python project and create subclasses of trixy.TrixyInput. Inside
the __init__() method of the subclass, you should create a chain of nodes which the data should pass through. As
an example:

processor = trixy.TrixyProcessor()
self.connect_node(processor)
processor.connect_node(trixy.TrixyOutput(’127.0.0.1’, 9999))

The first line creates a processor node. The default trixy.TrixyProcessor class does not do anything other than
forward the data, so you should create a subclass and override some of its methods to modify its behavior (covered
next). The second line connects the input instance with this processor node so that the input will forward the data it
gets to the processor. The last line connects the processor node to a trixy.TrixyOutput instance that is created
at the same time. This causes the processor to forward data it gets to the output (after making any modifications). The
default output that is used in this case creates a TCP connection to localhost on port 9999 and forwards the data there.

1

https://pypi.python.org/pypi/Trixy/1.0.0
https://github.com/austinhartzheim/Trixy/releases

Trixy Documentation, Release 2.0.0b0pre

1.3 Modifying Data: Custom Processors

Trixy is great for simply re-routing data, but its realy power lies in its ability to process the data on the fly. To do this,
you need to create a custom trixy.TrixyProcessor subclass.

When you are creating your own custom processor, you should modify packets like so:

class CustomProcessor(trixy.TrixyProcessor):
def handle_packet_down(self, data):

Modify the data variable here
self.forward_packet_down(data)

def handle_packet_up(self, data):
Modify the data variable here
self.forward_packet_up(data)

The handle_packet_down() method is called to process data flowing from the input to the output. The
handle_packet_up() method is used to process data moving from the output to the input. The calls to the
forward_packet_down() and forward_packet_up() then send the modified data on its way to the next
node(s) in the chain.

Note: It is also the case that you can ommit calls to forward_packet_down() and forward_packet_up()
when you want to drop a packet.

2 Chapter 1. Getting Started

CHAPTER 2

Examples

Here are some examples of how to use Trixy:

2.1 Passthrough Proxy

The following code creates a Trixy proxy server on a local port and then sends the output to austinhartzheim.me on
port 80:

/usr/bin/env python3
import asyncore
import trixy

class CustomInput(trixy.TrixyInput):
def __init__(self, sock, addr):

super().__init__(sock, addr)

This output class connects to this hostname/port by default
output = trixy.TrixyOutput(’austinhartzheim.me’, 80)
self.connect_node(output)

if __name__ == ’__main__’:
Run the Trixy server on localhost, port 8080
server = trixy.TrixyServer(CustomInput, ’127.0.0.1’, 8080)
asyncore.loop()

This example was taken from the README file.

2.2 Changing Website Responses

The following example takes an incoming connection on a local port, redirects it to a remove webserver on port 80
(specifically, the example.com server), and then modifies the response from example.com:

#! /usr/bin/env python3
import asyncore
import trixy

REMOTE_ADDR = ’93.184.216.119’ # IP for example.com
REMOTE_PORT = 80

3

https://github.com/austinhartzheim/Trixy/blob/master/README.md

Trixy Documentation, Release 2.0.0b0pre

class ExampleReplacer(trixy.TrixyProcessor):

def handle_packet_up(self, data):
data = data.replace(b’Example Domain’, b’Win Domain!’)
self.forward_packet_up(data)

class CustomInput(trixy.TrixyInput):
def __init__(self, sock, addr):

super().__init__(sock, addr)

processor = ExampleReplacer()
self.connect_node(processor)

output = trixy.TrixyOutput(REMOTE_ADDR, REMOTE_PORT)
processor.connect_node(output)
print(processor.upstream_nodes)

if __name__ == ’__main__’:
server = trixy.TrixyServer(CustomInput, ’0.0.0.0’, 80)
asyncore.loop()

This example was originally posted on the developer’s website.

2.3 More Eamples Soon

More examples are on their way! But, if you write one first, feel free to send a pull request on Github.

4 Chapter 2. Examples

http://austinhartzheim.me/projects/python3-trixy/
https://github.com/austinhartzheim/Trixy/

CHAPTER 3

Trixy Code Documentation

3.1 trixy

The main Trixy module contains the parent classes that can be modified for custom functionality.

class trixy.TrixyInput(sock, addr)
Bases: trixy.TrixyNode, asyncore.dispatcher_with_send

Once a connection is open, establish an output chain.

add_downstream_node(node)
Add a one direction downstream link to the node parameter.

Parameters node (TrixyNode) – The downstream node to create a unidirectional link to.

add_upstream_node(node)
Add a one direction upstream link to the node parameter.

Parameters node (TrixyNode) – The upstream node to create a unidirectional link to.

connect_node(node)
Create a bidirectional connection between the two nodes with the downstream node being the parameter.

Parameters node (TrixyNode) – The downstream node to create a bidirectional connection to.

forward_packet_down(data)
Forward data to all downstream nodes.

Parameters data (bytes) – The data to forward.

forward_packet_up(data)
Forward data to all upstream nodes.

Parameters data (bytes) – The data to forward.

handle_packet_down(data)
Hadle data moving downwards. TrixyProcessor children should perform some action on data whereas
TrixyOutput children should send the data to the desired output location.

Generally, the a child implementation of this method should be implemented such that it calls
self.forward_packet_down with the data (post-modification if necessary) to forward the data to other pro-
cessors in the chain. However, if the processor is a filter, it may drop the packet by omitting that call.

Parameters data (bytes) – The data that is being handled.

class trixy.TrixyNode
Bases: builtins.object

5

Trixy Documentation, Release 2.0.0b0pre

A base class for TrixyNodes that implements some default packet forwarding and node linking.

add_downstream_node(node)
Add a one direction downstream link to the node parameter.

Parameters node (TrixyNode) – The downstream node to create a unidirectional link to.

add_upstream_node(node)
Add a one direction upstream link to the node parameter.

Parameters node (TrixyNode) – The upstream node to create a unidirectional link to.

connect_node(node)
Create a bidirectional connection between the two nodes with the downstream node being the parameter.

Parameters node (TrixyNode) – The downstream node to create a bidirectional connection to.

forward_packet_down(data)
Forward data to all downstream nodes.

Parameters data (bytes) – The data to forward.

forward_packet_up(data)
Forward data to all upstream nodes.

Parameters data (bytes) – The data to forward.

handle_close(direction=’down’)
The connection has closed on one end. So, shutdown what we are doing and notify the nodes we are
connected to.

Parameters direction (str) – ‘down’ or ‘up’ depending on if downstream nodes need to be
closed, or upstream nodes need to be closed.

handle_packet_down(data)
Hadle data moving downwards. TrixyProcessor children should perform some action on data whereas
TrixyOutput children should send the data to the desired output location.

Generally, the a child implementation of this method should be implemented such that it calls
self.forward_packet_down with the data (post-modification if necessary) to forward the data to other pro-
cessors in the chain. However, if the processor is a filter, it may drop the packet by omitting that call.

Parameters data (bytes) – The data that is being handled.

handle_packet_up(data)
Hadle data moving upwards. TrixyProcessor children should perform some action on data whereas Trixy-
Output children should send the data to the desired output location.

Generally, the a child implementation of this method should be implemented such that it calls
self.forward_packet_down with the data (post-modification if necessary) to forward the data to other pro-
cessors in the chain. However, if the processor is a filter, it may drop the packet by omitting that call.

Parameters data (bytes) – The data that is being handled.

class trixy.TrixyOutput(host, port, autoconnect=True)
Bases: trixy.TrixyNode, asyncore.dispatcher_with_send

Output the data, generally to another network service.

add_downstream_node(node)
Add a one direction downstream link to the node parameter.

Parameters node (TrixyNode) – The downstream node to create a unidirectional link to.

6 Chapter 3. Trixy Code Documentation

Trixy Documentation, Release 2.0.0b0pre

add_upstream_node(node)
Add a one direction upstream link to the node parameter.

Parameters node (TrixyNode) – The upstream node to create a unidirectional link to.

assume_connected(host, port, sock)
Assume that the connection has already been made. Setup all state accordingly. This is useful in situations
where one output wants to pass off work to a different output (for example, a proxy output might establish
the connection and then pass it off to an SSL output (which needs to act on the raw socket object).

connect_node(node)
Create a bidirectional connection between the two nodes with the downstream node being the parameter.

Parameters node (TrixyNode) – The downstream node to create a bidirectional connection to.

forward_packet_down(data)
Forward data to all downstream nodes.

Parameters data (bytes) – The data to forward.

forward_packet_up(data)
Forward data to all upstream nodes.

Parameters data (bytes) – The data to forward.

handle_packet_up(data)
Hadle data moving upwards. TrixyProcessor children should perform some action on data whereas Trixy-
Output children should send the data to the desired output location.

Generally, the a child implementation of this method should be implemented such that it calls
self.forward_packet_down with the data (post-modification if necessary) to forward the data to other pro-
cessors in the chain. However, if the processor is a filter, it may drop the packet by omitting that call.

Parameters data (bytes) – The data that is being handled.

setup_socket(host, port, autoconnect=True)
Establish the outbound connection.

Parameters

• host (str) – The hostname to connect to.

• port (int) – The port on the host to connect to.

• autoconnect (bool) – Should the connection be established now, or should it be manually
triggered later?

supports_assumed_connections = True
Denotes whether assumed connections are assumed by the class.

class trixy.TrixyProcessor
Bases: trixy.TrixyNode

Perform processing on data moving through Trixy.

add_downstream_node(node)
Add a one direction downstream link to the node parameter.

Parameters node (TrixyNode) – The downstream node to create a unidirectional link to.

add_upstream_node(node)
Add a one direction upstream link to the node parameter.

Parameters node (TrixyNode) – The upstream node to create a unidirectional link to.

3.1. trixy 7

Trixy Documentation, Release 2.0.0b0pre

connect_node(node)
Create a bidirectional connection between the two nodes with the downstream node being the parameter.

Parameters node (TrixyNode) – The downstream node to create a bidirectional connection to.

forward_packet_down(data)
Forward data to all downstream nodes.

Parameters data (bytes) – The data to forward.

forward_packet_up(data)
Forward data to all upstream nodes.

Parameters data (bytes) – The data to forward.

handle_close(direction=’down’)
The connection has closed on one end. So, shutdown what we are doing and notify the nodes we are
connected to.

Parameters direction (str) – ‘down’ or ‘up’ depending on if downstream nodes need to be
closed, or upstream nodes need to be closed.

handle_packet_down(data)
Hadle data moving downwards. TrixyProcessor children should perform some action on data whereas
TrixyOutput children should send the data to the desired output location.

Generally, the a child implementation of this method should be implemented such that it calls
self.forward_packet_down with the data (post-modification if necessary) to forward the data to other pro-
cessors in the chain. However, if the processor is a filter, it may drop the packet by omitting that call.

Parameters data (bytes) – The data that is being handled.

handle_packet_up(data)
Hadle data moving upwards. TrixyProcessor children should perform some action on data whereas Trixy-
Output children should send the data to the desired output location.

Generally, the a child implementation of this method should be implemented such that it calls
self.forward_packet_down with the data (post-modification if necessary) to forward the data to other pro-
cessors in the chain. However, if the processor is a filter, it may drop the packet by omitting that call.

Parameters data (bytes) – The data that is being handled.

class trixy.TrixyServer(tinput, host, port)
Bases: asyncore.dispatcher

Main server to grab incoming connections and forward them.

3.2 trixy.encryption

The Trixy encryption module holds inputs and outputs that have support for encryption that applications might expect.
For example, the trixy.encryption.TrixySSLInput can be used to trick a browser into thinking it is creating
an encrypted connection, but the connection can then be re-routed through an unencrypted trixy.TrixyOutput
for easier monitoring.

class trixy.encryption.TrixySSLInput(sock, addr, **kwargs)
Acts like a normal TrixyInput, but uses Python’s ssl.wrap_socket() code to speak the SSL protocol back to
applications that expect it.

class trixy.encryption.TrixySSLOutput(host, port, autoconnect=True, **kwargs)
Acts like a normal TriyOutput, but uses Python’s ssl.wrap_socket() code to speak the SSL protocol to servers
that expect it.

8 Chapter 3. Trixy Code Documentation

Trixy Documentation, Release 2.0.0b0pre

By default this class allows for SSL2 and SSL3 connections in addition to TLS. If you want to specify different
settings, you can pass your own context to setup_socket().

assume_connected(host, port, sock, context=None, **kwargs)
Assume a connection that is already in progress and encrypt the traffic with a default or provded SSL
context.

Parameters

• host (str) – The hostname the output should connect to.

• port (int) – The port this output should connect to.

• sock (socket.socket) – The connected socket object.

• context (ssl.SSLContext) – this optional parameter allows for custom security settings such
as certificate verification and alternate SSL/TLS versions support.

• **kwargs – Anything else that should be passed to the SSLContext’s wrap_socket method.

setup_socket(host, port, autoconnect, context=None, **kwargs)

Parameters

• host (str) – The hostname the output should connect to.

• port (int) – The port this output should connect to.

• autoconnect (bool) – Should the connection be established when the __init__ method is
called?

• context (ssl.SSLContext) – this optional parameter allows for custom security settings such
as certificate verification and alternate SSL/TLS versions support.

• **kwargs – Anything else that should be passed to the SSLContext’s wrap_socket method.

class trixy.encryption.TrixyTLSOutput(host, port, autoconnect=True)
Acts identical to a TrixySSLOutput, but defaults to only accepting TLS for security reasons. This makes it
slightly easier to prevent downgrade attacks, especially when doing hasty testing rather than full development.

3.3 trixy.proxy

The Trixy proxy inputs speak a variety of common proxy protocols, such as SOCKS4, SOCKS4a, and SOCKS5. Their
default behavior is to act as a normal proxy and open a connection to the desired endpoint. However, this behavior can
be overridden to create different results.

Additionally, the proxy outputs allow a connection to be subsequently made to a proxy server. This allows intercepted
traffic to be easily routed on networks that require a proxy. It also makes it easier to route traffic into the Tor network.

class trixy.proxy.Socks4Input(sock, addr)
Implements the SOCKS4 protocol as defined in this document: http://www.openssh.com/txt/socks4.protocol

handle_connect_request(addr, port, userid)
The application connecting to this SOCKS4 input has requested that a connection be made to a remote
host. At this point, that request can be accepted, modified, or declined.

The default behavior is to accept the request as-is.

handle_proxy_request(data)
In SOCKS4, the first packet in a connection is a request to either initiate a connection to a remote host and
port, or it is a request to bind a port. This method is responsible for processing those requests.

3.3. trixy.proxy 9

http://www.openssh.com/txt/socks4.protocol

Trixy Documentation, Release 2.0.0b0pre

reply_request_failed(addr, port)
Send a reply stating that the request was rejected (perhaps due to a firewall rule forbidding the connection
or binding) or that it failed (i.e., the remote host could not be connected to or the requested port could not
be bound).

reply_request_granted(addr, port)
Send a reply stating that the connection or bind request has been granted and that the connection or bind
attempt was successfully completed.

reply_request_rejected(addr, port)
Send a reply saying that the request was rejected because the SOCKS server could not connect to the
client’s identd server.

reply_request_rejected_id_mismatch(addr, port)
Send a reply saying that the request was rejected because the SOCKS server was sent an ID by the client
that did not match the ID returned by identd on the client’s computer.

class trixy.proxy.Socks4aInput(sock, addr)
Implements the SOCKS4a protocol, which is the same as the SOCKS4 protocol except for the addition of DNS
resolution as described here: http://www.openssh.com/txt/socks4a.protocol

handle_connect_request(addr, port, userid)
The application connecting to this SOCKS4 input has requested that a connection be made to a remote
host. At this point, that request can be accepted, modified, or declined.

The default behavior is to accept the request as-is.

handle_proxy_request(data)
In SOCKS4, the first packet in a connection is a request to either initiate a connection to a remote host and
port, or it is a request to bind a port. This method is responsible for processing those requests.

class trixy.proxy.Socks5Input(sock, addr)
Implements the SOCKS5 protocol as defined in RFC1928. At present, only CONNECT requests are supported.

handle_connect_request(addr, port, addrtype)
The application connecting to this SOCKS4 input has requested that a connection be made to a remote
host. At this point, that request can be accepted, modified, or declined.

The default behavior is to accept the request as-is.

handle_method_select(methods)
Select the preferred authentication method from the list of client-supplied supported methods. The byte
object of length one should be sent to self.reply_method to notify the client of the method selection.

reply_method(method)
Send a reply to the user letting them know which authentication method the server has selected. If the
method 0xff is selected, close the connection because no method is supported.

reply_request_granted(addr, port, addrtype)
Send a reply stating that the connection or bind request has been granted and that the connection or bind
attempt was successfully completed.

class trixy.proxy.Socks5Output(host, port, autoconnect=True, proxyhost=‘127.0.0.1’, proxy-
port=1080)

Implements the SOCKS5 protocol as defined in RFC1928.

handle_state_change(oldstate, newstate)
Be able to process events when they occur. It allows easier detection of when events occur if it is desired
to implement different responses. It also allows detection of when the proxy is ready for use and can be
used to use assume_connectecd to transfer control to a TrixyOutput.

10 Chapter 3. Trixy Code Documentation

http://www.openssh.com/txt/socks4a.protocol

Trixy Documentation, Release 2.0.0b0pre

Parameters

• oldstate (int) – The old state number.

• newstate (int) – The new state number.

exception trixy.proxy.SocksProtocolError
Someone sent some invalid data on the wire, and this is how to deal with it.

3.3. trixy.proxy 11

Trixy Documentation, Release 2.0.0b0pre

12 Chapter 3. Trixy Code Documentation

CHAPTER 4

What is Trixy?

Trixy is designed to be used in a variety of situations involving network traffic interception, injection, and modification.
The software allows you to easily get your code running between two endpoints of a network connection. This allows
you to easily:

• Log protocols for reverse engineering.

• Modify packets on bidirectional connections.

• Inject traffic into a network connection.

• Develop and test protocol parsers.

• Monitor applications for suspicious network activity.

• Sanitize traffic, removing any undesired information.

Here are some practical examples of the above:

• Cheating at video games:

– Exploit server-client trust by modifying packets indicating how much money a player has.

– Drop packets that indicate damage to a player.

• Removing advertising and trackers from webpages.

• Performing man-in-the-middle attacks.

13

Trixy Documentation, Release 2.0.0b0pre

14 Chapter 4. What is Trixy?

CHAPTER 5

Other Documentation

If you are stuck, you should also check the following sources for information about Trixy:

• The developer’s website

• The Github repository

15

http://austinhartzheim.me/projects/python3-trixy/
https://github.com/austinhartzheim/Trixy/

Trixy Documentation, Release 2.0.0b0pre

16 Chapter 5. Other Documentation

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

17

Trixy Documentation, Release 2.0.0b0pre

18 Chapter 6. Indices and tables

Python Module Index

t
trixy, 5
trixy.encryption, 8
trixy.proxy, 9

19

Trixy Documentation, Release 2.0.0b0pre

20 Python Module Index

Index

A
add_downstream_node() (trixy.TrixyInput method), 5
add_downstream_node() (trixy.TrixyNode method), 6
add_downstream_node() (trixy.TrixyOutput method), 6
add_downstream_node() (trixy.TrixyProcessor method),

7
add_upstream_node() (trixy.TrixyInput method), 5
add_upstream_node() (trixy.TrixyNode method), 6
add_upstream_node() (trixy.TrixyOutput method), 6
add_upstream_node() (trixy.TrixyProcessor method), 7
assume_connected() (trixy.encryption.TrixySSLOutput

method), 9
assume_connected() (trixy.TrixyOutput method), 7

C
connect_node() (trixy.TrixyInput method), 5
connect_node() (trixy.TrixyNode method), 6
connect_node() (trixy.TrixyOutput method), 7
connect_node() (trixy.TrixyProcessor method), 7

F
forward_packet_down() (trixy.TrixyInput method), 5
forward_packet_down() (trixy.TrixyNode method), 6
forward_packet_down() (trixy.TrixyOutput method), 7
forward_packet_down() (trixy.TrixyProcessor method), 8
forward_packet_up() (trixy.TrixyInput method), 5
forward_packet_up() (trixy.TrixyNode method), 6
forward_packet_up() (trixy.TrixyOutput method), 7
forward_packet_up() (trixy.TrixyProcessor method), 8

H
handle_close() (trixy.TrixyNode method), 6
handle_close() (trixy.TrixyProcessor method), 8
handle_connect_request() (trixy.proxy.Socks4aInput

method), 10
handle_connect_request() (trixy.proxy.Socks4Input

method), 9
handle_connect_request() (trixy.proxy.Socks5Input

method), 10

handle_method_select() (trixy.proxy.Socks5Input
method), 10

handle_packet_down() (trixy.TrixyInput method), 5
handle_packet_down() (trixy.TrixyNode method), 6
handle_packet_down() (trixy.TrixyProcessor method), 8
handle_packet_up() (trixy.TrixyNode method), 6
handle_packet_up() (trixy.TrixyOutput method), 7
handle_packet_up() (trixy.TrixyProcessor method), 8
handle_proxy_request() (trixy.proxy.Socks4aInput

method), 10
handle_proxy_request() (trixy.proxy.Socks4Input

method), 9
handle_state_change() (trixy.proxy.Socks5Output

method), 10

R
reply_method() (trixy.proxy.Socks5Input method), 10
reply_request_failed() (trixy.proxy.Socks4Input method),

9
reply_request_granted() (trixy.proxy.Socks4Input

method), 10
reply_request_granted() (trixy.proxy.Socks5Input

method), 10
reply_request_rejected() (trixy.proxy.Socks4Input

method), 10
reply_request_rejected_id_mismatch()

(trixy.proxy.Socks4Input method), 10

S
setup_socket() (trixy.encryption.TrixySSLOutput

method), 9
setup_socket() (trixy.TrixyOutput method), 7
Socks4aInput (class in trixy.proxy), 10
Socks4Input (class in trixy.proxy), 9
Socks5Input (class in trixy.proxy), 10
Socks5Output (class in trixy.proxy), 10
SocksProtocolError, 11
supports_assumed_connections (trixy.TrixyOutput

attribute), 7

21

Trixy Documentation, Release 2.0.0b0pre

T
trixy (module), 5
trixy.encryption (module), 8
trixy.proxy (module), 9
TrixyInput (class in trixy), 5
TrixyNode (class in trixy), 5
TrixyOutput (class in trixy), 6
TrixyProcessor (class in trixy), 7
TrixyServer (class in trixy), 8
TrixySSLInput (class in trixy.encryption), 8
TrixySSLOutput (class in trixy.encryption), 8
TrixyTLSOutput (class in trixy.encryption), 9

22 Index

	Getting Started
	Installing Trixy
	The Basics: Theory
	Modifying Data: Custom Processors

	Examples
	Passthrough Proxy
	Changing Website Responses
	More Eamples Soon

	Trixy Code Documentation
	trixy
	trixy.encryption
	trixy.proxy

	What is Trixy?
	Other Documentation
	Indices and tables
	Python Module Index

