

Trio: async programming for humans and snake people

P.S. your API is a user interface – Kenneth Reitz

The Trio project’s goal is to produce a production-quality,
permissively licensed [https://github.com/python-trio/trio/blob/master/LICENSE],
async/await-native I/O library for Python. Like all async libraries,
its main purpose is to help you write programs that do multiple
things at the same time with parallelized I/O. A web spider that
wants to fetch lots of pages in parallel, a web server that needs to
juggle lots of downloads and websocket connections at the same time, a
process supervisor monitoring multiple subprocesses... that sort of
thing. Compared to other libraries, Trio attempts to distinguish
itself with an obsessive focus on usability and
correctness. Concurrency is complicated; we try to make it easy
to get things right.

Trio was built from the ground up to take advantage of the latest
Python features [https://www.python.org/dev/peps/pep-0492/], and
draws inspiration from many sources [https://github.com/python-trio/trio/wiki/Reading-list], in
particular Dave Beazley’s Curio [https://curio.readthedocs.io/].
The resulting design is radically simpler than older competitors like
asyncio [https://docs.python.org/3/library/asyncio.html] and
Twisted [https://twistedmatrix.com/], yet just as capable. Trio is
the Python I/O library I always wanted; I find it makes building
I/O-oriented programs easier, less error-prone, and just plain more
fun. Perhaps you’ll find the same.

This project is young and still somewhat experimental: the overall
design is solid and the existing features are fully tested and
documented, but you may encounter missing functionality or rough
edges. We do encourage you do use it, but you should read and
subscribe to issue #1 [https://github.com/python-trio/trio/issues/1] to get warning and a
chance to give feedback about any compatibility-breaking changes.

Vital statistics:

	Supported environments: Linux, MacOS, or Windows running some kind of Python
3.5-or-better (either CPython or PyPy3 is fine). *BSD and illumus likely
work too, but are untested.

	Install: python3 -m pip install -U trio (or on Windows, maybe
py -3 -m pip install -U trio). No compiler needed.

	Tutorial and reference manual: https://trio.readthedocs.io

	Bug tracker and source code: https://github.com/python-trio/trio

	License: MIT or Apache 2, your choice

	Code of conduct: Contributors are requested to follow our code of
conduct [https://github.com/python-trio/trio/blob/master/CODE_OF_CONDUCT.md]
in all project spaces.

Trio’s friendly, yet comprehensive, manual:

	Tutorial
	Before you begin

	Async functions

	A kinder, gentler GIL

	Networking with trio

	An echo client and server: higher-level API

	When things go wrong: timeouts, cancellation and exceptions in concurrent tasks

	Trio’s core functionality
	Entering trio

	General principles

	Time and clocks

	Cancellation and timeouts

	Tasks let you do multiple things at once

	Task-local storage and run-local storage

	Synchronizing and communicating between tasks

	Threads (if you must)

	Debugging and instrumentation

	Exceptions

	I/O in Trio
	Sockets and networking

	The abstract Stream API

	TLS support

	Async disk I/O

	Subprocesses

	Signals

	Testing made easier with trio.testing
	Test harness integration

	Time and timeouts

	Inter-task ordering

	Testing checkpoints

	Low-level operations in trio.hazmat
	Low-level I/O primitives

	System tasks

	Entering trio from external threads or signal handlers

	Safer KeyboardInterrupt handling

	Sleeping and waking

	Design and internals
	High-level design principles

	User-level API principles

	Specific style guidelines

	A brief tour of trio’s internals

	Release history
	v0.2.0 (????-??-??)

	v0.1.0 (2017-03-10)

Indices and tables

	Index

	Module Index

	Search Page

Tutorial

Welcome to the Trio tutorial! Trio is a modern Python library for
writing asynchronous applications – often, but not exclusively,
asynchronous network applications. Here we’ll try to give a gentle
introduction to asynchronous programming with Trio.

We assume that you’re familiar with Python in general, but don’t worry
– we don’t assume you know anything about asynchronous programming or
Python’s new async/await feature.

Also, we assume that your goal is to use Trio to write interesting
programs, so we won’t go into the nitty-gritty details of how
async/await is implemented inside the Python interpreter. The word
“coroutine” is never mentioned. The fact is, you really don’t need
to know any of that stuff unless you want to implement a library
like Trio, so we leave it out. We’ll include some links in case you’re
the kind of person who’s curious to know how it works under the hood,
but you should still read this section first, because the internal
details will make much more sense once you understand what it’s all
for.

Before you begin

	Make sure you’re using Python 3.5 or newer.

	python3 -m pip install --upgrade trio (or on Windows, maybe
py -3 -m pip install --upgrade trio – details [https://packaging.python.org/installing/])

	Can you import trio? If so then you’re good to go!

Async functions

Python 3.5 added a major new feature: async functions. Using Trio is
all about writing async functions, so lets start there.

An async function is defined like a normal function, except you write
async def instead of def:

A regular function
def regular_double(x):
 return 2 * x

An async function
async def async_double(x):
 return 2 * x

“Async” is short for “asynchronous”; we’ll sometimes refer to regular
functions like regular_double as “synchronous functions”, to
distinguish them from async functions.

From a user’s point of view, there are two differences between an
async function and a regular function:

	To call an async function, you have to use the await
keyword. So instead of writing regular_double(3), you write
await async_double(3).

	You can’t use the await keyword inside the body of a regular
function. If you try it, you’ll get a syntax error:

def print_double(x):
 print(await async_double(x)) # <-- SyntaxError here

But inside an async function, await is allowed:

async def print_double(x):
 print(await async_double(x)) # <-- OK!

Now, let’s think about the consequences here: if you need await to
call an async function, and only async functions can use
await... here’s a little table:

	If a function like this
	wants to call a function like this
	is it gonna happen?

	sync
	sync
	✓

	sync
	async
	NOPE

	async
	sync
	✓

	async
	async
	✓

So in summary: As a user, the entire advantage of async functions over
regular functions is that async functions have a superpower: they can
call other async functions.

This immediately raises two questions: how, and why? Specifically:

When your Python program starts up, it’s running regular old sync
code. So there’s a chicken-and-the-egg problem: once we’re running an
async function we can call other async functions, but how do we call
that first async function?

And, if the only reason to write an async function is that it can call
other async functions, why on earth would we ever use them in
the first place? I mean, as superpowers go this seems a bit
pointless. Wouldn’t it be simpler to just... not use any async
functions at all?

This is where an async library like Trio comes in. It provides two
things:

	A runner function, which is a special synchronous function that
takes and calls an asynchronous function. In Trio, this is
trio.run:

import trio

async def async_double(x):
 return 2 * x

trio.run(async_double, 3) # returns 6

So that answers the “how” part.

	A bunch of useful async functions – in particular, functions for
doing I/O. So that answers the “why”: these functions are async,
and they’re useful, so if you want to use them, you have to write
async code. If you think keeping track of these async and
await things is annoying, then too bad – you’ve got no choice
in the matter! (Well, OK, you could just not use trio. That’s a
legitimate option. But it turns out that the async/await stuff
is actually a good thing, for reasons we’ll discuss a little bit
later.)

Here’s an example function that uses
trio.sleep(). (trio.sleep() is like time.sleep() [https://docs.python.org/3/library/time.html#time.sleep],
but with more async.)

import trio

async def double_sleep(x):
 await trio.sleep(2 * x)

trio.run(double_sleep, 3) # does nothing for 6 seconds then returns

So it turns out our async_double function is actually a bad
example. I mean, it works, it’s fine, there’s nothing wrong with it,
but it’s pointless: it could just as easily be written as a regular
function, and it would be more useful that way. double_sleep is a
much more typical example: we have to make it async, because it calls
another async function. The end result is a kind of async sandwich,
with trio on both sides and our code in the middle:

trio.run -> double_sleep -> trio.sleep

This “sandwich” structure is typical for async code; in general, it
looks like:

trio.run -> [async function] -> ... -> [async function] -> trio.whatever

It’s exactly the functions on the path between trio.run() and
trio.whatever that have to be async. Trio provides the async
bread, and then your code makes up the async sandwich’s tasty async
filling. Other functions (e.g., helpers you call along the way) should
generally be regular, non-async functions.

Warning: don’t forget that await!

Now would be a good time to open up a Python prompt and experiment a
little with writing simple async functions and running them with
trio.run.

At some point in this process, you’ll probably write some code like
this, that tries to call an async function but leaves out the
await:

import time
import trio

async def broken_double_sleep(x):
 print("*yawn* Going to sleep")
 start_time = time.time()

 # Whoops, we forgot the 'await'!
 trio.sleep(2 * x)

 sleep_time = time.time() - start_time
 print("Woke up after {:.2f} seconds, feeling well rested!".format(sleep_time))

trio.run(broken_double_sleep, 3)

You might think that Python would raise an error here, like it does
for other kinds of mistakes we sometimes make when calling a
function. Like, if we forgot to pass trio.sleep() it’s required
argument, then we would get a nice TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] saying so. But
unfortunately, if you forget an await, you don’t get that. What
you actually get is:

>>> trio.run(broken_double_sleep, 3)
yawn Going to sleep
Woke up again after 0.00 seconds, feeling well rested!
__main__:4: RuntimeWarning: coroutine 'sleep' was never awaited
>>>

This is clearly broken – 0.00 seconds is not long enough to feel well
rested! Yet the code acts like it succeeded – no exception was
raised. The only clue that something went wrong is that it prints
RuntimeWarning: coroutine 'sleep' was never awaited. Also, the
exact place where the warning is printed might vary, because it
depends on the whims of the garbage collector. If you’re using PyPy,
you might not even get a warning at all until the next GC collection
runs:

On PyPy:
>>>> trio.run(broken_double_sleep, 3)
yawn Going to sleep
Woke up again after 0.00 seconds, feeling well rested!
>>>> # what the ... ?? not even a warning!

>>>> # but forcing a garbage collection gives us a warning:
>>>> import gc
>>>> gc.collect()
/home/njs/pypy-3.5-nightly/lib-python/3/importlib/_bootstrap.py:191: RuntimeWarning: coroutine 'sleep' was never awaited
if _module_locks.get(name) is wr: # XXX PyPy fix?
0
>>>>

(If you can’t see the warning above, try scrolling right.)

Forgetting an await like this is an incredibly common
mistake. You will mess this up. Everyone does. And Python will not
help you as much as you’d hope 😞. The key thing to remember is: if
you see the magic words RuntimeWarning: coroutine '...' was never
awaited, then this always means that you made the mistake of
leaving out an await somewhere, and you should ignore all the
other error messages you see and go fix that first, because there’s a
good chance the other stuff is just collateral damage. I’m not even
sure what all that other junk in the PyPy output is. Fortunately I
don’t need to know, I just need to fix my function!

(“I thought you said you weren’t going to mention coroutines!” Yes,
well, I didn’t mention coroutines, Python did. Take it up with
Guido! But seriously, this is unfortunately a place where the internal
implementation details do leak out a bit.)

Why does this happen? In Trio, every time we use await it’s to
call an async function, and every time we call an async function we
use await. But Python’s trying to keep its options open for other
libraries that are ahem a little less organized about things. So
while for our purposes we can think of await trio.sleep(...) as a
single piece of syntax, Python thinks of it as two things: first a
function call that returns this weird “coroutine” object:

>>> trio.sleep(3)
<coroutine object sleep at 0x7f5ac77be6d0>

and then that object gets passed to await, which actually runs the
function. So if you forget await, then two bad things happen: your
function doesn’t actually get called, and you get a “coroutine” object
where you might have been expecting something else, like a number:

>>> async_double(3) + 1
TypeError: unsupported operand type(s) for +: 'coroutine' and 'int'

If you didn’t already mess this up naturally, then give it a try on
purpose: try writing some code with a missing await, or an extra
await, and see what you get. This way you’ll be prepared for when
it happens to you for real.

And remember: watch out for RuntimeWarning: coroutine '...' was
never awaited; it means you need to find and fix your missing
await.

Okay, let’s see something cool already

So now we’ve started using trio, but so far all we’ve learned to do is
write functions that print things and sleep for various lengths of
time. Interesting enough, but we could just as easily have done that
with time.sleep() [https://docs.python.org/3/library/time.html#time.sleep]. async/await is useless!

Well, not really. Trio has one more trick up its sleeve, that makes
async functions more powerful than regular functions: it can run
multiple async function at the same time. Here’s an example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	# tasks-intro.py

import trio

async def child1():
 print(" child1: started! sleeping now...")
 await trio.sleep(1)
 print(" child1: exiting!")

async def child2():
 print(" child2: started! sleeping now...")
 await trio.sleep(1)
 print(" child2: exiting!")

async def parent():
 print("parent: started!")
 async with trio.open_nursery() as nursery:
 print("parent: spawning child1...")
 nursery.spawn(child1)

 print("parent: spawning child2...")
 nursery.spawn(child2)

 print("parent: waiting for children to finish...")
 # -- we exit the nursery block here --
 print("parent: all done!")

trio.run(parent)

There’s a lot going on in here, so we’ll take it one step at a
time. In the first part, we define two async functions child1 and
child2. These should look familiar from the last section:

	 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	async def child1():
 print(" child1: started! sleeping now...")
 await trio.sleep(1)
 print(" child1: exiting!")

async def child2():
 print(" child2: started! sleeping now...")
 await trio.sleep(1)
 print(" child2: exiting!")

async def parent():
 print("parent: started!")
 async with trio.open_nursery() as nursery:
 print("parent: spawning child1...")
 nursery.spawn(child1)

 print("parent: spawning child2...")
 nursery.spawn(child2)

 print("parent: waiting for children to finish...")
 # -- we exit the nursery block here --
 print("parent: all done!")

trio.run(parent)

Next, we define parent as an async function that’s going to call
child1 and child2 concurrently:

	15
16
17
18
19
20
21
22
23
24
25
26

	async def parent():
 print("parent: started!")
 async with trio.open_nursery() as nursery:
 print("parent: spawning child1...")
 nursery.spawn(child1)

 print("parent: spawning child2...")
 nursery.spawn(child2)

 print("parent: waiting for children to finish...")
 # -- we exit the nursery block here --
 print("parent: all done!")

It does this by using a mysterious async with statement to create
a “nursery”, and then “spawns” child1 and child2 into the
nursery.

Let’s start with this async with thing. It’s actually pretty
simple. In regular Python, a statement like with someobj: ...
instructs the interpreter to call someobj.__enter__() at the
beginning of the block, and to call someobj.__exit__() at the end
of the block. We call someobj a “context manager”. An async
with does exactly the same thing, except that where a regular
with statement calls regular methods, an async with statement
calls async methods: at the start of the block it does await
someobj.__aenter__() and at that end of the block it does await
someobj.__aexit__(). In this case we call someobj an “async
context manager”. So in short: with blocks are a shorthand for
calling some functions, and since with async/await Python now has two
kinds of functions, it also needs two kinds of with blocks. That’s
all there is to it! If you understand async functions, then you
understand async with.

Note

This example doesn’t use them, but while we’re here we might as
well mention the one other piece of new syntax that async/await
added: async for. It’s basically the same idea as async
with versus with: An async for loop is just like a
for loop, except that where a for loop does
iterator.__next__() to fetch the next item, an async for
does await async_iterator.__anext__(). Now you understand all
of async/await. Basically just remember that it involves making
sandwiches and sticking the word “async” in front of everything,
and you’ll do fine.

Now that we understand async with, let’s look at parent again:

	15
16
17
18
19
20
21
22
23
24
25
26

	async def parent():
 print("parent: started!")
 async with trio.open_nursery() as nursery:
 print("parent: spawning child1...")
 nursery.spawn(child1)

 print("parent: spawning child2...")
 nursery.spawn(child2)

 print("parent: waiting for children to finish...")
 # -- we exit the nursery block here --
 print("parent: all done!")

There are only 4 lines of code that really do anything here. On line
17, we use trio.open_nursery() to get a “nursery” object, and
then inside the async with block we call nursery.spawn twice,
on lines 19 and 22. There are actually two ways to call an async
function: the first one is the one we already say, using await
async_fn(); the new one is nursery.spawn(async_fn): it asks trio
to start running this async function, but then returns immediately
without waiting for the function to finish. So after our two calls to
nursery.spawn, child1 and child2 are now running in the
background. And then at line 25, the commented line, we hit the end of
the async with block, and the nursery’s __aexit__ function
runs. What this does is force parent to stop here and wait for all
the children in the nursery to exit. This is why you have to use
async with to get a nursery: it gives us a way to make sure that
the child calls can’t run away and get lost. One reason this is
important is that if there’s a bug or other problem in one of the
children, and it raises an exception, then it lets us propagate that
exception into the parent; in many other frameworks, exceptions like
this are just discarded. Trio never discards exceptions.

However – this is important! – the parent won’t see the exception
unless and until it reaches the end of the nursery’s async wait
block and runs the __aexit__ function. So remember: in trio,
parenting is a full-time job! Any given piece of code manage a nursery
– which means opening it, spawning some children, and then sitting in
__aexit__ to supervise them – or it can do actual work, but you
shouldn’t try to do both at the same time in the same function. If you
find yourself tempted to do some work in the parent, then spawn
another child and have it do the work. In trio, children are cheap.

Ok! Let’s try running it and see what we get:

parent: started!
parent: spawning child1...
parent: spawning child2...
parent: waiting for children to finish...
 child2: started! sleeping now...
 child1: started! sleeping now...
 [... 1 second passes ...]
 child1: exiting!
 child2: exiting!
parent: all done!

(Your output might have the order of the “started” and/or “exiting”
lines swapped compared to to mine.)

Notice that child1 and child2 both start together and then
both exit together, and that the whole program only takes 1 second to
run, even though we made two calls to trio.sleep(1), which should
take two seconds in total. So it looks like child1 and child2
really are running at the same time!

Now, if you’re familiar with programming using threads, this might
look familiar – and that’s intentional. But it’s important to realize
that there are no threads here. All of this is happening in a single
thread. To remind ourselves of this, we use slightly different
terminology: instead of spawning two “threads”, we say that we spawned
two “tasks”. There are two differences between tasks and threads: (1)
many tasks can take turns running on a single thread, and (2) with
threads, the Python interpreter/operating system can switch which
thread is running whenever they feel like it; with tasks, we can only
switch at certain designated places we call “checkpoints”. In the next section, we’ll dig into what this means.

Task switching illustrated

The big idea behind async/await-based libraries like trio is to run
lots of tasks simultaneously on a single thread by switching between
them at appropriate places – so for example, if we’re implementing a
web server, then one task could be sending an HTTP response at the
same time as another task is waiting for new connections. If all you
want to do is use trio, then you don’t need to understand all the
nitty-gritty detail of how this switching works – but it’s very useful
to have at least a general intuition about what trio is doing “under
the hood” when your code is executing. To help build that intuition,
let’s look more closely at how trio ran our example from the last
section.

Fortunately, trio provides a rich set of tools for inspecting
and debugging your programs. Here we want to watch
trio.run() at work, which we can do by writing a class we’ll
call Tracer, which implements trio’s Instrument
interface. Its job is to log various events as they happen:

class Tracer(trio.abc.Instrument):
 def before_run(self):
 print("!!! run started")

 def _print_with_task(self, msg, task):
 # repr(task) is perhaps more useful than task.name in general,
 # but in context of a tutorial the extra noise is unhelpful.
 print("{}: {}".format(msg, task.name))

 def task_spawned(self, task):
 self._print_with_task("### new task spawned", task)

 def task_scheduled(self, task):
 self._print_with_task("### task scheduled", task)

 def before_task_step(self, task):
 self._print_with_task(">>> about to run one step of task", task)

 def after_task_step(self, task):
 self._print_with_task("<<< task step finished", task)

 def task_exited(self, task):
 self._print_with_task("### task exited", task)

 def before_io_wait(self, timeout):
 if timeout:
 print("### waiting for I/O for up to {} seconds".format(timeout))
 else:
 print("### doing a quick check for I/O")
 self._sleep_time = trio.current_time()

 def after_io_wait(self, timeout):
 duration = trio.current_time() - self._sleep_time
 print("### finished I/O check (took {} seconds)".format(duration))

 def after_run(self):
 print("!!! run finished")

Then we re-run our example program from the previous section, but this
time we pass trio.run() a Tracer object:

trio.run(parent, instruments=[Tracer()])

This generates a lot of output, so we’ll go through it one step at a
time.

First, there’s a bit of chatter while trio gets ready to run our
code. Most of this is irrelevant to us for now, but in the middle you
can see that trio has created a task for the __main__.parent
function, and “scheduled” it (i.e., made a note that it should be run
soon):

$ python3 tutorial/tasks-with-trace.py
!!! run started
new task spawned: <init>
task scheduled: <init>
doing a quick check for I/O
finished I/O check (took 1.1122087016701698e-05 seconds)
>>> about to run one step of task: <init>
new task spawned: <call soon task>
task scheduled: <call soon task>
new task spawned: __main__.parent
task scheduled: __main__.parent
<<< task step finished: <init>
doing a quick check for I/O
finished I/O check (took 6.4980704337358475e-06 seconds)

Once the initial housekeeping is done, trio starts running the
parent function, and you can see parent creating the two child
tasks. Then it hits the end of the async with block, and pauses:

>>> about to run one step of task: __main__.parent
parent: started!
parent: spawning child1...
new task spawned: __main__.child1
task scheduled: __main__.child1
parent: spawning child2...
new task spawned: __main__.child2
task scheduled: __main__.child2
parent: waiting for children to finish...
<<< task step finished: __main__.parent

Control then goes back to trio.run(), which logs a bit more
internal chatter:

>>> about to run one step of task: <call soon task>
<<< task step finished: <call soon task>
doing a quick check for I/O
finished I/O check (took 5.476875230669975e-06 seconds)

And then gives the two child tasks a chance to run:

>>> about to run one step of task: __main__.child2
 child2 started! sleeping now...
<<< task step finished: __main__.child2

>>> about to run one step of task: __main__.child1
 child1: started! sleeping now...
<<< task step finished: __main__.child1

Each task runs until it hits the call to trio.sleep(), and then
suddenly we’re back in trio.run() deciding what to run next. How
does this happen? The secret is that trio.run() and
trio.sleep() work together to make it happen: trio.sleep()
has access to some special magic that lets it pause its entire
callstack, so it sends a note to trio.run() requesting to be
woken again after 1 second, and then suspends the task. And once the
task is suspended, Python gives control back to trio.run(),
which decides what to do next. (If this sounds similar to the way that
generators can suspend execution by doing a yield, then that’s not
a coincidence: inside the Python interpreter, there’s a lot of overlap
between the implementation of generators and async functions.)

Note

You might wonder whether you can mix-and-match primitives from
different async libraries. For example, could we use
trio.run() together with asyncio.sleep() [https://docs.python.org/3/library/asyncio-task.html#asyncio.sleep]? The answer is
no, we can’t, and the paragraph above explains why: the two sides
of our async sandwich have a private language they use to talk to
each other, and different libraries use different languages. So if
you try to call asyncio.sleep() [https://docs.python.org/3/library/asyncio-task.html#asyncio.sleep] from inside a
trio.run(), then trio will get very confused indeed and
probably blow up in some dramatic way.

Only async functions have access to the special magic for suspending a
task, so only async functions can cause the program to switch to a
different task. What this means if a call doesn’t have an await
on it, then you know that it can’t be a place where your task will
be suspended. This makes tasks much easier to reason about [https://glyph.twistedmatrix.com/2014/02/unyielding.html] than
threads, because there are far fewer ways that tasks can be
interleaved with each other and stomp on each others’ state. (For
example, in trio a statement like a += 1 is always atomic – even
if a is some arbitrarily complicated custom object!) Trio also
makes some further guarantees beyond that, but
that’s the big one.

And now you also know why parent had to use an async with to
open the nursery: if we had used a regular with block, then it
wouldn’t have been able to pause at the end and wait for the children
to finish; we need our cleanup function to be async, which is exactly
what async with gives us.

Now, back to our execution trace. To recap: at this point parent
is waiting on child1 and child2, and both children are
sleeping. So trio.run() checks its notes, and sees that there’s
nothing to be done until those sleeps finish – unless possibly some
external I/O event comes in. If that happened, then it might give us
something to do. Of course we aren’t doing any I/O here so it won’t
happen, but in other situations it could. So next it calls an
operating system primitive to put the whole process to sleep:

waiting for I/O for up to 0.9999009938910604 seconds

And in fact no I/O does arrive, so one second later we wake up again,
and trio checks its notes again. At this point it checks the current
time, compares it to the notes that trio.sleep() sent saying
when when the two child tasks should be woken up again, and realizes
that they’ve slept for long enough, so it schedules them to run soon:

finished I/O check (took 1.0006483688484877 seconds)
task scheduled: __main__.child1
task scheduled: __main__.child2

And then the children get to run, and this time they run to
completion. Remember how parent is waiting for them to finish?
Notice how parent gets scheduled when the first child exits:

>>> about to run one step of task: __main__.child1
 child1: exiting!
task scheduled: __main__.parent
task exited: __main__.child1
<<< task step finished: __main__.child1

>>> about to run one step of task: __main__.child2
 child2 exiting!
task exited: __main__.child2
<<< task step finished: __main__.child2

Then, after another check for I/O, parent wakes up. The nursery
cleanup code notices that all its children have exited, and lets the
nursery block finish. And then parent makes a final print and
exits:

doing a quick check for I/O
finished I/O check (took 9.045004844665527e-06 seconds)

>>> about to run one step of task: __main__.parent
parent: all done!
task scheduled: <init>
task exited: __main__.parent
<<< task step finished: __main__.parent

And finally, after a bit more internal bookkeeping, trio.run()
exits too:

doing a quick check for I/O
finished I/O check (took 5.996786057949066e-06 seconds)
>>> about to run one step of task: <init>
task scheduled: <call soon task>
task scheduled: <init>
<<< task step finished: <init>
doing a quick check for I/O
finished I/O check (took 6.258022040128708e-06 seconds)
>>> about to run one step of task: <call soon task>
task exited: <call soon task>
<<< task step finished: <call soon task>
>>> about to run one step of task: <init>
task exited: <init>
<<< task step finished: <init>
!!! run finished

You made it!

That was a lot of text, but again, you don’t need to understand
everything here to use trio – in fact, trio goes to great lengths to
make each task feel like it executes in a simple, linear way. (Just
like your operating system goes to great lengths to make it feel like
your single-threaded code executes in a simple linear way, even though
under the covers the operating system juggles between different
threads and processes in essentially the same way trio does.) But it
is useful to have a rough model in your head of how the code you write
is actually executed, and – most importantly – the consequences of
that for parallelism.

Alternatively, if this has just whetted your appetite and you want to
know more about how async/await works internally, then this blog
post [https://snarky.ca/how-the-heck-does-async-await-work-in-python-3-5/]
is a good deep dive, or check out this great walkthrough [https://github.com/AndreLouisCaron/a-tale-of-event-loops] to see
how to build a simple async I/O framework from the ground up.

A kinder, gentler GIL

Speaking of parallelism – let’s zoom out for a moment and talk about
how async/await compares to other ways of handling concurrency in
Python.

As we’ve already noted, trio tasks are conceptually rather similar to
Python’s built-in threads, as provided by the threading [https://docs.python.org/3/library/threading.html#module-threading]
module. And in all common Python implementations, threads have a
famous limitation: the Global Interpreter Lock, or “GIL” for
short. The GIL means that even if you use multiple threads, your code
still (mostly) ends up running on a single core. People tend to find
this frustrating.

But from trio’s point of view, the problem with the GIL isn’t that it
restricts parallelism. Of course it would be nice if Python had better
options for taking advantage of multiple cores, but that’s an
extremely difficult problem to solve, and in the mean time there are
lots of problems where a single core is totally adequate – or where if
it isn’t, then process- or machine-level parallelism works fine.

No, the problem with the GIL is that it’s a lousy deal: we give up
on using multiple cores, and in exchange we get... almost all the same
challenges and mind bending bugs that come with real parallel
programming, and – to add insult to injury – pretty poor scalability [https://twitter.com/hynek/status/771790449057132544]. Threads in
Python just aren’t that appealing.

Trio doesn’t make your code run on multiple cores; in fact, as we saw
above, it’s baked into trio’s design that you never have two tasks
running at the same time. We’re not so much overcoming the GIL as
embracing it. But if you’re willing to accept that, plus a bit of
extra work to put these new async and await keywords in the
right places, then in exchange you get:

	Excellent scalability: trio can run 10,000+ tasks simultaneously
without breaking a sweat, so long as their total CPU demands don’t
exceed what a single core can provide. (This is common in, for
example, network servers that have lots of clients connected, but
only a few active at any given time.)

	Fancy features: most threading systems are implemented in C and
restricted to whatever features the operating system provides. In
trio our logic is all in Python, which makes it possible to
implement powerful and ergonomic features like trio’s
cancellation system.

	Code that’s easier to reason about: the await keyword means that
potential task-switching points are explicitly marked within each
function. This can make trio code dramatically easier to reason
about [https://glyph.twistedmatrix.com/2014/02/unyielding.html]
than the equivalent program using threads.

Certainly it’s not appropriate for every app... but there are a lot of
situations where the trade-offs here look pretty appealing.

There is one downside that’s important to keep in mind, though. Making
checkpoints explicit gives you more control over how your tasks can be
interleaved – but with great power comes great responsibility. With
threads, the runtime environment is responsible for making sure that
each thread gets its fair share of running time. With trio, if some
task runs off and does stuff for seconds on end without executing a
checkpoint, then... all your other tasks will just have to wait.

Here’s an example of how this can go wrong. Take our example
from above, and replace the calls to
trio.sleep() with calls to time.sleep() [https://docs.python.org/3/library/time.html#time.sleep]. If we run our
modified program, we’ll see something like:

parent: started!
parent: spawning child1...
parent: spawning child2...
parent: waiting for children to finish...
 child2 started! sleeping now...
 [... pauses for 1 second ...]
 child2 exiting!
 child1: started! sleeping now...
 [... pauses for 1 second ...]
 child1: exiting!
parent: all done!

One of the major reasons why trio has such a rich
instrumentation API is to make it
possible to write debugging tools to catch issues like this.

Networking with trio

Now let’s take what we’ve learned and use it to do some I/O, which is
where async/await really shines.

An echo client: low-level API

The traditional application for demonstrating network APIs is an “echo
server”: a program that accepts arbitrary data from a client, and then
sends that same data right back. Probably a more relevant example
these days would be an application that does lots of concurrent HTTP
requests, but trio doesn’t have an HTTP library yet, so we’ll stick
with the echo server tradition.

To start with, here’s an example echo client, i.e., the program that
will send some data at our echo server and get responses back:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

	# echo-client-low-level.py

import sys
import trio

arbitrary, but:
- must be in between 1024 and 65535
- can't be in use by some other program on your computer
- must match what we set in our echo client
PORT = 12345
How much memory to spend (at most) on each call to recv. Pretty arbitrary,
but shouldn't be too big or too small.
BUFSIZE = 16384

async def sender(client_sock):
 print("sender: started!")
 while True:
 data = b"async can sometimes be confusing, but I believe in you!"
 print("sender: sending {!r}".format(data))
 await client_sock.sendall(data)
 await trio.sleep(1)

async def receiver(client_sock):
 print("receiver: started!")
 while True:
 data = await client_sock.recv(BUFSIZE)
 print("receiver: got data {!r}".format(data))
 if not data:
 print("receiver: connection closed")
 sys.exit()

async def parent():
 print("parent: connecting to 127.0.0.1:{}".format(PORT))
 with trio.socket.socket() as client_sock:
 await client_sock.connect(("127.0.0.1", PORT))
 async with trio.open_nursery() as nursery:
 print("parent: spawning sender...")
 nursery.spawn(sender, client_sock)

 print("parent: spawning receiver...")
 nursery.spawn(receiver, client_sock)

trio.run(parent)

The overall structure here should be familiar, because it’s just like
our last example: we have a
parent task, which spawns two child tasks to do the actual work, and
then at the end of the async with block it switches into full-time
parenting mode while waiting for them to finish. But now instead of
just calling trio.sleep(), the children use some of trio’s
networking APIs.

Let’s look at the parent first:

	32
33
34
35
36
37
38
39
40
41

	async def parent():
 print("parent: connecting to 127.0.0.1:{}".format(PORT))
 with trio.socket.socket() as client_sock:
 await client_sock.connect(("127.0.0.1", PORT))
 async with trio.open_nursery() as nursery:
 print("parent: spawning sender...")
 nursery.spawn(sender, client_sock)

 print("parent: spawning receiver...")
 nursery.spawn(receiver, client_sock)

We’re using the trio.socket API to access network
functionality. (If you know the socket [https://docs.python.org/3/library/socket.html#module-socket] module in the standard
library, then trio.socket is very similar, just asyncified.)
First we call trio.socket.socket() to create the socket object
we’ll use to connect to the server, and we use a with block to
make sure that it will be closed properly. (Trio is designed around
the assumption that you’ll be using with blocks to manage resource
cleanup – highly recommended!) Then we call connect to connect to
the echo server. 127.0.0.1 is a magic IP address [https://en.wikipedia.org/wiki/IP_address] meaning “the computer
I’m running on”, so (127.0.0.1, PORT) means that we want to
connect to whatever program on the current computer is using PORT
as its contact point. And then once the connection is made, we pass
the connected client socket into the two child tasks. (This is also a
good example of how nursery.spawn lets you pass positional
arguments to the spawned function.)

Our first task’s job is to send data to the server:

	15
16
17
18
19
20
21

	async def sender(client_sock):
 print("sender: started!")
 while True:
 data = b"async can sometimes be confusing, but I believe in you!"
 print("sender: sending {!r}".format(data))
 await client_sock.sendall(data)
 await trio.sleep(1)

It uses a loop that alternates between calling await
client_sock.sendall(...) to send some data, and then sleeping for a
second to avoid making the output scroll by too fast on your terminal.

And the second task’s job is to process the data the server sends back:

	23
24
25
26
27
28
29
30

	async def receiver(client_sock):
 print("receiver: started!")
 while True:
 data = await client_sock.recv(BUFSIZE)
 print("receiver: got data {!r}".format(data))
 if not data:
 print("receiver: connection closed")
 sys.exit()

It repeatedly calls await client_sock.recv(...) to get more data
from the server, and then checks to see if the server has closed the
connection. recv only returns an empty bytestring if the
connection has been closed; if there’s no data available, then it
blocks until more data arrives.

And now we’re ready to look at the server.

An echo server: low-level API

The server is a little trickier. As usual, let’s look at the whole
thing, and then we’ll discuss the pieces:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

	# echo-server-low-level.py

import trio

Port is arbitrary, but:
- must be in between 1024 and 65535
- can't be in use by some other program on your computer
- must match what we set in our echo client
PORT = 12345
How much memory to spend (at most) on each call to recv. Pretty arbitrary,
but shouldn't be too big or too small.
BUFSIZE = 16384

async def echo_server(server_sock, ident):
 with server_sock:
 print("echo_server {}: started".format(ident))
 try:
 while True:
 data = await server_sock.recv(BUFSIZE)
 print("echo_server {}: received data {!r}".format(ident, data))
 if not data:
 print("echo_server {}: connection closed".format(ident))
 return
 print("echo_server {}: sending data {!r}".format(ident, data))
 await server_sock.sendall(data)
 except Exception as exc:
 # Unhandled exceptions will propagate into our parent and take
 # down the whole program. If the exception is KeyboardInterrupt,
 # that's what we want, but otherwise maybe not...
 print("echo_server {}: crashed: {!r}".format(ident, exc))

async def echo_listener(nursery):
 with trio.socket.socket() as listen_sock:
 # Notify the operating system that we want to receive connection
 # attempts at this address:
 listen_sock.bind(("127.0.0.1", PORT))
 listen_sock.listen()
 print("echo_listener: listening on 127.0.0.1:{}".format(PORT))

 ident = 0
 while True:
 server_sock, _ = await listen_sock.accept()
 print("echo_listener: got new connection, spawning echo_server")
 ident += 1
 nursery.spawn(echo_server, server_sock, ident)

async def parent():
 async with trio.open_nursery() as nursery:
 print("parent: spawning echo_listener")
 nursery.spawn(echo_listener, nursery)

trio.run(parent)

The actual echo server implementation should be fairly familiar at
this point. Each incoming connection from an echo client gets handled
by its own dedicated task, running the echo_server function:

	14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

	async def echo_server(server_sock, ident):
 with server_sock:
 print("echo_server {}: started".format(ident))
 try:
 while True:
 data = await server_sock.recv(BUFSIZE)
 print("echo_server {}: received data {!r}".format(ident, data))
 if not data:
 print("echo_server {}: connection closed".format(ident))
 return
 print("echo_server {}: sending data {!r}".format(ident, data))
 await server_sock.sendall(data)
 except Exception as exc:
 # Unhandled exceptions will propagate into our parent and take
 # down the whole program. If the exception is KeyboardInterrupt,
 # that's what we want, but otherwise maybe not...
 print("echo_server {}: crashed: {!r}".format(ident, exc))

We take a socket object that’s connected to the client (so the data we
pass to sendall on the client comes out of recv here, and
vice-versa), plus ident which is just a unique number used to make
the print output less confusing when there are multiple clients
connected at the same time. Then we have our usual with block to
make sure the socket gets closed, a try block discussed below, and
finally the server loop which alternates between reading some data
from the socket and then sending it back out again (unless the socket
was closed, in which case we quit).

Remember that in trio, like Python in general, exceptions keep
propagating until they’re caught. Here we think it’s plausible there
might be unexpected exceptions, and we want to isolate that to making
just this one task crash, without taking down the whole program. For
example, if the client closes the connection at the wrong moment then
it’s possible this code will end up calling sendall on a closed
connection and get an OSError [https://docs.python.org/3/library/exceptions.html#OSError]; that’s unfortunate, and in a
more serious program we might want to handle it more explicitly, but
it doesn’t indicate a problem for any other connections. On the other
hand, if the exception is something like a KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt],
we do want that to propagate out into the parent task and cause the
program to exit. To express this, we use a try block with an
except Exception: handler.

But where do these echo_server tasks come from? An important part
of writing a trio program is deciding how you want to organize your
tasks. In the examples we’ve seen so far, this was simple, because the
set of tasks was fixed. Here, we want to wait for clients to connect,
and then spawn a new task for each one. The tricky part is that like
we mentioned above, managing a nursery is a full time job: you don’t
want the task that has the nursery and is supervising the child tasks
to do anything else, like listen for new connections.

There’s a standard trick for handling this in trio: our parent task
creates a nursery, spawns a child task to listen for new connections,
and then passes the nursery object to the child task:

	47
48
49
50

	async def parent():
 async with trio.open_nursery() as nursery:
 print("parent: spawning echo_listener")
 nursery.spawn(echo_listener, nursery)

Now echo_listener can spawn “siblings” instead of children – even
though the echo_listener is the one spawning echo_server
tasks, we end up with a task tree that looks like:

parent
│
├─ echo_listener
│
├─ echo_server 1
│
├─ echo_server 2
┆

This lets parent focus on supervising the children,
echo_listener focus on listening for new connections, each
echo_server call will handle a single client.

Once we know this trick, the listener code becomes pretty
straightforward:

	32
33
34
35
36
37
38
39
40
41
42
43
44
45

	async def echo_listener(nursery):
 with trio.socket.socket() as listen_sock:
 # Notify the operating system that we want to receive connection
 # attempts at this address:
 listen_sock.bind(("127.0.0.1", PORT))
 listen_sock.listen()
 print("echo_listener: listening on 127.0.0.1:{}".format(PORT))

 ident = 0
 while True:
 server_sock, _ = await listen_sock.accept()
 print("echo_listener: got new connection, spawning echo_server")
 ident += 1
 nursery.spawn(echo_server, server_sock, ident)

We create a listen socket, start it listening, and then go into an
infinite loop, accepting connections from clients and spawning an
echo_server task to handle each one.

We don’t expect there to be any errors here in the listener code – if
there are, it’s probably a bug, and probably means that our whole
program is broken (a server that doesn’t accept connections isn’t very
useful!). So we don’t have a catch-all try block here. In general,
trio leaves it up to you to decide whether and how you want to handle
exceptions.

Try it out

Open a few terminals, run echo-server-low-level.py in one, run
echo-client-low-level.py in another, and watch the messages scroll
by! When you get bored, you can exit by hitting control-C.

Some things to try:

	Open another terminal, and run 2 clients at the same time.

	See how the server reacts when you hit control-C on the client

	See how the client reacts when you hit control-C on the server

Flow control in our echo client and server

Here’s a question you might be wondering about: why does our client
use two separate tasks for sending and receiving, instead of a single
task that alternates between them – like the server has? For example,
our client could use a single task like:

Can you spot the two problems with this code?
async def send_and_receive(client_sock):
 while True:
 data = ...
 await client_sock.sendall(data)
 received = await client_sock.recv(BUFSIZE)
 if not received:
 sys.exit()
 await trio.sleep(1)

It turns out there are two problems with this – one minor and one
major. Both relate to flow control. The minor problem is that when we
call recv here we’re not waiting for all the data to be
available; recv returns as soon as any data is available. If
data is small, then our operating systems / network / server will
probably keep it all together in a single chunk, but there’s no
guarantee. If the server sends hello then we might get hello,
or hel lo, or h e l l o, or ... bottom
line, any time we’re expecting more than one byte of data, we have to
be prepared to call recv multiple times.

And where this would go especially wrong is if we find ourselves in
the situation where len(data) > BUFSIZE. On each pass through the
loop, we send len(data) bytes, but only read at most BUFSIZE
bytes. The result is something like a memory leak: we’ll end up with
more and more data backed up in the network, until eventually
something breaks.

We could fix this by keeping track of how much data we’re expecting at
each moment, and then keep calling recv until we get it all:

expected = len(data)
while expected > 0:
 received = await client_sock.recv(BUFSIZE)
 if not received:
 sys.exit(1)
 expected -= len(received)

This is a bit cumbersome, but it would solve this problem.

There’s another problem, though, that’s deeper. We’re still
alternating between sending and receiving. Notice that when we send
data, we use await: this means that sending can potentially
block. Why does this happen? Any data that we send goes first into
an operating system buffer, and from there onto the network, and then
another operating system buffer on the receiving computer, before the
receiving program finally calls recv to take the data out of these
buffers. If we call sendall with a small amount of data, then it
goes into these buffers and sendall returns immediately. But if we
send enough data fast enough, eventually the buffers fill up, and
sendall will block until the remote side calls recv and frees
up some space.

Now let’s think about this from the server’s point of view. Each time
it calls recv, it gets some data that it needs to send back. And
until it sends it back, the data is sitting around takes up
memory. Computers have finite amounts of RAM, so if our server is well
behaved then at some point it needs to stop calling recv until
it gets rid of some of the old data by doing its own call to
sendall. So for the server, really the only viable option is to
alternate between receiving and sending.

But we need to remember that it’s not just the client’s call to
sendall that might block: the server’s call to sendall can
also get into a situation where it blocks until the client calls
recv. So if the server is waiting for sendall to finish before
it calls recv, and our client also waits for sendall to finish
before it calls recv,... we have a problem! The client won’t call
recv until the server has called recv, and the server won’t
call recv until the client has called recv. If our client is
written to alternate between sending and receiving, and the chunk of
data it’s trying to send is large enough (e.g. 10 megabytes will
probably do it in most configurations), then the two processes will
deadlock [https://en.wikipedia.org/wiki/Deadlock].

Moral: trio gives you powerful tools to manage sequential and
concurrent execution. In this example we saw that the server needs
send and recv to alternate in sequence, while the client needs
them to run concurrently, and both were straightforward to
implement. But when you’re implementing network code like this then
it’s important to think carefully about flow control and buffering,
because it’s up to you to choose the right execution mode!

Other popular async libraries like Twisted [https://twistedmatrix.com/] and asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] tend to paper over
these kinds of issues by throwing in unbounded buffers
everywhere. This can avoid deadlocks, but can introduce its own
problems and in particular can make it difficult to keep memory usage
and latency under control [https://vorpus.org/blog/some-thoughts-on-asynchronous-api-design-in-a-post-asyncawait-world/#three-bugs]. While
both approaches have their advantages, trio takes the position that
it’s better to expose the underlying problem as directly as possible
and provide good tools to confront it head-on.

Note

If you want to try and make the deadlock happen on purpose to see
for yourself, and you’re using Windows, then you might need to
split the sendall call up into two calls that each send half of
the data. This is because Windows has a somewhat unusual way of
handling buffering [https://stackoverflow.com/questions/28785626/what-is-the-size-of-a-socket-send-buffer-in-windows].

An echo client and server: higher-level API

TODO: Not implemented yet! [https://github.com/python-trio/trio/issues/73]

When things go wrong: timeouts, cancellation and exceptions in concurrent tasks

TODO: give an example using fail_after()

TODO: explain Cancelled

TODO: explain how cancellation is also used when one child raises an
exception

TODO: show an example MultiError traceback and walk through its
structure

TODO: maybe a brief discussion of KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] handling?

Trio’s core functionality

Entering trio

If you want to use trio, then the first thing you have to do is call
trio.run():

	
trio.run(async_fn, *args, clock=None, instruments=[], restrict_keyboard_interrupt_to_checkpoints=False)

	Run a trio-flavored async function, and return the result.

Calling:

run(async_fn, *args)

is the equivalent of:

await async_fn(*args)

except that run() can (and must) be called from a synchronous
context.

This is trio’s main entry point. Almost every other function in trio
requires that you be inside a call to run().

	Parameters:	
	async_fn – An async function.

	args – Positional arguments to be passed to async_fn. If you need to
pass keyword arguments, then use functools.partial() [https://docs.python.org/3/library/functools.html#functools.partial].

	clock – None to use the default system-specific monotonic clock;
otherwise, an object implementing the trio.abc.Clock
interface, like (for example) a trio.testing.MockClock
instance.

	instruments (list of trio.abc.Instrument objects) – Any
instrumentation you want to apply to this run. This can also be
modified during the run; see Debugging and instrumentation.

	restrict_keyboard_interrupt_to_checkpoints (bool [https://docs.python.org/3/library/functions.html#bool]) – What happens if the
user hits control-C while run() is running? If this argument
is False (the default), then you get the standard Python behavior: a
KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] exception will immediately interrupt
whatever task is running (or if no task is running, then trio will
wake up a task to be interrupted). Alternatively, if you set this
argument to True, then KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] delivery will be
delayed: it will be only be raised at checkpoints, like a Cancelled exception.

The default behavior is nice because it means that even if you
accidentally write an infinite loop that never executes any
checkpoints, then you can still break out of it using control-C. The
the alternative behavior is nice if you’re paranoid about a
KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] at just the wrong place leaving your
program in an inconsistent state, because it means that you only
have to worry about KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] at the exact same
places where you already have to worry about Cancelled.

This setting has no effect if your program has registered a custom
SIGINT handler, or if run() is called from anywhere but the
main thread (this is a Python limitation), or if you use
catch_signals() to catch SIGINT.

	Returns:	Whatever async_fn returns.

	Raises:	
	TrioInternalError – if an unexpected error is encountered inside trio’s
internal machinery. This is a bug and you should let us know [https://github.com/python-trio/trio/issues].

	Anything else – if async_fn raises an exception, then run()
propagates it.

General principles

Checkpoints

When writing code using trio, it’s very important to understand the
concept of a checkpoint. Many of trio’s functions act as checkpoints.

A checkpoint is two things:

	It’s a point where trio checks for cancellation. For example, if
the code that called your function set a timeout, and that timeout
has expired, then the next time your function executes a checkpoint
trio will raise a Cancelled exception. See
Cancellation and timeouts below for more details.

	It’s a point where the trio scheduler checks its scheduling policy
to see if it’s a good time to switch to another task, and
potentially does so. (Currently, this check is very simple: the
scheduler always switches at every checkpoint. But this might
change in the future [https://github.com/python-trio/trio/issues/32].)

When writing trio code, you need to keep track of where your
checkpoints are. Why? First, because checkpoints require extra
scrutiny: whenever you execute a checkpoint, you need to be prepared
to handle a Cancelled error, or for another task to run and
rearrange some state out from under you [https://glyph.twistedmatrix.com/2014/02/unyielding.html]. And
second, because you also need to make sure that you have enough
checkpoints: if your code doesn’t pass through a checkpoint on a
regular basis, then it will be slow to notice and respond to
cancellation and – much worse – since trio is a cooperative
multi-tasking system where the only place the scheduler can switch
tasks is at checkpoints, it’ll also prevent the scheduler from fairly
allocating time between different tasks and adversely effect the
response latency of all the other code running in the same
process. (Informally we say that a task that does this is “hogging the
run loop”.)

So when you’re doing code review on a project that uses trio, one of
the things you’ll want to think about is whether there are enough
checkpoints, and whether each one is handled correctly. Of course this
means you need a way to recognize checkpoints. How do you do that?
The underlying principle is that any operation that blocks has to be a
checkpoint. This makes sense: if an operation blocks, then it might
block for a long time, and you’ll want to be able to cancel it if a
timeout expires; and in any case, while this task is blocked we want
another task to be scheduled to run so our code can make full use of
the CPU.

But if we want to write correct code in practice, then this principle
is a little too sloppy and imprecise to be useful. How do we know
which functions might block? What if a function blocks sometimes, but
not others, depending on the arguments passed / network speed / phase
of the moon? How do we figure out where the checkpoints are when
we’re stressed and sleep deprived but still want to get this code
review right, and would prefer to reserve our mental energy for
thinking about the actual logic instead of worrying about check
points?

Don’t worry – trio’s got your back. Since checkpoints are important
and ubiquitous, we make it as simple as possible to keep track of
them. Here are the rules:

	Regular (synchronous) functions never contain any checkpoints.

	Every async function provided by trio always acts as a check
point; if you see await <something in trio>, or async for
... in <a trio object>, or async with <trio.something>, then
that’s definitely a checkpoint.

(Partial exception: for async context managers, it might be only the
entry or only the exit that acts as a checkpoint; this is
documented on a case-by-case basis.)

	Third-party async functions can act as checkpoints; if you see
await <something> or one of its friends, then that might be a
checkpoint. So to be safe, you should prepare for scheduling or
cancellation happening there.

The reason we distinguish between trio functions and other functions
is that we can’t make any guarantees about third party
code. Checkpoint-ness is a transitive property: if function A acts as
a checkpoint, and you write a function that calls function A, then
your function also acts as a checkpoint. If you don’t, then it
isn’t. So there’s nothing stopping someone from writing a function
like:

technically legal, but bad style:
async def why_is_this_async():
 return 7

that never calls any of trio’s async functions. This is an async
function, but it’s not a checkpoint. But why make a function async if
it never calls any async functions? It’s possible, but it’s a bad
idea. If you have a function that’s not calling any async functions,
then you should make it synchronous. The people who use your function
will thank you, because it makes it obvious that your function is not
a checkpoint, and their code reviews will go faster.

(Remember how in the tutorial we emphasized the importance of the
“async sandwich”, and the way it means that
await ends up being a marker that shows when you’re calling a
function that calls a function that ... eventually calls one of trio’s
built-in async functions? The transitivity of async-ness is a
technical requirement that Python imposes, but since it exactly
matches the transitivity of checkpoint-ness, we’re able to exploit it
to help you keep track of checkpoints. Pretty sneaky, eh?)

A slightly trickier case is a function like:

async def sleep_or_not(should_sleep):
 if should_sleep:
 await trio.sleep(1)
 else:
 pass

Here the function acts as a checkpoint if you call it with
should_sleep set to a true value, but not otherwise. This is why
we emphasize that trio’s own async functions are unconditional check
points: they always check for cancellation and check for scheduling,
regardless of what arguments they’re passed. If you find an async
function in trio that doesn’t follow this rule, then it’s a bug and
you should let us know [https://github.com/python-trio/trio/issues].

Inside trio, we’re very picky about this, because trio is the
foundation of the whole system so we think it’s worth the extra effort
to make things extra predictable. It’s up to you how picky you want to
be in your code. To give you a more realistic example of what this
kind of issue looks like in real life, consider this function:

async def recv_exactly(sock, nbytes):
 data = bytearray()
 while nbytes > 0:
 # SocketType.recv() reads up to 'nbytes' bytes each time
 chunk += await sock.recv(nbytes)
 if not chunk:
 raise RuntimeError("socket unexpected closed")
 nbytes -= len(chunk)
 data += chunk
 return data

If called with an nbytes that’s greater than zero, then it will
call sock.recv at least once, and recv is an async trio
function, and thus an unconditional checkpoint. So in this case,
recv_exactly acts as a checkpoint. But if we do await
recv_exactly(sock, 0), then it will immediately return an empty
buffer without executing a checkpoint. If this were a function in
trio itself, then this wouldn’t be acceptable, but you may decide you
don’t want to worry about this kind of minor edge case in your own
code.

If you do want to be careful, or if you have some CPU-bound code that
doesn’t have enough checkpoints in it, then it’s useful to know that
await trio.sleep(0) is an idiomatic way to execute a checkpoint
without doing anything else, and that
trio.testing.assert_yields() can be used to test that an
arbitrary block of code contains a checkpoint.

Thread safety

The vast majority of trio’s API is not thread safe: it can only be
used from inside a call to trio.run(). This manual doesn’t
bother documenting this on individual calls; unless specifically noted
otherwise, you should assume that it isn’t safe to call any trio
functions from anywhere except the trio thread. (But see below if you really do need to work with threads.)

Time and clocks

Every call to run() has an associated clock.

By default, trio uses an unspecified monotonic clock, but this can be
changed by passing a custom clock object to run() (e.g. for
testing).

You should not assume that trio’s internal clock matches any other
clock you have access to, including the clocks of simultaneous calls
to trio.run() happening in other processes or threads!

The default clock is currently implemented as time.monotonic() [https://docs.python.org/3/library/time.html#time.monotonic]
plus a large random offset. The idea here is to catch code that
accidentally uses time.monotonic() [https://docs.python.org/3/library/time.html#time.monotonic] early, which should help keep
our options open for changing the clock implementation later [https://github.com/python-trio/trio/issues/33], and (more importantly)
make sure you can be confident that custom clocks like
trio.testing.MockClock will work with third-party libraries
you don’t control.

	
trio.current_time()

	Returns the current time according to trio’s internal clock.

	Returns:	The current time.

	Return type:	float [https://docs.python.org/3/library/functions.html#float]

	Raises:	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if not inside a call to trio.run().

	
await trio.sleep(seconds)

	Pause execution of the current task for the given number of seconds.

	Parameters:	seconds (float [https://docs.python.org/3/library/functions.html#float]) – The number of seconds to sleep. May be zero to
insert a checkpoint without actually blocking.

	Raises:	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if seconds is negative.

	
await trio.sleep_until(deadline)

	Pause execution of the current task until the given time.

The difference between sleep() and sleep_until() is that the
former takes a relative time and the latter takes an absolute time.

	Parameters:	deadline (float [https://docs.python.org/3/library/functions.html#float]) – The time at which we should wake up again. May be in
the past, in which case this function yields but does not block.

	
await trio.sleep_forever()

	Pause execution of the current task forever (or until cancelled).

Equivalent to calling await sleep(math.inf).

If you’re a mad scientist or otherwise feel the need to take direct
control over the PASSAGE OF TIME ITSELF, then you can implement a
custom Clock class:

	
class trio.abc.Clock

	The interface for custom run loop clocks.

	
abstractmethod start_clock()

	Do any setup this clock might need.

Called at the beginning of the run.

	
abstractmethod current_time()

	Return the current time, according to this clock.

This is used to implement functions like trio.current_time() and
trio.move_on_after().

	Returns:	The current time.

	Return type:	float [https://docs.python.org/3/library/functions.html#float]

	
abstractmethod deadline_to_sleep_time(deadline)

	Compute the real time until the given deadline.

This is called before we enter a system-specific wait function like
:func:~select.select`, to get the timeout to pass.

For a clock using wall-time, this should be something like:

return deadline - self.current_time()

but of course it may be different if you’re implementing some kind of
virtual clock.

	Parameters:	deadline (float [https://docs.python.org/3/library/functions.html#float]) – The absolute time of the next deadline,
according to this clock.

	Returns:	The number of real seconds to sleep until the given
deadline. May be math.inf [https://docs.python.org/3/library/math.html#math.inf].

	Return type:	float [https://docs.python.org/3/library/functions.html#float]

You can also fetch a reference to the current clock, which might be
useful if you’re using a custom clock class:

	
trio.current_clock()

	Returns the current Clock.

Cancellation and timeouts

Trio has a rich, composable system for cancelling work, either
explicitly or when a timeout expires.

A simple timeout example

In the simplest case, you can apply a timeout to a block of code:

with trio.move_on_after(30):
 result = await do_http_get("https://...")
 print("result is", result)
print("with block finished")

We refer to move_on_after() as creating a “cancel scope”, which
contains all the code that runs inside the with block. If the HTTP
request takes more than 30 seconds to run, then it will be cancelled:
we’ll abort the request and we won’t see result is ... printed
on the console; instead we’ll go straight to printing the with block
finished message.

Note

Note that this is a single 30 second timeout for the entire body of
the with statement. This is different from what you might have
seen with other Python libraries, where timeouts often refer to
something more complicated [http://docs.python-requests.org/en/master/user/quickstart/#timeouts]. We
think this way is easier to reason about.

How does this work? There’s no magic here: trio is built using
ordinary Python functionality, so we can’t just abandon the code
inside the with block. Instead, we take advantage of Python’s
standard way of aborting a large and complex piece of code: we raise
an exception.

Here’s the idea: whenever you call a cancellable function like await
trio.sleep(...) or await sock.recv(...) – see Checkpoints
– then the first thing that function does is to check if there’s a
surrounding cancel scope whose timeout has expired, or otherwise been
cancelled. If so, then instead of performing the requested operation,
the function fails immediately with a Cancelled exception. In
this example, this probably happens somewhere deep inside the bowels
of do_http_get. The exception then propagates out like any normal
exception (you could even catch it if you wanted, but that’s generally
a bad idea), until it reaches the with move_on_after(...):. And at
this point, the Cancelled exception has done its job – it’s
successfully unwound the whole cancelled scope – so
move_on_after() catches it, and execution continues as normal
after the with block. And this all works correctly even if you
have nested cancel scopes, because every Cancelled object
carries an invisible marker that makes sure that the cancel scope that
triggered it is the only one that will catch it.

Handling cancellation

Pretty much any code you write using trio needs to have some strategy
to handle Cancelled exceptions – even if you didn’t set a
timeout, then your caller might (and probably will).

You can catch Cancelled, but you shouldn’t! Or more precisely,
if you do catch it, then you should do some cleanup and then re-raise
it or otherwise let it continue propagating (unless you encounter an
error, in which case it’s OK to let that propagate instead). To help
remind you of this fact, Cancelled inherits from
BaseException [https://docs.python.org/3/library/exceptions.html#BaseException], like KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] and
SystemExit [https://docs.python.org/3/library/exceptions.html#SystemExit] do, so that it won’t be caught by catch-all except
Exception: blocks.

It’s also important in any long-running code to make sure that you
regularly check for cancellation, because otherwise timeouts won’t
work! This happens implicitly every time you call a cancellable
operation; see below for details. If
you have a task that has to do a lot of work without any I/O, then you
can use await sleep(0) to insert an explicit cancel+schedule
point.

Here’s a rule of thumb for designing good trio-style (“trionic”?)
APIs: if you’re writing a reusable function, then you shouldn’t take a
timeout= parameter, and instead let your caller worry about
it. This has several advantages. First, it leaves the caller’s options
open for deciding how they prefer to handle timeouts – for example,
they might find it easier to work with absolute deadlines instead of
relative timeouts. If they’re the ones calling into the cancellation
machinery, then they get to pick, and you don’t have to worry about
it. Second, and more importantly, this makes it easier for others to
re-use your code. If you write a http_get function, and then I
come along later and write a log_in_to_twitter function that needs
to internally make several http_get calls, I don’t want to have to
figure out how to configure the individual timeouts on each of those
calls – and with trio’s timeout system, it’s totally unnecessary.

Of course, this rule doesn’t apply to APIs that need to impose
internal timeouts. For example, if you write a start_http_server
function, then you probably should give your caller some way to
configure timeouts on individual requests.

Cancellation semantics

You can freely nest cancellation blocks, and each Cancelled
exception “knows” which block it belongs to. So long as you don’t stop
it, the exception will keep propagating until it reaches the block
that raised it, at which point it will stop automatically.

Here’s an example:

print("starting...")
with trio.move_on_after(5):
 with trio.move_on_after(10):
 await sleep(20)
 print("sleep finished without error")
 print("move_on_after(10) finished without error")
print("move_on_after(5) finished without error")

In this code, the outer scope will expire after 5 seconds, causing the
sleep() call to return early with a Cancelled
exception. Then this exception will propagate through the with
move_on_after(10) line until it’s caught by the with
move_on_after(5) context manager. So this code will print:

starting...
move_on_after(5) finished without error

The end result is that trio has successfully cancelled exactly the
work that was happening within the scope that was cancelled.

Looking at this, you might wonder how you can tell whether the inner
block timed out – perhaps you want to do something different, like try
a fallback procedure or report a failure to our caller. To make this
easier, move_on_after()‘s __enter__ function returns an
object representing this cancel scope, which we can use to check
whether this scope caught a Cancelled exception:

with trio.move_on_after(5) as cancel_scope:
 await sleep(10)
print(cancel_scope.cancelled_caught) # prints "True"

The cancel_scope object also allows you to check or adjust this
scope’s deadline, explicitly trigger a cancellation without waiting
for the deadline, check if the scope has already been cancelled, and
so forth – see open_cancel_scope() below for the full details.

Cancellations in trio are “level triggered”, meaning that once a block
has been cancelled, all cancellable operations in that block will
keep raising Cancelled. This helps avoid some pitfalls around
resource clean-up. For example, imagine that we have a function that
connects to a remote server and sends some messages, and then cleans
up on the way out:

with trio.move_on_after(TIMEOUT):
 conn = make_connection()
 try:
 await conn.send_hello_msg()
 finally:
 await conn.send_goodbye_msg()

Now suppose that the remote server stops responding, so our call to
await conn.send_hello_msg() hangs forever. Fortunately, we were
clever enough to put a timeout around this code, so eventually the
timeout will expire and send_hello_msg will raise
Cancelled. But then, in the finally block, we make another
blocking operation, which will also hang forever! At this point, if we
were using asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] or another library with “edge-triggered”
cancellation, we’d be in trouble: since our timeout already fired, it
wouldn’t fire again, and at this point our application would lock up
forever. But in trio, this doesn’t happen: the await
conn.send_goodbye_msg() call is still inside the cancelled block, so
it will also raise Cancelled.

Of course, if you really want to make another blocking call in your
cleanup handler, trio will let you; it’s trying to prevent you from
accidentally shooting yourself in the foot. Intentional foot-shooting
is no problem (or at least – it’s not trio’s problem). To do this,
create a new scope, and set its shield attribute to
True [https://docs.python.org/3/library/constants.html#True]:

with trio.move_on_after(TIMEOUT):
 conn = make_connection()
 try:
 await conn.send_hello_msg()
 finally:
 with move_on_after(CLEANUP_TIMEOUT) as cleanup_scope:
 cleanup_scope.shield = True
 await conn.send_goodbye_msg()

So long as you’re inside a scope with shield = True set, then
you’ll be protected from outside cancellations. Note though that this
only applies to outside cancellations: if CLEANUP_TIMEOUT
expires then await conn.send_goodbye_msg() will still be
cancelled, and if await conn.send_goodbye_msg() call uses any
timeouts internally, then those will continue to work normally as
well. This is a pretty advanced feature that most people probably
won’t use, but it’s there for the rare cases where you need it.

Cancellation and primitive operations

We’ve talked a lot about what happens when an operation is cancelled,
and how you need to be prepared for this whenever calling a
cancellable operation... but we haven’t gone into the details about
which operations are cancellable, and how exactly they behave when
they’re cancelled.

Here’s the rule: if it’s in the trio namespace, and you use await
to call it, then it’s cancellable (see Checkpoints
above). Cancellable means:

	If you try to call it when inside a cancelled scope, then it will
raise Cancelled.

	If it blocks, and while it’s blocked then one of the scopes around
it becomes cancelled, it will return early and raise
Cancelled.

	Raising Cancelled means that the operation did not
happen. If a trio socket’s send method raises Cancelled,
then no data was sent. If a trio socket’s recv method raises
Cancelled then no data was lost – it’s still sitting in the
socket recieve buffer waiting for you to call recv again. And so
forth.

There are a few idiosyncratic cases where external constraints make it
impossible to fully implement these semantics. These are always
documented. There is also one systematic exception:

	Async cleanup operations – like __aexit__ methods or async close
methods – are cancellable just like anything else except that if
they are cancelled, they still perform a minimum level of cleanup
before raising Cancelled.

For example, closing a TLS-wrapped socket normally involves sending a
notification to the remote peer, so that they can be cryptographically
assured that you really meant to close the socket, and your connection
wasn’t just broken by a man-in-the-middle attacker. But handling this
robustly is a bit tricky. Remember our example above where the blocking
send_goodbye_msg caused problems? That’s exactly how closing a TLS
socket works: if the remote peer has disappeared, then our code may
never be able to actually send our shutdown notification, and it would
be nice if it didn’t block forever trying. Therefore, the method for
closing a TLS-wrapped socket will try to send that notification –
and if it gets cancelled, then it will give up on sending the message,
but will still close the underlying socket before raising
Cancelled, so at least you don’t leak that resource.

Cancellation API details

The primitive operation for creating a new cancellation scope is:

	
with trio.open_cancel_scope(*, deadline=inf, shield=False)

 I/O in Trio

I/O in Trio

Sockets and networking

The trio.socket module provides trio’s basic networking API.

trio.socket‘s top-level exports

Generally, trio.socket‘s API mirrors that of the standard
library socket [https://docs.python.org/3/library/socket.html#module-socket] module. Most constants (like SOL_SOCKET) and
simple utilities (like inet_aton() [https://docs.python.org/3/library/socket.html#socket.inet_aton]) are simply
re-exported unchanged. But there are also some differences:

All functions that return sockets (e.g. socket.socket() [https://docs.python.org/3/library/socket.html#socket.socket],
socket.socketpair() [https://docs.python.org/3/library/socket.html#socket.socketpair], ...) are modified to return trio sockets
instead. In addition, there is a new function to directly convert a
standard library socket into a trio socket:

	
trio.socket.from_stdlib_socket(sock)

	Convert a standard library socket.socket() [https://docs.python.org/3/library/socket.html#socket.socket] into a trio socket.

The following functions have identical interfaces to their standard
library version, but are now async functions, so you need to use
await to call them:

	getaddrinfo() [https://docs.python.org/3/library/socket.html#socket.getaddrinfo]

	getnameinfo() [https://docs.python.org/3/library/socket.html#socket.getnameinfo]

	getfqdn() [https://docs.python.org/3/library/socket.html#socket.getfqdn]

Trio intentionally DOES NOT include some obsolete, redundant, or
broken features:

	gethostbyname() [https://docs.python.org/3/library/socket.html#socket.gethostbyname], gethostbyname_ex() [https://docs.python.org/3/library/socket.html#socket.gethostbyname_ex],
gethostbyaddr() [https://docs.python.org/3/library/socket.html#socket.gethostbyaddr]: obsolete; use
getaddrinfo() [https://docs.python.org/3/library/socket.html#socket.getaddrinfo] and getnameinfo() [https://docs.python.org/3/library/socket.html#socket.getnameinfo] instead.

	getdefaulttimeout() [https://docs.python.org/3/library/socket.html#socket.getdefaulttimeout],
setdefaulttimeout() [https://docs.python.org/3/library/socket.html#socket.setdefaulttimeout]: Use trio’s standard support for
Cancellation and timeouts.

	On Windows, SO_REUSEADDR is not exported, because it’s a trap:
the name is the same as Unix SO_REUSEADDR, but the semantics are
different and extremely broken [https://msdn.microsoft.com/en-us/library/windows/desktop/ms740621(v=vs.85).aspx]. In
the very rare cases where you actually want SO_REUSEADDR on
Windows, then it can still be accessed from the standard library’s
socket [https://docs.python.org/3/library/socket.html#module-socket] module.

Socket objects

	
class trio.socket.SocketType

	Trio socket objects are overall very similar to the standard
library socket objects [https://docs.python.org/3/library/socket.html#socket-objects], with a few
important differences:

Async all the things: Most obviously, everything is made
“trio-style”: blocking methods become async methods, and the
following attributes are not supported:

	setblocking() [https://docs.python.org/3/library/socket.html#socket.socket.setblocking]: trio sockets always act like
blocking sockets; if you need to read/write from multiple sockets
at once, then create multiple tasks.

	settimeout() [https://docs.python.org/3/library/socket.html#socket.socket.settimeout]: see Cancellation and timeouts instead.

	makefile() [https://docs.python.org/3/library/socket.html#socket.socket.makefile]: Python’s file-like API is
synchronous, so it can’t be implemented on top of an async
socket.

No implicit name resolution: In the standard library
socket [https://docs.python.org/3/library/socket.html#module-socket] API, there are number of methods that take network
addresses as arguments. When given a numeric address this is fine:

OK
sock.bind(("127.0.0.1", 80))
sock.connect(("2607:f8b0:4000:80f::200e", 80))

But in the standard library, these methods also accept hostnames,
and in this case implicitly trigger a DNS lookup to find the IP
address:

Might block!
sock.bind(("localhost", 80))
sock.connect(("google.com", 80))

This is problematic because DNS lookups are a blocking operation.

For simplicity, trio forbids such usages: hostnames must be
“pre-resolved” to numeric addresses before they are passed to
socket methods like bind() or connect(). In most cases
this can be easily accomplished by calling either
resolve_local_address() or resolve_remote_address().

	
await resolve_local_address(address)

	Resolve the given address into a numeric address suitable for
passing to bind().

This performs the same address resolution that the standard library
bind() [https://docs.python.org/3/library/socket.html#socket.socket.bind] call would do, taking into account the
current socket’s settings (e.g. if this is an IPv6 socket then it
returns IPv6 addresses). In particular, a hostname of None is
mapped to the wildcard address.

	
await resolve_remote_address(address)

	Resolve the given address into a numeric address suitable for
passing to connect() or similar.

This performs the same address resolution that the standard library
connect() [https://docs.python.org/3/library/socket.html#socket.socket.connect] call would do, taking into account the
current socket’s settings (e.g. if this is an IPv6 socket then it
returns IPv6 addresses). In particular, a hostname of None is
mapped to the localhost address.

Modern defaults: And finally, we took the opportunity to update
the defaults for several socket options that were stuck in the
1980s. You can always use setsockopt() [https://docs.python.org/3/library/socket.html#socket.socket.setsockopt] to
change these back, but for trio sockets:

	Everywhere except Windows, SO_REUSEADDR is enabled by
default. This is almost always what you want, but if you’re in
one of the rare cases [https://idea.popcount.org/2014-04-03-bind-before-connect/]
where this is undesireable then you can always disable
SO_REUSEADDR manually:

sock.setsockopt(trio.socket.SOL_SOCKET, trio.socket.SO_REUSEADDR, False)

On Windows, SO_EXCLUSIVEADDR is enabled by
default. Unfortunately, this means that if you stop and restart
a server you may have trouble reacquiring listen ports (i.e., it
acts like Unix without SO_REUSEADDR). To get the Unix-style
SO_REUSEADDR semantics on Windows, you can disable
SO_EXCLUSIVEADDR:

sock.setsockopt(trio.socket.SOL_SOCKET, trio.socket.SO_EXCLUSIVEADDR, False)

but be warned that this may leave your application vulnerable
to port hijacking attacks [https://msdn.microsoft.com/en-us/library/windows/desktop/ms740621(v=vs.85).aspx].

	TCP_NODELAY is enabled by default.

	IPV6_V6ONLY is disabled, i.e., by default on dual-stack
hosts a AF_INET6 socket is able to communicate with both
IPv4 and IPv6 peers, where the IPv4 peers appear to be in the
“IPv4-mapped” portion of IPv6 address space [http://www.tcpipguide.com/free/t_IPv6IPv4AddressEmbedding-2.htm]. To
make an IPv6-only socket, use something like:

sock = trio.socket.socket(trio.socket.AF_INET6)
sock.setsockopt(trio.socket.IPPROTO_IPV6, trio.socket.IPV6_V6ONLY, True)

This makes trio applications behave more consistently across
different environments.

	On platforms where it’s supported (recent Linux and recent
MacOS), TCP_NOTSENT_LOWAT is enabled with a reasonable
buffer size (currently 16 KiB).

See issue #72 [https://github.com/python-trio/trio/issues/72] for
discussion of these defaults.

The following methods are similar, but not identical, to the
equivalents in socket.socket() [https://docs.python.org/3/library/socket.html#socket.socket]:

	
bind(address)

	Bind this socket to the given address.

Unlike the stdlib connect() [https://docs.python.org/3/library/socket.html#socket.socket.connect], this method requires
a pre-resolved address. See resolve_local_address().

	
await connect(address)

	Connect the socket to a remote address.

Similar to socket.socket.connect() [https://docs.python.org/3/library/socket.html#socket.socket.connect], except async and requiring a
pre-resolved address. See resolve_remote_address().

Warning

Due to limitations of the underlying operating system APIs, it is
not always possible to properly cancel a connection attempt once it
has begun. If connect() is cancelled, and is unable to
abort the connection attempt, then it will:

	forcibly close the socket to prevent accidental re-use

	raise Cancelled.

tl;dr: if connect() is cancelled then you should throw away
that socket and make a new one.

	
await sendall(data, flags=0)

	Send the data to the socket, blocking until all of it has been
accepted by the operating system.

flags are passed on to send.

If an error occurs or the operation is cancelled, then the resulting
exception will have a .partial_result attribute with a
.bytes_sent attribute containing the number of bytes sent.

	
sendfile()

	Not implemented yet! [https://github.com/python-trio/trio/issues/45]

The following methods are not provided:

	send() [https://docs.python.org/3/library/socket.html#socket.socket.send]: This method has confusing semantics
hidden under a friendly name, and makes it too easy to create
subtle bugs. Use sendall() instead.

The following methods are identical to their equivalents in
socket.socket() [https://docs.python.org/3/library/socket.html#socket.socket], except async, and the ones that take address
arguments require pre-resolved addresses:

	accept() [https://docs.python.org/3/library/socket.html#socket.socket.accept]

	recv() [https://docs.python.org/3/library/socket.html#socket.socket.recv]

	recv_into() [https://docs.python.org/3/library/socket.html#socket.socket.recv_into]

	recvfrom() [https://docs.python.org/3/library/socket.html#socket.socket.recvfrom]

	recvfrom_into() [https://docs.python.org/3/library/socket.html#socket.socket.recvfrom_into]

	recvmsg() [https://docs.python.org/3/library/socket.html#socket.socket.recvmsg] (if available)

	recvmsg_into() [https://docs.python.org/3/library/socket.html#socket.socket.recvmsg_into] (if available)

	sendto() [https://docs.python.org/3/library/socket.html#socket.socket.sendto]

	sendmsg() [https://docs.python.org/3/library/socket.html#socket.socket.sendmsg] (if available)

All methods and attributes not mentioned above are identical to
their equivalents in socket.socket() [https://docs.python.org/3/library/socket.html#socket.socket]:

	family [https://docs.python.org/3/library/socket.html#socket.socket.family]

	type [https://docs.python.org/3/library/socket.html#socket.socket.type]

	proto [https://docs.python.org/3/library/socket.html#socket.socket.proto]

	fileno() [https://docs.python.org/3/library/socket.html#socket.socket.fileno]

	listen() [https://docs.python.org/3/library/socket.html#socket.socket.listen]

	getpeername() [https://docs.python.org/3/library/socket.html#socket.socket.getpeername]

	getsockname() [https://docs.python.org/3/library/socket.html#socket.socket.getsockname]

	close() [https://docs.python.org/3/library/socket.html#socket.socket.close]

	shutdown() [https://docs.python.org/3/library/socket.html#socket.socket.shutdown]

	setsockopt() [https://docs.python.org/3/library/socket.html#socket.socket.setsockopt]

	getsockopt() [https://docs.python.org/3/library/socket.html#socket.socket.getsockopt]

	dup() [https://docs.python.org/3/library/socket.html#socket.socket.dup]

	detach() [https://docs.python.org/3/library/socket.html#socket.socket.detach]

	share() [https://docs.python.org/3/library/socket.html#socket.socket.share]

	set_inheritable() [https://docs.python.org/3/library/socket.html#socket.socket.set_inheritable]

	get_inheritable() [https://docs.python.org/3/library/socket.html#socket.socket.get_inheritable]

The abstract Stream API

(this is currently more of a sketch than something actually useful,
see issue #73 [https://github.com/python-trio/trio/issues/73])

	
class trio.AsyncResource

	
	
abstractmethod forceful_close()

	Force an immediate close of this resource.

This will never block, but (depending on the resource in question) it
might be a “rude” shutdown.

	
abstractmethod await graceful_close()

	Close this resource, gracefully.

This may block in order to perform a “graceful” shutdown (for example,
sending a message alerting the other side of a connection that it is
about to close). But, if cancelled, then it still must close the
underlying resource.

Default implementation is to perform a forceful_close() and then
execute a checkpoint.

	
class trio.SendStream

	
	
abstractmethod await sendall(data)

	

	
abstractmethod await wait_maybe_writable()

	

	
can_send_eof

	

	
abstractmethod await send_eof()

	

	
class trio.RecvStream

	
	
abstractmethod await recv(max_bytes)

	

	
class trio.Stream

	
	
staticmethod staple(send_stream, recv_stream)

	

TLS support

Not implemented yet! [https://github.com/python-trio/trio/issues/9]

Async disk I/O

Not implemented yet! [https://github.com/python-trio/trio/issues/20]

Subprocesses

Not implemented yet! [https://github.com/python-trio/trio/issues/4]

Signals

	
with trio.catch_signals(signals)

 Testing made easier with trio.testing

Testing made easier with trio.testing

The trio.testing module provides various utilities to make it
easier to test trio code. Unlike the other submodules in the
trio namespace, trio.testing is not automatically
imported when you do import trio; you must import trio.testing
explicitly.

Test harness integration

	
@trio.testing.trio_test

	

Time and timeouts

trio.testing.MockClock is a Clock with a
few tricks up its sleeve to help you efficiently test code involving
timeouts:

	By default, it starts at time 0, and clock time only advances when
you explicitly call jump(). This provides an
extremely controllable clock for testing.

	You can set rate to 1.0 if you want it to start
running in real time like a regular clock. You can stop and start
the clock within a test. You can set rate to 10.0
to make clock time pass at 10x real speed (so e.g. await
trio.sleep(10) returns after 1 second).

	But even more interestingly, you can set
autojump_threshold to zero or a small value, and
then it will watch the execution of the run loop, and any time
things have settled down and everyone’s waiting for a timeout, it
jumps the clock forward to that timeout. In many cases this allows
natural-looking code involving timeouts to be automatically run at
near full CPU utilization with no changes. (Thanks to fluxcapacitor [https://github.com/majek/fluxcapacitor] for this awesome idea.)

	And of course these can be mixed and matched at will.

Regardless of these shenanigans, from “inside” trio the passage of time
still seems normal so long as you restrict yourself to trio’s time
functions (see Time and clocks). Below is an example
demonstrating two different ways of making time pass quickly. Notice
how in both cases, the two tasks keep a consistent view of reality and
events happen in the expected order, despite being wildly divorced
from real time:

across-realtime.py

import time
import trio
import trio.testing

YEAR = 365 * 24 * 60 * 60 # seconds

async def task1():
 start = trio.current_time()

 print("task1: sleeping for 1 year")
 await trio.sleep(YEAR)

 duration = trio.current_time() - start
 print("task1: woke up; clock says I've slept {} years"
 .format(duration / YEAR))

 print("task1: sleeping for 1 year, 100 times")
 for _ in range(100):
 await trio.sleep(YEAR)

 duration = trio.current_time() - start
 print("task1: slept {} years total".format(duration / YEAR))

async def task2():
 start = trio.current_time()

 print("task2: sleeping for 5 years")
 await trio.sleep(5 * YEAR)

 duration = trio.current_time() - start
 print("task2: woke up; clock says I've slept {} years"
 .format(duration / YEAR))

 print("task2: sleeping for 500 years")
 await trio.sleep(500 * YEAR)

 duration = trio.current_time() - start
 print("task2: slept {} years total".format(duration / YEAR))

async def main():
 async with trio.open_nursery() as nursery:
 nursery.spawn(task1)
 nursery.spawn(task2)

def run_example(clock):
 real_start = time.time()
 trio.run(main, clock=clock)
 real_duration = time.time() - real_start
 print("Total real time elapsed: {} seconds".format(real_duration))

print("Clock where time passes at 100 years per second:\n")
run_example(trio.testing.MockClock(rate=100 * YEAR))

print("\nClock where time automatically skips past the boring parts:\n")
run_example(trio.testing.MockClock(autojump_threshold=0))

Output:

Clock where time passes at 100 years per second:

task2: sleeping for 5 years
task1: sleeping for 1 year
task1: woke up; clock says I've slept 1.0365006048232317 years
task1: sleeping for 1 year, 100 times
task2: woke up; clock says I've slept 5.0572111969813704 years
task2: sleeping for 500 years
task1: slept 104.77677842136472 years total
task2: slept 505.25014589075 years total
Total real time elapsed: 5.053582429885864 seconds

Clock where time automatically skips past the boring parts:

task2: sleeping for 5 years
task1: sleeping for 1 year
task1: woke up; clock says I've slept 1.0 years
task1: sleeping for 1 year, 100 times
task2: woke up; clock says I've slept 5.0 years
task2: sleeping for 500 years
task1: slept 101.0 years total
task2: slept 505.0 years total
Total real time elapsed: 0.019298791885375977 seconds

	
class trio.testing.MockClock(rate=0.0, autojump_threshold=inf)

	A user-controllable clock suitable for writing tests.

	Parameters:	
	rate (float [https://docs.python.org/3/library/functions.html#float]) – the initial rate.

	autojump_threshold (float [https://docs.python.org/3/library/functions.html#float]) – the initial autojump_threshold.

	
rate

	How many seconds of clock time pass per second of real time. Default is
0.0, i.e. the clock only advances through manuals calls to jump()
or when the autojump_threshold is triggered. You can assign to
this attribute to change it.

	
autojump_threshold

	If all tasks are blocked for this many real seconds (i.e., according to
the actual clock, not this clock), then this clock automatically jumps
ahead to the run loop’s next scheduled timeout. Default is
math.inf [https://docs.python.org/3/library/math.html#math.inf], i.e., to never autojump. You can assign to this
attribute to change it.

You should set this to the smallest value that lets you reliably avoid
“false alarms” where some I/O is in flight (e.g. between two halves of
a socketpair) but the threshold gets triggered and time gets advanced
anyway. This will depend on the details of your tests and test
environment. If you aren’t doing any I/O (like in our sleeping example
above) then setting it to zero is fine.

Note that setting this attribute interacts with the run loop, so it can
only be done from inside a run context or (as a special case) before
calling trio.run().

Warning

If you’re using wait_all_tasks_blocked() and
autojump_threshold together, then you have to be
careful. Setting autojump_threshold acts like a task
calling:

while True:
 await wait_all_tasks_blocked(cushion=clock.autojump_threshold)

This means that if you call wait_all_tasks_blocked() with a
cushion larger than your autojump threshold, then your call to
wait_all_tasks_blocked() will never return, because the
autojump task will keep waking up before your task does, and each
time it does it’ll reset your task’s timer.

Summary: you should set autojump_threshold to be at least
as large as the largest cushion you plan to pass to
wait_all_tasks_blocked().

	
jump(seconds)

	Manually advance the clock by the given number of seconds.

	Parameters:	seconds (float [https://docs.python.org/3/library/functions.html#float]) – the number of seconds to jump the clock forward.

	Raises:	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if you try to pass a negative value for seconds.

Inter-task ordering

	
class trio.testing.Sequencer

	A convenience class for forcing code in different tasks to run in an
explicit linear order.

Instances of this class implement a __call__ method which returns an
async context manager. The idea is that you pass a sequence number to
__call__ to say where this block of code should go in the linear
sequence. Block 0 starts immediately, and then block N doesn’t start until
block N-1 has finished.

Example

An extremely elaborate way to print the numbers 0-5, in order:

async def worker1(seq):
 async with seq(0):
 print(0)
 async with seq(4):
 print(4)

async def worker2(seq):
 async with seq(2):
 print(2)
 async with seq(5):
 print(5)

async def worker3(seq):
 async with seq(1):
 print(1)
 async with seq(3):
 print(3)

async def main():
 seq = trio.testing.Sequencer()
 async with trio.open_nursery() as nursery:
 nursery.spawn(worker1, seq)
 nursery.spawn(worker2, seq)
 nursery.spawn(worker3, seq)

	
await trio.testing.wait_all_tasks_blocked()

	Block until there are no runnable tasks.

This is useful in testing code when you want to give other tasks a
chance to “settle down”. The calling task is blocked, and doesn’t wake
up until all other tasks are also blocked for at least cushion
seconds. (Setting a non-zero cushion is intended to handle cases
like two tasks talking to each other over a local socket, where we
want to ignore the potential brief moment between a send and receive
when all tasks are blocked.)

Note that cushion is measured in real time, not the trio clock
time.

If there are multiple tasks blocked in wait_all_tasks_blocked(),
then the one with the shortest cushion is the one woken (and the
this task becoming unblocked resets the timers for the remaining
tasks). If there are multiple tasks that have exactly the same
cushion, then all are woken.

You should also consider trio.testing.Sequencer, which
provides a more explicit way to control execution ordering within a
test, and will often produce more readable tests.

Example

Here’s an example of one way to test that trio’s locks are fair: we
take the lock in the parent, spawn a child, wait for the child to be
blocked waiting for the lock (!), and then check that we can’t
release and immediately re-acquire the lock:

async def lock_taker(lock):
 await lock.acquire()
 lock.release()

async def test_lock_fairness():
 lock = trio.Lock()
 await lock.acquire()
 async with trio.open_nursery() as nursery:
 nursery.spawn(lock_taker, lock)
 # child hasn't run yet
 assert not lock.locked()
 await trio.testing.wait_all_tasks_blocked()
 # now the child has run
 assert lock.locked()
 lock.release()
 try:
 # The child has a prior claim, so we can't have it
 lock.acquire_nowait()
 except trio.WouldBlock:
 print("PASS")
 else:
 print("FAIL")

Testing checkpoints

	
with trio.testing.assert_yields()

	Use as a context manager to check that the code inside the with
block executes at least one checkpoint.

	Raises:	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – if no checkpoint was executed.

Example

Check that trio.sleep() is a checkpoint, even if it doesn’t
block:

with trio.testing.assert_yields():
 await trio.sleep(0)

	
with trio.testing.assert_no_yields()

	Use as a context manager to check that the code inside the with
block does not execute any check points.

	Raises:	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – if a checkpoint was executed.

Example

Synchronous code never yields, but we can double-check that:

queue = trio.Queue(10)
with trio.testing.assert_no_yields():
 queue.put_nowait(None)

 Low-level operations in trio.hazmat

Low-level operations in trio.hazmat

Warning

⚠️ DANGER DANGER DANGER ⚠️

You probably don’t want to use this module.

The trio.hazmat API is public and stable (or at least, as
stable as anything in trio is! [https://github.com/python-trio/trio/issues/1]), but it has nasty
big pointy teeth [https://en.wikipedia.org/wiki/Rabbit_of_Caerbannog]. Mistakes may
not be handled gracefully; rules and conventions that are followed
strictly in the rest of trio do not always apply. Read and tread
carefully.

But if you find yourself needing to, for example, implement new
synchronization primitives or expose new low-level I/O functionality,
then you’re in the right place.

Low-level I/O primitives

Different environments expose different low-level APIs for performing
async I/O. trio.hazmat attempts to expose these APIs in a
relatively direct way, so as to allow maximum power and flexibility
for higher level code. However, this means that the exact API provided
may vary depending on what system trio is running on.

Universally available API

All environments provide the following functions:

	
await trio.hazmat.wait_socket_readable(sock)

	Block until the given socket.socket() [https://docs.python.org/3/library/socket.html#socket.socket] object is readable.

The given object must be exactly of type socket.socket() [https://docs.python.org/3/library/socket.html#socket.socket],
nothing else.

	Raises:	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if the given object is not of type socket.socket() [https://docs.python.org/3/library/socket.html#socket.socket].

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if another task is already waiting for the given socket to
become readable.

	
await trio.hazmat.wait_socket_writable(sock)

	Block until the given socket.socket() [https://docs.python.org/3/library/socket.html#socket.socket] object is writable.

The given object must be exactly of type socket.socket() [https://docs.python.org/3/library/socket.html#socket.socket],
nothing else.

	Raises:	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if the given object is not of type socket.socket() [https://docs.python.org/3/library/socket.html#socket.socket].

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if another task is already waiting for the given socket to
become writable.

Unix-specific API

Unix-like systems provide the following functions:

	
await trio.hazmat.wait_readable(fd)

	Block until the given file descriptor is readable.

Warning

This is “readable” according to the operating system’s
definition of readable. In particular, it probably won’t tell
you anything useful for on-disk files.

	Parameters:	fd – integer file descriptor, or else an object with a fileno() method

	Raises:	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if another task is already waiting for the given fd to
become readable.

	
await trio.hazmat.wait_writable(fd)

	Block until the given file descriptor is writable.

Warning

This is “writable” according to the operating system’s
definition of writable. In particular, it probably won’t tell
you anything useful for on-disk files.

	Parameters:	fd – integer file descriptor, or else an object with a fileno() method

	Raises:	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if another task is already waiting for the given fd to
become writable.

Kqueue-specific API

TODO: these are currently more of a sketch than anything real. See
#26 [https://github.com/python-trio/trio/issues/26].

	
trio.hazmat.current_kqueue()

	

	
await trio.hazmat.wait_kevent(ident, filter, abort_func)

	

	
with trio.hazmat.monitor_kevent(ident, filter)

 Design and internals

Design and internals

Here we’ll discuss Trio’s overall design and architecture: how it fits
together and why we made the decisions we did. If all you want to do
is use Trio, then you don’t need to read this – though you might find
it interesting. The main target audience here is (a) folks who want to
read the code and potentially contribute, (b) anyone working on
similar libraries who want to understand what we’re up to, (c) anyone
interested in I/O library design generally.

There are many valid approaches to writing an async I/O library. This
is ours.

High-level design principles

Trio’s two overriding goals are usability and correctness: we
want to make it easy to get things right.

Of course there are lots of other things that matter too, like speed,
maintainability, etc. We want those too, as much as we can get. But
sometimes these things come in conflict, and when that happens, these
are our priorities.

In some sense the entire rest of this document is a description of how
these play out, but to give a simple example: Trio’s
KeyboardInterrupt handling machinery is a bit tricky and hard to
test, so it scores poorly on simplicity and maintainability. But we
think the usability+correctness gains outweigh this.

There are some subtleties here. Notice that it’s specifically “easy to
get things right”. There are situations (e.g. writing one-off scripts)
where the most “usable” tool is the one that will happily ignore
errors and keep going no matter what, or that doesn’t bother with
resource cleanup. (Cf. the success of PHP.) This is a totally valid
use case and valid definition of usability, but it’s not the one we
use: we think it’s easier to build reliable and correct systems if
exceptions propagate until handled and if the system catches you when
you make potentially dangerous resource handling errors [https://github.com/python-trio/trio/issues/23], so that’s what we
optimize for.

It’s also worth saying something about speed, since it often looms
large in comparisons between I/O libraries. This is a rather subtle
and complex topic.

In general, speed is certainly important – but the fact that people
sometimes use Python instead of C is a pretty good indicator that
usability often trumps speed in practice. We want to make trio fast,
but it’s not an accident that it’s left off our list of overriding
goals at the top: if necessary we are willing to accept some slowdowns
in the service of usability and reliability.

To break things down in more detail:

First of all, there are the cases where speed directly impacts
correctness, like when you hit an accidental O(N**2) algorithm and
your program effectively locks up. Trio is very careful to use
algorithms and data structures that have good worst-case behavior
(even if this might mean sacrificing a few percentage points of speed
in the average case).

Similarly, when there’s a conflict, we care more about 99th percentile
latencies than we do about raw throughput, because insufficient
throughput – if it’s consistent! – can often be budgeted for and
handled with horizontal scaling, but once you lose latency it’s gone
forever, and latency spikes can easily cross over to become a
correctness issue (e.g., an RPC server that responds slowly enough to
trigger timeouts is effectively non-functional). Again, of course,
this doesn’t mean we don’t care about throughput – but sometimes
engineering requires making trade-offs, especially for early-stage
projects that haven’t had time to optimize for all use cases yet.

And finally: we care about speed on real-world applications quite a
bit, but speed on microbenchmarks is just about our lowest
priority. We aren’t interested in competing to build “the fastest echo
server in the West”. I mean, it’s nice if it happens or whatever, and
microbenchmarks are an invaluable tool for understanding a system’s
behavior. But if you play that game to win then it’s very easy to get
yourself into a situation with seriously misaligned incentives, where
you have to start compromising on features and correctness in order to
get a speedup that’s totally irrelevant to real-world applications. In
most cases (we suspect) it’s the application code that’s the
bottleneck, and you’ll get more of a win out of running the whole app
under PyPy than out of any heroic optimizations to the I/O
layer. (And this is why Trio does place a priority on PyPy
compatibility.)

As a matter of tactics, we also note that at this stage in Trio’s
lifecycle, it’d probably be a mistake to worry about speed too
much. It doesn’t make sense to spend lots of effort optimizing an API
whose semantics are still in flux.

User-level API principles

Basic principles

Trio is very much a continuation of the ideas explored in this blog
post [https://vorpus.org/blog/some-thoughts-on-asynchronous-api-design-in-a-post-asyncawait-world/],
and in particular the principles identified there [https://vorpus.org/blog/some-thoughts-on-asynchronous-api-design-in-a-post-asyncawait-world/#review-and-summing-up-what-is-async-await-native-anyway]
that make curio easier to use correctly than asyncio. So trio also
adopts these rules, in particular:

	The only form of concurrency is the task.

	Tasks are guaranteed to run to completion.

	Task spawning is always explicit. No callbacks, no implicit
concurrency, no futures/deferreds/promises/other APIs that involve
callbacks. All APIs are “causal” [https://vorpus.org/blog/some-thoughts-on-asynchronous-api-design-in-a-post-asyncawait-world/#review-and-summing-up-what-is-async-await-native-anyway]
except for those that are explicitly used for task spawning.

	Exceptions are used for error handling; try/finally
and with blocks for handling cleanup.

Cancel points and schedule points

The first major place that trio departs from curio is in its decision
to make a much larger fraction of the API use sync functions rather
than async functions, and to provide strong conventions about cancel
points and schedule points. (At this point, there are a lot of ways
that trio and curio have diverged. But this was really the origin –
the tipping point where I realized that exploring these ideas would
require a new library, and couldn’t be done inside curio.) The full
reasoning here takes some unpacking.

First, some definitions: a cancel point is a point where your code
checks if it has been cancelled – e.g., due to a timeout having
expired – and potentially raises a Cancelled error. A schedule
point is a point where the current task can potentially be suspended,
and another task allowed to run.

In curio, the convention is that all operations that interact with the
run loop in any way are syntactically async, and it’s undefined which
of these operations are cancel/schedule points; users are instructed
to assume that any of them might be cancel/schedule points, but with
a few exceptions there’s no guarantee that any of them are unless they
actually block. (I.e., whether a given call acts as a cancel/schedule
point is allowed to vary across curio versions and also depending on
runtime factors like network load.)

But when using an async library, there are good reasons why you need
to be aware of cancel and schedule points. They introduce a set of
complex and partially conflicting constraints on your code:

You need to make sure that every task passes through a cancel
point regularly, because otherwise timeouts become ineffective
and your code becomes subject to DoS attacks and other
problems. So for correctness, it’s important to make sure you
have enough cancel points.

But... every cancel point also increases the chance of subtle
bugs in your program, because it’s a place where you have to be
prepared to handle a Cancelled exception and clean up
properly. And while we try to make this as easy as possible,
these kinds of clean-up paths are notorious for getting missed
in testing and harboring subtle bugs. So the more cancel points
you have, the harder it is to make sure your code is correct.

Similarly, you need to make sure that every task passes through
a schedule point regularly, because otherwise this task could
end up hogging the event loop and preventing other code from
running, causing a latency spike. So for correctness, it’s
important to make sure you have enough schedule points.

But... you have to be careful here too, because every schedule
point is a point where arbitrary other code could run, and
alter your program’s state out from under you, introducing
classic concurrency bugs. So as you add more schedule points,
it becomes exponentially harder to reason about how your code
is interleaved and be sure that it’s correct [https://glyph.twistedmatrix.com/2014/02/unyielding.html].

So an important question for an async I/O library is: how do we help
the user manage these trade-offs?

Trio’s answer is informed by two further observations:

First, any time a task blocks (e.g., because it does an await
sock.recv() but there’s no data available to receive), that
has to be a cancel point (because if the I/O never arrives, we
need to be able to time out), and it has to be a schedule point
(because the whole idea of asynchronous programming is that
when one task is waiting we can switch to another task to get
something useful done).

And second, a function which sometimes counts as a cancel/schedule
point, and sometimes doesn’t, is the worst of both worlds: you have
put in the effort to make sure your code handles cancellation or
interleaving correctly, but you can’t count on it to help meet latency
requirements.

With all that in mind, trio takes the following approach:

Rule 1: to reduce the number of concepts to keep track of, we collapse
cancel points and schedule points together. Every point that is a
cancel point is also a schedule point and vice versa. These are
distinct concepts both theoretically and in the actual implementation,
but we hide that distinction from the user so that there’s only one
concept they need to keep track of.

Rule 2: Cancel+schedule points are determined statically. A trio
primitive is either always a cancel+schedule point, or never a
cancel+schedule point, regardless of runtime conditions. This is
because we want it to be possible to determine whether some code has
“enough” cancel/schedule points by reading the source code.

In fact, to make this even simpler, we require that this be
determined without looking at the function arguments: each
function is either a cancel+schedule point, or it isn’t.

Observation: rule 2 implies that any operation that sometimes blocks
is always a cancel+schedule point.

So that gives us a number of cancel+schedule points. Are there any
others? Our answer is: no. It’s easy to add new points explicitly
(throw in a sleep(0) or whatever) but hard to get rid of them when
you don’t want them. (And this is a real issue – “too many potential
cancel points” is definitely a tension I’ve felt [https://github.com/dabeaz/curio/issues/149#issuecomment-269745283]
while trying to build things like task supervisors in curio.) And we
expect that most trio programs will execute potentially-blocking
operations “often enough” to produce reasonable behavior. So, rule 3:
the only cancel+schedule points are the potentially-blocking
operations.

And then there’s the question of how to effectively communicate this
information to the user. We want some way to mark out a category of
functions that might block or trigger a task switch, so that they’re
clearly distinguished from functions that don’t do this. Wouldn’t it
be nice if there were some Python feature, that naturally divided
functions into two categories, and maybe put some sort of special
syntactic marking on with the functions that can do weird things like
block and task switch...? Rule 4: in trio, only the potentially
blocking functions are async. So e.g. Event.wait() is async, but
Event.set() is sync.

Summing up: out of what’s actually a pretty vast space of design
possibilities, we declare by fiat that when it comes to trio
primitives, all of these categories are identical:

	async functions

	functions that can block

	functions where you need to be prepared to handle cancellation

	functions that are guaranteed to take care of checking for cancellation

	functions where you need to be prepared for a task switch

	functions that are guaranteed to take care of switching tasks if
appropriate

This requires some non-trivial work internally – it actually takes a
fair amount of care to make those 4 cancel/schedule categories line
up, and there are some shenanigans required to let sync and async APIs
interact with the run loop on an equal footing. But this is all
invisible to the user, we feel that it pays off in terms of usability
and correctness.

There is one exception to these rules, for async context
managers. Context managers are composed of two operations – enter and
exit – and sometimes only one of these is potentially
blocking. (Examples: async with lock: can block when entering but
never when exiting; async with open_nursery() as ...: can block
when exiting but never when entering.) But, Python doesn’t have
“half-asynchronous” context managers: either both operations are
async-flavored, or neither is. In Trio we take a pragmatic approach:
for this kind of async context manager, we enforce the above rules
only on the potentially blocking operation, and the other operation is
allowed to be syntactically async but semantically
synchronous. And async context managers should always document which
of their operations are schedule+cancel points.

Exceptions always propagate

Another rule that trio follows is that exceptions must always
propagate. This is like the zen line about “Errors should never pass
silently”, except that in other concurrency libraries (Python threads,
asyncio, curio, ...), it’s fairly common to end up with an
undeliverable exception, which just gets printed to stderr and then
discarded. While we understand the pragmatic constraints that
motivated these libraries to adopt this approach, we feel that there
are far too many situations where no human will ever look at stderr
and notice the problem, and insist that trio APIs find a way to
propagate exceptions “up the stack” – whatever that might mean.

This is often a challenging rule to follow – for example, the call
soon code has to jump through some hoops to make it happen – but its
most dramatic influence can seen in trio’s task-spawning interface,
where it motivates the use of “nurseries”:

async def parent():
 async with trio.open_nursery() as nursery:
 nursery.spawn(child)

(See Tasks let you do multiple things at once for full details.)

If you squint you can see the influence of erlang’s “task linking”
idea here, but it’s quite different in detail, exactly because Python
has exceptions and Erlang doesn’t. Erlang’s links are symmetric and
optional; to support exceptions we need ours to be asymmetric and
mandatory.

This design also turns out to enforce a remarkable, unexpected
invariant.

In the blog post [https://vorpus.org/blog/some-thoughts-on-asynchronous-api-design-in-a-post-asyncawait-world/#c-c-c-c-causality-breaker]
I called out a nice feature of curio’s spawning API, which is that
since spawning is the only way to break causality, and in curio
spawn is async, this means that in curio sync functions are
guaranteed to be causal. One limitation though is that this invariant
is actually not very predictive: in curio there are lots of async
functions that could spawn off children and violate causality, but
most of them don’t, but there’s no clear marker for the ones that do.

Our API doesn’t quite give that guarantee, but actually a better
one. In trio:

	Sync functions can’t create nurseries, because nurseries require an
async with

	Any async function can create a nursery and spawn new tasks... but
creating a nursery allows task spawning without allowing causality
breaking, because the children have to exit before the function is
allowed to return. So we can preserve causality without having to
give up concurrency!

	The only way to violate causality (which is an important feature,
just one that needs to be handled carefully) is to explicitly create
a nursery object in one task and then pass it into another task. And
this provides a very clear and precise signal about where the funny
stuff is happening – just watch for the nursery object getting
passed around.

Introspection, debugging, testing

Tools for introspection and debugging are critical to achieving
usability and correctness in practice, so they should be first-class
considerations in trio.

Similarly, the availability of powerful testing tools has a huge
impact on usability and correctness; we consider testing helpers to be
very much in scope for the trio project.

Specific style guidelines

	As noted above, functions that don’t block should be sync-colored,
and functions that might block should be async-colored and
unconditionally act as cancel+schedule points.

	Any function that takes a callable to run should have a signature
like:

def call_the_thing(fn, *args, kwonly1, kwonly2, ...)::
 ...

where fn(*args) is the thing to be called, and kwonly1,
kwonly2, ... are keyword-only arguments that belong to
call_the_thing. This applies even if call_the_thing doesn’t
take any arguments of its own, i.e. in this case its signature looks
like:

def call_the_thing(fn, *args)::
 ...

This allows users to skip faffing about with
functools.partial() [https://docs.python.org/3/library/functools.html#functools.partial] in most cases, while still providing an
unambiguous and extensible way to pass arguments to the caller.
(Hat-tip to asyncio, who we stole this convention from.)

	Whenever it makes sense, trio classes should have a method called
statistics() which returns an immutable object with named fields
containing internal statistics about the object that are useful for
debugging or introspection (examples).

	Functions or methods whose purpose is to wait for a condition to
become true should be called wait_<condition>. This avoids
ambiguities like “does await readable() check readability
(returning a bool) or wait for readability?”.

Sometimes this leads to the slightly funny looking await
wait_.... Sorry. As far as I can tell all the alternatives are
worse, and you get used to the convention pretty quick.

	If it’s desirable to have both blocking and non-blocking versions of
a function, then they look like:

async def OPERATION(...):
 ...

def OPERATION_nowait(...):
 ...

and the nowait version raises trio.WouldBlock if it would block.

	The word monitor is used for APIs that involve an
UnboundedQueue receiving some kind of events. (Examples:
nursery .monitor attribute, some of the low-level I/O functions in
trio.hazmat.)

	...we should, but currently don’t, have a solid convention to
distinguish between functions that take an async callable and those
that take a sync callable. See issue #68 [https://github.com/python-trio/trio/issues/68].

A brief tour of trio’s internals

If you want to understand how trio is put together internally, then
the first thing to know is that there’s a very strict internal
layering: the trio._core package is a fully self-contained
implementation of the core scheduling/cancellation/IO handling logic,
and then the other trio.* modules are implemented in terms of the
API it exposes. (If you want to see what this API looks like, then
import trio; print(trio._core.__all__)). Everything exported from
trio._core is also exported as part of either the trio or
trio.hazmat namespaces. (This is managed through the use of a
@_hazmat decorator that marks which items in
trio._core.__all__ should go into trio.hazmat.)

Rationale: currently, trio is a new project in a novel part of the
design space, so we don’t make any stability guarantees. But the goal
is to reach the point where we can declare the API stable. It’s
unlikely that we’ll be able to quickly explore all possible corners of
the design space and cover all possible types of I/O. So instead, our
strategy is to make sure that it’s possible for independent packages
to add new features on top of trio. Enforcing the trio vs
trio._core split is a way of eating our own dogfood [https://en.wikipedia.org/wiki/Eating_your_own_dog_food]: basic
functionality like trio.Queue and trio.socket is
actually implemented solely in terms of public APIs. And the hope is
that by doing this, we increase the chances that someone who comes up
with a better kind of queue or wants to add some new functionality
like, say, file system change watching, will be able to do that on top
of our public APIs without having to modify trio internals.

Inside trio._core

There are three notable sub-modules that are largely independent of
the rest of trio, and could (possibly should?) be extracted into their
own independent packages:

	_result.py: Defines Result.

	_multierror.py: Implements MultiError and associated
infrastructure.

	_ki.py: Implements the core infrastructure for safe handling of
KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt].

The most important submodule, where everything is integrated, is
_run.py. (This is also by far the largest submodule; it’d be nice
to factor bits of it out with possible, but it’s tricky because the
core functionality genuinely is pretty intertwined.) Notably, this is
where cancel scopes, nurseries, and Task are defined; it’s
also where the scheduler state and trio.run() live.

The one thing that isn’t in _run.py is I/O handling. This is
delegated to an IOManager class, of which there are currently
three implementations:

	EpollIOManager in _io_epoll.py (used on Linux, Illuminos)

	KqueueIOManager in _io_kqueue.py (used on MacOS, *BSD)

	WindowsIOManager in _io_windows.py (used on Windows)

The epoll and kqueue backends take advantage of the epoll and kqueue
wrappers in the stdlib select [https://docs.python.org/3/library/select.html#module-select] module. The windows backend uses
CFFI to access to the Win32 API directly (see
trio/_core/_windows_cffi.py). In general, we prefer to go directly
to the raw OS functionality rather than use selectors [https://docs.python.org/3/library/selectors.html#module-selectors], for
several reasons:

	Controlling our own fate: I/O handling is pretty core to what trio
is about, and selectors [https://docs.python.org/3/library/selectors.html#module-selectors] is (as of 2017-03-01) somewhat buggy
(e.g. issue 29587 [https://bugs.python.org/issue29256], issue
29255 [https://bugs.python.org/issue29255]). Which isn’t a big
deal on its own, but since selectors [https://docs.python.org/3/library/selectors.html#module-selectors] is part of the standard
library we can’t fix it and ship an updated version; we’re stuck
with whatever we get. We want more control over our users’
experience than that.

	Impedence mismatch: the selectors [https://docs.python.org/3/library/selectors.html#module-selectors] API isn’t particularly
well-fitted to how we want to use it. For example, kqueue natively
treats an interest in readability of some fd as a separate thing
from an interest in that same fd’s writability, which neatly matches
trio’s model. selectors.KqueueSelector [https://docs.python.org/3/library/selectors.html#selectors.KqueueSelector] goes to some effort
internally to lump together all interests in a single fd, and to use
it we’d then we’d have to jump through more hoops to reverse
this. Of course, the native epoll API is fd-centric in the same way
as the selectors [https://docs.python.org/3/library/selectors.html#module-selectors] API so we do still have to write code to
jump through these hoops, but the point is that the selectors [https://docs.python.org/3/library/selectors.html#module-selectors]
abstractions aren’t providing a lot of extra value.

	(Most important) Access to raw platform capabilities:
selectors [https://docs.python.org/3/library/selectors.html#module-selectors] is highly inadequate on Windows, and even on
Unix-like systems it hides a lot of power (e.g. kqueue can do a lot
more than just check fd readability/writability!).

The IOManager layer provides a fairly raw exposure of the capabilities
of each system, with public API functions that vary between different
backends. (This is somewhat inspired by how os [https://docs.python.org/3/library/os.html#module-os] works.) These
public APIs are then exported as part of trio.hazmat, and
higher-level APIs like trio.socket abstract over these
system-specific APIs to provide a uniform experience.

Currently the choice of backend is made statically at import time, and
there is no provision for “pluggable” backends. The intuition here is
that we’d rather focus our energy on making one set of solid, official
backends that provide a high-quality experience out-of-the-box on all
supported systems.

 Release history

Release history

v0.2.0 (????-??-??)

	New argument to trio.run():
restrict_keyboard_interrupt_to_checkpoints.

v0.1.0 (2017-03-10)

	Initial release.

 Python Module Index

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 trio	

 	
 	
 trio.hazmat	

 	
 	
 trio.socket	

 	
 	
 trio.testing	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Y
 | Z

A

 	
 	Abort (class in trio.hazmat)

 	Abort.FAILED (in module trio.hazmat)

 	Abort.SUCCEEDED (in module trio.hazmat)

 	acapture() (trio.Result method)

 	acquire() (trio.Condition method)

 	(trio.Lock method)

 	(trio.Semaphore method)

 	acquire_nowait() (trio.Condition method)

 	(trio.Lock method)

 	(trio.Semaphore method)

 	
 	add_monitor() (trio.Task method)

 	after_io_wait() (trio.abc.Instrument method)

 	after_run() (trio.abc.Instrument method)

 	after_task_step() (trio.abc.Instrument method)

 	asend() (trio.Result method)

 	assert_no_yields() (in module trio.testing)

 	assert_yields() (in module trio.testing)

 	AsyncResource (class in trio)

 	autojump_threshold (trio.testing.MockClock attribute)

 	await_in_trio_thread() (built-in function)

B

 	
 	before_io_wait() (trio.abc.Instrument method)

 	before_run() (trio.abc.Instrument method)

 	
 	before_task_step() (trio.abc.Instrument method)

 	bind() (trio.socket.SocketType method)

C

 	
 	call_soon_thread_and_signal_safe() (built-in function)

 	can_send_eof (trio.SendStream attribute)

 	cancel()

 	cancel_called

 	cancel_scope

 	Cancelled

 	cancelled_caught

 	capture() (trio.Result method)

 	catch() (trio.MultiError method)

 	catch_signals() (in module trio)

 	children

 	clear() (trio.Event method)

 	Clock (class in trio.abc)

 	Condition (class in trio)

 	
 	connect() (trio.socket.SocketType method)

 	coro (trio.Task attribute)

 	current_await_in_trio_thread() (in module trio)

 	current_call_soon_thread_and_signal_safe() (in module trio.hazmat)

 	current_clock() (in module trio)

 	current_effective_deadline() (in module trio)

 	current_instruments() (in module trio)

 	current_iocp() (in module trio.hazmat)

 	current_kqueue() (in module trio.hazmat)

 	current_run_in_trio_thread() (in module trio)

 	current_statistics() (in module trio)

 	current_task() (in module trio)

 	current_time() (in module trio)

 	(trio.abc.Clock method)

 	currently_ki_protected() (in module trio.hazmat)

D

 	
 	deadline

 	deadline_to_sleep_time() (trio.abc.Clock method)

 	
 	disable_ki_protection() (in module trio.hazmat)

 	discard_monitor() (trio.Task method)

E

 	
 	empty() (trio.Queue method)

 	(trio.UnboundedQueue method)

 	enable_ki_protection() (in module trio.hazmat)

 	
 	Error (class in trio)

 	error (trio.Error attribute)

 	Event (class in trio)

 	exceptions (trio.MultiError attribute)

F

 	
 	fail_after() (in module trio)

 	fail_at() (in module trio)

 	filter() (trio.MultiError method)

 	
 	forceful_close() (trio.AsyncResource method)

 	format_exception() (in module trio)

 	from_stdlib_socket() (in module trio.socket)

 	full() (trio.Queue method)

G

 	
 	get() (trio.Queue method)

 	get_batch() (trio.UnboundedQueue method)

 	
 	get_batch_nowait() (trio.UnboundedQueue method)

 	get_nowait() (trio.Queue method)

 	graceful_close() (trio.AsyncResource method)

I

 	
 	Instrument (class in trio.abc)

 	
 	is_set() (trio.Event method)

J

 	
 	join() (trio.Queue method)

 	
 	jump() (trio.testing.MockClock method)

L

 	
 	Lock (class in trio)

 	
 	locked() (trio.Condition method)

 	(trio.Lock method)

M

 	
 	max_value (trio.Semaphore attribute)

 	MockClock (class in trio.testing)

 	monitor

 	monitor_completion_key() (in module trio.hazmat)

 	
 	monitor_kevent() (in module trio.hazmat)

 	move_on_after() (in module trio)

 	move_on_at() (in module trio)

 	MultiError

N

 	
 	name (trio.Task attribute)

 	
 	notify() (trio.Condition method)

 	notify_all() (trio.Condition method)

O

 	
 	open_cancel_scope() (in module trio)

 	
 	open_nursery() (in module trio)

P

 	
 	parent_task (trio.Task attribute)

 	park() (trio.hazmat.ParkingLot method)

 	ParkingLot (class in trio.hazmat)

 	
 	put() (trio.Queue method)

 	put_nowait() (trio.Queue method)

 	(trio.UnboundedQueue method)

Q

 	
 	qsize() (trio.Queue method)

 	(trio.UnboundedQueue method)

 	
 	Queue (class in trio)

R

 	
 	rate (trio.testing.MockClock attribute)

 	reap()

 	reap_and_unwrap()

 	recv() (trio.RecvStream method)

 	RecvStream (class in trio)

 	register_with_iocp() (in module trio.hazmat)

 	release() (trio.Condition method)

 	(trio.Lock method)

 	(trio.Semaphore method)

 	repark() (trio.hazmat.ParkingLot method)

 	
 	repark_all() (trio.hazmat.ParkingLot method)

 	reschedule() (in module trio.hazmat)

 	resolve_local_address() (trio.socket.SocketType method)

 	resolve_remote_address() (trio.socket.SocketType method)

 	Result (class in trio)

 	result (trio.Task attribute)

 	run() (in module trio)

 	run_in_trio_thread() (built-in function)

 	run_in_worker_thread() (in module trio)

 	RunFinishedError

S

 	
 	Semaphore (class in trio)

 	send() (trio.Result method)

 	send_eof() (trio.SendStream method)

 	sendall() (trio.SendStream method)

 	(trio.socket.SocketType method)

 	sendfile() (trio.socket.SocketType method)

 	SendStream (class in trio)

 	Sequencer (class in trio.testing)

 	set() (trio.Event method)

 	shield

 	sleep() (in module trio)

 	sleep_forever() (in module trio)

 	sleep_until() (in module trio)

 	
 	SocketType (class in trio.socket)

 	spawn()

 	spawn_system_task() (in module trio.hazmat)

 	staple() (trio.Stream method)

 	start_clock() (trio.abc.Clock method)

 	statistics() (trio.Condition method)

 	(trio.Event method)

 	(trio.Lock method)

 	(trio.Queue method)

 	(trio.Semaphore method)

 	(trio.UnboundedQueue method)

 	(trio.hazmat.ParkingLot method)

 	Stream (class in trio)

T

 	
 	Task (class in trio)

 	task_done() (trio.Queue method)

 	task_exited() (trio.abc.Instrument method)

 	task_scheduled() (trio.abc.Instrument method)

 	task_spawned() (trio.abc.Instrument method)

 	
 	TooSlowError

 	trio (module)

 	trio.hazmat (module)

 	trio.socket (module)

 	trio.testing (module)

 	TrioInternalError

U

 	
 	UnboundedQueue (class in trio)

 	unpark() (trio.hazmat.ParkingLot method)

 	
 	unpark_all() (trio.hazmat.ParkingLot method)

 	unwrap() (trio.Result method)

V

 	
 	Value (class in trio)

 	
 	value (trio.Semaphore attribute)

 	(trio.Value attribute)

W

 	
 	wait() (trio.Condition method)

 	(trio.Event method)

 	(trio.Task method)

 	wait_all_tasks_blocked() (in module trio.testing)

 	wait_kevent() (in module trio.hazmat)

 	wait_maybe_writable() (trio.SendStream method)

 	
 	wait_overlapped() (in module trio.hazmat)

 	wait_readable() (in module trio.hazmat)

 	wait_socket_readable() (in module trio.hazmat)

 	wait_socket_writable() (in module trio.hazmat)

 	wait_writable() (in module trio.hazmat)

 	WouldBlock

Y

 	
 	yield_briefly() (in module trio.hazmat)

 	yield_briefly_no_cancel() (in module trio.hazmat)

 	
 	yield_if_cancelled() (in module trio.hazmat)

 	yield_indefinitely() (in module trio.hazmat)

Z

 	
 	zombies

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/favicon-32.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Trio: async programming for humans and snake people

 		
 Tutorial

 		
 Before you begin

 		
 Async functions

 		
 Warning: don't forget that await!

 		
 Okay, let's see something cool already

 		
 Task switching illustrated

 		
 A kinder, gentler GIL

 		
 Networking with trio

 		
 An echo client: low-level API

 		
 An echo server: low-level API

 		
 Try it out

 		
 Flow control in our echo client and server

 		
 An echo client and server: higher-level API

 		
 When things go wrong: timeouts, cancellation and exceptions in concurrent tasks

 		
 Trio's core functionality

 		
 Entering trio

 		
 General principles

 		
 Checkpoints

 		
 Thread safety

 		
 Time and clocks

 		
 Cancellation and timeouts

 		
 A simple timeout example

 		
 Handling cancellation

 		
 Cancellation semantics

 		
 Cancellation and primitive operations

 		
 Cancellation API details

 		
 Tasks let you do multiple things at once

 		
 Nurseries and spawning

 		
 Getting results from child tasks

 		
 Child tasks and cancellation

 		
 Errors in multiple child tasks

 		
 How to be a good parent task

 		
 Spawning tasks without becoming a parent

 		
 Custom supervisors

 		
 Task-related API details

 		
 Task-local storage and run-local storage

 		
 Synchronizing and communicating between tasks

 		
 Blocking and non-blocking methods

 		
 Fairness

 		
 Broadcasting an event with Event

 		
 Passing messages with Queue and UnboundedQueue

 		
 Lower-level synchronization primitives

 		
 Threads (if you must)

 		
 Debugging and instrumentation

 		
 Global statistics

 		
 Instrument API

 		
 Exceptions

 		
 I/O in Trio

 		
 Sockets and networking

 		
 trio.socket's top-level exports

 		
 Socket objects

 		
 The abstract Stream API

 		
 TLS support

 		
 Async disk I/O

 		
 Subprocesses

 		
 Signals

 		
 Testing made easier with trio.testing

 		
 Test harness integration

 		
 Time and timeouts

 		
 Inter-task ordering

 		
 Testing checkpoints

 		
 Low-level operations in trio.hazmat

 		
 Low-level I/O primitives

 		
 Universally available API

 		
 Unix-specific API

 		
 Kqueue-specific API

 		
 Windows-specific API

 		
 System tasks

 		
 Entering trio from external threads or signal handlers

 		
 Safer KeyboardInterrupt handling

 		
 Sleeping and waking

 		
 Wait queue abstraction

 		
 Low-level checkpoint functions

 		
 Low-level blocking

 		
 Design and internals

 		
 High-level design principles

 		
 User-level API principles

 		
 Basic principles

 		
 Cancel points and schedule points

 		
 Exceptions always propagate

 		
 Introspection, debugging, testing

 		
 Specific style guidelines

 		
 A brief tour of trio's internals

 		
 Inside trio._core

 		
 Release history

 		
 v0.2.0 (????-??-??)

 		
 v0.1.0 (2017-03-10)

_static/plus.png

_sta