

 Navigation

 	
 index

 	triggercamera latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/triggercamera/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/triggercamera/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	triggercamera latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		triggercamera latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/comment-close.png

docs/dev.html

 Navigation

 		
 index

 		triggercamera latest documentation »

 #PlatformIO

sudo pip install platformio #one time install

platformio init --board teensy31

platformio run --target upload

platformio run --target clean

platformio serialports monitor -p /dev/ttyACM0 -b 115200 #a serial port monitor

mkDocs

pip install mkdocs
pip install mkdocs-cinder

mkdocs serve
mkdocs serve --dev-addr=0.0.0.0:8000 # serves built site on LAN IP

		mkdocs new [dir-name] - Create a new project.

		mkdocs serve - Start the live-reloading docs server.

		mkdocs build - Build the documentation site.

		mkdocs help - Print this help message.

Deploy to github

mkdocs gh-deploy will use the gh-pages branch of repository specified in mkdocs.yml

this will deploy to github gh-pages specified in mkdocs.yml
cd tiggercamera #should have mkdocs.yml file
mkdocs build --clean
mkdocs gh-deploy --clean
#site is then available at
http://cudmore.github.io/triggercamera

Project layout

mkdocs.yml # The configuration file.
docs/
 index.md # The documentation homepage.
 ... # Other markdown pages, images and other files.

Install Raspbian

If you are Microsoft Windows based, have a look here [http://www.circuitbasics.com/raspberry-pi-basics-setup-without-monitor-keyboard-headless-mode/] for a good install guide.

Download image

As of May 21, 2016 the image was named 2016-05-10-raspbian-jessie. Download here [https://www.raspberrypi.org/downloads/]

Copy image to SD card

Follow an installation guide here [https://www.raspberrypi.org/documentation/installation/installing-images/README.md].

On Mac OS

#Insert SD card and format as Fat32
diskutil list # find the /dev/disk<n>, mine was /dev/disk3
diskutil unmountDisk /dev/disk3 #unmount disk
copy .img file to disk
sudo dd bs=1m if=/Users/cudmore/Downloads/2016-05-10-raspbian-jessie.img of=/dev/rdisk3

First boot of the Pi

Connect Pi to a router with an ethernet cable and boot

Find IP address using router web interface, usually http://192.168.1.1

Login via ssh

ssh pi@192.168.1.15
#password is raspberry

Run configuration utility

sudo raspi-config

		1 Expand Filesystem

		2 Change User Password

		3 Boot Options
		B1 Console

		5 Internationalisation Options
		I1 Change Local -> en_US.UTF-8 UTF-8

		I2 Change Timezone -> US -> Eastern

		I4 Change Wi-fi Country -> US United States

		6 Enable Camera

		9 Advanced Options
		A2 Hostname -> [choose a name here, I chose pi3]

Selecting 3 Boot Options -> Console is important. It seems Raspbian ships with X-Windows on by default.

Update the system

sudo apt-get update #update database
sudo apt-get upgrade #update userspace
sudo rpi-update #update firmware (requires reboot)
sudo reboot #reboot

Apple File Protocol with open-source netatalk

Once netatalk is installed, the Raspberry will show up in the Mac Finder ‘Shared’ section

sudo apt-get install netatalk

When you mount the pi on OSX, it will mount as ‘Home Directory’ and the space ‘ ‘ will cause problems. Change the name to something like ‘pi3’.

See this blog post [http://blog.cudmore.io/post/2015/06/07/Changing-default-mount-in-Apple-File-Sharing/] to change the name of the mount point from ‘Home Directory’.

Make the Pi send email with IP on boot

Create an executable python script to send en email with IP. An example startup_mailer.py [https://github.com/cudmore/cudmore.github.io/blob/master/_site/downloads/startup_mailer.py]

mkdir code
cd code
wget https://github.com/cudmore/cudmore.github.io/raw/master/_site/downloads/startup_mailer.py
chmod +x startup_mailer.py

Make sure the first line in the .py code is #!/usr/bin/python.

#!/usr/bin/python

Set the email parameters in startup_mail.py

to = 'robert.cudmore@gmail.com'
gmail_user = 'cudmore.raspberry@gmail.com'
gmail_password = 'ENTER_YOUR_PASSWORD_HERE'

Run crontab as root and append one line @reboot (sleep 10; /home/pi/code/startup_mailer.py)

sudo crontab -e

Add this to end (sleep 5 does not work!!!!)

@reboot (sleep 10; /home/pi/code/startup_mailer.py)

Now, when pi boots it will send an email with it’s ip. Try it with

sudo reboot

Run the ./start.sh script from within a screen [http://raspi.tv/2012/using-screen-with-raspberry-pi-to-avoid-leaving-ssh-sessions-open] session.

Running the python server with ./start.sh needs to be done within a screen session. Otherwise, the code will exit when your ssh session exits.

Install screen

sudo apt-get install screen

Run screen and then ./start.sh

screen #puts you in a screen session
./start.sh
#exit screen with ctrl+a then d
#the python code will continue to run

To re-enter the screen session the next time you login use screen -r.

screen -r

To kill/quit the server

Kill the python session with ctrl+c ctrl+c. Or from any command prompt, kill all python scripts with

pkill python

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/ajax-loader.gif

readme.html

 Navigation

 		
 index

 		triggercamera latest documentation »

 Serve on machines local ip

mkdocs serve –dev-addr=0.0.0.0:8000 # serves built site on LAN IP

Deploy to github

mkdocs gh-deploy –clean

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

docs/todo.html

 Navigation

 		
 index

 		triggercamera latest documentation »

 tutorial for setting up a raspberry pi from a microsoft windows computer

http://www.allaboutcircuits.com/projects/raspberry-pi-setup-and-management/

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up.png

docs/webhelp.html

 Navigation

 		
 index

 		triggercamera latest documentation »

Minimized

[image:]

The top section of the interface provides feedback on the camera status. When a trial is running and video is being recorded, the spinner will spin and Elapsed Time, Frame, Trial, and File will update.

Use the Start Arm and Stop Arm buttons to turn the listening for a trigger on and off.

Use the Start Stream and Stop Stream buttons to turn real-time video streaming on and off.

If LEDs are wired to the Raspberry Pi, LED1 and LED2 provide an interface to turn them on and off as well as to set their brightness levels.

Maximized

[image:]

When maximized, there are additional sections for analysis, options, and simulation of a microscope triggers.

Analysis

The Plot Last Trial button will generate a plot of frame-intervals versus frame number for the last trial. This can be used to verify that frame triggering is working as expected. In this example, the majority of 600 frames had an interval of 30 ms with 4 bad frames.

Bring up the Analysis page (with the line graph icon) to make the same plot for any trials previously recorded.

Options

Displays the current camera and system configuration. This includes camera frames-per-second (fps) and image size. This also includes the GPIO pin numbers for trigger and frame.

To change options, manually edit the config.ini file and then ‘REload Configuration’.

Simulate

If configured, will use an Arduino to simulate trial and frame triggers of a microscope. This is useful for debugging the camera.

Analysis

The analysis web page displays a list of trials that have been acquired with the camera. Double-click on a trial (row) to display the timing of the frames.

[image:]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

docs/index.html

 Navigation

 		
 index

 		triggercamera latest documentation »

Trigger Camera

This is documentation to construct a system with a Raspberry Pi computer that responds to general purpose digital input-output (GPIO) pulses to start and stop video acquisition during an experiment. External events such as frame times on a scanning microscope are watermarked on the video and saved to a text file. The camera can be controlled from a Python command prompt or with a web browser.

Figure 1. Web-browser interface.

Example web interface for the Trigger Camera. See web help for more information

Overview

This Raspberry Pi Trigger Camera camera is designed to integrate into our Treadmill [http://cudmore.github.io/treadmill] system. The Treadmill system is advantageous if an Arduino is needed to precisely control other pieces of equipment like LEDs, motors, or valves.

The Raspberry Pi

The Raspberry Pi is a low cost ($35) computer that runs Linux. In addition to USB, ethernet, and HDMI connectors, the Raspberry Pi has a dedicated camera port and GPIO ports. Both the camera and GPIO ports can be easily programmed using Python. The Raspberry Pi provides an end-to-end open source system. Both the hardware and the software is provided by The Raspberry Pi Foundation [https://www.raspberrypi.org] and is actively maintained and extended by an active developer community.

Software implementation

The software provided here will run a Raspberry Pi camera as a slave to other devices already in place for an experiment. Once the camera is armed, it will continuously record a circular stream of video in memory. When a digital trigger is received, the video will begin being saved to disk. In addition to saving the video after a trigger, the video before the trigger will also be saved. This has the distinct advantage of given you a record of what your animal was doing before a trial was started. In many cases, ‘bad trials’ can be found because there was a lot of movement (or some other abberent event) before a trial began.

Video resolutions and FPS

The Raspberry Pi camera has the following resolutions and FPS. Set the resolution and FPS in the config.ini [https://github.com/cudmore/triggercamera/blob/master/config.ini] file. See the PiCamera Python documentation [http://picamera.readthedocs.io/en/release-1.10/fov.html] for more information.

| |Resolution |Aspect Ratio |Framerates |Video |Image |FoV |Binning
| — | —– | —– | —– | —– | —– | —– | —
|1 |1920x1080 |16:9 |1-30fps |x | |Partial |None
|2 |2592x1944 |4:3 |1-15fps |x |x |Full |None
|3 |2592x1944 |4:3 |0.1666-1fps|x |x |Full |None
|4 |1296x972 |4:3 |1-42fps |x | |Full |2x2
|5 |1296x730 |16:9 |1-49fps |x | |Full |2x2
|6 |640x480 |4:3 |42.1-60fps |x | |Full |4x4
|7 |640x480 |4:3 |60.1-90fps |x | |Full |4x4

Limitations

The Raspberry Pi runs Linux and like other operating systems including Microsoft Windows and Mac OS it is not real time. There will always be unpredictable delays in the detection and generation of GPIO pulses. If the detection of a fast pulse or the timing of a pulse is critical for an experiment it is strongly suggested to use a more precise microcontroller like an Arduino.

The Raspberry Pi camera is not a high-end camera. It records compressed video files, it does not record single frames to a video file. If you require a camera that captures individual frames, you should buy a high-end camera.

		Saved video files are compressed with .h264

		Saved video files are split into two files (we will wrote code to combine them after a trial)

		Some frames will be late

		Some frames may be missed

		It is difficult to predict which frames will be late and/or missed

See the Analysis section for example Python code to test the limits of this precision.

_static/down-pressed.png

