
libnacl Documentation
Release 1.3.6

Thomas S Hatch

Jul 16, 2018

Contents

1 Public Key Encryption 3
1.1 SecretKey Object . 4
1.2 PublicKey Object . 4
1.3 Saving Keys to Disk . 4

2 Secret Key Encryption 5

3 Signing and Verifying Messages 7
3.1 Saving Keys to Disk . 7

4 Dual Key Management 9
4.1 DualKey Object . 10
4.2 Saving Keys to Disk . 10

5 Utility Functions 11
5.1 Loading Saved Keys . 11
5.2 Salsa Key . 11
5.3 Nonce Routines . 12

6 Raw Public Key Encryption 13

7 Raw Secret Key Encryption 15

8 Raw Message Signatures 17

9 Raw Hash Functions 19

10 Raw Generic Hash (Blake2b) Functions 21

11 Release notes 23
11.1 libnacl 1.0.0 Release Notes . 23
11.2 libnacl 1.1.0 Release Notes . 23
11.3 libnacl 1.2.0 Release Notes . 24
11.4 libnacl 1.3.0 Release Notes . 24
11.5 libnacl 1.3.1 Release Notes . 24
11.6 libnacl 1.3.2 Release Notes . 24
11.7 libnacl 1.3.3 Release Notes . 24
11.8 libnacl 1.3.4 Release Notes . 24

i

11.9 libnacl 1.4.0 Release Notes . 25

12 Indices and tables 27

ii

libnacl Documentation, Release 1.3.6

Contents:

Contents 1

libnacl Documentation, Release 1.3.6

2 Contents

CHAPTER 1

Public Key Encryption

Unlike traditional means for public key asymmetric encryption, the nacl encryption systems are very high speed. The
CurveCP network protocol for instance only uses public key encryption for all transport.

Public key encryption is very simple, as is evidenced with this communication between Alice and Bob:

import libnacl.public

Define a message to send
msg = b'You\'ve got two empty halves of coconut and you\'re bangin\' \'em together.'

Generate the key pairs for Alice and bob, if secret keys already exist
they can be passed in, otherwise new keys will be automatically generated
bob = libnacl.public.SecretKey()
alice = libnacl.public.SecretKey()

Create the boxes, this is an object which represents the combination of the
sender's secret key and the receiver's public key
bob_box = libnacl.public.Box(bob.sk, alice.pk)
alice_box = libnacl.public.Box(alice.sk, bob.pk)

Bob's box encrypts messages for Alice
bob_ctxt = bob_box.encrypt(msg)
Alice's box decrypts messages from Bob
bclear = alice_box.decrypt(bob_ctxt)
Alice can send encrypted messages which only Bob can decrypt
alice_ctxt = alice_box.encrypt(msg)
aclear = alice_box.decrypt(alice_ctxt)

Note: Every encryption routine requires a nonce. The nonce is a 24 char string that must never be used twice with
the same keypair. If no nonce is passed in then a nonce is generated based on random data. If it is desired to generate
a nonce manually this can be done by passing it into the encrypt method.

3

libnacl Documentation, Release 1.3.6

1.1 SecretKey Object

The SecretKey object is used to manage both public and secret keys, this object contains a number of methods for both
convenience and utility. The key data is also available.

1.1.1 Keys

The raw public key is available as SecretKey.sk, to generate a hex encoded version of the key the sk_hex method is
available. The same items are available for the public keys:

import libnacl.public

fred = libnacl.public.SecretKey()

raw_sk = fred.sk
hex_sk = fred.hex_sk()

raw_pk = fred.pk
hex_pk = fred.hex_pk()

By saving only the binary keys in memory libnacl ensures that the minimal memory footprint is needed.

1.2 PublicKey Object

To manage only the public key end, a public key object exists:

import libnacl.public

tom = libnacl.public.PublicKey(tom_public_key_hex)

raw_pk = tom.pk
hex_pk = tom.hex_pk()

1.3 Saving Keys to Disk

All libnacl key objects can be safely saved to disk via the save method. This method changes the umask before saving
the key file to ensure that the saved file can only be read by the user creating it and cannot be written to.

import libnacl.public

fred = libnacl.public.SecretKey()
fred.save('/etc/nacl/fred.key')

4 Chapter 1. Public Key Encryption

CHAPTER 2

Secret Key Encryption

Secret key encryption is the method of using a single key for both encryption and decryption of messages. One of the
classic examples from history of secret key, or symetric, encryption is the Enigma machine.

The SecretBox class in libnacl.secret makes this type of encryption very easy to execute:

msg = b'But then of course African swallows are not migratory.'
Create a SecretBox object, if not passed in the secret key is
Generated purely from random data
box = libnacl.secret.SecretBox()
Messages can now be safely encrypted
ctxt = box.encrypt(msg)
An addition box can be created from the original box secret key
box2 = libnacl.secret.SecretBox(box.sk)
Messages can now be easily encrypted and decrypted
clear1 = box.decrypt(ctxt)
clear2 = box2.decrypt(ctxt)
ctxt2 = box2.encrypt(msg)
clear3 = box.decrypt(ctxt2)

Note: Every encryption routine requires a nonce. The nonce is a 24 char string that must never be used twice with
the same keypair. If no nonce is passed in then a nonce is generated based on random data. If it is desired to generate
a nonce manually this can be done by passing it into the encrypt method.

5

libnacl Documentation, Release 1.3.6

6 Chapter 2. Secret Key Encryption

CHAPTER 3

Signing and Verifying Messages

The nacl libs have the capability to sign and verify messages. Please be advised that public key encrypted messages
do not need to be signed, the nacl box construct verifies the validity of the sender.

To sign and verify messages use the Signer and Verifier classes:

import libnacl.sign

msg = (b'Well, that\'s no ordinary rabbit. That\'s the most foul, '
b'cruel, and bad-tempered rodent you ever set eyes on.')

Create a Signer Object, if the key seed value is not passed in the
signing keys will be automatically generated
signer = libnacl.sign.Signer()
Sign the message, the signed string is the message itself plus the
signature
signed = signer.sign(msg)
If only the signature is desired without the message:
signature = signer.signature(msg)
To create a verifier pass in the verify key:
veri = libnacl.sign.Verifier(signer.hex_vk())
Verify the message!
verified = veri.verify(signed)
verified2 = veri.verify(signature + msg)

3.1 Saving Keys to Disk

All libnacl key objects can be safely saved to disk via the save method. This method changes the umask before saving
the key file to ensure that the saved file can only be read by the user creating it and cannot be written to.

import libnacl.sign

signer = libnacl.sign.Signer()
signer.save('/etc/nacl/signer.key')

7

libnacl Documentation, Release 1.3.6

8 Chapter 3. Signing and Verifying Messages

CHAPTER 4

Dual Key Management

The libnacl library abstracts a “Dual Key” model. The Dual Key creates a single key management object that can be
used for both signing and encrypting, it generates and maintains a Curve25519 encryption key pair and an ED25519
signing keypair. All methods for encryption and signing work with and from Dual Keys.

To encrypt messages using Dual Keys:

import libnacl.dual

Define a message to send
msg = b"You've got two empty halves of coconut and you're bangin' 'em together."

Generate the key pairs for Alice and bob, if secret keys already exist
they can be passed in, otherwise new keys will be automatically generated
bob = libnacl.dual.DualSecret()
alice = libnacl.dual.DualSecret()

Create the boxes, this is an object which represents the combination of the
sender's secret key and the receiver's public key
bob_box = libnacl.public.Box(bob.sk, alice.pk)
alice_box = libnacl.public.Box(alice.sk, bob.pk)

Bob's box encrypts messages for Alice
bob_ctxt = bob_box.encrypt(msg)
Alice's box decrypts messages from Bob
bclear = alice_box.decrypt(bob_ctxt)
Alice can send encrypted messages which only Bob can decrypt
alice_ctxt = alice_box.encrypt(msg)
aclear = alice_box.decrypt(alice_ctxt)

Note: Every encryption routine requires a nonce. The nonce is a 24 char string that must never be used twice with
the same keypair. If no nonce is passed in then a nonce is generated based on random data. If it is desired to generate
a nonce manually this can be done by passing it into the encrypt method.

9

libnacl Documentation, Release 1.3.6

4.1 DualKey Object

The DualKey object is used to manage both public and secret keys, this object contains a number of methods for both
convenience and utility. The key data is also available.

4.1.1 Keys

The raw public key is available as DualKey.pk, to generate a hex encoded version of the key the pk_hex method is
available:

import libnacl.dual

fred = libnacl.dual.DualKey()

raw_sk = fred.sk
hex_sk = fred.hex_sk()

raw_pk = fred.pk
hex_pk = fred.hex_pk()

By saving only the binary keys in memory libnacl ensures that the minimal memory footprint is needed.

4.2 Saving Keys to Disk

All libnacl key objects can be safely saved to disk via the save method. This method changes the umask before saving
the key file to ensure that the saved file can only be read by the user creating it and cannot be written to. When using
dual keys the encrypting and signing keys will be safed togather in a single file.

import libnacl.dual

fred = libnacl.dual.DualKey()
fred.save('/etc/nacl/fred.key')

10 Chapter 4. Dual Key Management

CHAPTER 5

Utility Functions

The libnacl system comes with a number of utility functions, these functions are made available to make some of the
aspects of encryption and key management easier. These range from nonce generation to loading saved keys.

5.1 Loading Saved Keys

After keys are saved using the key save method reloading the keys is easy. The libnacl.utils.load_key function will
detect what type of key object saved said key and then create the object from the key and return it.

import libnacl.utils

key_obj = libnacl.utils.load_key('/etc/keys/bob.key')

The load_key and save routines also support inline key serialization. The default is json but msgpack is also supported.

5.2 Salsa Key

A simple function that will return a random byte string suitable for use in SecretKey encryption.

import libnacl.utils

key = libnacl.utils.salsa_key()

This routine is only required with the raw encryption functions, as the libnacl.secret.SecretBox will generate the key
automatically.

11

libnacl Documentation, Release 1.3.6

5.3 Nonce Routines

A few functions are available to help with creating nonce values, these routines are available because there is some
debate about what the best approach is.

We recommend a pure random string for the nonce which is returned from rand_nonce, but some have expressed
a desire to create nonces which are designed to avoid re-use by more than simply random data and therefore the
time_nonce function is also available.

12 Chapter 5. Utility Functions

CHAPTER 6

Raw Public Key Encryption

Note: While these routines are perfectly safe, higher level convenience wrappers are under development to make
these routines easier.

Public key encryption inside the nacl library has been constructed to ensure that all cryptographic routines are executed
correctly and safely.

The public key encryption is executed via the functions which begin with crypto_box and can be easily executed.

First generate a public key and secret key keypair for the two communicating parties, who for tradition’s sake, will be
referred to as Alice and Bob:

import libnacl

alice_pk, alice_sk = libnacl.crypto_keypair()
bob_pk, bob_sk = libnacl.crypto_keypair()

Once the keys have been generated a cryptographic box needs to be created. The cryptographic box takes the party’s
secret key and the receiving party’s public key. These are used to create a message which is both signed and encrypted.

Before creating the box a nonce is required. The nonce is a 24 character string which should only be used for this
message, the nonce should never be reused. This means that the nonce needs to be generated in such a way that the
probability of reusing the nonce string with the same keypair is very low. The libnacl wrapper ships with a convenience
function which generates a nonce from random bytes:

import libnacl.utils
nonce = libnacl.utils.rand_nonce()

Now, with a nonce a cryptographic box can be created, Alice will send a message:

msg = 'Quiet, quiet. Quiet! There are ways of telling whether she is a witch.'
box = libnacl.crypto_box(msg, nonce, bob_pk, alice_sk)

Now with a box in hand it can be decrypted by Bob:

13

libnacl Documentation, Release 1.3.6

clear_msg = libnacl.crypto_box_open(box, nonce, alice_pk, bob_sk)

The trick here is that the box AND the nonce need to be sent to Bob, so he can decrypt the message. The nonce can
be safely sent to Bob in the clear.

To bring it all together:

import libnacl
import libnacl.utils

alice_pk, alice_sk = libnacl.crypto_keypair()
bob_pk, bob_sk = libnacl.crypto_keypair()

nonce = libnacl.utils.rand_nonce()

msg = 'Quiet, quiet. Quiet! There are ways of telling whether she is a witch.'
box = libnacl.crypto_box(msg, nonce, bob_pk, alice_sk)

clear_msg = libnacl.crypto_box_open(box, nonce, alice_pk, bob_sk)

14 Chapter 6. Raw Public Key Encryption

CHAPTER 7

Raw Secret Key Encryption

Note: While these routines are perfectly safe, higher level convenience wrappers are under development to make
these routines easier.

Secret key encryption is high speed encryption based on a shared secret key.

Note: The nacl library uses the salsa20 stream encryption cipher for secret key encryption, more information about
the salsa20 cipher can be found here: http://cr.yp.to/salsa20.html

The means of encryption assumes that the two sides of the conversation both have access to the same shared secret
key. First generate a secret key, libnacl provides a convenience function for the generation of this key called lib-
nacl.utils.salsa_key, then generate a nonce, a new nonce should be used every time a new message is encrypted. A
convenience function to create a unique nonce based on random bytes:

import libnacl
import libnacl.utils

key = libnacl.utils.salsa_key()
nonce = libnacl.utils.rand_nonce()

With the key and nonce in hand, the cryptographic secret box can now be generated:

msg = 'Who are you who are so wise in the ways of science?'
box = libnacl.crypto_secretbox(msg, nonce, key)

Now the message can be decrypted on the other end. The nonce and the key are both required to decrypt:

clear_msg = libnacl.crypto_secretbox_open(box, nonce, key)

When placed all together the sequence looks like this:

15

http://cr.yp.to/salsa20.html

libnacl Documentation, Release 1.3.6

import libnacl
import libnacl.utils

key = libnacl.utils.salsa_key()
nonce = libnacl.utils.rand_nonce()

msg = 'Who are you who are so wise in the ways of science?'
box = libnacl.crypto_secretbox(msg, nonce, key)

clear_msg = libnacl.crypto_secretbox_open(box, nonce, key)

16 Chapter 7. Raw Secret Key Encryption

CHAPTER 8

Raw Message Signatures

Note: While these routines are perfectly safe, higher level convenience wrappers are under development to make
these routines easier.

Signing messages ensures that the message itself has not been tampered with. The application of a signature to a
message is something that is is automatically applied when using the public key encryption and is not a required step
when sending encrypted messages. This document however is intended to illustrate how to sign plain text messages.

The nacl libs use a separate keypair for signing then is used for public key encryption, it is a high performance key
signing algorithm called ed25519, more information on ed25519 can be found here: http://ed25519.cr.yp.to/

The sign messages first generate a signing keypair, this constitutes the signing key which needs to be kept secret, and
the verify key which is made available to message recipients.

import libnacl

vk, sk = libnacl.crypto_sign_keypair()

With the signing keypair in hand a message can be signed:

msg = 'And that, my liege, is how we know the Earth to be banana-shaped.'
signed = libnacl.crypto_sign(msg, sk)

The signed message is really just the plain text of the message prepended with the signature. The crypto_sign_open
function will read the signed message and return me original message without the signature:

orig = libnacl.crypto_sign_open(signed, vk)

Put all together:

import libnacl

vk, sk = libnacl.crypto_sign_keypair()

(continues on next page)

17

http://ed25519.cr.yp.to/

libnacl Documentation, Release 1.3.6

(continued from previous page)

msg = 'And that, my liege, is how we know the Earth to be banana-shaped.'
signed = libnacl.crypto_sign(msg, sk)

orig = libnacl.crypto_sign_open(signed, vk)

18 Chapter 8. Raw Message Signatures

CHAPTER 9

Raw Hash Functions

The nacl library comes with sha256 and sha512 hashing libraries. They do not seem to offer any benefit over python’s
hashlib, but for completeness they are included. Creating a hash of a message is very simple:

import libnacl

msg = 'Is there someone else up there we could talk to?'
h_msg = libnacl.crypto_hash(msg)

crypto_hash defaults to sha256, sha512 is also available:

import libnacl

msg = 'Is there someone else up there we could talk to?'
h_msg = libnacl.crypto_hash_sha512(msg)

19

libnacl Documentation, Release 1.3.6

20 Chapter 9. Raw Hash Functions

CHAPTER 10

Raw Generic Hash (Blake2b) Functions

The nacl library comes with blake hashing libraries.

More information on Blake can be found here: https://blake2.net

The blake2b hashing algorithm is a keyed hashing algorithm, which allows for a key to be associated with a hash.
Blake can be executed with or without a key.

With a key (they key can should be between 16 and 64 bytes):

import libnacl

msg = 'Is there someone else up there we could talk to?'
key = libnacl.randombytes(32)
h_msg = libnacl.crypto_generichash(msg, key)

Without a key:

import libnacl

msg = 'Is there someone else up there we could talk to?'
h_msg = libnacl.crypto_genrichash(msg)

21

https://blake2.net

libnacl Documentation, Release 1.3.6

22 Chapter 10. Raw Generic Hash (Blake2b) Functions

CHAPTER 11

Release notes

11.1 libnacl 1.0.0 Release Notes

This is the first stable release of libnacl, the python bindings for Daniel J. Bernstein’s nacl library via libsodium or
tweetnacl.

11.1.1 NaCl Base Functions

This release features direct access to the underlying functions from nacl exposed via importing libnacl. These functions
are fully documented and can be safely used directly.

11.2 libnacl 1.1.0 Release Notes

This release introduces the addition of high level classes that make using NaCl even easier.

11.2.1 High level NaCl

The addition of the high level classes give a more pythonic abstraction to using the underlying NaCl cryptography.

These classes can be found in libnacl.public, libnacl.sign and libnacl.secret.

11.2.2 Easy Nonce Generation

The new classes will automatically generate a nonce value per encrypted message. The default nonce which is gener-
ated can be found in libnacl.utils.time_nonce.

23

libnacl Documentation, Release 1.3.6

11.3 libnacl 1.2.0 Release Notes

This release introduces the DualKey class, secure key saving and loading, as well as enhancements to the time_nonce
function.

11.3.1 Dual Key Class

Dual Keys are classes which can encrypt and sign data. These classes generate and maintain both Curve25519 and
Ed25519 keys, as well as all methods for both encryption and signing.

11.3.2 Time Nonce Improvements

The original time nonce routine used the first 20 chars of the 24 char nonce for the microsecond timestamp (based on
salt’s jid), leaving 4 chars for random data. This new nonce uses far fewer chars for the timestamp by hex encoding
the float of microseconds into just 13 chars, leaving 11 chars of random data. This makes the default nonce safer and
more secure.

11.4 libnacl 1.3.0 Release Notes

This release removes the time_nonce function and replaces it with the rand_nonce function.

11.5 libnacl 1.3.1 Release Notes

Bring back a safe time_nonce function.

11.6 libnacl 1.3.2 Release Notes

Add detection of the libsodium.so.10 lib created by libsodium 0.6

11.7 libnacl 1.3.3 Release Notes

Fix issue and add tests for bug where saving and loading a signing key caused a stack trace, se issue #18

11.8 libnacl 1.3.4 Release Notes

• Change the default ctype values to be more accurate and efficient

• Update soname detection on Linux for libsodium 0.7.0

• Make soname detection a little more future proof

24 Chapter 11. Release notes

libnacl Documentation, Release 1.3.6

11.9 libnacl 1.4.0 Release Notes

11.9.1 Blake Hash Support

Initial support has been added for the blake2b hash algorithm

11.9.2 Misc Fixes

• Fix issue with keyfile saves on windows

• Fix libsodium detection for Ubuntu manual installs and Windows dll detection

11.9. libnacl 1.4.0 Release Notes 25

libnacl Documentation, Release 1.3.6

26 Chapter 11. Release notes

CHAPTER 12

Indices and tables

• genindex

• modindex

• search

27

	Public Key Encryption
	SecretKey Object
	PublicKey Object
	Saving Keys to Disk

	Secret Key Encryption
	Signing and Verifying Messages
	Saving Keys to Disk

	Dual Key Management
	DualKey Object
	Saving Keys to Disk

	Utility Functions
	Loading Saved Keys
	Salsa Key
	Nonce Routines

	Raw Public Key Encryption
	Raw Secret Key Encryption
	Raw Message Signatures
	Raw Hash Functions
	Raw Generic Hash (Blake2b) Functions
	Release notes
	libnacl 1.0.0 Release Notes
	libnacl 1.1.0 Release Notes
	libnacl 1.2.0 Release Notes
	libnacl 1.3.0 Release Notes
	libnacl 1.3.1 Release Notes
	libnacl 1.3.2 Release Notes
	libnacl 1.3.3 Release Notes
	libnacl 1.3.4 Release Notes
	libnacl 1.4.0 Release Notes

	Indices and tables

