trep Documentation

Release 1.0.3

Elliot Johnson

October 03, 2017
1 trep-Core Components 3
1.1 System-A Mechanical System 3
1.2 Frame - Coordinate Frame 11
1.3 Config - Configuration Variables 18
1.4 Input - Input Variables 20
1.5 Force - Base Class for Forces 21
1.6 Potential - Base Class for Potential Energies 26
1.7 Constraint - Base Class for Holonomic Constraints 28
1.8 MidpointVI - Midpoint Variational Integrator 30
2 trep.potentials-Potential Energies 37
2.1 Gravity - Basic Gravity 37
2.2 LinearSpring - Linear spring between two points 38
2.3 ConfigSpring - Linear Spring acting on a configuration variable 40
2.4 NonlinearConfigSpring - Nonlinear spring acting on a configuration variable 41
3 trep.forces-Forces 43
3.1 Damping - Damping on Configuration Variables 43
3.2 LinearDamper - Linear damper between two points 44
3.3 ConfigForce - Apply forces to a configuration variable 45
3.4 BodyWrench - Apply a body wrench to a frame. 46
3.5 HybridWrench - Apply a hybrid wrench to a frame. 47
3.6 SpatialWrench - Apply a spatial wrench to a frame 48
4 trep. constraints - Holonomic Constraints 51
4.1 Distance - Maintain a specific distance between points 51
4.2 Point ToPoint - Constrain the origins of two frames together 52
4.3 PointOnPlane - Constraint a point to a plane 53
5 trep.discopt - Discrete Optimal Control 55
5.1 Discrete LQ Problems 55
5.2 DSystem - Discrete System wrapper for Midpoint Variational Integrators 58
5.3 DCost - Discrete Trajectory Cost 64
5.4 DOptimizer - Discrete Trajectory Optimization 66
6 trep.ros-ROS Tools 73
6.1 URDF Import Tool 73
6.2 ROSMidpointVI - ROS Midpoint Variational Integrator 74
7 Misc. Components 75
7.1 Spline - Spline Objects 75
7.2 TapeMeasure - Measuring distances between frames 76
8 Trep "Hello World" 81
8.1 Import the trep module into python 81
8.2 Create a new instance of a trep system 82
8.3 Visualize the system with trep's visualization tools 83
8.4 trepHelloWorld.py code 83
9 Create a pendulum 85
9.1 Import necessary Python modules 85
9.2 Build a pendulum system 85
9.3 Add forces to the system 86
9.4 Create and initialize the variational integrator 86
9.5 Simulate the system forward 87
9.6 Visualize the system in action 88
9.7 pendulumSystem.py code 88
10 Design linear feedback controller 91
10.1 Create pendulum system 91
10.2 Create discrete system 92
10.3 Design linear feedback controller 93
10.4 Simulate the system forward 94
10.5 Visualize the system in action 94
10.6 linearFeedbackController.py code 95
11 Design energy shaping swing-up controller 99
11.1 Create pendulum system 99
11.2 Design energy shaping swing-up controller 100
11.3 Simulate the system forward 100
11.4 Visualize the system in action 101
11.5 Complete code 102
12 Calculate optimal switching time 105
12.1 Create pendulum system 105
12.2 Create cost 106
12.3 Angle utility functions 107
12.4 Simulate function 107
12.5 Optimize 108
12.6 Simulate with optimal switching time 110
12.7 Visualize the system in action 111
12.8 optimalSwitchingTime.py code 113
13 Discrete Dynamics and Variational Integrators 119
14 Indices and tables 121
Python Module Index 123

Release v1.0.3

Date October 03, 2017
Trep is a Python module for modeling rigid body mechanical systems in generalized coordinates. It provides tools for calculating continuous and discrete dynamics (based on a midpoint variational integrator), and the first and second derivatives of both. Tools for trajectory optimization and other basic optimal control methods are also available.

You can find detailed installation instructions on our website. Many examples are included with the source code (browse online).

The API Reference has detailed documentation for each part of trep. We have also put together a detailed Tutorials that gives an idea of the capabilities and organization of trep by stepping through several example problems.

If you have any questions or suggestions, please head over to our project page.

trep - Core Components

The central component of trep is the System class. A System is a collection of coordinate frames, forces, potential energies, and constraints that describe a mechanical system in generalized coordinates. The system is capable of calculating the continuous dynamics and the first and second derivatives of the dynamics.

System - A Mechanical System

The System object is the central component for modeling a mechanical system, and usually the first trep object you create. It contains the entire definition of the system, including all coordinate frames, configuration variables, constraints, etc.

System is responsible for calculating continuous dynamics and derivative, but it is also used for the underlying Lagrangian calculations in any discrete dynamics calculations.

A System has a single inertial coordinate frame, accessible through the world_frame attribute. Every other coordinate frame added to the system will be descended from this coordinate frame.

class trep. System

Create a new empty mechanical system.

[^0]- Derivative Testing
- Structure Updates

System Components

System.world_frame

The root spatial frame of the system. The world frame will always exist and cannot be changed other than adding child frames.
(read only)
System.frames
System.configs
System.dyn_configs
System.kin_configs
System.potentials
System. forces
System.inputs
System. constraints
Tuples of all the components in the system. The order of components in these tuples defines their order throughout trep. Any vector of configuration values will be the same order as System.configs, any vector of constraint forces will be the same order as System. constraints, etc.

For example, any array of numbers representing a configuration will be ordered according to system. configs. An array of constraint forces will correspond to the order of system. constraints.
configs is guaranteed to be ordered as the concatenation of dyn_configs and kin_configs:
System.configs = System.dyn_configs + System.kin_configs
The tuples are read only, but the components in them may be modified.

System.masses

A tuple of all the Frame objects in the system with non-zero mass properties.
(read only)
System.nQ
Number of configuration variables in the system. Equivalent to len(system.configs).
(read only)
System.nQd
Number of dynamic configuration variables in the system. Equivalent to len(system.dyn_configs).
(read only)
System.nQk
Number of kinematic configuration variables in the system. Equivalent to len(system.kin_configs).
(read only)
System.nu
Number of inputs in the system. Equivalent to len(system.inputs).
(read only)

System.nc

Number of constraints in the system. Equivalent to len(system. constraints).
(read only)

Finding Specific Components

```
System.get_frame(identifier)
System.get_config(identifier)
System.get_potential (identifier)
System.get_constraint (identifier)
System.get_force(identifier)
System.get_input(identifier)
Find a specific component in the system. The identifier can be:
```

-Integer: Returns the component at that position in the corresponding tuple.
system.get_frame $(\mathrm{i})=$ system.frames[i]
If the index is invalid, an IndexError exception is raised.

- String: Returns the component with the matching name:
system.get_config('theta').name $==$ 'theta'
If no object has a matching name, a KeyError exception is raised.
-Object: Return the identifier unmodified:

```
system.get_force(force) == force
```

If the object is the incorrect type, a TypeError exception is raised:

```
>>> config = system.configs[0]
>>> system.get_frame(config)
Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
            File "/usr/local/lib/python2.7/dist-packages/trep/system.py", line 106, in_
Get_frame
            return self._get_object(identifier, Frame, self.frames)
    File "/usr/local/lib/python2.7/dist-packages/trep/system.py", line 509, in _
Gget_object
            raise TypeError()
TypeError
```


Importing and Exporting Frame Definitions

System.import_frames (children)

Adds children to this system's world frame using a special frame definition. See Frame.import_frames () for details.

System.export_frames (system_name='system', frames_name='frames', tab_size=4)
Create python source code to define this system's frames. The code is returned as a string.

System State

A system is a stateful object that has a current time, configuration, velocity, and input at all times. When working directly with a system, you are a responsible for setting the state.

System.t

Current time of the system.
The other state information is actually spread out among each component in the system. For example, each current configuration value is stored in Config. q. These can be modified directly through each component, but the following attributes are usually more convenient for reading and writing multiple values at once.

```
System.q
System.dq
System.ddq
```

The value, velocity, and acceleration of the complete configuration.

```
System.qd
System.dqd
System.ddqd
```

The value, velocity, and acceleration of the dynamic configuration.

```
System.qk
System.dqk
System.ddqk
```

The value, velocity, and acceleration of the kinematic configuration.

System.u

The current values of the force inputs.
Reading the each attribute will return a numpy array of the current values.
The values can be set with three different methods:

- A dictionary that maps names to values:

```
>>> system.q = { 'x' : 1.0, 'theta' : 0.1}
```

Any variables that are not named will be unchanged.

- A array-like list of numbers:

```
>>> system.q = [1.0, 0.1, 0.0, 2.3]
>>> system.q = np.array([1.0, 0.1, 0.0, 2.3])
```

If the size of the array and the number of variables doesn't match, the shorter of the two will be used:

```
>>> system.nQ
4
# This only sets the first 2 configuration variables!
>>> system.q = [0.2, 5.0]
# This ignores the last 2 values!
>> system.q = [0.5, 0, 1.1, 2.4, 9.0]
```

- A single number:

```
>>> system.q = 0
```

This will set the entire configuration to the number.
System.set_state ($q=$ None, $d q=$ None, $u=$ None, $d d q k=$ None, $t=$ None $)$
Set the current state of the system, not including the "output" ddqd. The types of values accepted are the same as described above.

Constraints

System.satisfy_constraints (tolerance $=1 e-10, \quad$ verbose $=$ False, keep_kinematic=False, constant_q_list=None)
Modify the current configuration to satisfy the system constraints. Letting q_{0} be the system's current configuration, this performs the optimization:

$$
q=\arg \min _{q}\left|q-q_{0}\right|^{2} \quad \text { s.t. } \quad h(q)=0
$$

The new configuration will be set in the system and returned. If the optimization fails, a StandardError exception is raised.
Setting verbose to True will make the optimization print out information to the console while it is running.
Setting keep_kinematic to True will modify above optimization to optimize over q_{d} instead of q; thus all kinematic configuration variables will be kept constant. Passing a list (or tuple) of configurations to constant_q_list will define an arbitrary set of configurations to hold constant during optimization. Internally this method uses System.get_config() thus, any valid identifier mentioned in Finding Specific Components section will work.

System.minimize_potential_energy (tolerance $=1 e-10$, verbose $=$ False, keep_kinematic $=$ False, constant_q_list=None)
Modify the current configuration to satisfy the system constraints while also minimizing potential energy. The system velocity is set to zero, and thus the kinetic energy is zero. Therefore, the actual optimization that is solved is given by

$$
q=\arg \min _{q}(-L(q, \dot{q}=0)) \quad \text { s.t. } \quad h(q)=0
$$

The new configuration will be set in the system and returned. If the optimization fails, a StandardError exception is raised. This function may be useful for finding nearby equilibrium points that satisfy the system constraints.

Setting verbose to True will make the optimization print out information to the console while it is running.
Setting keep_kinematic to True will modify above optimization to optimize over q_{d} instead of q; thus all kinematic configuration variables will be kept constant. Passing a list (or tuple) of configurations to constant_q_list will define an arbitrary set of configurations to hold constant during optimization. Internally this method uses System.get_config() thus, any valid identifier mentioned in Finding Specific Components section will work.

Lagrangian Calculations

System.total_energy()

Calculate the total energy in the current state.

```
System.L()
System.L_dq(ql)
System.L_dqdq(q1,q2)
System.L_dqdqdq(q1,q2,q3)
System.L_ddq(dql)
System.L_ddqdq (dq1,q2)
System.L_ddqdqdq (dq1, q2,q3)
System.L_ddqdqdqdq (dq1,q2,q3,q4)
System.L_ddqddq(dq1,dq2)
System.L_ddqddqdq(dq1,dq2,q3)
```

System.L_ddqddqdqdq ($d q 1, d q 2, q 3, q 4$)
Calculate the Lagrangian or it's derivatives at the current state. When calculating the Lagrangian derivatives, you must specify a variable to take the derivative with respect to.
Calculating $\frac{\partial L}{\partial q_{0}}$:
>>> q0 = system.configs[0]
\ggg system.L_dq(q0)
Calculating $\frac{\partial^{2} L}{\partial q_{0} \partial \dot{q}_{1}}$:

```
>>> q0 = system.configs[0]
>>> q1 = system.configs[1]
>>> system.L_ddqdq(q1, q0)
```

Calculating $\frac{\partial^{2} L}{\partial \dot{q}_{0} \partial \dot{q}_{1}}$:

```
>>> q0 = system.configs[0]
>>> q1 = system.configs[1]
>>> system.L_ddqddq(q1, q0)
# Mixed partials always commute, so we could also do:
>>> system.L_ddqddq(q0, q1)
```

Calculate an entire derivative $\frac{\partial L}{\partial q}$:

```
>>> [system.L_dq(q) for q in system.configs]
```


Dynamics

System. \mathbf{f} ($q=$ None $)$

Calculate the dynamics at the current state, $\ddot{q}_{d}=f\left(q, \dot{q}, \ddot{q}_{k}, u, t\right)$.
This calculates the second derivative of the dynamic configuration variables. The results are also written to Config. ddq.

If q is None, the entire vector \ddot{q}_{d} is returned. The array is in the same order as System. dyn_configs.
If q is specified, it must be a dynamic configuration variable, and it's second derivative will be returned. This could also be accessed as q.ddq.
Once the dynamics are calculated, the results are saved until the system's state changes, so repeated calls will not keep repeating work.

System.f_dq ($q=$ None, $q 1=$ None $)$
System.f_ddq ($q=$ None, $d q 1=$ None $)$
System.f_dddk ($q=$ None, $k l=$ None)
System.f_du ($q=$ None, $u l=$ None $)$
Calculate the first derivative of the dynamics with respect to the configuration, the configuration velocity, the kinematic acceleration, or the force inputs.

If both parameters are None, the entire first derivative is returned as a numpy array with the derivatives across the rows.

If any parameters are specified, they must be appropriate objects, and the function will return the specific information requested.
Calculating $\frac{\partial f}{\partial q_{2}}$:

```
>>> dq = system.configs[2]
>>> system.f_dq(q1=dq)
array([-0.076, -0.018, -0.03 , ..., 0.337, -0.098, 0.562])
```

Calculating $\frac{\partial f}{\partial \dot{q}}$:

```
>>> system.f_ddq()
array([[-0.001, -0. , -0. , ..., 0.001, -0.001, 0. ],
[-0. , -0.002, -0. , ..., -0. , -0. , 0. ],
[-0. , -0. , -0. , ..., 0. , -0. , 0. ],
[-0. , -0.001, -0. , ..., -0.003, -0. , 0. ],
[ 0.001, -0. , 0. , ..., -0.005, 0.008, -0. ],
[-0.001, -0. , -0. , ..., 0.008, -0.027, 0. ]])
>>> system.f_ddq().shape
(22, 23)
```

Calculating $\frac{\partial \ddot{q}_{4}}{\partial \ddot{q}_{k 0}}$:

```
>>> qk = system.kin_configs[0]
>>> q = system.dyn_configs[4]
>>> system.f_dddk(q, qk)
-0.31036045452513322
```

The first call to any of these functions will calculate and cache the entire first derivative. Once calculated, subsequent calls will not recalculate the derivatives until the system's state is changed.

```
System.f_dqdq (q=None, q1=None, q2=None)
System.f_ddqdq (q=None, dq1=None, q2=None)
System.f_ddqddq (q=None,dq1=None,dq2=None)
System.f_dddkdq (q=None, kl=None, q2=None)
System.f_dudq (q=None, ul=None, q2=None)
System.f_duddq ( q=None, ul=None, dq2=None)
System.f_dudu(q=None,ul=None, u2=None)
```

Calculate second derivatives of the dynamics.
If no parameters specified, the entire second derivative is returned as a numpy array. The returned arrays are indexed with the two derivatives variables as the first two dimensions and the dynamic acceleration as the last dimension. In other words, calling:

```
system.f_dqdq(q, q1, q2)
```

is equivalent to:

```
result = system.f_dqdq()
result[q1.index, q2.index, q.index]
```

If any parameters are specified, they must be appropriate objects, and the function will return the specific information requested. For example:

```
system.f_dqdq(q2=q2)
```

is equivalent to:

```
result = system.f_dqdq()
result[:, q2.index, :]
```

The second derivatives are indexed opposite from the first derivatives because they are generally multiplied by an adjoint variable in practice. For example, the quantity:

$$
z^{T} \frac{\partial^{2} f}{\partial q \partial \dot{q}}
$$

can be calculated as:

```
numpy.inner(system.f_dqddq(), z)
```

without having to do a transpose or specify a specific axis.
The first call to any of these functions will calculate and cache the entire second derivative. Once calculated, subsequent calls will not recalculate the derivatives until the system's state is changed.

Constraint Forces

```
System.lambda_(constraint=None)
System.lambda_dq(constraint=None, ql=None)
System.lambda_ddq (constraint=None, dq1=None)
System.lambda_dddk (constraint=None, kl=None)
System.lambda_du (constraint=None, ul=None)
System.lambda_dqdq (constraint=None, q1=None, q2=None)
System.lambda_ddqdq (constraint=None, dq1=None, q2=None)
System.lambda_ddqddq (constraint=None, dq1=None, dq2=None)
System.lambda_dddkdq (constraint=None, kl=None, q2=None)
System.lambda_dudq (constraint=None, ul=None, q2=None)
System.lambda_duddq (constraint=None, ul=None, dq2=None)
System.lambda_dudu (constraint=None, ul=None, u2=None)
```

These are functions for calculating the value of the constraint force vector λ and its derivatives. They have the same behavior and index orders as the dynamics functions.

Derivative Testing

System.test_derivative_dq(func, func_dq, delta=le-6, tolerance=1e-7, verbose=False, test_name = '<unnamed $>$ ')
System.test_derivative_ddq (func, func_ddq, delta=le-6, tolerance=1e-7, verbose=False, test_name= '<unnamed>')
Test the derivative of a function with respect to a configuration variable's time derivative and its numerical approximation.
func -> Callable taking no arguments and returning float or np.array
func_ddq -> Callable taking one configuration variable argument and returning a float or np.array.
delta -> perturbation to the current configuration to calculate the numeric approximation.
tolerance -> acceptable difference between the approximation and exact value. (lexact - approx $<=$ tolerance)
verbose -> Boolean indicating if a message should be printed for failures.
name -> String identifier to print out when reporting messages when verbose is true.
Returns False if any tests fail and True otherwise.

Structure Updates

Whenever a system is significantly modified, an internal function is called to make sure everything is consistent and resize the arrays used for calculating values as needed. You can register a function to be called after the system has been made consistent using the add_structure_changed_func (). This is useful if you building your own component that needs to be updated whenever the system's structure changed (See Damping for an example).
System.add_structure_changed_func (function)
Register a function to call whenever the system structure changes. This includes adding and removing frames, configuration variables, constraints, potentials, and forces.

Since every addition to the system triggers a structure update, building a large system can cause a long delay. In these cases, it is useful to stop the structure updates until the system is fully constructed and then perform the update once.

Warning: Be sure to remove all holds before performing any calculations with system.

System.hold_structure_changes()

Prevent the system from calling System._update_structure() (mostly). This can be called multiple times, but resume_structure_changes () must be called an equal number of times.

System.resume_structure_changes()

Stop preventing the system from calling System._update_structure (). The structure will only be updated once every hold has been removed, so calling this does not guarantee that the structure will be immediately update.

Frame - Coordinate Frame

The basic geometry of a mechanical system is defined by tree of coordinate frames in trep. The root of the tree is the fixed System. world_frame. Every other coordinate frame is defined by a coordinate transformation relative to its parent. The coordinate transformations are either fixed or parameterized by a single configuration variable. For example, a rotational joint is modeled as a rotation transformation where the angle is controlled by a configuration variable.

Coordinate frames also define the masses in the system. For every mass, a coordinate frame must be placed with the origin at the center of mass and the axes aligned with the principle axes of the rotational inertia. Coordinate frames can also be mass-less, or have a mass but no rotational inertia to model point masses.

A Frame object can calculate its global position and body velocity, and their derivatives.

```
- Frame Transformation Types
- Defining the Frames
- Frame Objects
```

- Importing and Exporting Frames
- Transform Information
- Inertial Properties
- Local Frame Transformations
- Global Frame Transformations
- Body Velocity Calculations

Frame Transformation Types

There are a fixed set of coordinate transformations to define each frame:

Constant	Description
trep.RX	Rotation about the parent's X axis.
trep.RY	Rotation about the parent's Y axis.
trep.RZ	Rotation about the parent's Z axis.
trep. TX	Translation about the parent's X axis.
trep. TY	Translation about the parent's Y axis.
trep. TZ	Constant SE(3) transformation from parent.
trep.CONST_SE3	Unique World Frame.
trep. WORLD	

The first six transformations can either be parameterized by a fixed constant or a configuration variable. The CONSI_SE3 transformation can only be fixed.
The WORLD transformation is reserved for the system's world_frame.

Defining the Frames

New coordinate frames can be directly defined using the Frame constructor. For example, this will create a simple pendulum:

```
>>> import trep
>>> system = trep.System()
>>> frame1 = trep.Frame(system.world_frame, trep.RX, "theta")
>>> frame2 = trep.Frame(frame1, trep.TZ, -1, mass=4)
```

This gets tedious and makes it difficult to see the mechanical structure, so trep provides an alternate method to declare frames using Frame.import_frames () and a few extra functions:

```
trep.tx (param, name=None, kinematic=False, mass=0.0)
trep.ty (param, name=None, kinematic=False, mass=0.0)
trep.tz (param, name=None, kinematic=False, mass=0.0)
trep.rx (param, name=None, kinematic=False, mass=0.0)
trep.ry (param, name=None, kinematic=False, mass=0.0)
trep.rz (param, name=None, kinematic=False, mass=0.0)
trep.const_se3 (se3, name=None, kinematic=False, mass=0.0)
trep.const_txyz (xyz, name, kinematic, mass)
```

The parameters are the same as for creating new Frame objects directly, except the parent and transform type are gone. The transform type is implied by the function name. The parent will be implied by how we use the definition.

Frame.import_frames () expects a list of these definitions. For each definition, the frame will create a new frame and add it to it's children.

For example, suppose we had a frame with 6 children:

```
>>> child1 = Frame(parent, trep.TX, 'q1')
>>> child2 = Frame(parent, trep.TY, 'q2', name='favorite_child')
>>> child3 = Frame(parent, trep.TZ, 'q3')
>>> child4 = Frame(parent, trep.RX, 'q4')
>>> child5 = Frame(parent, trep.TX, 'q5')
```

Using Frame. import_frames (), this becomes:

```
>>> children = [
... trep.tx('q1'),
... trep.ty('q2', name='favorite_child'),
... trep.tz('q3'),
... trep.rx('q4'),
... trep.tx('q5')
... ]
>>> parent.import_frames(children)
```

We can also add children to these children. If Frame.import_frames () finds a list after a frame definition, then it will call the new call the new child's import_frames () method with the new list.

For example, the pendulum we created earlier, can be defined as:

```
>>> import trep
>>> from trep import rx, tz
>>> children = [
... rx('theta'), [
... tz(-1, mass=4)
... ]]
>>> system.world_frame.import_frames(children)
```

Since Frame. import_frames () works recursively, we can describe arbitrarily complex trees. Consider this more complicated example:

In the above image, the system is entirely 2D, and we are looking at the $x-z$ plane of the World frame. Thus the arrows of each labeled coordinate frame are showing the positive x and positive z axes of that frame. The corresponding frame definition is:

```
import trep
from trep import tx, ty, tz, rx, ry, rz
system = trep.System()
frames = [
    ry('H', name='H'), [
        tz(-0.5, name='I', mass=1),
        tz(-1), [
            ry('J', name='J'), [
                tz(-1, name='K', mass=1),
                tz(-2, name='L')]]],
    tx(-1.5), [
        ry('M', name='M'), [
            tz(-1, name='N', mass=1),
            tz(-2), [
                ry('O', name='O'), [
                    tz(-0.5, name='P', mass=1),
                tz(-1.0, name='Q')]]]],
    tx(1.5), [
        ry('A', name='A'), [
            tz(-1, name='B', mass=1),
            tz(-2), [
                ry('C', name='C'), [
```

```
        tz(-0.375, name='D', mass=1),
        tz(-0.75), [
        ry('E', name='E'), [
            tz(-0.5, name='F', mass=1),
            tz(-1.0, name='G')
            ]
        ]
        ]
        ]
        ]
        ]
    ]
system.import_frames(frames)
```

This is much more concise than defining the frames directly. It is also easier to see the structure of the system by taking advantage of how most Python editors will indent the nested lists. Trep also provides the function Frame. tree_view () for creating a visual representation of a system's tree structure. For the above system we can view the tree with the following command:

```
>>> print system.get_frame('World').tree_view()
<Frame 'World'>
    <Frame 'H' RY(H)>
        <Frame 'I' TZ(-0.5) 1.000000>
        <Frame 'None' TZ(-1.0) 0.000000>
            <Frame 'J' RY(J)>
                <Frame 'K' TZ(-1.0) 1.000000>
                <Erame 'L' TZ(-2.0) 0.000000>
    <Frame 'None' TX(-1.5) 0.000000>
        <Frame 'M' RY(M)>
            <Frame 'N' TZ(-1.0) 1.000000>
            <Erame 'None' TZ(-2.0) 0.000000>
            <Frame 'O' RY(O)>
                    <Frame 'P' TZ(-0.5) 1.000000>
                    <Erame 'Q' TZ(-1.0) 0.000000>
    <Frame 'None' TX(1.5) 0.000000>
    <Frame 'A' RY(A)>
        <Erame 'B' TZ(-1.0) 1.000000>
        <Erame 'None' TZ(-2.0) 0.000000>
            <Frame 'C' RY(C)>
                <Frame 'D' TZ(-0.375) 1.000000>
                    <Frame 'None' TZ(-0.75) 0.000000>
                    <Frame 'E' RY(E)>
                            <Frame 'F' TZ(-0.5) 1.000000>
                            <Frame 'G' TZ(-1.0) 0.000000>
```

A convenience function is also provided to create constant $\mathrm{SE}(3)$ transformations from an angle and an axis.
trep.rotation_matrix (theta, axis)
Build a 4×4 SE3 matrix corresponding to a rotation of theta radians around axis.

Frame Objects

class trep. Frame (parent, transform, param[, name=None, kinematic=False, mass=0.0])
Create a new coordinate frame attached to parent. transform must be one of the transformation constants and defines how the new frame is related to the parent frame.
param is either a number or a string. If param is an number, the frame is fixed relative to the parent.

If param is a string, the frame's coordinate transformation is controlled by a configuration variable. A new configuration variable will be created using param as the name. By default, the new configuration variable will be dynamic. If kinematic is True, it will be kinematic.
If transform is CONST_SE, param must be a 4 x 4 matrix that defines the Frame's constant $\mathrm{SE}(3)$ transformation relative to parent.
name is an optional name for the frame.
mass defines the inertial properties of the frame. If mass is a single number, it is the frame's linear mass and the rotational inertia will be zero.
mass can also be a list of 4 numbers that define the Frame's mass, $I_{x x}$, $I_{y y}$, and $I_{z z}$ inertial properties.
Frame.uses_config (q)
Parameters $\mathrm{q}($ Config) - A configuration variable in the system.
Determine if this coordinate frame depends on the configuration variable q.
When a frame does not depend on a configuration variable, the derivatives of its position and velocity will always be zero. You can usually improve the performance of new constraints, potentials, and forces by checking for this and avoiding unnecessary calculations.

Frame.system

The System that the frame belongs to.
(read only)
Frame.config
The Config that parameterizes the frame's transformation. This will be None for fixed transformations.
(read only)
Frame.parent
The parent frame of this frame. This is always None for the System.world_frame, and always a valid Frame otherwise.
(read only)
Frame.children
A tuple of the frame's child frames.
(read only)
Frame.flatten_tree()
Create a list of the frame and its entire sub-tree. There is no guarantee on the ordering other than it won't change as long as no frames are added to the system.

Frame.tree_view (indent=0)
Return a string that visually describes this frame and it's descendants.

Importing and Exporting Frames

Frame.import_frames (children)
Import a tree of frames from a tree description. See Defining the Frames. The tree will be added to this frame's children.

Frame.export_frames $\left(t a b s=0, t a b _s i z e=4\right)$
Create python source code to define this frame and it's sub-tree. The code is returned as a string.

Transform Information

Frame.transform_type
Transformation type of the coordinate frame. This will be one of the constants described in Frame Transformation Types.
(read only)
Frame.transform_value
Current value of the frame's transformation parameters. This will either be the fixed transformation parameter or the value of the frame's configuration variable.

Frame.set_SE3 $(R x=(1,0,0), R y=(0,1,0), R z=(0,0,1), p=(0,0,0))$
Set the SE3 transformation for a const_SE3 frame.

Inertial Properties

```
Frame.mass
Frame.Ixx
Frame.Iyy
Frame.Izz
Frame.set_mass (mass, Ixx=0.0, Iyy=0.0, Izz=0.0)
```

The coordinate frame can have mass at its origin and rotational inertia about each axis.

Local Frame Transformations

```
Frame.lg()
```

Frame.lg_dq()
Frame.lg_dqdq()
Frame.lg_dqdqdq()
Frame.lg_dqdqdqdq()

These functions calculate the coordinate transformation to the frame from its parent in $\mathrm{SE}(3)$ and the derivatives of coordinate transformation with respect to the frame's configuration variable. If the frame is fixed, the derivatives will be zero. The returned values are $4 x 4$ numpy arrays.

```
Frame.lg_inv()
Frame.lg_inv_dq()
Frame.lg_inv_dqdq()
Frame.lg_inv_dqdqdq()
Frame.lg_inv_dqdqdqdq()
```

These functions calculate the inverse coordinate transformation to the frame from its parent (the transformation from the frame to its parent.) and its derivatives.

Global Frame Transformations

```
Frame.g()
Frame.g_dq(ql)
Frame.g_dqdq(q1,q2)
Frame.g_dqdqdq(q1,q2,q3)
Frame.g_dqdqdqdq (q1,q2,q3,q4)
```

These functions calculate the global coordinate transformation in $\mathrm{SE}(3)$ for the frame (i.e, the coordinate transformation from the world frame to this frame) and its derivatives with respect to arbitrary configuration variables. The returned values are 4 x 4 numpy arrays.

```
Frame.g_inv()
Frame.g_inv_dq(ql)
Frame.g_inv_dqdq (q1,q2)
```

These functions calculate the inverse of the global coordinate transformation in $\mathrm{SE}(3)$ for the frame (i.e, the coordinate transformation from this frame to the world frame) and its derivatives with respect to arbitrary configuration variables. The returned values are 4 x 4 numpy arrays.

```
Frame.p()
Frame.p_dq(ql)
Frame.p_dqdq(q1,q2)
Frame.p_dqdqdq(q1,q2,q3)
Frame.p_dqdqdqdq(q1,q2,q3,q4)
```

These functions calculate the global position of the coordinate frame in $\mathrm{R}^{\wedge} 3$ for the frame (i.e, the origin's location with respect to the world frame to this frame) and its derivatives with respect to arbitrary configuration variables. The returned values are 4 x 4 numpy arrays.

Body Velocity Calculations

Frame.twist_hat()
Frame.vb()
Calculate the twist and the body velocity of the coordinate frame in se(3). The returned values are $4 x 4$ numpy arrays.

```
Frame.vb_dq(q1)
```

Frame.vb_ddq (dql)
Calculate first derivative of the body velocity with respect to the value or velocity of a configuration variable. The returned values are 4 x 4 numpy arrays.
Frame.vb_dqdq (q1, q2)
Frame.vb_dqdqdq ($q 1, q 2, q 3$)
Calculate second derivative of the body velocity with respect to the values of configuration variables. The returned values are 4×4 numpy arrays.
Frame.vb_ddqdq (dq1, q2)
Frame.vb_ddqdqdq (dq1, q2, q3)
Frame.vb_ddqdqdqdq ($d q 1, q 2, q 3, q 4$)
Calculate derivative of the body velocity with respect to the velocity of $d q 1$ and the values of the other configuration variables. The returned values are 4 x 4 numpy arrays.

Config - Configuration Variables

```
class trep.Config (system[, name=None, kinematic=False])
```


Parameters

- system - An instance of System to add the variable to.
- name - A string that uniquely identifies the configuration variable.
- kinematic - True to define a kinematic configuration variable.

An Config instance represents a configuration variable in the generalized coordinates, q, of a mechanical system. Configuration variables primarily parameterize rigid-body transformations between coordinate frames in the system, though sometimes special configuration variables are used only by constraints.

Configuration variables are created automatically by Frame and Constraint when needed, so you do not need to create them directly unless defining a new constraint type.
If a name is provided, it can be used to identify and retrieve configuration variables.
The current values and their derivatives of a configuration variable can be accessed directly ($q, d q, d d q$) for an individual variable, or through System to access all configuration variables at once (System. q, System. dq, System.ddq)

Warning: Currently trep does not enforce unique names for configuration variables. It is recommended to provide a unique name for every Config so they can be unambiguously retrieved by System. get_config().

Dynamic and Kinematic Variables

A configuration variable can be dynamic or kinematic. Dynamic configuration variables, q_{d}, are traditional configuration variables. Their trajectory is determined by the system dynamics $\left(\ddot{q}_{d}=\right.$ $f(q(t), \dot{q}(t), u(t)))$. Dynamic configuration variables must parameterize a rigid-body transformation, and there must be a coordinate frame with non-zero mass that depends on the dynamic variable (directly or indirectly).
Kinematic configuration variables, q_{k}, are considered perfectly controllable. Their second derivative is specified directly as an additional input to the system $\left(\ddot{q}_{k}=u_{k}(t)\right)$. Kinematic configuration variables can parameterize any rigid body transformation in a system, regardless of whether or not a frame with non-zero mass depends directly or indirectly on the variable. Additionally, kinematic configuration variables that do not parameterize a transformation can be defined by constraint functions. For example, the Distance constraint uses a kinematic configuration variable to maintain a time-varying distance between two coordinate frames.

Config Objects

Config.q
The current value of the configuration variable.

Config.dq

The 1st time derivative (velocity) of the configuration variable (i.e, \dot{q}).

Config.ddq

The 2nd time derivative (acceleration) of the configuration variable (i.e, \ddot{q}).

Config.kinematic

Boolean indicating if this configuration variable is dynamic or kinematic.
(read only)
Config.system
The system that this configuration variable belongs to.
(read only)

Config.frame

The Frame that depends on this configuration variable for its transformation, or None if it is not used by a coordinate frame (e.g, a kinematic configuration variable in a constraint).
(read only)

Config.name

The name of this configuration variable or None.

Config.index

Index of the configuration variable in System. configs.
For dynamic configuration variables, this is also the index of the variable in System.dyn_configs.
(read only)

Config.k_index

For kinematic configuration variables, this is the index of this variable in System.kin_configs.
(read-only)
Config.masses
A tuple of all coordinate frames with non-zero masses that depend (directly or indirectly) on this configuration variable.
(read-only)

Input - Input Variables

class trep. Input (system $[$, name $=$ None $]$)

Parameters

- system - An instance of System to add the variable to.
- name - A string that uniquely identifies the input variable.

An Input instance represents a single variable in the input vector, u, of a mechanical system. Inputs are used by Force to apply non-conservative forcing to the system (e.g, a torque or body wrench)

Input variables are created automatically by implementations of Force when needed, so you do not need to create them directly unless defining a new force type. In that case, they should be created using Force. _create_input().

If a name is provided, it can be used to identify and retrieve input variables.
The current value of a single input variable can be accessed directly (u) or through System to access all input variables at once (System.u).

Warning: Currently trep does not enforce unique names for input variables. It is recommended to provide a unique name for every Input so they can be unambiguously retrieved by System. get_input ().

Input Objects

Input. u

The current value of the input.

Input.system

The system that owns this input variable.
(read only)

Input.force

The force that uses this input variable.
(read only)

Input. name

The name of this input variable or None.

Input.index

The index of the input in system. inputs.

Force - Base Class for Forces

```
class trep.Force (system[, name=None ])
```


Parameters

- system (System) - An instance of System to add the force to.
- name - A string that uniquely identifies the force.

This is the base class for all forces in a System. It should never be created directly. Forces are created by instantiating a specific type of force..

See trep.forces - Forces for the built-in types of forces. Additional forces can be added through either the Python or C-API.

Forces are used to include non-conservative and control forces in a mechanical system. Forces must be expressed in the generalized coordinates of the system. Conservative forces like gravity or spring-like potentials should be implemented using Potential instead.

Force Objects

Force.system

The System that this force belongs to.
(read-only)
Force.name
The name of this force or None.
Force. $\mathbf{f}(q)$
Parameters $\mathbf{q}($ Config) - Configuration variable
Calculate the force on configuration variable q at the current state of the system.

Table 1.1: Required for Calculations

Desired Calculation	Required
Continuous Dynamics	$?$
1st Derivative	$?$
2nd Derivative	$?$
Discrete Dynamics	$?$
1st Derivative	$?$
2nd Derivative	$?$

Force.f_dq $(q, q 1)$

Parameters

- $\mathbf{q}($ Config) - Configuration variable
- q1 (Config) - Configuration variable

Calculate the derivative of the force on configuration variable q with respect to the value of $q 1$.

Table 1.2: Required for Calculations

Desired Calculation	Required
Continuous Dynamics	$?$
1st Derivative	$?$
2nd Derivative	$?$
Discrete Dynamics	$?$
1st Derivative	$?$
2nd Derivative	$?$

Force.f_ddq ($q, d q 1$)

Parameters

- $\mathbf{q}($ Config) - Configuration variable
- dq1 (Config) - Configuration variable

Calculate the derivative of the force on configuration variable q with respect to the velocity of $d q 1$.

Table 1.3: Required for Calculations

Desired Calculation	Required
Continuous Dynamics	$?$
1st Derivative	$?$
2nd Derivative	$?$
Discrete Dynamics	$?$
1st Derivative	$?$
2nd Derivative	$?$

Force. $\mathbf{f} _\mathbf{d u}(q, u l)$

Parameters

- $\mathbf{q}($ Config) - Configuration variable
- u1 (Input) - Input variable

Calculate the derivative of the force on configuration variable q with respect to the value of $u 1$.

Table 1.4: Required for Calculations

Desired Calculation	Required
Continuous Dynamics	$?$
1st Derivative	$?$
2nd Derivative	$?$
Discrete Dynamics	$?$
1st Derivative	$?$
2nd Derivative	$?$

Force. \mathbf{f} _dqdq ($q, q 1, q 2$)
Parameters

- $\mathbf{q}($ Config) - Configuration variable
- q1 (Config) - Configuration variable
- q2 (Config) - Configuration variable

Calculate the second derivative of the force on configuration variable q with respect to the value of $q 1$ and the value of $q 2$.

Table 1.5: Required for Calculations

Desired Calculation	Required
Continuous Dynamics	$?$
1st Derivative	$?$
2nd Derivative	$?$
Discrete Dynamics	$?$
1st Derivative	$?$
2nd Derivative	$?$

Force. \mathbf{f} _ddqdq $(q, d q 1, q 2)$

Parameters

- $\mathbf{q}($ Config) - Configuration variable
- dq1 (Config) - Configuration variable
- q2 (Config) - Configuration variable

Calculate the second derivative of the force on configuration variable q with respect to the velocity of $d q 1$ and the value of $q 2$.

Table 1.6: Required for Calculations

Desired Calculation	Required
Continuous Dynamics	$?$
1st Derivative	$?$
2nd Derivative	$?$
Discrete Dynamics	$?$
1st Derivative	$?$
2nd Derivative	$?$

Force.f_ddqddq ($q, d q 1, d q 2$)

Parameters

- $\mathbf{q}($ Config) - Configuration variable
- dq1 (Config) - Configuration variable
- dq2 (Config) - Configuration variable

Calculate the second derivative of the force on configuration variable q with respect to the velocity of $d q 1$ and the velocity of $q 2$.

Table 1.7: Required for Calculations

Desired Calculation	Required
Continuous Dynamics	$?$
1st Derivative	$?$
2nd Derivative	$?$
Discrete Dynamics	$?$
1st Derivative	$?$
2nd Derivative	$?$

Force.f_dudq ($q, u 1, q 2$)

Parameters

- \mathbf{q} (Config) - Configuration variable
- u1 (Input) - Input variable
- q2 (Config) - Configuration variable

Calculate the second derivative of the force on configuration variable q with respect to the value of $u l$ and the value of $q 2$.

Table 1.8: Required for Calculations

Desired Calculation	Required
Continuous Dynamics	$?$
1st Derivative	$?$
2nd Derivative	$?$
Discrete Dynamics	$?$
1st Derivative	$?$
2nd Derivative	$?$

Force. \mathbf{f} _duddq ($q, u 1, d q 2$)

Parameters

- \mathbf{q} (Config) - Configuration variable
- u1 (Input) - Input variable
- dq2 (Config) - Configuration variable

Calculate the second derivative of the force on configuration variable q with respect to the value of $u l$ and the velocity of $q 2$.

Table 1.9: Required for Calculations

Desired Calculation	Required
Continuous Dynamics	$?$
1st Derivative	$?$
2nd Derivative	$?$
Discrete Dynamics	$?$
1st Derivative	$?$
2nd Derivative	$?$

Force. \mathbf{f} _dudu ($q, u 1, u 2$)

Parameters

- $\mathbf{q}($ Config) - Configuration variable
- u1 (Input) - Input variable
- u2 (Input) - Input variable

Calculate the second derivative of the force on configuration variable q with respect to the value of $u l$ and the value of $u 2$.

Table 1.10: Required for Calculations

Desired Calculation	Required
Continuous Dynamics	$?$
1st Derivative	$?$
2nd Derivative	$?$
Discrete Dynamics	$?$
1st Derivative	$?$
2nd Derivative	$?$

Verifying Derivatives of the Force

It is important that the derivatives of $f()$ are correct. The easiest way to check their correctness is to approximate each derivative using numeric differentiation. These methods are provided to perform this test. The derivatives are only compared at the current configuration of the system. For improved coverage, try running each test several times at different configurations.

```
Force.validate_h_dq (delta=le-6,tolerance=1e-6,verbose=False)
Force.validate_h_ddq (delta=1e-6, tolerance=1e-6, verbose=False)
Force.validate_h_du (delta=le-6, tolerance=1e-6,verbose=False)
Force.validate_h_dqdq (delta=1e-6, tolerance=1e-6,verbose=False)
Force.validate_h_ddqdq (delta=1e-6, tolerance=1e-6,verbose=False)
Force.validate_h_ddqddq (delta=1e-6, tolerance = le-6,verbose=False)
Force.validate_h_dudq (delta=1e-6, tolerance = le-6,verbose = False)
Force.validate_h_duddq (delta=1e-6,tolerance=1e-6,verbose=False)
Force.validate_h_dudu (delta=1e-6, tolerance=1e-6,verbose=False)
```


Parameters

- delta - Amount to add to each configuration, velocity, or input.
- tolerance - Acceptable difference between the calculated and approximate derivatives
- verbose - Boolean to print error and result messages.

Return type Boolean indicating if all tests passed
Check the derivatives against the approximate numeric derivative calculated from one less derivative (ie, approximate $f_{-} d q()$ from $\left.f_{(}\right)$and $f_{-} d u d q()$ from $\left.f_{-} d u()\right)$.
See System.test_derivative_dq(), System.test_derivative_ddq(), and System. test_derivative_du() for details of the approximation and comparison.

Visualization

Force.opengl_draw()
Draw a representation of this force in the current OpenGL context. The OpenGL coordinate frame will be in the

System's root coordinate frame.
This function is called by the automatic visualization tools. The default implementation does nothing.

Potential - Base Class for Potential Energies

```
class trep.Potential (system[,name=None])
```


Parameters

- system (System) - An instance of System to add the potential to.
- name - A string that uniquely identifies the potential energy.

This is the base class for all potential energies in a System. It should never be created directly. Potential energies are created by instantiating a specific type of potential energy.
See trep.potentials - Potential Energies for the built-in types of potential energy. Additional potentials can be added through either the Python or C-API.

Potential energies represent conservative forces in a mechanical system like gravity and springs. Implementing these forces as potentials energies instead of generalized forces will result in improved simulations with better energetic and momentum conserving properties.

Potential Objects

Potential.system

The system that this potential belongs to.
(read-only)
Potential.name
The name of this potential energy or None.

```
Potential.V()
```


Return type Float

Return the value of this potential energy at the system's current state. This function should be implemented by derived Potentials.

Table 1.11: Required for Calcula-
tions

Desired Calculation	Required
Continuous Dynamics	n
1st Derivative	n
2nd Derivative	n
Discrete Dynamics	n
1st Derivative	n
2nd Derivative	n

Note: This actual potential value is not used in discrete or continuous time dynamics/derivatives, so you do not need to implement it unless you need it for your own calculations. However, implementing it allows one to compare the derivative $V_{-} d q$ () with a numeric approximation based on $V()$ to help debug your potential.

Potential.V_dq(ql)
Parameters q 1 (Config) - Derivative variable
Return type Float
Return the derivative of V with respect to $q 1$.

Table 1.12: Required for Calculations

Desired Calculation	Required
Continuous Dynamics	Y
1st Derivative	Y
2nd Derivative	Y
Discrete Dynamics	Y
1st Derivative	Y
2nd Derivative	Y

Potential.V_dqdq (q1,q2)

Parameters

- q1 (Config) - Derivative variable
- q2 (Config) - Derivative variable

Return type Float
Return the second derivative of V with respect to $q 1$ and $q 2$.

Table 1.13: Required for Calcula-
tions

Desired Calculation	Required
Continuous Dynamics	n
1st Derivative	Y
2nd Derivative	Y
Discrete Dynamics	Y
1st Derivative	Y
2nd Derivative	Y

Potential.V_dqdqdq (q1, q2, q3)

Parameters

- q1 (Config) - Derivative variable
- q2 (Config) - Derivative variable
- q3 (Config) - Derivative variable

Return type Float
Return the third derivative of V with respect to $q 1, q 2$, and $q 3$.

Table 1.14: Required for Calculations

Desired Calculation	Required
Continuous Dynamics	n
1st Derivative	n
2nd Derivative	Y
Discrete Dynamics	n
1st Derivative	n
2nd Derivative	Y

Verifying Derivatives of the Potential

It is important that the derivatives of $V()$ are correct. The easiest way to check their correctness is to approximate each derivative using numeric differentiation. These methods are provided to perform this test. The derivatives are only compared at the current configuration of the system. For improved coverage, try running each test several times at different configurations.
Potential.validate_V_dq $($ delta $=1 e-6$, tolerance $=1 e-6$, verbose $=$ False $)$
Potential.validate_V_dqdq $($ delta $=1 e-6$, tolerance $=1 e-6$, verbose $=$ False $)$
Potential.validate_V_dqdqdq (delta $=1 e-6$, tolerance $=1 e-6$, verbose $=$ False)

Parameters

- delta - Amount to add to each configuration
- tolerance - Acceptable difference between the calculated and approximate derivatives
- verbose - Boolean to print error and result messages.

Return type Boolean indicating if all tests passed
Check the derivatives against the approximate numeric derivative calculated from one less derivative (i.e,, approximate $V_{-} d q()$ from $V()$ and $V_{-} d q d q()$ from $\left.V_{-} d q()\right)$.

See System.test_derivative_dq() for details of the approximation and comparison.

Visualization

Potential.opengl_draw()
Draw a representation of this potential energy in the current OpenGL context. The OpenGL coordinate frame will be in the System's root coordinate frame.
This function is called by the automatic visualization tools. The default implementation does nothing.

Constraint - Base Class for Holonomic Constraints

class trep. Constraint (system $[$, name $=$ None, tolerance $=1 e-10]$)

Parameters

- system (System) - An instance of System to add the constraint to.
- name - A string that uniquely identifies the constraint.
- tolerance (Float) - Tolerance to consider the constraint satisfied.

This is the base class for all holonomic constraints in a System. It should never be created directly. Constraints are created by instantiating a specific type of constraint.
See trep.constraints - Holonomic Constraints for the built-in types of constraints. Additional constraints can be added through either the Python or C-API.

Holonomic constraints restrict the allowable configurations of a mechanical system. Every constraint has an associated constraint function $h(q): Q \rightarrow R$. A configuration q is acceptable if and only if $h(q)=0$.

Constraint Objects

Constraint.system

The System that this constraint belongs to.
(read-only)
Constraint. name
The name of this constraint or None.

Constraint.index

The index of the constraint in System. constraints. This is also the index of the constraint's force in any values of λ or its derivatives used through trep.
(read-only)
Constraint.tolerance
The constraint should be considered satisfied if $|h(q)|<$ tolerance. This is primarly used by the variational integrator when it finds the next configuration, or by System.satisfy_constraints().

```
Constraint.h()
```

Return type Float
Return the value of the constraint function at the system's current state. This function should be implemented by derived Constraints.

Constraint.h_dq(ql)
Parameters q 1 (Config) - Derivative variable
Return type Float
Return the derivative of h with respect to $q 1$.

```
Constraint.h_dqdq(q1,q2)
```


Parameters

- q1 (Config) - Derivative variable
- q2 (Config) - Derivative variable

Return type Float
Return the second derivative of h with respect to $q 1$ and $q 2$.

```
Constraint. h _dqdqdq( \(q 1, q 2, q 3\) )
```


Parameters

- q1 (Config) - Derivative variable
- q2 (Config) - Derivative variable
- q3 (Config) - Derivative variable

Return type Float
Return the third derivative of h with respect to $q 1, q 2$, and $q 3$.

```
Constraint.h_dqdqdqdq(q1,q2,q3,q4)
```


Parameters

- q1 (Config) - Derivative variable
- q2 (Config) - Derivative variable
- q3 (Config) - Derivative variable
- q4 (Config) - Derivative variable

Return type Float
Return the fourth derivative of h with respect to $q 1, q 2, q 3$, and $q 4$.

Verifying Derivatives of the Constraint

It is important that the derivatives of $h()$ are correct. The easiest way to check their correctness is to approximate each derivative using numeric differentiation. These methods are provided to perform this test. The derivatives are only compared at the current configuration of the system. For improved coverage, try running each test several times at different configurations.

```
Constraint.validate_h_dq (delta=1e-6, tolerance = le-6,verbose=False)
Constraint.validate_h_dqdq (delta=le-6, tolerance=le-6,verbose=False)
Constraint.validate_h_dqdqdq (delta=1e-6, tolerance=1e-6,verbose=False)
Constraint.validate_h_dqdqdqdq (delta =le-6,tolerance =le-6,verbose=False )
```


Parameters

- delta - Amount to add to each configuration
- tolerance - Acceptable difference between the calculated and approximate derivatives
- verbose - Boolean to print error and result messages.

Return type Boolean indicating if all tests passed
Check the derivatives against the approximate numeric derivative calculated from one less derivative (ie, approximate $h _d q()$ from $h()$ and $h _d q d q()$ from $\left.h _d q()\right)$.
See System.test_derivative_dq() for details of the approximation and comparison.

Visualization

Constraint.opengl_draw()

Draw a representation of this constraint in the current OpenGL context. The OpenGL coordinate frame will be in the System's root coordinate frame.
This function is called by the automatic visualization tools. The default implementation does nothing.

MidpointVI - Midpoint Variational Integrator

The MidpointVI class implements a variational integrator using a midpoint quadrature. The integrator works with any system, including those with constraints, forces, and kinematic configuration variables. The integrator implements full first and second derivatives of the discrete dynamics.

For information on variational integrators (including relevant notation used in this manual), see Discrete Dynamics and Variational Integrators.
The Midpoint Variational Integrator is defined by the approximations for L_{d} and $f^{ \pm}$:

$$
\begin{array}{r}
L_{2}\left(q_{1}, q_{2}, t_{1}, t_{2}\right)=\left(t_{2}-t_{1}\right) L\left(\frac{q_{1}+q_{2}}{2}, \frac{q_{2}-q_{1}}{t_{2}-t_{1}}\right) \\
f_{2}^{-}\left(q_{k-1}, q_{k}, t_{k-1}, t_{k}\right)=\left(t_{k}-t_{k-1}\right) f\left(\frac{q_{k-1}+q_{k}}{2}, \frac{q_{k}-q_{k-1}}{t_{k}-t_{k-1}}, u_{k-1}, \frac{t_{k}-t_{k-1}}{2}\right) \\
f_{d}^{+}\left(q_{k-1}, q_{k}, t_{k-1}, t_{k}\right)=0
\end{array}
$$

where L and f are the continuous Lagrangian and generalized forcing on the system.

- MidpointVI Objects
- Integrator State
- Initialization
- Dynamics
- Derivatives of q_{2}
- Derivatives of p_{2}
- Derivatives of λ_{1}

MidpointVI Objects

class trep. MidpointVI (system, tolerance $=1 e-10$, num_threads=None)
Create a new empty mechanical system. system is a valid System object that will be simulation.
tolerance sets the desired tolerance of the root solver when solving the DEL equation to advance the integrator.

MidpointVI makes use of multithreading to speed up the calculations. num_threads sets the number of threads used by this integrator. If num_threads is None, the integrator will use the number of available processors reported by Python's multiprocessing module.

MidpointVI.system

The System that the integrator simulates.
MidpointVI.nq
Number of configuration variables in the system.
MidpointVI.nd
Number of dynamic configuration variables in the system.
MidpointVI. nk
Number of kinematic configuration variables in the system.
MidpointVI.nu
Number of input variables in the system.
MidpointVI.nc
Number of constraints in the system.

Integrator State

In continuous dynamics the System only calculates the second derivative, leaving the actual simulation to be done by separate numerical integrator. The discrete variational integrator, on the other hand, performs the actual simulation by finding the next state. Because of this, MidpointVI objects store two discrete states: one for the previous time step t_{1}, and one for the new/current time step t_{2}.

Also unlike the continuous System, these variables are rarely set directly. They are typically modified by the initialization and stepping methods.

```
MidpointVI.t1
MidpointVI.q1
MidpointVI.p1
```

State variables for the previous time. $q I$ is the entire configuration (dynamic and kinematic). $p I$ is discrete momemtum, which only has a dynamic component, not a kinematic component.

```
MidpointVI.t2
MidpointVI.q2
MidpointVI.p2
```

State variables for the current/new time.
MidpointVI.u1
The input vector at t_{1}.
MidpointVI.v2
The finite-differenced velocity of the kinematic configuration variables at t_{2} i.e. $v_{2}=\frac{q_{k 2}-q_{k 1}}{t_{2}-t_{1}}$. If $t_{2}=t_{1}$ the built-in Python constant None is returned.

MidpointVI.lambda1

The constraint force vector at t_{1}. These are the constraint forces used for the system to move from t_{1} to t_{2}.

Initialization

MidpointVI.initialize_from_state (tl, ql, pl, lambdal=None)
Initialize the integrator from a known state (time, configuration, and momentum). This prepares the integrator to start simulating from time t_{1}.
lambdal can optionally specify the initial constraint vector. This serves at the initial guess for the simulation's root solving algorithm. If you have a simulation that you are trying to re-simulate, but from a different starting time (e.g, you saved a forward simulation and now want to move backwards and calculate the linearization at each time step for a LQR problem.), it is a good idea to save lambdal during the simulation and set it here. Otherwise, the root solver can find a slightly different solution which eventually diverges. If not specified, it defaults to the zero vector.

MidpointVI.initialize_from_configs (t0, q0, $t 1, q 1$, lambdal=None)
Initialize the integrator from two consecutive time and configuration pairs. This calculates p_{1} from the two pairs and initializes the integrator with the state ($\mathrm{t} 1, \mathrm{q} 1, \mathrm{p} 1$).
lambdal is optional. See initialize_from_state().

Dynamics

MidpointVI.step ($t 2$, ul=tuple(), k2=tuple(), max_iterations=200, lambdal_hint=None, q2_hint=None)
Step the integrator forward to time t 2 . This advances the time and solves the DEL equation. The current state will become the previous state (ie, $t_{2} \Rightarrow t_{1}, q_{2} \Rightarrow q_{1}, p_{2} \Rightarrow p_{1}$). The solution will be saved as the new state, available through $t 2, q 2$, and $p 2$. lambda will be updated with the new constraint force, and ul will be updated with the value of $u 1$.
lambdal and $q 2$ can be specified to seed the root solving algorthm. If they are None, the previous values will be used.

The method returns the number of root solver iterations needed to find the solution.
Raises a ConvergenceError exception if the root solver cannot find a solution after max_iterations.
MidpointVI.calc_f()
Evaluate the DEL equation at the current states. For dynamically consistent states, this should be zero. Otherwise it is the remainder of the DEL.

The value is returned as a numpy array.

Derivatives of q_{2}

MidpointVI.q2_dq1 ($q=$ None, $q 1=$ None $)$
MidpointVI.q2_dp1 ($q=$ None, $p l=$ None)
MidpointVI.q2_du1 ($q=$ None, $u 1=$ None)
MidpointVI.q2_dk2 ($q=$ None, $k 2=$ None)
Calculate the first derivatives of q_{2} with respect to the previous configuration, the previous momentum, the input forces, or the kinematic inputs.
If both the parameters are None, the entire derivative is returned as a numpy array with derivatives across the rows.

If any parameters are specified, they must be appropriate objects. The function will return the specific information requested. For example, $q^{2} _d q 1$ () will calculate the derivative of the new value of q with respect to the previous value of $q 1$.
Calculating the derivative of q_{2} with respect to the i-th configuration variable $\frac{\partial q_{2}}{\partial q_{1}^{i}}$:

```
>>> q1 = system.configs[i]
>>> mvi.q2_dq1(q1=q1)
array([ 0.133, -0.017, 0.026, ..., -0.103, -0.017, 0.511])
```

Equivalently:

```
>>> mvi.q2_dq1()[:,i]
array([ 0.133, -0.017, 0.026, ..., -0.103, -0.017, 0.511])
```

Calculating the derivative of the j-th new configuration with respect to the i-th kinematic input:

```
>>> q = system.configs[j]
>>> k2 = system.kin_configs[i]
>>> mvi.q2_dk2(q, k2)
0.023027007157071705
# Or...
>>> mvi.q2_dk2()[j,i]
0.023027007157071705
# Or...
>>> mvi.q2_dk2()[q.index, k2.k_index]
0.023027007157071705
```

MidpointVI.q2_dq1dq1 ($q=$ None, $q 1 _1=$ None, $q 1 _2=$ None $)$
MidpointVI.q2_dq1dp1 ($q=$ None, $q 1=$ None, $p l=$ None $)$
MidpointVI.q2_dq1du1 ($q=$ None, $q 1=$ None, $u l=$ None $)$

```
MidpointVI.q2_dq1dk2(q=None, q1=None, k2=None)
MidpointVI.q2_dp1dp1(q=None,pl_l=None,pl_2=None)
MidpointVI.q2_dp1du1(q=None, pl=None, ul=None)
MidpointVI.q2_dp1dk2(q=None, pl=None, k2=None)
MidpointVI.q2_du1du1(q=None, ul_l=None, ul_2=None)
MidpointVI.q2_du1dk2(q=None, ul=None, k2=None)
MidpointVI.q2_dk2dk2(q=None, k2_1=None, k2_2=None)
```

Calculate second derivatives of the new configuration.
If no parameters specified, the entire second derivative is returned as a numpy array. The returned arrays are indexed with the two derivatives variables as the first two dimensions and the new state as the last dimension.

To calculate the derivative of the k-th new configuration with respect to the i-th previous configuration and j previous momentum:

```
>>> q = system.configs[k]
>>> q1 = system.configs[i]
>>> p1 = system.configs[j]
>>> mvi.q2_dq1dp1(q, q1, p1)
6.4874251262289155e-06
# Or...
>>> result = mvi.q2_dq1dp1(q)
>>> result[i, j]
6.4874251262289155e-06
>>> result[q1.index, p1.index]
6.4874251262289155e-06
# Or....
>>> result = mvi.q2_dq1dp1()
>>> result[i, j, k]
6.4874251262289155e-06
>>> result[q1.index, p1.index, q.index]
6.4874251262289155e-06
```


Derivatives of p_{2}

```
MidpointVI.p2_dq1 ( }p=\mathrm{ None, q1=None)
MidpointVI.p2_dp1(p=None, pl=None)
MidpointVI.p2_du1 ( }p=\mathrm{ None, ul=None)
MidpointVI.p2_dk2(p=None, k2=None)
MidpointVI.p2_dq1dq1( }p=None,q1_l=None, q1_2=None
MidpointVI.p2_dq1dp1 ( }p=\mathrm{ None, ql=None, pl=None)
MidpointVI.p2_dq1du1(p=None, ql=None, ul=None)
MidpointVI.p2_dq1dk2(p=None, q1=None, k2=None)
MidpointVI.p2_dp1dp1(p=None,pl_l=None,pl_2=None)
MidpointVI.p2_dp1du1(p=None, pl=None, ul=None)
MidpointVI.p2_dp1dk2(p=None, pl=None, k2=None)
MidpointVI.p2_du1du1(p=None,ul_l=None, ul_2=None)
MidpointVI.p2_du1dk2 ( }p=\mathrm{ None, ul=None, k2=None)
MidpointVI.p2_dk2dk2(p=None, k2_1=None, k2_2=None)
```

Calculate the first and second derivatives of p_{2}. These follow the same conventions as the derivatives of q_{2}.

Derivatives of λ_{1}

```
MidpointVI.lambda1_dq1 (constraint=None, ql=None)
MidpointVI.lambda1_dp1 (constraint=None, pl=None)
MidpointVI.lambda1_du1 (constraint=None, ul=None)
MidpointVI.lambda1_dk2 (constraint=None, k2=None)
MidpointVI.lambda1_dq1dq1 (constraint=None, q1_1=None, q1_2=None)
MidpointVI.lambda1_dq1dp1 (constraint=None, ql=None, pl=None)
MidpointVI.lambda1_dq1du1 (constraint=None, ql=None, ul=None)
MidpointVI.lambda1_dq1dk2 (constraint=None, q1=None, k2=None)
MidpointVI.lambda1_dp1dp1 (constraint=None, pl_1=None, pl_2=None)
MidpointVI.lambda1_dp1du1 (constraint=None, pl=None, ul=None)
MidpointVI.lambda1_dp1dk2 (constraint=None, pl=None, k2=None)
MidpointVI.lambda1_du1du1 (constraint=None, ul_l=None, ul_2=None)
MidpointVI.lambda1_du1dk2 (constraint=None, ul=None, k2=None)
MidpointVI.lambda1_dk2dk2 (constraint=None, k2_1=None, k2_2=None)
```

Calculate the first and second derivatives of λ_{1}. These follow the same conventions as the derivatives of q_{2}. The constraint dimension is ordered according to System. constraints.

CHAPTER 2

trep.potentials-Potential Energies

Conservative forces are best modeled in trep as potential energies. Every type of potential is derived from trep. Potential.

These are the types of potential energy currently built in to trep.

Gravity - Basic Gravity

class trep.potentials.Gravity (system[, gravity=(0.0, 0.0, -9.8), name=None]) (Inherits from Potential)

Parameters

- system (System) - An instance of System to add the gravity to.
- gravity (Sequence of three Float) - The gravity vector
- name - A string that uniquely identifies the gravity.

Gravity implements a basic constant acceleration gravity $(F=m \vec{g})$.

Table 2.1: Implemented Calculations

Calculation	Implemented
V	Y
V_dq	Y
V_dqdq	Y
V_dqdqdq	Y

Examples

Adding gravity to a system is as easy as declaring an instance of Gravity:

```
>>> system = build_custom_system()
>>> trep.potentials.Gravity(system)
<Gravity 0.000000 0.000000 -9.800000>
```

The System saves a reference to the new Gravity, so we do not have to save a refence to prevent it from being garbage collected.

The default gravity points in the negative Z direction. We can specify a new gravity vector when we add the gravity. For example, we can make gravity point in the positive Y direction:

```
>>> system = build_custom_system()
>>> trep.potentials.Gravity(system, (0, 9.8, 0))
<Gravity 0.000000 9.800000 0.000000>
```


Gravity Objects

Gravity.gravity

The gravity vector for this instance of gravity.

Visualization

Gravity.opengl_draw()

Gravity does not draw a visual representation.

LinearSpring - Linear spring between two points

LinearSpring creates a spring force between the origins of two coordinate frames in 3D space:

$$
\begin{array}{r}
x=\left\|p_{1}-p_{2}\right\| \\
V(q)=-k\left(x-x_{0}\right)^{2}
\end{array}
$$

where p_{1} and p_{2} are the origins of two coordinate frames, k is the spring stiffness and x_{0} is the natural length of the spring.

Table 2.2: Implemented Calcu-

lations

Calculation	Implemented
V	Y
V_dq	Y
V_dqdq	Y
V_dqdqdq	Y

Warning: The current implementation will fail if p_{1} equals p_{2} and x_{0} is nonzero because of a divide by zero problem.
If the two points are equal and x_{0} is not zero, there should be a force. But since there is no vector between the two points, the direction of this force is undefined. When the natural length is zero, this problem can be corrected because the force also goes to zero.

Examples

We can create a simple 1D harmonic oscillator using LinearSpring with a frame that is free to translate:

```
import trep
from trep import tx,ty,tz,rx,ry,rz
# Create a sytem with one mass that moves in the x direction.
system = trep.System()
system.import_frames([tx('x', mass=1, name='block')])
trep.potentials.LinearSpring(system, 'World', 'block', k=20, x0=1)
# Remember to avoid x = 0 in simulation.
system.get_config('x').q = 0.5
```

The LinearSpring works between arbitrary frames, not just frames connected by a translation. Here, we create two pendulums and connect their masses with a spring:

```
import trep
from trep import tx,ty,tz,rx,ry,rz
system = trep.System()
system.import_frames([
    ry('theta1'), [
        tz(2, mass=1, name='pend1')
        ],
    tx(1), [
        ry('theta2'), [
            tz(2, mass=1, name='pend2')
            ] ]
    ])
trep.potentials.LinearSpring(system, 'pend1', 'pend2', k=20, x0=0.9)
```


LinearSpring Objects

class trep. potentials.LinearSpring (system, framel, frame $2, k[, x 0=0.0$, name $=$ None $]$)
Create a new spring between framel and frame2. The frames must already exist in the system.
LinearSpring.frame1
The coordinate frame at one end of the spring.
(read only)
LinearSpring.framel
The coordinate frame at the other end of the spring.
(read only)
LinearSpring. x0
The natural length of the spring.
LinearSpring.k
The spring constant of the spring.

ConfigSpring - Linear Spring acting on a configuration variable

Unlike the LinearSpring which creates a spring force between two points in 3D space, a ConfigSpring implements a spring force directly on a generalized coordinate:

$$
F_{q}=-k\left(q-q_{0}\right)
$$

where k is the spring stiffness and q_{0} is the neutral "length" of the spring.

Table 2.3: Implemented Calculations

Calculation	Implemented
V	Y
V_dq	Y
V_dqdq	Y
V_dqdqdq	Y

Examples

We can create a simple 1D harmonic oscillator using ConfigSpring on a translational configuration variable. The same oscillator could be created using a LinearSpring as well.

```
import trep
from trep import tx,ty,tz,rx,ry,rz
# Create a sytem with one mass that moves in the x direction.
system = trep.System()
system.import_frames([tx('x', mass=1, name='block')])
trep.potentials.ConfigSpring(system, 'x', k=20, q0=0)
```

A ConfigSpring can be used to create a torsional spring on a rotational configuration variable. Here we create a pendulum with a length of 2 and mass of 1 . Instead of gravity, the pendulum is moved by a single torsional spring.

```
import trep
from trep import tx,ty,tz,rx,ry,rz
system = trep.System()
system.import_frames([
    ry("theta"), [
        tz(2, mass=1)
        ]])
trep.potentials.ConfigSpring(system, 'theta', k=20, q0=0.7)
```


ConfigSpring Objects

class trep. potentials. ConfigSpring (system, config, $k[, q 0=0.0$, name=None $]$)
Create a new spring acting on the specified configuration variable. The configuration variable must already exist in the system.

ConfigSpring.config

The configuration variable that spring depends and acts on.
(read only)
ConfigSpring.q0
The "neutral length" of the spring. When self.config.q == q0, the force is zero.

ConfigSpring.k

The spring constant of the spring.

NonlinearConfigSpring - Nonlinear spring acting on a configuration variable

Like ConfigSpring which creates a spring force directly on a generalized coordinate, a NonlinearConfigSpring implements a force, F_{q} on a generalized coordinate which can be a function of configuration:

$$
F_{q}=-f(m \cdot q+b)
$$

where f is a spline function provided by the user, m is a linear scaling factor, and b is an offset value.

Table 2.4: Implemented Calcu-
lations

Calculation	Implemented
V	N
V_dq	Y
V_dqdq	Y
V_dqdqdq	Y

NonlinearConfigSpring Objects

classtrep. potentials.NonlinearConfigSpring (system, config, spline[, m=1.0, $\quad b=0.0$, name=None])
Create a new nonlinear spring acting on the specified configuration variable. The configuration variable must already exist in the system.

NonlinearConfigSpring.config

The configuration variable that spring depends and acts on.
(read only)
NonlinearConfigSpring.spline
A Spline object relating the configuration to force. See the trep. Spline documentation to create a spline object.

NonlinearConfigSpring.m
A linear scaling factor on the configuration.
NonlinearConfigSpring.b
An offset factor on the scaled configuration.

CHAPTER 3

trep.forces - Forces

Non-conservative forces are modeled in trep by deriving from the Force type. These types of forces include damping and control forces/torques.

These are the types of forces currently built in to trep.

Damping - Damping on Configuration Variables

Damping implements a damping Force on the generalized coordinates of a system:

$$
F_{q_{i}}=-c_{i} \dot{q}_{i}
$$

where the damping constant c_{i} is a positive real number.
One instance of Damping defines damping parameters for every configuration variable in the system. You can specify values for specific configuration variables and have a default value for the other variables.

Table 3.1: Implemented Calcu-
lations

Calculation	Implemented
f	Y
f_dq	Y
f_ddq	Y
f_du	Y
f_dqdq	Y
f_ddqdq	Y
f_ddqddq	Y
f_dudq	Y
f_duddq	Y
f_dudu	Y

Examples

```
damped-pendulum.py, extensor-tendon-model.py, forced-pendulum-inverse-dynamics.
py, initial-conditions.py, pccd.py, pend-on-cart-optimization.py, puppet-basic.
py, puppet-continuous-moving.py, puppet-moving.py, pyconfig-spring.py, pypccd.py,
radial.py
```

class trep.forces.Damping (system, default=0.0, coefficients $=\{ \}$, name $=$ None)
Create a new damping force for the system. default is the default damping coefficient.
Damping coefficients for specific configuration variables can be specified with coefficients. This should be a dictionary mapping configuration variables (or their names or index) to the damping coefficient:
trep.forces.Damping(system, 0.1, \{'theta' : 1.0\})

Damping.default

The default damping coefficient for configuration variable.
Damping.get_damping_coefficient (config)
Return the damping coefficient for the specified configuration variable. If the configuration variable does not have a set value, the default value is returned.
Damping.set_damping_coefficient (config, coeff)
Set the damping coefficient for a specific configuration variable. If coeff is None, the specific coefficient for that variable will be deleted and the default value will be used.

LinearDamper - Linear damper between two points

LinearDamper creates a damping force between the origins of two coordinate frames in 3D space:
We can derive a mapping from the damper force to a force in the generalized coordinates by looking at the work done by the damper. The virtual work done by a damper is simply the damper force multiplied by the change in the damper's length (distance):

$$
\begin{array}{r}
x=\left\|p_{1}-p_{2}\right\| \\
f=-c \dot{x} \\
F_{q_{i}}=f \frac{\partial x}{\partial q_{i}}
\end{array}
$$

where p_{1} and p_{2} are the origins of two coordinate frames and c is the damper coefficient.

Table 3.2: Implemented Calculations

Calculation	Implemented
f	Y
f_dq	Y
f_ddq	Y
f_du	Y
f_dqdq	Y
f_ddqdq	Y
f_ddqddq	Y
f_dudq	Y
f_duddq	Y
f_dudu	Y

Examples

```
dual_pendulums.py
```

class trep.forces.LinearDamper (system, frame1, frame 2 , c [, name=None])
Create a new damper between framel and frame2. The frames must already exist in the system.

LinearDamper.frame1

The coordinate frame at one end of the damper.
(read only)

LinearDamper.frame1

The coordinate frame at the other end of the damper.
(read only)
LinearDamper.c
The damping coefficient of the damper.

ConfigForce - Apply forces to a configuration variable.

ConfigForce creates an input variable that applies a force directly to a configuration variable:

$$
F_{q_{i}}=u(t)
$$

where the $u(t)$ is a Input variable.

Table 3.3: Implemented Calcu-
lations

Calculation	Implemented
f	Y
f_dq	Y
f_ddq	Y
f_du	Y
f_dqdq	Y
f_ddqdq	Y
f_ddqddq	Y
f_dudq	Y
f_duddq	Y
f_dudu	Y

Examples

```
forced-pendulum-inverse-dynamics.py,
initial-conditions.py,
pend-on-cart-optimization.py
```

class trep.forces.ConfigForce (system, config, finput, name=None)
Create a new input to apply a force on a configuration variable.
config should be an existing configuration variable (a name, index, or object).
finput should be a string to name the new input variable.

ConfigForce.finput

The input variable (Input) that controls this force.

ConfigForce.config

The configuration variable (Config) that this force is applied to.

BodyWrench - Apply a body wrench to a frame.

BodyWrench applies a fixed or variable wrench to a coordinate frame. The wrench is expressed in the coordinates of the frame:

$$
F_{q_{i}}=\left(g^{-1} \frac{\partial g}{\partial q_{i}}\right) \cdot f
$$

where g_{1} is the coordinate frame the wrench is applied to and f is the wrench. The wench is a vector of six numbers that defined the forces applied to the x, y, and z axes and torques about the x, y, and z axes. In trep, each component of the wrench can be a fixed real number or an input variable (trep. Input).

Table 3.4: Implemented Calculations

Calculation	Implemented
f	Y
f_dq	Y
f_ddq	Y
f_du	Y
f_dqdq	Y
f_ddqdq	Y
f_ddqddq	Y
f_dudq	Y
f_duddq	Y
f_dudu	Y

```
BodyWrench(system, frame, wrench=tuple(), name=None):
```

Create a new body wrench force to apply to frame.
wrench is a mixed tuple of 6 real numbers and strings. Components that are real numbers will be constant values for the wrench, while components that are strings will be controlled by input variables. An instance of Input will be created for each string, with the string defining the input's name.

BodyWrench.wrench

A mixed tuple of numbers and inputs that define the wrench.
(read-only)
BodyWrench.wrench_val
A tuple of the current numeric values of the wrench.

BodyWrench.frame

The frame that this wrench is applied to.
(read-only)

HybridWrench - Apply a hybrid wrench to a frame.

HybridWrench applies a fixed or variable wrench to a coordinate frame. The wrench is expressed in the world coordinate frame and applied to the origin of the coordinate frame.

The wench is a vector of six numbers that defined the forces applied to the x, y, and z axes and torques about the x, y, and z axes. In trep, each component of the wrench can be a fixed real number or an input variable (trep. Input).

Table 3.5: Implemented Calculations

Calculation	Implemented
f	Y
f_dq	Y
f_ddq	Y
f_du	Y
f_dqdq	Y
f_ddqdq	Y
f_ddqddq	Y
f_dudq	Y
f_duddq	Y
f_dudu	Y

```
HybridWrench(system, frame, wrench=tuple(), name=None):
```

Create a new hybrid wrench force to apply to frame.
wrench is a mixed tuple of 6 real numbers and strings. Components that are real numbers will be constant values for the wrench, while components that are strings will be controlled by input variables. An instance of Input will be created for each string, with the string defining the input's name.

HybridWrench.wrench

A mixed tuple of numbers and inputs that define the wrench.
(read-only)
HybridWrench.wrench_val
A tuple of the current numeric values of the wrench.

HybridWrench.frame

The frame that this wrench is applied to.
(read-only)

SpatialWrench - Apply a spatial wrench to a frame.

SpatialWrench applies a fixed or variable wrench to a coordinate frame. The wrench is expressed in the world coordinate frame and applied to the location of the world origin in the coordinate frame.

$$
F_{q_{i}}=\left(\frac{\partial g}{\partial q_{i}} g^{-1}\right) \cdot f
$$

where g_{1} is the coordinate frame the wrench is applied to and f is the wrench. The wench is a vector of six numbers that defined the forces applied to the x, y, and z axes and torques about the x, y, and z axes. In trep, each component of the wrench can be a fixed real number or an input variable (trep. Input).

Table 3.6: Implemented Calculations

Calculation	Implemented
f	Y
f_dq	Y
f_ddq	Y
f_du	Y
f_dqdq	Y
f_ddqdq	Y
f_ddqddq	Y
f_dudq	Y
f_duddq	Y
f_dudu	Y

```
SpatialWrench(system, frame, wrench=tuple(), name=None):
```

Create a new spatial wrench force to apply to frame.
wrench is a mixed tuple of 6 real numbers and strings. Components that are real numbers will be constant values for the wrench, while components that are strings will be controlled by input variables. An instance of Input will be created for each string, with the string defining the input's name.

SpatialWrench.wrench

A mixed tuple of numbers and inputs that define the wrench.
(read-only)
SpatialWrench.wrench_val
A tuple of the current numeric values of the wrench.
SpatialWrench.frame
The frame that this wrench is applied to.
(read-only)

CHAPTER 4

trep.constraints - Holonomic Constraints

This module contains the built in types of holonomic constraints.
These are the types of constraints currently built in to trep. Additional constraints can be added through either the Python or C-API.

Distance - Maintain a specific distance between points

The Distance constraint maintains a specific distance between the origins of two coordinate frames. The distance can be a fixed number or controlled by a kinematic configuration variable.

The constraint equation is:

$$
d^{2}=\left(p_{1}-p_{2}\right)^{T}\left(p_{1}-p_{2}\right)
$$

where p_{1} and p_{2} are the origins of two coordinate frames and d is the desired distance between them.

Warning: This constraint is undefined when $d=0$. If you want to constraint two points to be coincident, you can use the Point ToPoint constraint instead.

Examples

```
puppet-basic.py, puppet-continuous-moving.py, puppet-moving.py
```

class trep. constraints.Distance (system, frame1, frame2, distance, name=None)
Create a new constraint to maintain the distance between framel and frame2.
frame1 and frame 2 should be existing coordinate frames in system. They can be the Frame objects themselves or their names.
distance can be a real number or a string. If it is a string, the constraint will create a new kinematic configuration variable with that name.

Distance.config

This is the kinematic configuration variable that controls the distance, or None for a fixed distance constraint.
(read-only)
Distance.frame1
Distance.frame2
These are the two Frame objects being constrained.
(read-only)

Distance.distance

This is the desired constraint between the two coordinate frames. This is either the fixed value or the value of the configuration variable. If you set the distance, the appropriate value will be updated.

Distance.get_actual_distance()
Calculate the current distance between the two coordinate frames. If the constraint is currently satisfied, this is equal to distance.
If you have the system in a configuration you like, you can use this to set the correct distance:

```
>>> constraint.distance = constraint.get_actual_distance()
```


PointToPoint - Constrain the origins of two frames together

The PointToPoint constraints are designed to constrain the origin of one frame to the origin of another frame (maintaining zero distance between the frames).
The constraint equation is:

$$
h(q)=\left(p_{1}-p_{2}\right)[i]
$$

where p_{1} and p_{2} are the origin points of the two frames being constrained, and i is the basis component of the error vector.

Note: Defining a PointToPoint constraint creates multiple one-dimensional constraints for each axis being used. For example, if a system is defined in 3D, the PointToPoint3D method creates 3 PointToPoint constraints, one for each axis.

Examples

scissor.py
class trep.constraints.PointToPoint3D (system, frame1, frame2, name=None)

Parameters

- frame1 (Frame) - First frame to constrain
- frame2 (Frame) - Second frame to constrain

Create a new set of 3 constraints to force the origin of framel to the origin of frame2. The system must be defined in 3D, otherwise, for 2D systems, use Point ToPoint 2D.

```
class trep.constraints.PointToPoint2D(system, plane, frame1, frame2, name=None)
```


Parameters

- plane (string) - 2D plane of system, ie. 'xy', 'xz', or 'yz'
- frame1 (Frame) - First frame to constrain
- frame2 (Frame) - Second frame to constrain

Create a new set of 2 constraints to force the origin of framel to the origin of frame2. The system must be defined in 2D, otherwise, for 3D systems, use Point ToPoint 3D.

```
class trep.constraints.PointToPoint1D (system, axis, frame1, frame2, name=None)
```


Parameters

- axis (string) - 1D axis of system, ie. ' x ', ' y ', or ' z '
- frame1 (Frame) - First frame to constrain
- frame2 (Frame) - Second frame to constrain

Create a new constraint to force the origin of framel to the origin of frame2. The system must be defined in 1D, otherwise, for 2D or 3D systems, use Point ToPoint 2D or Point ToPoint 3D.

```
PointToPoint3D.get_actual_distance()
PointToPoint2D.get_actual_distance()
PointToPoint1D.get_actual_distance()
```

Calculate the current distance between the two coordinate frames. If the constraint is currently satisfied, this is equal to 0 .

PointOnPlane - Constraint a point to a plane

The PointOnPlane constraint constraints a point (defined by the origin of a coordinate frame) to lie in a plane (defined by the origin of another coordinate frame and normal vector).
The constraint equation is:

$$
h(q)=\left(p_{1}-p_{2}\right) \cdot\left(g_{1} \cdot \text { norm }\right)
$$

where g_{1} and p_{1} are the transformation of the frame defining the plane and its origin, p_{2} is the point being constrained, and norm is the normal vector of the plane expressed in the local coordinates of g_{1}.

By defining two of PointOnPlane constraints with normal plane, you can constrain a point to a line. With three constraints, you can constraint a point to another point.

Examples

```
pccd.py,pypccd.py,radial.py
```

classtrep.constraints.PointOnPlane (system, plane_frame, plane_normal, point_frame, name=None)
Create a new constraint to force the origin of point_frame to lie in a plane. The plane is coincident with the origin of plane_frame and normal to the vector plane_normal. The normal is expresed in the coordinates of plane_frame.

PointOnPlane.plane_frame
This is the coordinate frame the defines the plane.
(read-only)
PointOnPlane.normal
This is the normal of the plane expressed in plane_frame coordinates.

PointOnPlane.point_frame
This is the coordinate frame that defines the point to be constrained.

chapter 5

trep.discopt - Discrete Optimal Control

This module provides tools for using discrete optimal control techniques.

Discrete LQ Problems

The trep. discopt module provides functions for solving time-varying discrete LQ problems.

The Linear Quadratic Regulator (LQR) Problem

The LQR problem is to find the input for a linear system that minimizes a quadratic cost. The optimal input turns out to be a feedback law that is independent of the system's initial condition. Because of this, the LQR problem is a useful tool to automatically calculate a stabilizing feedback controller for a dynamic system. For nonlinear systems, the LQR problem is solved for the linearization of the system about a trajectory to get a locally stabilizing controller.

Problem Statement: Given a discrete linear system Find the control input $u(k)$ that minimizes a quadratic cost:

$$
V\left(x\left(k_{0}\right), u(\cdot), k_{0}\right)=\sum_{k=k_{0}}^{k_{f}-1}\left[x^{T}(k) Q(k) x(k)+u^{T}(k) R(k) u(k)\right]+x^{T}\left(k_{f}\right) Q\left(k_{f}\right) x\left(k_{f}\right)
$$

where

$$
\begin{align*}
& R(k)=R^{T}(k) \geq 0 \forall k \in\left\{k_{0} \ldots\left(k_{f}-1\right)\right\} \tag{5.1}\\
& Q(k)=Q^{T}(k) \geq 0 \forall k \in\left\{k_{0} \ldots(\text { (} \mathrm{k} \cdot \mathrm{f}\}\right) \\
& x\left(k_{0}\right) \text { is } \mathrm{kn}\left(\begin{array}{l}
\mathrm{K} \\
\mathrm{k} \\
\mathrm{k}
\end{array}\right) \\
& x(k+1)=A(k) x(k)+B(k) 6(6) .4)
\end{align*}
$$

Solution: The optimal control $u^{*}(k)$ and optimal cost $V^{*}\left(x\left(k_{0}\right), k_{0}\right)$ are

$$
\begin{align*}
u^{*}(k) & =-\mathcal{K}(k) x(k) \tag{5.5}\\
V^{*}\left(x\left(k_{0}\right), k_{0}\right) & =x^{T}\left(k_{0}\right) P\left(k_{0}\right) x\left(\left(k_{6}\right)\right.
\end{align*}
$$

where

$$
\begin{array}{r}
\mathcal{K}(k)=\Gamma^{-1}(k) B^{T}(k) P(k+1) A(k) \\
\Gamma(k)=R(k)+B^{T}(k) P(k+1) B(k)
\end{array}
$$

and $P(k+1)$ is a symmetric time varying matrix satisfying a discrete Ricatti-like equation:

$$
\begin{align*}
P\left(k_{f}\right) & =Q\left(k_{f}\right) \tag{5.7}\\
P(k) & =Q(k)+A^{T}(k) P(k+1) A(k)-\mathcal{K}^{T}(k) \Gamma(k) \mathcal{K}(. R)
\end{align*}
$$

trep.discopt.solve_tv_lqr (A, B, Q, R)

Parameters

- A(Sequence of N numpy arrays, shape (nX, nX))-Linear system dynamics
- B (Sequence of N numpy arrays, shape (nX, nU)) - Linear system input matrix
- Q (Function $Q(k)$ returning numpy array, shape (nX, nX)) Quadratic State Cost
- \mathbf{R} (Function $R(k)$ returning numpy array, shape (nU, nU)) Quadratic Input Cost
Return type named tuple (K, P)
This function solve the time-varying discrete LQR problem for the linear system A, B and costs Q and R.
A is a sequence of the linear system dynamics, $A[k]$.
B is a sequence of the linear system's input matrix, $\mathrm{B}[\mathrm{k}]$.
Q is a function $Q(k)$ that returns the state cost matrix at time k. For example, if $Q(k)=\mathcal{I}$:
$Q=$ lambda $k:$ numpy.eye (nX)
R is a function $Q(\mathrm{k})$ that returns the state cost matrix at time k. For example, if the cost matrices are stored in an array $r_{\text {_costs: }}$

```
R = lambda k: r_costs[k]
```

The function returns the optimal feedback law $\mathcal{K}(\|)$ and the solution to the discrete Ricatti equation at $\mathrm{k}=0$, $P(0) . K$ is a sequence of N numpy arrays of shape $(\mathrm{nU}, \mathrm{nX}) . P$ is a single $(\mathrm{nX}, \mathrm{nX})$ numpy array.

The Linear Quadratic (LQ) Problem

The LQ problem is to find the input for a linear system that minimizes a cost with linear and quadratic terms. In trep, the LQ problem is a sub-problem for discrete trajectory optimization that is used to calculate the descent direction at each iteration.

Problem Statement: Find the control input $u(k)$ that minimizes the cost:

$$
\left.\begin{array}{r}
V\left(x\left(k_{0}\right), u(\cdot), k_{0}\right)=\sum_{k=k_{0}}^{k_{f}-1}\left[2\left[\begin{array}{l}
q(k) \\
r(k)
\end{array}\right]^{T}\left[\begin{array}{l}
x(k) \\
u(k)
\end{array}\right]+\left[\begin{array}{l}
x(k) \\
u(k)
\end{array}\right]^{T}\left[\begin{array}{cc}
Q(k) & S(k) \\
S^{T}(k) & R(k)
\end{array}\right]\left[\begin{array}{l}
x(k) \\
u(k)
\end{array}\right]\right.
\end{array}\right] .
$$

where

$$
\begin{aligned}
& R(k)=R^{T}(k)>0 \forall k \in\left\{k_{0} \ldots\left(k_{f}-1\right)\right\} \\
& Q(k)=Q^{T}(k) \geq 0 \forall k \in\left\{k_{0} \ldots k_{f}\right\} \\
& x\left(k_{0}\right) \text { is known. } \\
& x(k+1)=A(k) x(k)+B(k) u(k)
\end{aligned}
$$

Solution: The optimal control $u^{*}(k)$ and optimal cost $V^{*}\left(x\left(k_{0}\right), k_{0}\right)$ are:

$$
\begin{aligned}
u^{*}(k) & =-\mathcal{K}(k) x(k)-C(k) \\
V^{*}\left(x\left(k_{0}\right), k_{0}\right) & =x^{T}\left(k_{0}\right) P\left(k_{0}\right) x\left(k_{0}\right)+2 b^{T}\left(k_{0}\right) x\left(k_{0}\right)+c\left(k_{0}\right)
\end{aligned}
$$

where:

$$
\begin{array}{r}
K(k)=\Gamma^{-1}(k)\left[B^{T}(k) P(k+1) A(k)+S^{T}(k)\right] \\
C(k)=\Gamma^{-1}(k)\left[B^{T}(k) b(k+1)+r(k)\right] \\
\Gamma(k)=\left[R(k)+B^{T}(k) P(k+1) B(k)\right]
\end{array}
$$

and $P(k), b(k)$, and $c(k)$ are solutions to backwards difference equations:

$$
\begin{aligned}
P\left(k_{f}\right) & =Q\left(k_{f}\right) \\
P(k) & =Q(k)+A^{T}(k) P(k+1) A(k)-\mathcal{K}^{T}(k) \Gamma(k) \mathcal{K}(k)
\end{aligned}
$$

$$
b\left(k_{f}\right)=q\left(k_{f}\right)
$$

$$
b(k)=\left[A^{T}(k)-\mathcal{K}^{T}(k) B^{T}(k)\right] b(k+1)+q(k)-\mathcal{K}^{T}(k) r(k)
$$

$$
c\left(k_{f}\right)=0
$$

$$
c(k)=c(k+1)-C(k)^{T} \Gamma(k) C(k)
$$

trep.discopt.solve_tv_lq (A, B, q, r, Q, S, R)

Parameters

- A(Sequence of N numpy arrays, shape (nX, nX))-Linear system dynamics
- B (Sequence of N numpy arrays, shape (nX, nU)) - Linear system input matrix
- $\mathbf{q}($ Sequence of N numpy arrays, shape (nX))-Linear State Cost
- $\mathbf{r}($ Sequence of N numpy arrays, shape (nU))-Linear Input Cost
- Q (Function $Q(k)$ returning numpy array, shape (nX, nX)) Quadratic State Cost
- S (Function $S(k)$ returning numpy array, shape (nX, nU)) Quadratic Cross Term Cost
- \mathbf{R} (Function $R(k)$ returning numpy array, shape (nU, nU)) Quadratic Input Cost

Return type named tuple (K, C, P, b)
This function solve the time-varying discrete LQ problem for the linear system A, B.
$A[k]$ is a sequence of the linear system dynamics, $A(k)$.
$B[k]$ is a sequence of the linear system's input matrix, $B(k)$.
$q[k]$ is a sequence of the linear state cost, $q(k)$.
$r[k]$ is a sequence of the linear input cost, $r(k)$.
$Q(k)$ is a function that returns the quadratic state cost matrix at time k. For example, if $Q(k)=\mathcal{I}$:
Q = lambda k: numpy.eye (nX)
$S(k)$ is a function that returns the quadratic cross term cost matrix at time k.
$R(k)$ is a function that returns the state cost matrix at time k. For example, if the cost matrices are stored in an array $r_{\text {_costs }}$:
$\mathrm{R}=$ lambda $\mathrm{k}: ~ r _\operatorname{costs}[k]$
The function returns the optimal feedback law $\mathcal{K}(\|)$, the affine input term $C(k)$, and the last solution to two of the difference equations, $P(0)$ and $b(0)$.
K is a sequence of N numpy arrays of shape $(\mathrm{nU}, \mathrm{nX})$.
C is a sequence of N numpy arrays of shape (nU).
P is a single (nX, nX) numpy array.
b is a single (nX) numpy array.

DSystem - Discrete System wrapper for Midpoint Variational Integrators

- DSystem Objects
- State and Trajectory Manipulation
- Dynamics
- First Derivatives
- Second Derivatives
- Linearization and Feedback Controllers
- Checking the Derivatives

DSystem objects represent a MidpointVI variational integrators as first order discrete systems of the form $X(k+$ $1)=f(X(k), U(k), k)$. This representation is used by Doptimizer for discrete trajectory optimization. DSystem also provides methods for automatically calculating linearizations and feedback controllers along trajectories.

The discrete state consists of the variational integrator's full configuration, the dynamic momentum, and the kinematic velocity:

$$
X(k)=\left[\begin{array}{c}
q_{d}(k) \\
q_{k}(k) \\
p(k) \\
v_{k}(k)
\end{array}\right]
$$

The configuration and momentum are the same as in MidpointVI. The kinematic velocity is calculated as:

$$
v_{k}(k)=\frac{q_{k}(k)-q_{k}(k-1)}{t(k)-t(k-1)}
$$

The discrete input consists of the variational integrator's force inputs and the future state of the kinematic configurations:

$$
U(k)=\left[\begin{array}{l}
u(k) \\
\rho(k)
\end{array}\right]
$$

where the kinematic inputs are denoted by ρ thoughout this code (i.e, $q_{k}(k+1)=\rho(k)$). Additionally, the state input U is always capitalized to distinguish it from the force input u which is always lower case.

DSystem provides methods for converting between trajectories for the discrete system and trajectories for the variational integrator.

Examples

pend-on-cart-optimization.py

DSystem Objects

```
class trep.discopt.DSystem(varint,t)
```


Parameters

- varint (MidpointVI instance) - The variational integrator being represented.
- t (numpy array of floats, shape (N)) - An array of times

Create a discrete system wrapper for the variational integrator varint and the time t. The time t is the array $t(k)$ that maps a discrete time index to a time. It should have the same length N as trajectories used with the system.

```
DSystem.nX
    Number of states to the discrete system.
    int
DSystem.nU
    Number of inputs to the discrete system.
    int
DSystem.varint
    The variational integrator wrapped by this instance.
    MidpointVI
DSystem.system
    The mechanical system modeled by the variational integrator.
    System
DSystem.time
    The time of the discrete steps.
    numpy array, shape (N)
trep.discopt.xk
    Current state of the system.
    numpy array, shape (nX)
trep.discopt.uk
    Current input of the system.
    numpy array, shape (nU)
```

trep.discopt.k
Current discrete time of the system.
int
DSystem. $\mathbf{k f}$ ()
Return type int
Return the last available state that the system can be set to. This is one less than len (self.time).

State and Trajectory Manipulation

DSystem.build_state ($[Q=$ None, $p=$ None, $v=$ None $]$)

Parameters

- Q (numpy array, shape (nQ))-A configuration vector
- p(numpy array, shape (nd))-A momentum vector
- v (numpy array, shape (nk))-A kinematic velocity vector

Build a state vector $X k$ from components. Unspecified components are set to zero.
DSystem.build_input ([u=None, rho=None $]$)
Parameters

- u(numpy array, shape (nu))-An input force vector
- rho (numpy array, shape (nk))-A kinematic input vector

Type numpy array, shape (nU)
Build an input vector $U k$ from components. Unspecified components are set to zero.
DSystem.build_trajectory ($[Q=$ None, $p=$ None, $v=$ None, $u=$ None, $r h o=$ None $]$)

Parameters

- Q (numpy array, shape $(N, n Q))$ - A configuration trajectory
- p (numpy array, shape $(N, n d)$)-A momentum trajectory
- v (numpy array, shape $(N, n k))$ - A velocity trajectory
- u (numpy array, shape $(N-1, ~ n u))$ - An input force trajectory
- rho (numpy array, shape ($N-1, \mathrm{nk}$)) - A kinematic input trajectory

Return type named tuple of (X, U)
Combine component trajectories into a state and input trajectories. The state length is the same as the time base, the input length is one less than the time base. Unspecified components are set to zero:
>>> dsys.build_trajectory() \# Create a zero state and input trajectory
DSystem.split_state ($[X=$ None $]$)
Parameters X (numpy array, shape (nX)) - A state vector for the system
Return type named tuple of (Q, p, v)
Split a state vector into its configuration, moementum, and kinematic velocity parts. If X is None, returns zero arrays for each component.

DSystem.split_input ([U=None])
Parameters $\mathbf{U}($ numpy array, shape ($n U)$) - An input vector for the system
Return type named tuple of $(u, r h o)$
Split a state input vector U into its force and kinematic input parts, (u,rho). If U is None, returns zero arrays of the appropriate size.
DSystem.split_trajectory $([X=$ None, $U=$ None $])$

Parameters

- X (numpy array, shape $(N, n X))$ - A state trajectory
- U(numpy array, shape ($N-1, \mathrm{nU})$)- An input trajectory

Return type named tuple of ($Q, p, v, u, r h o$)
Split the state trajectory (X, U) into its Q, p, v, u, rho components. If X or U are None, the corresponding components are arrays of zero.
DSystem. convert_trajectory $\left(d s y s _a, X, U\right)$

Parameters

- dsys_a (DSystem) - Another discrete system
- X (numpy array, shape (N, nX)) - A state trajectory for dsys_a
- U (numpy array, shape ($N, \mathrm{nU})$) - An input trajectory for $d s y s _a$

Return type trajectory for this system, named tuple (X, U)
Convert the trajectory (X, U) for $d s y s _a$ into a trajectory for this system. This reorders the trajectory components according to the configuration and input variable names and drops components that aren't in this system. Variables in this system that are not in $d s y s_{-} a$ are replaced with zero.

Note: The returned path may not be a valid trajectory for this system in the sense that $x(k+1)=$ $f(x(k), u(k), k)$. This function only reorders the information.

DSystem.save_state_trajectory (filename $[, X=$ None, $U=$ None $]$)
Parameters

- filename (string) - Location to save the trajectory
- X (numpy array, shape $(N, n X))$ - A state trajectory
- U (numpy array, shape ($N-1, n \in)$) An input trajectory

Save a trajectory to a file. This splits the trajectory with split_trajectory () and saves the results with trep.save_traejctory (). If X or U are not specified, they are replaced with zero arrays.
DSystem.load_state_trajectory (filename)
Parameters filename (string) - Location of saved trajectory
Return type named tuple of (X, U)
Load a trajectory from a file that was stored with save_state_trajectory() or trep. save_trajectory().
If the file does not contain complete information for the system (e.g, it was saved for a different system with different states, or the inputs were not saved), the missing components will be filled with zeros.

Dynamics

DSystem.set (self, $x k, u k, k\left[, x k _h i n t=N o n e, \operatorname{lambda_ hint=None])~}\right.$
Set the current state, input, and time of the discrete system.
If $x k _h i n t$ and lambda_hint are provided, these are used to provide hints to hints to MidpointVI.step (). If the solution is known (for example, if you are calculating the linearization about a known trajectory) this can result in faster performance by reducing the number of root solver iterations in the variational integrator.

DSystem.step (self, $\left.u k\left[, x k _h i n t=N o n e, l a m b d a _h i n t=N o n e\right]\right)$

Advance the system to the next discrete time using the given input $u k$.
This is equivalent to calling self.set (self.f(), uk, self.k+1).
If $x k _h i n t$ and lambda_hint are provided, these are used to provide hints to hints to MidpointVI.step (). If the solution is known (for example, if you are calculating the linearization about a known trajectory) this can result in faster performance by reducing the number of root solver iterations in the variational integrator.

DSystem.f()

Return type numpy array, shape ($n X$)
Get the next state of the system, $x(k+1)$.

First Derivatives

```
DSystem.fdx()
```

Return type numpy array, shape ($n X, n X$)
DSystem.fdu()
Return type numpy array, shape ($n X, n U$)
These functions return first derivatives of the system dynamics $f()$ as numpy arrays with the derivatives across the rows.

Second Derivatives

DSystem. $\mathbf{f d} \mathbf{x d} \mathbf{(z)}$

Parameters z (numpy array, shape (nX))-adjoint vector
Return type numpy array, shape ($n U, n U$)
DSystem. fdxdu (z)
Parameters z (numpy array, shape (nX)) -adjoint vector
Return type numpy array, shape ($n X, n U$)
DSystem. fdudu (z)
Parameters z(numpy array, shape (nX))-adjoint vector
Return type numpy array, shape ($n U, n U$)
These functions return the product of the 1D array z and the second derivative of f . For example:

$$
z^{T} \frac{\partial^{2} f}{\partial u \partial u}
$$

Linearization and Feedback Controllers

DSystem.linearize_trajectory (X, U)
Return type named tuple (A, B)
Calculate the linearization of the system dynamics about a trajectory. X and U do not have to be an exact trajectory of the system.
Returns the linearization in a named tuple (A, B).
DSystem.project ($b X, b U[$, Kproj=None $]$)
Rtyple named tuple (X, U)
Project $b X$ and $b U$ into a nearby trajectory for the system using a linear feedback law:

```
X[0] = bX[0]
U[k] = bU[k] - Kproj * (X[k] - bU[k])
X[k+1] = f(X[k], U[k], k)
```

If no feedback law is specified, one will be created by calc_feedback_controller() along $b X$ and $b U$. This is typically a bad idea if $b X$ and $b U$ are not very close to an actual trajectory for the system.

Returns the projected trajectory in a named tuple (X, U).

```
DSystem.dproject ( }A,B,bdX,bdU,K
```

Rtyple named tuple (dX, dU)
Project $b d X$ and $b d U$ into the tangent trajectory space of the system. A and B are the linearization of the system about the trajectory. K is a stabilizing feedback controller.

Returns the projected tangent trajectory (dX, dU).
DSystem.calc_feedback_controller ($X, U[, Q=$ None, $R=$ None, return_linearization=False $]$)
Return type K or named tuple ($\mathrm{K}, \mathrm{A}, \mathrm{B}$)
Calculate a stabilizing feedback controller for the system about a trajectory X and U. The feedback law is calculated by solving the discrete LQR problem for the linearization of the system about X and U.
X and U do not have to be an exact trajectory of the system, but if they are not close, the controller is unlikely to be effective.

If the LQR weights Q and R are not specified, identity matrices are used.
If return_linearization is False, the return value is the feedback control law, K.
If return_linearization is True, the method returns the linearization as well in a named tuple: (K, A, B).

Checking the Derivatives

```
DSystem. check_fdx \((x k, u k, k[\), delta \(=1 e-5])\)
DSystem.check_fdu ( \(x k, u k, k[\), delta \(=1 e-5]\) )
DSystem. check_fdxdx \((x k, u k, k[\), delta \(=1 e-5])\)
DSystem. check_fdxdu ( \(x k, u k, k[\), delta \(=1 e-5]\) )
DSystem. check_fdudu ( \(x k, u k, k[\), delta \(=1 e-5]\) )
```


Parameters

- $\mathbf{x k}$ (numpy array, shape (nX)) - A valid state of the system
- uk (numpy array, shape (nU))-A valid input to the system
- $\mathbf{k}(i n t)$ - A valid discrete time index
- delta - The perturbation for approximating the derivative.

These functions check derivatives of the discrete state dynamics against numeric approximations generated from lower derivatives (e.g, $f d x()$ from $f()$, and fdudu() from $f d u())$. A three point approximation is used:

```
approx_deriv = (f(x + delta) - f(x - delta)) / (2 * delta)
```

Each function returns a named tuple (error, exact_norm, approx_norm) where error is the norm of the difference between the exact and approximate derivative, exact_norm is the norm of the exact derivative, approx_norm is the norm of the approximate derivative.

DCost - Discrete Trajectory Cost

The DCost class defines the incremental and terminal costs of a trajectory during a discrete trajectory optimization. It is used in conjunction with DSystem and DOptimizer.

The discrete trajectory optimization finds a trajectory that minimizes a cost of the form:

$$
h(\xi)=\sum_{k=0}^{k_{f}-1} \ell(x(k), u(k), k)+m\left(x\left(k_{f}\right)\right)
$$

DCost defines the costs $\ell(x, u, k)$ and $m(x)$ for a system and calculates their $1^{\text {st }}$ and $2^{\text {nd }}$ derivatives.
The current implementation defines a suitable cost for tracking a desired trajectory:

$$
\begin{array}{r}
\ell(x, u, k)=\frac{1}{2}\left(\left(x-x_{d}(k)\right)^{T} Q\left(x-x_{d}(k)\right)+\left(x-u_{d}(k)\right)^{T} R\left(u-u_{d}(k)\right)\right) \\
m(x)=\frac{1}{2}\left(x-x_{d}\left(k_{f}\right)\right)^{T} Q\left(x-x_{d}\left(k_{f}\right)\right)
\end{array}
$$

where $x_{d}(k)$ and $u_{d}(k)$ are the desired state and input trajectories and Q and R are positive definite matrices that define their weighting.

DCost Objects

class trep. discopt. DCost ($x d, u d, Q, R$)

Parameters

- $\mathbf{x d}($ numpy array, shape $(N, n X))$ - The desired state trajectory
- ud (numpy array, shape ($N-1, ~ n U)$)- The desired input trajectory
- Q (numpy array, shape $(\mathrm{nX}, \mathrm{nX}))$ - Cost weights for the states
- $\mathbf{R}($ numpy array, shape ($n U, \mathrm{nU})$) - Cost weights for the inputs

Create a new cost object for the desired states $x d$ weighted by Q and the desired inputs $u d$ weighted by R.
DCost. Q
(numpy array, shape ($n X, n X$))
The weights of the states.

```
DCost.R
(numpy array, shape \((n U, n U)\) )
```

The weights of the inputs.

Costs
DCost. $1(x k, u k, k)$

Parameters

- xk (numpy array, shape (nX))-Current state
- uk (numpy array, shape (nU))-Current input
- \mathbf{k} (int) - Current discrete time

Return type float
Calculate the incremental cost of $x k$ and $u k$ at discrete time k.
DCost.m($x k f$)
Parameters xkf(numpy array, shape (nX))-Final state
Return type float
Calculate the terminal cost of $x k$.
$1^{\text {st }}$ Derivatives
DCost.l_dx ($x k, u k, k)$

Parameters

- $\mathbf{x k}$ (numpy array, shape (nX))-Current state
- uk (numpy array, shape (nU))-Current input
- \mathbf{k} (int) - Current discrete time

Return type numpy array, shape ($n X$)
Calculate the derivative of the incremental cost with respect to the state.
DCost.1_du ($x k, u k, k$)

Parameters

- xk (numpy array, shape (nX))-Current state
- uk (numpy array, shape (nU))-Current input
- \mathbf{k} (int) - Current discrete time

Return type numpy array, shape ($n U$)
Calculate the derivative of the incremental cost with respect to the input.
DCost.m_dx (xkf)
Parameters xkf (numpy array, shape (nX)) - Current state
Return type numpy array, shape ($n X$)
Calculate the derivative of the terminal cost with respect to the final state.

$2^{\text {nd }}$ Derivatives

```
DCost.l_dxdx \((x k, u k, k)\)
```


Parameters

- xk (numpy array, shape (nX))-Current state
- uk (numpy array, shape (nU))-Current input
- \mathbf{k} (int) - Current discrete time

Return type numpy array, shape ($n X, n X$)
Calculate the second derivative of the incremental cost with respect to the state. For this implementation, this is always equal to Q.

DCost.l_dudu ($x k, u k, k$)

Parameters

- xk (numpy array, shape (nX))-Current state
- uk (numpy array, shape (nU))-Current input
- \mathbf{k} (int) - Current discrete time

Return type numpy array, shape ($n U, n U$)
Calculate the second derivative of the incremental cost with respect to the inputs. For this implementation, this is always equal to R.

DCost.l_dxdu ($x k, u k, k$)

Parameters

- xk (numpy array, shape (nX))-Current state
- uk (numpy array, shape (nU))-Current input
- \mathbf{k} (int) - Current discrete time

Return type numpy array, shape ($n X, n U$)
Calculate the second derivative of the incremental cost with respect to the state and inputs. For this implementation, this is always equal to zero.

DCost.m_dxdx (xkf)
Parameters xkf (numpy array, shape (nX)) - Current state
Return type numpy array, shape ($n X, n X$)
Calculate the second derivative of the terminal cost. For this implementation, this is always equal to Q.

DOptimizer - Discrete Trajectory Optimization

- DOptimizer Objects
- Cost Functions
- Descent Directions
- Armijo Line Search
- Optimizing a Trajectory
- Debugging Tools
- DOptimizerMonitor Objects
- DOptimizerDefaultMonitor Objects

Discrete trajectory optimization is performed with DOptimizer objects. The optimizer finds a trajectory for a DSystem that minimizes a DCost.

The optimizer should work for arbitrary systems, not just ones based on variational integrators. You would need to define a compatible DSystem class that supports the right functionality.

Examples

```
pend-on-cart-optimization.py
```


DOptimizer Objects

```
class trep.discopt.DOptimizer(dsys, cost, first_method_iterations=10, monitor=None)
```

You should create a new optimizer for each new system or cost, but for a given combination you can optimize as many different trajectories as you want. The optimization is designed to mostly be used through the optimize() method.
You can use the DoptimizerMonitor class to monitor progress during optimizations. If monitor is None, the optimizer will use DOptimizerDefaultMonitor which prints useful information to the console.

DOptimizer.dsys

The DSystem that is optimized by this instance.

DOptimizer.cost $=$ cost

The DCost that is optimized by this instance.
DOptimizer.optimize_ic
This is a Boolean indicating whether or not the optimizer should optimize the initial condition during an optimization.
Defaults to False.

Warning: This is broken for constrained systems.

DOptimizer.monitor

The DOptimizerMonitor that this optimization reports progress to. The default is a new instance of DOptimizerDefaultMonitor.

```
DOptimizer.Qproj
```

DOptimizer.Rproj
These are the weights for an LQR problem used to generate a linear feedback controller for each trajectory. Each should be a function of k that returns an appropriately sized 2D ndarray.

The default values are identity matrices.

DOptimizer.descent_tolerance
A trajectory is considered a local minimizer if the norm of the cost derivative is less than this. The default value is $1 \mathrm{e}-6$.

Cost Functions

DOptimizer.calc_cost (X, U)
Calculate the cost of a trajectory X, U.
DOptimizer.calc_dcost ($X, U, d X, d U$)
Calculate the derivative of the cost function evaluated at X, U in the direction of a tangent trajectory $d X, d U$.
It is important that $d X, d U$ be an actual tangent trajectory of the system at X, U to get the correct cost. See check_ddcost () for an example where this is important.

DOptimizer.calc_ddcost ($X, U, d X, d U, Q, R, S$)
Calculate the second derivative of the cost function evaluated at X, U in the direction of a tangent trajectory $d X, d U$. The second order model parameters must be specified in Q, R, S. These can be obtained through calc_newton_model () or by calc_descent_direction () when method="newton".
It is important that $d X, d U$ be an actual tangent trajectory of the system at X, U to get the correct cost. See check_ddcost () for an example where this is important.

Descent Directions

DOptimizer.calc_steepest_model()
Calculate a quadratic model to find a steepest descent direction:

$$
Q=\mathcal{I} \quad R=\mathcal{I} \quad S=0
$$

DOptimizer.calc_quasi_model (X, U)
Calculate a quadratic model to find a quasi-newton descent direction. This uses the second derivative of the un-projected cost function.

$$
Q=\frac{\partial^{2} h}{\partial x \partial x} \quad R=\frac{\partial^{2} h}{\partial u \partial u} \quad S=\frac{\partial^{2} h}{\partial x \partial u}
$$

This method does not use the second derivative of the system dynamics, so it tends to be as fast calc_steepest_model (), but usually converges much faster.

DOptimizer.calc_newton_model (X, U, A, B, K)
Calculate a quadratic model to find a newton descent direction. This is the true second derivative of the projected cost function:

$$
\begin{aligned}
Q\left(k_{f}\right) & =D^{2} m\left(x\left(k_{f}\right)\right) \\
Q(k) & =\frac{\partial^{2} \ell}{\partial x \partial x}(k)+z^{T}(k+1) \frac{\partial^{2} f}{\partial x \partial x}(k) \\
S(k) & =\frac{\partial^{2} \ell}{\partial x \partial u}(k)+z^{T}(k+1) \frac{\partial^{2} f}{\partial x \partial u}(k) \\
R(k) & =\frac{\partial^{2} \ell}{\partial u \partial u}(k)+z^{T}(k+1) \frac{\partial^{2} f}{\partial u \partial u}(k)
\end{aligned}
$$

where:

$$
\begin{aligned}
z\left(k_{f}\right) & =D m^{T}\left(x\left(k_{f}\right)\right) \\
z(k) & ={\frac{\partial \ell^{T}}{\partial x}}^{T}(k)-\mathcal{K}^{T}(k){\frac{\partial \ell^{T}}{\partial u}}^{T}(k)+\left[{\frac{\partial f^{T}}{\partial x}}^{\left.(k)-\mathcal{K}^{T}(k){\frac{\partial f^{T}}{\partial u}}^{T}(i)\right] z(k+1)}\right.
\end{aligned}
$$

This method depends on the second derivative of the system's dynamics, so it can be significantly slower than other step methods. However, it converges extremely quickly near the minimizer.

DOptimizer.calc_descent_direction (X, U, method='steepest')

Calculate the descent direction from the trajectory X, U using the specified method. Valid methods are:

```
•"steepest" - Use calc_steepest_model()
•"quasi" - Use calc_quasi_model()
•"newton" - Use calc_newton_model()
```

The method returns the named tuple (Kproj, $d X, d U, Q, R, S)$.

Armijo Line Search

```
DOptimizer.armijo_beta
DOptimizer.armijo_alpha
DOptimizer.armijo_max_iterations
```

Parameters for the Armijo line search performed at each step along the calculated descent direction.
armijo_beta should be between 0 and 1 (not inclusive). The default value is 0.7 .
armijo_alpha should be between 0 (inclusive) and 1 (not inclusive). The default value is 0.00001 .
armijo_max_iterations should be a positive integer. If the line search cannot satisfy the sufficient decrease criteria after this number of iterations, a trep. ConvergenceError is raised. The default value is 30 .

```
DOptimizer.armijo_simulate ( }bX,bU,Kproj
```

This is a sub-function for armijo search. It projects the trajectory $b X, b U$ to a real trajectory like DSystem.project, but it also returns a partial trajectory if the simulation fails. It is not intended to be used directly.

DOptimizer.armijo_search ($X, U, K p r o j, d X, d U$)
Perform an Armijo line search from the trajectory X,U along the tangent trajectory dX, dU. Returns the named tuple ($n X, n U, n C o s t$) or raises trep. ConvergenceError if the search doesn't terminate before taking the maximum number of iterations.
This method is used by step () once a descent direction has been found.

Optimizing a Trajectory

DOptimizer.step (iteration, X, U, method='steepest')
Perform an optimization step using a particular method.
This finds a new trajectory nX, nU that has a lower cost than the trajectory X, U. Valid methods are defined in DOptimizer.calc_descent_direction().

If the specified method fails to find an acceptable descent direction, step () will try again with the method returned by select_fallback_method().
iteration is an integer that is used by select_fallback_method() and passed to the DOptimizerMonitor when reporting the current step progress.
Returns the named tuple (done, $n X, n U$, dcost0, cost1) where:
-done is a Boolean that is True if the trajectory X, U cannot be improved (i.e, X, U is a local minimizer of the cost).
${ }^{\bullet} n X, n U$ are the improved trajectory
$\cdot d \cos t 0$ is the derivative of the cost at X, U.

- costl is the cost of the improved trajectory.

DOptimizer.optimize (X, U, max_steps $=50$)
Iteratively optimize the trajectory X, U until a local minimizer is found or max_steps are taken. The descent direction method used at each step is determined by select_method().
Returns the named tuple (converged, X, U) where:
-converged is a Boolean indicating if the optimization finished on a local minimizer.
$\cdot X, U$ is the improved trajectory.

DOptimizer.first_method_iterations

Number of steps to take using first_method before switching to second_method for the remaining steps. See select_method() for more information on controlling the step method.
Default: 10

DOptimizer.first_method

Descent method to use for the first iterations of the optimization.
Default: "quasi"

DOptimizer.second_method

Descent method to use for the optimzation after first_method_iterations iterations have been taken.
Default: "netwon"
DOptimizer.select_method (iteration)
Select a descent direction method for the specified iteration.
This is called by optimize () to choose a descent direction method for each step. The default implementation takes a pre-determined number (lower_order_iterations) of "quasi" steps and then switches to the "newton" method.
You can customize the method selection by inheriting DOptimizer and overriding this method.
DOptimizer.select_fallback_method (iteration, current_method)
When step () finds a bad descent direction (e.g, positive cost derivative), this method is called to figure out what descent direction it should try next.

Debugging Tools

DOptimizer.descent_plot (X, U, method='steepest', points $=40$, legend $=$ True)
Create a descent direction plot at X, U for the specified method.
This is a useful plot for examining the line search portion of an optimization step. It plots several values along the descent direction line. All values are plotted against the line search parameter $z \in \mathbb{R}$:
-The true cost $g(\xi+z \delta \xi)-g(\xi)$
-The modeled cost $D g(\xi) \circ \delta \xi z+\frac{1}{2} q \circ(\delta \xi, \delta \xi) z^{2}$
-The sufficient decrease line: $g(\xi+z \delta \xi)<g(\xi)+\alpha z D g(\xi) \circ \delta \xi$
-The armijo evaluation points: $z=\beta^{m}$
This is an example plot for a steepest descent plot during a particular optimization. This plot shows that the true cost increases much faster than the model predicts. As a result, 6 Armijo steps are required before the sufficient decrease condition is satisfied.

Example usage:

```
>>> import matplotlib.pyplot as pyplot
>>> optimizer.descent_plot(X, U, method='steepest', legend=True)
>>> pyplot.show()
```

trep.discopt.check_dcost (X, U, method='steepest', delta $=1 e-6$, tolerance $=1 e-5$)
Check the calculated derivative of the cost function at X, U with a numeric approximation determined from the original cost function.

```
DOptimizer.check_ddcost( }X,U,\mathrm{ method='steepest', delta=le-6,tolerance=le-5)
```

Check the second derivative of the cost function at X, U with a numeric approximation determined from the first derivative.

DOptimizerMonitor Objects

DOptimizer objects report optimization progress to their monitor object. The base implementation does nothing. The default monitor DOptimizerDefaultMonitor mainly prints
reports to the console. You can define your own monitor to gather more detailed information like saving each intermediate trajectory.
Note that if you do want to save any values, you should save copies. The optimizer might reuse the same variables in each step to optimize memory usage.
class trep. discopt. DOptimizerMonitor
This is the base class for Optimizer Monitors. It does absolutely nothing, so you can use this as your monitor if you want completely silent operation.

DoptimizerMonitor.optimize_begin (X, U)
Called when DOptimizer.optimize() is called with the initial trajectory.
DOptimizerMonitor.optimize_end (converged, X, U, cost)
Called before DOptimizer.optimize() returns with the results of the optimization.
DoptimizerMonitor.step_begin (iteration)
Called at the start of each DOptimize.step(). Note that step calls itself with the new method when one method fails, so this might be called multiple times with the same iteration.

All calls will be related to the same iteration until step_termination or step_completed are called.
DOptimizerMonitor.step_info (method, cost, dcost, $X, U, d X, d U$, Kproj)
Called after a descent direction has been calculated.
DOptimizerMonitor.step_method_failure(method, cost, dcost,fallback_method)
Called when a descent method results in a positive cost derivative.
DoptimizerMonitor.step_termination (cost, dcost)
Called if dcost satisfies the descent tolerance, indicating that the current trajectory is a local minimizer.
DOptimizerMonitor.step_completed (method, cost, $n X, n U$)
Called at the end of an optimization step with information about the new trajectory.
DOptimizerMonitor.armijo_simulation_failure (armijo_iteration, $n X, n U, b X, b U$)
Called when a simulation fails (usually an instability) during the evaluation of the cost in an armijo step. The Armijo search continues after this.

DOptimizerMonitor.armijo_search_failure $(X, U, d X, d U, \operatorname{cost} 0, d \operatorname{cost} 0, K p r o j)$
Called when the Armijo search reaches the maximum number of iterations without satisfying the sufficient decrease criteria. The optimization cannot proceed after this.
DoptimizerMonitor.armijo_evaluation (armijo_iteration, $n X, n U, b X, b U$, cost, max_cost)
Called after each Armijo evaluation. The semi-trajectory bX,bU was successfully projected into the new trajectory nX, nU and its cost was measured. The search will continue if the cost is greater than the maximum cost.

DOptimizerDefaultMonitor Objects

This is the default monitor for DOptimizer. It prints out information to the console and records the cost and cost derivative history.

class trep. discopt.DOptimizerDefaultMonitor

This is the default DOptimizer Monitor. It mainly prints status updates to stdout and records the cost and dcost history so you can create convergence plots.

```
DOptimizerDefaultMonitor.cost_history
```

DOptimizerDefaultMonitor.dcost_history
Dictionaries mapping the iteration number to the cost and cost derivative, respectively. These are reset at the beginning of each optimization.

chapter 6

trep.ros-ROS Tools

This module provides tools for using trep with the Robot Operating System (ROS). More information can be found on the python_trep wiki page for ROS.

URDF Import Tool

The trep. ros module provides several tools for working with the ROS environment. The URDF import function allows trep to interface directly with the Unified Robot Description Format (URDF). See the python_trep wiki page for more details on supported URDF tags.

```
trep.ros.import_urdf (source, system=None, prefix=None)
```

Parameters source - string containing the URDF xml data
Return type trep. system class
This function creates the trep. system class and fills in the frames and joints as defined in the URDF xml data.
source is a string containing the URDF data. May be loaded from the parameter server if using a launch file.
system is a previously defined trep. system class. If provided, the URDF will be imported into the existing system.
prefix is a string to be prefixed to all trep frames and configs created when importing the URDF. This is useful if importing the same URDF multiple times in a single system, ie. multiple robots.

The function returns the trep system defining the URDF.

```
trep.ros.import_urdf_file(filename, system=None, prefix=None)
```

Parameters filename (string) - path to URDF
Return type trep. system class
This function creates the trep. system class and fills in the frames and joints as defined in the URDF file.
filename is the complete path to the URDF file.
system is a previously defined trep. system class. If provided, the URDF will be imported into the existing system.
prefix is a string to be prefixed to all trep frames and configs created when importing the URDF. This is useful if importing the same URDF multiple times in a single system, ie. multiple robots.
The function returns the trep system defining the URDF.

ROSMidpointVI - ROS Midpoint Variational Integrator

The ROSMidpointVI class wraps the trep. MidpointVI class to implement a variational integrator with a few extra features for use in a ROS environment. This class is a superset of the trep. MidpointVI class, so see the trep. MidpointVI documentation for a full listing of the class description.

Initializing the ROSMidpointVI class creates a rospy publisher which will automatically publish all trep frames to the /tf topic when step () is called.
class trep.ros. ROSMidpointVI (system, timestep, tolerance $=1 e-10$, num_threads $=$ None)
Create a new empty mechanical system. system is a valid System object that will be simulation.
timestep is a different requirement for the ROSMidpointVI class. This sets the fixed timestep for the system simulation. The value is in seconds, ie. 0.1.
tolerance sets the desired tolerance of the root solver when solving the DEL equation to advance the integrator.

MidpointVI makes use of multithreading to speed up the calculations. num_threads sets the number of threads used by this integrator. If num_threads is None, the integrator will use the number of available processors reported by Python's multiprocessing module.

Simulation

ROSMidpointVI.step (ul=tuple(), k2=tuple(), max_iterations=200, lambdal_hint=None, q2_hint=None)
Step the integrator forward by one timestep. This advances the time and solves the DEL equation. The current state will become the previous state (ie, $t_{2} \Rightarrow t_{1}, q_{2} \Rightarrow q_{1}, p_{2} \Rightarrow p_{1}$). The solution will be saved as the new state, available through $t 2, q 2$, and p2. lambda will be updated with the new constraint force, and u1 will be updated with the value of $u l$. The frames are also published to the $/ \mathrm{tf}$ topic.
lambdal and $q 2$ can be specified to seed the root solving algorithm. If they are None, the previous values will be used.

The method returns the number of root solver iterations needed to find the solution.
Raises a ConvergenceError exception if the root solver cannot find a solution after max_iterations.

ROSMidpointVI.sleep()

Calls the rospy. Rate.sleep () method set to timestep of the ROSMidpointVI class. This method attempts to keep a loop at the specified frequency accounting for the time used by any operations during the loop.
Raises a rospy. ROS Interrupt Exception exception if sleep is interrupted by shutdown.

CHAPTER 7

Misc. Components

Spline - Spline Objects

```
class trep.Spline (points)
```

Parameters points - A list of points defining the spline. See details.
The Spline class implements 1D spline interpolation between a set of points. Spline provides methods to evaluate points on the spline curve as well as its first and second derivatives. It can be used by new types of forces, potentials, and constraints to implement calculations.

The spline is defined by the list points. Each entry in points is a list of 2-4 numbers. The first two numbers are the x and y values of the points. The remaining two numbers, if provided and not None, are the first and second derivatives of the curve at that point. Any derivatives not provided are determined by the resulting interpolation.

For N points, The spline will comprise $N-1$ polynomials of order 3-5, depending on how many derivatives were specified. Spline will choose the lowest order polynomials possible while still being able to satisfy the specified values. Specifying derivatives directly is much more effective than placing several points infinitesimally close to force the curve into a particular shape.

Spline Objects

```
Spline.x_points
```

Return type numpy.ndarray
List of the x points that define this spline.
(read-only)
Spline.y_points
Return type numpy. ndarray
List of the y points that define this spline.
(read-only)

Spline.coefficients

Return type numpy.ndarray
The coefficients of the interpolating polynomials.
(read-only)
Spline. copy ()
Return type Spline
Create a new copy of this Spline.
Spline. $\mathbf{y}(x)$
Return type Float
Evaluate the spline at x.
Spline. $\mathrm{dy}(x)$
Return type Float
Evaluate the derivative of the spline at x.
Spline.ddy (x)
Return type Float
Evaluate the second derivative of the spline at x.

TapeMeasure - Measuring distances between frames

class trep.TapeMeasure (system, frames)

Parameters

- system - The System that the frames belong to.
- frames - A list of Frame objects or frame names.

A TapeMeasure object calculates the length of the line you get from playing "connect the dots" with the origins of a list of coordinate frames. TapeMeasure can calculate the length of the line and its derivatives with respect to configuration variables, and the velocity of the length $\left(\frac{d x}{d t}\right)$ and its derivatives.

(figure here)

TapeMeasure can be used as the basis for new constraints, potentials, and forces, or used independently for your own calculations.

Length and Velocity Calculations

Let $\left(p_{0}, p_{1}, p_{2} \ldots p_{n}\right)$ be the points at the origins of the frames specified by frames. The length, x is calculated as follows.

$$
\begin{array}{r}
v_{k}=p_{k+1}-p_{k} \\
x_{k}=\sqrt{v_{k}^{T} v_{k}} \\
x=\sum_{k=0}^{n-1} x_{k}
\end{array}
$$

The velocity is calculated by applying the chain rule to x :

$$
\dot{x}=\sum_{k} \sum_{i} \frac{\partial x_{k}}{\partial q_{i}} \dot{q}_{i}
$$

These calculations, and their derivatives, are optimized internally to take advantage of the fact that many of these terms are zero, significantly reducing the amount of calculation to do.

Warning: The derivatives of the length and velocity do not exist when the length of any part of the segment is zero. TapeMeasure does not check for this condition and will return NaN or cause a divide-by-zero error. Be careful to avoid these cases.

TapeMeasure Objects

```
TapeMeasure.system
    The system that the TapeMeasure works in.
    (read-only)
TapeMeasure.frames
A tuple of Frame objects that define the lines being measured.
(read-only)
```

```
TapeMeasure.length()
```

```
TapeMeasure.length()
```

Return type Float
Calculate the total length of the line segments at the system's current configuration.

```
TapeMeasure.length_dq(ql)
```

Parameters $q 1$ (Config) - Derivative variable
Return type Float
Calculate the derivative of the length with respect to the value of $q 1$.

```
TapeMeasure.length_dqdq(q1,q2)
```


Parameters

- q1 (Config) - Derivative variable
- q2 (Config)- Derivative variable

Return type Float
Calculate the second derivative of the length with respect to the value of $q 1$ and the value of $q 2$.

TapeMeasure.length_dqdqdq (q1, q2, q3)

Parameters

- q1 (Config) - Derivative variable
- q2 (Config) - Derivative variable
- q3 (Config) - Derivative variable

Return type Float
Calculate the third derivative of the length with respect to the value of $q 1$, the value of $q 2$, and the value of $q 3$.

TapeMeasure.velocity()

Return type Float
TapeMeasure.velocity_dq (q1)
Parameters q1 (Config) - Derivative variable
Return type Float
Calculate the derivative of the velocity with respect to the value of $q 1$.

```
TapeMeasure.velocity_ddq(dql)
```

Parameters dq1 (Config) - Derivative variable
Return type Float
Calculate the derivative of the velocity with respect to the velocity of $q 1$.

```
TapeMeasure.velocity_dqdq(q1,q2)
```


Parameters

- q1 (Config) - Derivative variable
- q2 (Config) - Derivative variable

Return type Float
Calculate the second derivative of the velocity with respect to the value of $q 1$ and the value of $q 2$.
TapeMeasure.velocity_dddqdq($d q 1, d q 2$)

Parameters

- dq1 (Config) - Derivative variable
- q2 (Config) - Derivative variable

Return type Float
Calculate the second derivative of the velocity with respect to the velocity of $q 1$ and the value of $q 2$.

Visualization

TapeMeasure.opengl_draw (width=1.0, color=(1.0, 1.0, 1.0))
Draw a representation of the line defined by the TapeMeasure with the specified width and color. The current OpenGL coordinate system should be the root coordinate frame of the System.

This method can be called by constraints, forces, and potentials that are based on the TapeMeasure.

Verifying Derivatives

```
TapeMeasure.validate_length_dq ([delta \(=1 e-6\), tolerance \(=1 e-6\), verbose \(=\) False \(])\)
TapeMeasure.validate_length_dqdq ( \([\) delta \(=1 e-6\), tolerance \(=1 e-6\), verbose \(=\) False \(])\)
TapeMeasure.validate_length_dqdqdq ([delta \(=1 e-6\), tolerance \(=1 e-6\), verbose \(=\) False \(])\)
TapeMeasure.validate_velocity_dq ([delta \(=1 e-6\), tolerance \(=1 e-6\), verbose \(=\) False \(])\)
TapeMeasure.validate_velocity_ddq ([delta \(=1 e-6\), tolerance \(=1 e-6\), verbose \(=\) False \(]\) )
TapeMeasure.validate_velocity_dqdq ( \([\) delta \(=1 e-6\), tolerance \(=1 e-6\), verbose \(=\) False \(])\)
```

TapeMeasure.validate_velocity_ddqdq ([delta $=1 e-6$, tolerance $=1 e-6$, verbose $=$ False $])$
Unlike Constraint, Potential, and Force, TapeMeasure is used directly and all of the calculations are already implemented and verified. These functions are primarily used for testing during developement, but they might be useful for debugging if you are using a TapeMeasure and having trouble.

CHAPTER 8

Trep "Hello World"

This tutorial is meant to be an introduction to trep by walking the reader through extended examples. This tutorial will use a Python shell known as IPython for illustrating the organization of trep's components. It is recommended that IPython is downloaded and installed, although the tutorial is still useful without access to IPython.

Let's begin by creating the trep equivalent of "Hello World".

Import the trep module into python

Let us begin by importing the trep module into Python.

```
import trep
```

After importing trep if you type trep followed by pressing tab in IPython a list of all of the methods that are available for the trep module are displayed. As you can see that trep. System is listed, which instantiates an empty trep system. This is used in the next section.

```
>>> trep.
trep.CONST_SE3 trep.RZ trep.constraint trep.ryXRT
trep.Config trep.Spline
trep.Constraint trep.System
\hookrightarrowtrajectory
trep.ConvergenceError
trep.Force trep.TY
trep.Frame trep.TZ
trep.Input trep.TapeMeasure
trep.MidpointVI trep.WORLD
trep.Potential trep.config
trep.RX trep.const_se3
trep.RY trep.const_txyz
```

```
trep.constraints trep.rz
```

trep.constraints trep.rz
trep.finput trep.save_
trep.finput trep.save_
trep.force trep.spline
trep.force trep.spline
trep.forces trep.system
trep.forces trep.system
trep.frame trep.tapemeasure
trep.frame trep.tapemeasure
trep.load_trajectory trep.tx
trep.load_trajectory trep.tx
trep.midpointvi trep.ty
trep.midpointvi trep.ty
trep.potential trep.tz
trep.potential trep.tz
trep.potentials trep.util
trep.potentials trep.util
trep.rx trep.visual

```
trep.rx trep.visual
```


Create a new instance of a trep system

Let us create a new instance of a trep system.

```
system = trep.System()
```

This creates a new instance of a trep system. Typing system. followed by pressing tab will list all the methods and properties of the system object.

```
>>> system.
system.L
system.L_ddq
system.L_ddqddq
system.L_ddqddqdq
system.L_ddqddqdqdq
system.L_ddqdq
system.L_ddqdqdq
system.L_ddqdqdqdq
system.L_dq
system.L_dqdq
system.L_dqdqdq
system.add_structure_changed_func
system.configs
system.constraints
system.ddq
system.ddqd
system.ddqk
system.dq
system.dqd
system.dqk
system.dyn_configs
system.export_frames
system.f
system.f_dddk
system.f_dddkdq
system.f_ddq
system.f_ddqddq
system.f_ddqdq
system.f_dq
system.f_dqdq
system.f_du
system.f_duddq
system.f_dudq
system.f_dudu
system.forces
system.frames
system.get_config
system.get_constraint system.world_frame
system.get_force
```


Some examples:

The current system time is

```
>>> system.t
0.0
```

The current inputs are (the system has no inputs)

```
>>> system.u
array([], dtype=float64)
```

The current generalized coordinates are (the system has no configuration)

```
>>> system.q
array([], dtype=float64)
```

All of the properties and methods for the system object are documented in the System documentation. We will explore more of these properties and methods later in the tutorial.

Visualize the system with trep's visualization tools

Let us visualize the system.

```
trep.visual.visualize_3d([ trep.visual.VisualItem3D(system, [], []) ])
```

Below is what you should see.

This brings up the trep visualization of the mechanical system. Since this system has no components nothing is shown. The VisualItem3D method takes in three arguments: system object, time vector, and configuration vector. In this example the time vector and configuration vector are set to empty vectors. If these vectors were not empty the visualization would play a movie of the system going through the configurations at the given times.

trepHelloWorld.py code

Below is the entire script used in this section of the tutorial.

```
# trepHelloWorld.py
# Import the Trep module into python
import trep
# Create a new instance of a trep system
system = trep.System()
# Visualize the system with trep's visualization tools
trep.visual.visualize_3d([ trep.visual.VisualItem3D(system, [], []) ])
```


chapter 9

Create a pendulum

Now let's create a trep model of a simple single-link pendulum, simulate a discrete trajectory, and then visualize the results.

Import necessary Python modules

Let us begin by importing some standard modules including the trep module into python.

```
import math
from math import pi
import numpy as np
import trep
from trep import tx, ty, tz, rx, ry, rz
```

The line that should be noted here is highlighted above. $t x, t y, t z, r x, r y, r z$ are trep methods that make it very easy to create new frames of reference for your system. They are used in the next section.

Build a pendulum system

Let us now build the pendulum system that corresponds to the figure below.


```
m = 1.0 # Mass of pendulum
l = 1.0 # Length of pendulum
q0 = 3./4.*pi # Initial configuration of pendulum
t0 = 0.0 # Initial time
tf = 5.0 # Final time
dt = 0.1 # Timestep
system = trep.System() # Initialize system
frames = [
    rx('theta', name="pendulumShoulder"), [
        tz(-l, name="pendulumArm", mass=m)]]
system.import_frames(frames) # Add frames
```

The first lines of code here define system parameters. Then you can see that a new trep system is created.
The frames of the system are defined using the methods that were imported above. The Frame documentation has a through explanation of how to create and use these frames. The first frame is created to rotate around its parent's (system.world_frame) X axis. It is defined by the configuration parameter theta and is named pendulumShoulder. The second frame is a translation of fixed amount (-1) along its parent's (pendulumShoulder) Z axis and is given a mass of m. The system.import_frames method is used to create the frames from the list of frame definations in frames.

Add forces to the system

Let us now add forces, potentials, and damping into the system.

```
trep.potentials.Gravity(system, (0, 0, -9.8)) # Add gravity
trep.forces.Damping(system, 1.0) # Add damping
trep.forces.ConfigForce(system, 'theta', 'theta-torque') # Add input
```

Gravity can work in any direction relative to the world frame. Here it is assigned to be parallel to the Z axis and have a value of $-9.8 \mathrm{~m} / \mathrm{s}^{2}$. Trep can handle other types of potentials as well. See the Potential documentation for information on the trep. Potential base class, and see the trep.potentials documentation for a list of the potentials that have been implemented.
Damping is applied to the entire system with the trep. forces.Damping method. Note that trep can also apply unique damping values to individual configurations or set default values for all configurations - see the Damping documentation.

An input is configured for the system by adding a configuration force with the trep.forces.ConfigForce method. Specifically this adds an input to the configuration variable theta (the configuration variable for the pendulumShoulder frame) with the name theta-torque. See Forces for a list of the available force types, and trep. Force for the documentation on the base class.

Create and initialize the variational integrator

Trep uses variational integrators to simulate the dynamics of mechanical systems.

```
mvi = trep.MidpointVI(system)
mvi.initialize_from_configs(t0, np.array([q0]), t0+dt, np.array([q0]))
```

Here a new variational integrator object mvi is created using our system instance of a trep. System. It is then initialized with a set of two time points and configurations using trep.MidpointVI. initialize_from_configs. The first two arguments are the current time and configuration and the next two are the next time and configuration. Trep calculates the discrete generalized momentum from these two pairs. You can also initialize the variational integrator with a single time, configuration, and momentum using the trep.MidpointVI. initialize_from_state method.

Here is a list of all the properties and methods of the variational integrator.

```
>>> mvi.
mvi.calc_f
mvi.calc_p2 mvi.nq
mvi.discrete_fm2 mvi.nu
mvi.initialize_from_configs mvi.pl
mvi.initialize_from_state mvi.p2
mvi.lambda1
mvi.lambda1_dk2
mvi.lambda1_dk2dk2
mvi.lambda1_dp1
mvi.lambda1_dp1dk2
mvi.lambda1_dp1dp1
mvi.lambda1_dp1du1
mvi.lambda1_dq1
mvi.lambda1_dq1dk2
mvi.lambda1_dq1dp1
mvi.lambda1_dq1dq1
mvi.lambda1_dq1du1
mvi.lambda1_du1
mvi.lambda1__du1dk2
mvi.lambda1__du1du1
mvi.nc
mvi.nd
```

```
mvi.nk
```

mvi.nk
mvi.calc_p2 mvi.nq
mvi.p2_dk2
mvi.p2_dk2
mvi.p2_dk2dk2
mvi.p2_dk2dk2
mvi.p2_dp1
mvi.p2_dp1
mvi.p2_dp1dk2
mvi.p2_dp1dk2
mvi.p2_dp1dp1
mvi.p2_dp1dp1
mvi.p2_dp1du1
mvi.p2_dp1du1
mvi.p2_dq1
mvi.p2_dq1
mvi.p2_dq1dk2
mvi.p2_dq1dk2
mvi.p2_dq1dp1
mvi.p2_dq1dp1
mvi.p2_dq1dq1
mvi.p2_dq1dq1
mvi.p2_dq1du1
mvi.p2_dq1du1
mvi.p2_du1
mvi.p2_du1
mvi.p2_du1dk2
mvi.p2_du1dk2
mvi.p2_duldu1
mvi.p2_duldu1
mvi.q1
mvi.q1
mvi.q2_dk2

```
mvi.q2_dk2
```

mvi.q2 mvi.v2
mvi.p1 mvi.q2_dp1dp1

```
mvi.q2_dk2dk2
```

mvi.q2_dk2dk2
mvi.q2_dp1
mvi.q2_dp1
mvi.q2_dp1dk2
mvi.q2_dp1dk2
mvi.q2_dp1du1
mvi.q2_dp1du1
mvi.q2_dq1
mvi.q2_dq1
mvi.q2_dq1dk2
mvi.q2_dq1dk2
mvi.q2_dq1dp1
mvi.q2_dq1dp1
mvi.q2_dq1dq1
mvi.q2_dq1dq1
mvi.q2_dq1du1
mvi.q2_dq1du1
mvi.q2_du1
mvi.q2_du1
mvi.q2_du1dk2
mvi.q2_du1dk2
mvi.q2_du1du1
mvi.q2_du1du1
mvi.set_midpoint
mvi.set_midpoint
mvi.step
mvi.step
mvi.system
mvi.system
mvi.t1
mvi.t1
mvi.t2
mvi.t2
mvi.tolerance
mvi.tolerance
mvi.ul
mvi.ul
mvi.v2

```
mvi.v2
```


Simulate the system forward

Let us now simulate this system forward in time.

```
T = [mvi.tl] # List to hold time values
Q = [mvi.q1] # List to hold configuration values
while mvi.t1 < tf:
    mvi.step(mvi.t2+dt, [0.0]) # Step the system forward by one time step
    T.append (mvi.t1)
    Q.append(mvi.q1)
```

The system is simulated forward in time using a simple while loop. First, two lists are initialized to hold all of the time values and configuration values for the simulation. Next, it enters a loop that says to continue until the variational integrator reaches the final time. In each interation of the loop the system is integrated forward by one time step. Then the new values are append to the storage vectors.

The variational integrator object has attributes for times, configurations, and discrete generalized momenta at both time points of the current integration (e.g. mvi.t1, mvi.q1, and mvi.p1). The trep.MidpointVI.step method integrates the system forward from the current time endpoint to the time given the in the first argument. The second argument specifies the input over that time period. You can see above that the input is set to zero.

Visualize the system in action

Let us use trep's visualization tools to see the system in action.

```
trep.visual.visualize_3d([ trep.visual.VisualItem3D(system, T, Q) ])
```

Finally let's create a visualization of the system being simulated. Only the system object, the list of times, and the list of configurations are needed to create the visualization.
The output that you should see on your screen is shown below.

Note: This is an animated gif of captured screen shots. So it is slower and lower-quality than what you will see.

pendulumSystem.py code

Below is the entire script used in this section of the tutorial.

```
# pendulumSystem.py
# Import necessary Python modules
import math
from math import pi
import numpy as np
import trep
from trep import tx, ty, tz, rx, ry, rz
# Build a pendulum system
m = 1.0 # Mass of pendulum
l = 1.0 # Length of pendulum
q0 = 3./4.*pi # Initial configuration of pendulum
t0 = 0.0 # Initial time
tf = 5.0 # Final time
dt = 0.1 # Timestep
system = trep.System() # Initialize system
frames = [
    rx('theta', name="pendulumShoulder"), [
        tz(-l, name="pendulumArm", mass=m)]]
system.import_frames(frames) # Add frames
# Add forces to the system
trep.potentials.Gravity(system, (0, 0, -9.8)) # Add gravity
trep.forces.Damping(system, 1.0) # Add damping
trep.forces.ConfigForce(system, 'theta', 'theta-torque') # Add input
# Create and initialize the variational integrator
mvi = trep.MidpointVI(system)
mvi.initialize_from_configs(t0, np.array([q0]), t0+dt, np.array([q0]))
# Simulate the system forward
T = [mvi.tl] # List to hold time values
Q = [mvi.q1] # List to hold configuration values
while mvi.t1 < tf:
    mvi.step(mvi.t2+dt, [0.0]) # Step the system forward by one time step
```

40
41
42
43

```
\(39 \quad\) T.append(mvi.t1)
    Q.append(mvi.q1)
# Visualize the system in action
trep.visual.visualize_3d([ trep.visual.VisualItem3D(system, T, Q) ])
```


CHAPTER 10

Design linear feedback controller

Let us now create a linear feedback controller that will stabilize the pendulum system that was created in the last section to its upright, unstable equilibrium.

Create pendulum system

Let us start by using the same code from the last section that creates a simple pendulum system with the addition of just a few lines.

```
# Import necessary python modules
import math
from math import pi
import numpy as np
from numpy import dot
import trep
import trep.discopt
from trep import tx, ty, tz, rx, ry, rz
import pylab
# Build a pendulum system
m = 1.0 # Mass of pendulum
l = 1.0 # Length of pendulum
q0 = 3./4.*pi # Initial configuration of pendulum
t0 = 0.0 # Initial time
tf = 5.0 # Final time
dt = 0.1 # Sampling time
qBar = pi # Desired configuration
Q = np.eye(2) # Cost weights for states
R = np.eye(1) # Cost weights for inputs
system = trep.System() # Initialize system
frames = [
```

```
    rx('theta', name="pendulumShoulder"), [
    tz(-l, name="pendulumArm", mass=m)]]
system.import_frames(frames) # Add frames
# Add forces to the system
trep.potentials.Gravity(system, (0, 0, -9.8)) # Add gravity
trep.forces.Damping(system, 1.0) # Add damping
trep.forces.ConfigForce(system, 'theta', 'theta-torque') # Add input
# Create and initialize the variational integrator
mvi = trep.MidpointVI(system)
mvi.initialize_from_configs(t0, np.array([q0]), t0+dt, np.array([q0]))
```

Three additional (highlighted above) modules are imported: dot from the numpy module, which we will use for matrix multiplication; pylab (part of the matplotlib project, which is used for plotting; and trep's discrete optimization module, trep. discopt.

In addition, a desired configuration value has been set to the variable qBar. The desired configuration is π, which is the pendulum's neutrally-stable, upright configuration. Also, correctly-dimensioned, identity state and input weighting matrices (Q and R respectively) have been created for the optimization of the linear feedback controller.

Create discrete system

Trep has a module that provides functionality for solving several linear, time-varying discrete linear-quadratic regulation problems (see this page).

```
TVec = np.arange(t0, tf+dt, dt) # Initialize discrete time vector
dsys = trep.discopt.DSystem(mvi, TVec) # Initialize discrete system
xBar = dsys.build_state(qBar) # Create desired state configuration
```

To do this, we use our system definition, and a prescribed time vector to create a trep. discopt. DSystem. This object is basically a wrapper for trep. System objects and trep. MidpointVI objects to represent the general nonlinear discrete systems as first order discrete nonlinear systems of the form $X(k+1)=f(X(k), U(k), k)$.

The states X and inputs U of a trep.discopt. DSystem should be noted. The state consists of the variational integrator's full configuration, the dynamic momentum, and the kinematic velocity. The full configuration consist of both dynamic states and kinematic states. The difference being that the dynamic states are governed by first-order differential equations and the kinematic states can be set directly with "kinematic" inputs. This is equivalent to saying you have "perfect" control over a dynamic configuration i.e. your system is capable of exerting unlimited force to drive the configuration to follow any arbitrary trajectory. The kinematic velocity is calculated as a finite difference of the kinematic configurations. The trep.discopt. DSystem class has a method, trep.discopt. DSystem. build_state, that will "build" this state vector from configuration, momentum, and kinematic velocity vectors. "Build" here means construct a state array of the correct dimension. Anything that is not specified is set to zero. This is used above to calculated a desired state array from the desired configuration value.

Using IPython you can display a list of all the properties and methods of the discrete system.

```
>>> dsys.
dsys.build_input dsys.fdu dsys.save_state_
\hookrightarrowtrajectory
dsys.build_state dsys.fdudu
dsys.build_trajectory dsys.fdx
dsys.calc_feedback_controller dsys.fdxdu
```

```
dsys.set
```

dsys.set
dsys.split_input
dsys.split_input
dsys.split_state

```
dsys.split_state
```

```
dsys.check_fdu dsys.fdxdx dsys.split_trajectory
dsys.check_fdudu
dsys.check_fdx
dsys.check_fdxdu
dsys.check_fdxdu
dsys.convert_trajectory
dsys.dproject
dsys.f
```

```
dsys.k
```

dsys.k
dsys.kf
dsys.kf
dsys.linearize_trajectory
dsys.linearize_trajectory
dsys.load_state_trajectory
dsys.load_state_trajectory
dsys.nU
dsys.nU
dsys.nX
dsys.nX
dsys.project
dsys.project
dsys.step
dsys.system
dsys.syste
dsys.uk
dsys.varint

```

Please refer to the DSystem documentation to learn more about this object.

\section*{Design linear feedback controller}

Let us now design a linear feedback controller to stabilize the pendulum to the desired configuration.
```

Qd = np.zeros((len(TVec), dsys.system.nQ)) \# Initialize desired configuration_
\hookrightarrowtrajectory
thetaIndex = dsys.system.get_config('theta').index \# Find index of theta configu
\hookrightarrowvariable
for i,t in enumerate(TVec):
Qd[i, thetaIndex] = qBar \# Set desired configuration trajectory
(Xd, Ud) = dsys.build_trajectory(Qd) \# set desired state and input trajectory
Qk = lambda k: Q \# Create lambda function for state cost weights
Rk = lambda k: R \# Create lambda function for input cost weights
KVec = dsys.calc_feedback_controller(Xd, Ud, Qk, Rk) \# Solve for linear feedback,
\hookrightarrowcontroller gain
KStabilize = KVec[0] \# Use only use first value to approximate infinite-horizon,
\hookrightarrowoptimal controller gain

Reset discrete system state

dsys.set(np.array([q0, 0.]), np.array([0.]), 0)

```

The DSystem class has a method (trep.discopt.DSystem.calc_feedback_controller) for calculating a stabilizing feedback controller for the system about state and input trajectories given both state and input weighting functions.
A trajectory of the desired configuration is constructed and then used with the trep.discopt.DSystem. build_trajectory method to create the desired state and input trajectories. The weighting functions are created with Python lambda functions that always output the state and input cost weights that were assigned to Qk and Rk . The calc_feedback_controller method returns the gain value \(K\) for each instance in time. To approximate the infinite-horizon optimal controller only the first value is used.

The discrete system must be reset to the initial state value because during the optimization the discrete system is integrated and thus set to the final time. Note, because the discrete system was created from the variational integrator, which was created from the system; setting the discrete system states also sets the configuration of variational integrator and the system. This can be checked by checking the values before and after running the set method, as shown below.
```

>>> dsys.xk
array([3.14159265,00.])

```
>>> mvi.q1
array ([ 3.14159265])
```

>>> system.q
array([3.14159265])

```
```

>>> dsys.set(np.array([q0, 0.]), np.array([0.]), 0)

```
>>> dsys.xk
\(\operatorname{array}([2.35619449,0\). \(]\) )
>>> mvi.q1
array([2.35619449])
```

>>> system.q
array([2.34019535])

```
>>> (mvi.q2 + mvi.q1)/2.0
array ([2.34019535])

Note that the system. q returns the current configuration of the system. This is calculated using the midpoint rule and the endpoints of the variational integrator as seen above.

\section*{Simulate the system forward}

As was done in the previous section of this tutorial the system is simulated forward with a while loop, which steps it forward one time step at a time.
```

T = [mvi.tl] \# List to hold time values
Q = [mvi.q1] \# List to hold configuration values
X = [dsys.xk] \# List to hold state values
U = [] \# List to hold input values
while mvi.tl < tf-dt:
x = dsys.xk \# Grab current state
xTilde = x - xBar \# Compare to desired state
u = -dot(KStabilize, xTilde) \# Calculate input
dsys.step(u) \# Step the system forward by one time step
T.append(mvi.t1) \# Update lists
Q.append(mvi.q1)
X.append(x)
U.append(u)

```

This time the system is stepped forward with the trep. discopt. DSystem. step method instead of the trep. MidpointVI.step method. This is done so that the discrete state gets updated and set as well as the system configurations and momenta. The input is calcuated with a standard negative feedback of the state error multiplied by the gain that was found previously. In addition, two more variables are created to store the state values and the input values throughout the simulation.

\section*{Visualize the system in action}

The visualization is created in the exact way it was created in the last section. But this time also plotting state and input verse time.
```

trep.visual.visualize_3d([trep.visual.VisualItem3D(system, T, Q)])

Plot results

ax1 = pylab.subplot(211)
pylab.plot(T, X)
pylab.title("Linear Feedback Controller")
pylab.ylabel("X")
pylab.legend(["qd","p"])
pylab.subplot(212, sharex=ax1)
pylab.plot(T[1:], U)
pylab.xlabel("T")
pylab.ylabel("U")
pylab.legend(["u"])
pylab.show()

```



From the plot you can see that it requires a large input to stablize the pendulum. What if the input torque is limited to a smaller value and we want to bring the pendulum to the upright configuration from any other configuration? By using a swing-up controller and then switching to this linear feedback controller we can accomplish this stabilization with a limited input from any configuration. We will demonstrate how this can be done with trep in the next two sections.

\section*{linearFeedbackController.py code}

Below is the entire script used in this section of the tutorial.
```


IinearFeedbackController.py

Import necessary python modules

import math
from math import pi
import numpy as np
from numpy import dot
import trep
import trep.discopt
from trep import tx, ty, tz, rx, ry, rz
import pylab

Build a pendulum system

m = 1.0 \# Mass of pendulum
l = 1.0 \# Length of pendulum
q0 = 3./4.*pi \# Initial configuration of pendulum
t0 = 0.0 \# Initial time
tf = 5.0 \# Final time
dt = 0.1 \# Sampling time
qBar = pi \# Desired configuration
Q = np.eye(2) \# Cost weights for states
R = np.eye(1) \# Cost weights for inputs
system = trep.System() \# Initialize system
frames = [
rx('theta', name="pendulumShoulder"), [
tz(-l, name="pendulumArm", mass=m)]]
system.import_frames(frames) \# Add frames

Add forces to the system

trep.potentials.Gravity(system, (0, 0, -9.8)) \# Add gravity
trep.forces.Damping(system, 1.0) \# Add damping
trep.forces.ConfigForce(system, 'theta', 'theta-torque') \# Add input

Create and initialize the variational integrator

mvi = trep.MidpointVI(system)
mvi.initialize_from_configs(t0, np.array([q0]), t0+dt, np.array([q0]))

Create discrete system

TVec = np.arange(t0, tf+dt, dt) \# Initialize discrete time vector
dsys = trep.discopt.DSystem(mvi, TVec) \# Initialize discrete system
xBar = dsys.build_state(qBar) \# Create desired state configuration

Design linear feedback controller

Qd = np.zeros((len(TVec), dsys.system.nQ)) \# Initialize desired configuration_
\hookrightarrowtrajectory
thetaIndex = dsys.system.get_config('theta').index \# Find index of theta config_
\hookrightarrowvariable
for i,t in enumerate(TVec):
Qd[i, thetaIndex] = qBar \# Set desired configuration trajectory
(Xd, Ud) = dsys.build_trajectory(Qd) \# set desired state and input trajectory
Qk = lambda k: Q \# Create lambda function for state cost weights
Rk = lambda k: R \# Create lambda function for input cost weights
KVec = dsys.calc_feedback_controller(Xd, Ud, Qk, Rk) \# Solve for linear feedback,
\hookrightarrowcontroller gain
KStabilize = KVec[0] \# Use only use first value to approximate infinite-horizonv

```

56
57
\# Reset discrete system state
dsys.set(np.array ([q0, 0.]), np.array([0.]), 0)
\# Simulate the system forward
\(\mathrm{T}=\) [mvi.tl] \# List to hold time values
\(\mathrm{Q}=\) [mvi.q1] \# List to hold configuration values
\(\mathrm{X}=\) [dsys.xk] \# List to hold state values
\(\mathrm{U}=[]\) \# List to hold input values
while mvi.t1 < tf-dt:
    \(\mathrm{x}=\) dsys. xk \# Grab current state
    xTilde \(=x\) - xBar \# Compare to desired state
    \(\mathrm{u}=-\operatorname{dot}(\) KStabilize, xTilde) \# Calculate input
    dsys.step(u) \# Step the system forward by one time step
    T.append(mvi.t1) \# Update lists
    Q.append (mvi.q1)
    X. append (x)
    U. append (u)
\# Visualize the system in action
trep.visual.visualize_3d([ trep.visual.VisualItem3D(system, T, Q) ])
\# Plot results
ax1 = pylab.subplot(211)
pylab.plot (T, X)
pylab.title("Linear Feedback Controller")
pylab.ylabel ("X")
pylab. legend (["qd", "p"])
pylab.subplot \((212\), sharex=ax1)
pylab.plot(T[1:], U)
pylab.xlabel ("T")
pylab.ylabel ("U")
pylab.legend (["u"])
pylab.show()

\section*{chapter 11}

\section*{Design energy shaping swing-up controller}

If the input torque is limited, the linear feedback controller may be unable to bring the pendulum to the upright configuration from an arbitrary initial condition. Let's use trep to help create a swing-up controller based on the energy of the system.

\section*{Create pendulum system}

The code used to create the pendulum system is identical to the last section, except a new parameter uMax (highlighted below) has been added that sets the maximum absolute value of the input.
```

import math
from math import pi
import numpy as np
from numpy import dot
import trep
import trep.discopt
from trep import tx, ty, tz, rx, ry, rz
import pylab

Build a pendulum system

m = 1.0 \# Mass of pendulum
l = 1.0 \# Length of pendulum
q0 = 0. \# Initial configuration of pendulum
t0 = 0.0 \# Initial time
tf = 10.0 \# Final time
dt = 0.1 \# Sampling time
qBar = pi \# Desired configuration
Q = np.eye(2) \# Cost weights for states
R = np.eye(1) \# Cost weights for inputs
uMax = 5. \# Max absolute input value
system = trep.System() \# Initialize system

```
```

frames = [
rx('theta', name="pendulumShoulder"), [
tz(-l, name="pendulumArm", mass=m)]]
system.import_frames(frames) \# Add frames

Add forces to the system

trep.potentials.Gravity(system, (0, 0, -9.8)) \# Add gravity
trep.forces.Damping(system, 1.0) \# Add damping
trep.forces.ConfigForce(system, 'theta', 'theta-torque') \# Add input

Create and initialize the variational integrator

mvi = trep.MidpointVI(system)
mvi.initialize_from_configs(t0, np.array([q0]), t0+dt, np.array([q0]))

Create discrete system

TVec = np.arange(t0, tf+dt, dt) \# Initialize discrete time vector
dsys = trep.discopt.DSystem(mvi, TVec) \# Initialize discrete system
xBar = dsys.build_state(qBar) \# Create desired state configuration

```

\section*{Design energy shaping swing-up controller}

It can be easily shown that a control law to stabilize a one-link pendulum to a reference energy is
\[
u=-K \dot{\theta}(E-\bar{E})
\]
where \(E\) is the current energy of the system, \(\bar{E}\) is the reference energy, and \(K\) is any positive number. Therefore, the only thing that must be done to implement the energy contoller is calculate the reference energy and pick a positive gain value.
```

system.get_config('theta').q = qBar
eBar = system.total_energy()
KEnergy = 1

Reset discrete system state

dsys.set(np.array([q0, 0.]), np.array([0.]), 0)

```

This is done by setting the system to the desired state and using the trep. System.total_energy method to get the desired energy level, which is called eBar. The gain is set to one using KEnergy \(=1\). Afterwards, the system must be reset to its initial condition.

\section*{Simulate the system forward}

The system is simulated forward in the exact same way as in the last section.
```

T = [mvi.tl] \# List to hold time values
Q = [mvi.q1] \# List to hold configuration values
X = [dsys.xk] \# List to hold state values
U = [] \# List to hold input values
while mvi.t1 < tf-dt:
x = dsys.xk \# Get current state
xDot = x[1] \# Get equivilant of angular velocity

```
```

e = system.total_energy() \# Get current energy of the system
eTilde = e - eBar \# Get difference between desired energy and current energy

Calculate input

if xDot == 0:
u = np.array([uMax]) \# Kick if necessary
else:
u = np.array([-xDot*KEnergy*eTilde])
u = min(np.array([uMax]), max(np.array([-uMax]),u)) \# Constrain input
dsys.step(u) \# Step the system forward by one time step
T.append(mvi.t1) \# Update lists
Q.append(mvi.q1)
X.append (x)
U.append(u)

```

This time \(u\) is set to the energy shaping controller. Since the energy shaping controller depends on the angular velocity it needs a "kick" if the angular velocity is zero to get it going.

In addition the constraint on the input is included.

\section*{Visualize the system in action}

The visualization is created in the exact way it was created in the previous sections.
```

trep.visual.visualize_3d([trep.visual.VisualItem3D(system, T, Q)])

Plot results

ax1 = pylab.subplot(211)
pylab.plot(T, X)
pylab.title("Energy Shaping Controller")
pylab.ylabel("X")
pylab.legend(["qd","p"])
pylab.subplot(212, sharex=ax1)
pylab.plot(T[1:], U)
pylab.xlabel("T")
pylab.ylabel("U")
pylab.show()

```

Let's also plot the state and input verse time.


In the animation you can see that the pendulum swings-up and approaches the upright configuration. It does not quite get there because the damping term is not accounted for in the controller. However, it should be close enough that the linear controller designed in the last section can take over and stabilize to the upright configuration. Also, from the plot you can see that the input is limited from -5 to +5 .

\section*{Complete code}

Below is the entire script used in this section of the tutorial.
```


enerygShapingSwingupController.py

Import necessary python modules

import math
from math import pi
import numpy as np
from numpy import dot
import trep
import trep.discopt
from trep import tx, ty, tz, rx, ry, rz
import pylab

Build a pendulum system

m = 1.0 \# Mass of pendulum
l = 1.0 \# Length of pendulum
q0 = 0. \# Initial configuration of pendulum
t0 = 0.0 \# Initial time

```
```

tf = 10.0 \# Final time
dt = 0.1 \# Sampling time
qBar = pi \# Desired configuration
Q = np.eye(2) \# Cost weights for states
R = np.eye(1) \# Cost weights for inputs
uMax = 5. \# Max absolute input value
system = trep.System() \# Initialize system
frames = [
rx('theta', name="pendulumShoulder"), [
tz(-l, name="pendulumArm", mass=m)]]
system.import_frames(frames) \# Add frames

Add forces to the system

trep.potentials.Gravity(system, (0, 0, -9.8)) \# Add gravity
trep.forces.Damping(system, 1.0) \# Add damping
trep.forces.ConfigForce(system, 'theta', 'theta-torque') \# Add input

Create and initialize the variational integrator

mvi = trep.MidpointVI(system)
mvi.initialize_from_configs(t0, np.array([q0]), t0+dt, np.array([q0]))

Create discrete system

TVec = np.arange(t0, tf+dt, dt) \# Initialize discrete time vector
dsys = trep.discopt.DSystem(mvi, TVec) \# Initialize discrete system
xBar = dsys.build_state(qBar) \# Create desired state configuration

Design linear feedback controller

Qd = np.zeros((len(TVec), dsys.system.nQ)) \# Initialize desired configuration_
->trajectory
thetaIndex = dsys.system.get_config('theta').index \# Find index of theta config
๑variable
for i,t in enumerate(TVec):
Qd[i, thetaIndex] = qBar \# Set desired configuration trajectory
(Xd, Ud) = dsys.build_trajectory(Qd) \# Set desired state and input trajectory
Qk = lambda k: Q \# Create lambda function for state cost weights
Rk = lambda k: R \# Create lambda function for input cost weights
KVec = dsys.calc_feedback_controller(Xd, Ud, Qk, Rk) \# Solve for linear feedbacku
->controller gain
KStabilize = KVec[0] \# Use only use first value to approximate infinite-horizon_
->optimal controller gain

Design energy shaping swing-up controller

system.get_config('theta').q = qBar
eBar = system.total_energy()
KEnergy = 1

Reset discrete system state

dsys.set(np.array([q0, 0.]), np.array([0.]), 0)

Simulate the system forward

T = [mvi.tl] \# List to hold time values
Q = [mvi.q1] \# List to hold configuration values
X = [dsys.xk] \# List to hold state values
U = [] \# List to hold input values
while mvi.t1 < tf-dt:

```
```

 x = dsys.xk # Get current state
 xDot = x[1] # Get equivilant of angular velocity
 e = system.total_energy() # Get current energy of the system
 eTilde = e - eBar # Get difference between desired energy and current energy
 # Calculate input
 if xDot == 0:
 u = np.array([uMax]) # Kick if necessary
 else:
 u = np.array([-xDot*KEnergy*eTilde])
 u = min(np.array([uMax]), max(np.array([-uMax]),u)) # Constrain input
 dsys.step(u) # Step the system forward by one time step
 T.append(mvi.t1) # Update lists
 Q.append(mvi.q1)
 X.append (x)
 U. append (u)

Visualize the system in action

trep.visual.visualize_3d([trep.visual.VisualItem3D(system, T, Q)])

Plot results

ax1 = pylab.subplot(211)
pylab.plot(T, X)
pylab.title("Energy Shaping Controller")
pylab.ylabel("X")
pylab.legend(["qd","p"])
pylab.subplot(212, sharex=ax1)
pylab.plot(T[1:], U)
pylab.xlabel("T")
pylab.ylabel("U")
pylab.show()

```

\section*{chapter 12}

\section*{Calculate optimal switching time}

Now let us calculate the optimal time to switch between the energy shaping swing-up controller and the linear feedback stabilizing controller. In order to determine this time, tools from optimal control are employed; however, the details of why these tools work is not explained here. The point is to show how trep facilitates the implementation because it has already precomputed all the necessary derivatives.

\section*{Create pendulum system}

The code used to create the pendulum system and the controllers is identical to the previous sections, except a new variable has been added that designates the switching time. This is initially set to an initial guess equal to one-half the final time. We will then use this initial guess to find the optimal switching time. This variable is tau is highlighted in the code below.
```

import math
from math import pi
import numpy as np
from numpy import dot
import trep
import trep.discopt
from trep import tx, ty, tz, rx, ry, rz
import pylab

Build a pendulum system

m = 1.0 \# Mass of pendulum
l = 1.0 \# Length of pendulum
q0 = 0. \# Initial configuration of pendulum
t0 = 0.0 \# Initial time
tf = 10.0 \# Final time
dt = 0.01 \# Sampling time
qBar = pi \# Desired configuration
Qi = np.eye(2) \# Cost weights for states
Ri = np.eye(1) \# Cost weights for inputs
uMax = 5.0 \# Max absolute input value

```
```

tau = 5.0 \# Switching time
system = trep.System() \# Initialize system
frames = [
rx('theta', name="pendulumShoulder"), [
tz(-l, name="pendulumArm", mass=m)]]
system.import_frames(frames) \# Add frames

Add forces to the system

trep.potentials.Gravity(system, (0, 0, -9.8)) \# Add gravity
trep.forces.Damping(system, 1.0) \# Add damping
trep.forces.ConfigForce(system, 'theta', 'theta-torque') \# Add input

Create and initialize the variational integrator

mvi = trep.MidpointVI(system)
mvi.initialize_from_configs(t0, np.array([q0]), t0+dt, np.array([q0]))

Create discrete system

TVec = np.arange(t0, tf+dt, dt) \# Initialize discrete time vector
dsys = trep.discopt.DSystem(mvi, TVec) \# Initialize discrete system
xBar = dsys.build_state(qBar) \# Create desired state configuration

Design linear feedback controller

Qd = np.zeros((len(TVec), dsys.system.nQ)) \# Initialize desired configuration
\hookrightarrowtrajectory
thetaIndex = dsys.system.get_config('theta').index \# Find index of theta config_
\hookrightarrowvariable
for i,t in enumerate(TVec):
Qd[i, thetaIndex] = qBar \# Set desired configuration trajectory
(Xd, Ud) = dsys.build_trajectory(Qd) \# Set desired state and input trajectory
Qk = lambda k: Qi \# Create lambda function for state cost weights
Rk = lambda k: Ri \# Create lambda function for input cost weights
KVec = dsys.calc_feedback_controller(Xd, Ud, Qk, Rk) \# Solve for linear feedback,u
\hookrightarrowcontroller gain
KStabilize = KVec[0] \# Use only use first value to approximate infinite-horizonv
\hookrightarrowoptimal controller gain

Design energy shaping swing-up controller

system.get_config('theta').q = qBar
eBar = system.total_energy()
KEnergy = 1

```

\section*{Create cost}

In order to perform an optimization anything there must be some sort of cost functional that is desirable to minimize. Trep has built in objects to deal with cost functions and that is what is used here.
```

cost = trep.discopt.DCost(Xd, Ud, Qi, Ri)

```

The cost object is created with the trep. discopt. DCost method, which takes in a state trajectory, input trajectory, state weighting matrix, and input weighting matrix.

In this case we used the same trajectories and weights that were used for the design of the linear feedback controller that stabilizes the pendulum to the upright unstable equilibrium.

Below is a list of the properties and methods of the cost class.
```

>>> cost.

cost. Q	cost.R	cost.l_du	cost.l_dx	cost.l_dxdx	cost.m_dx	cost.ud
cost. Qf	cost.l	cost.l_dudu	cost.l_dxdu	cost.m	cost.m_dxdx	cost.xd

```

Please refer to the Discrete Trajectory Cost documentation to learn more this object.

\section*{Angle utility functions}

Since we would like the stabilizing controller to stabilize to any multiple of \(\pi\), two helper functions are used to wrap the angles to between 0 and \(2 \pi\) and between \(-\pi\) and \(\pi\).
```

def wrapTo2Pi(ang):
return ang % (2*pi)

```
```

def wrapToPi(ang):
return (ang + pi) % (2*pi) - pi

```

\section*{Simulate function}

The simulation of the system is done exactly the same way as in previous sections, except this time the forward simulation is wrapped into its own function. This makes running the optimization simpler because the simulate function can be called with different switching times instead of having to have multiple copies of the same code.
```

def simulateForward(tau, dsys, q0, xBar):
mvi = dsys.varint
tf = dsys.time[-1]
\# Reset discrete system state
dsys.set(np.array([q0, 0.]), np.array([0.]), 0)
\# Initial conditions
k = dsys.k
t = dsys.time[k]
q = mvi.q1
x = dsys.xk
fdx = dsys.fdx()
xTilde = np.array([wrapToPi(x[0] - xBar[0]), x[1]])
e = system.total_energy() \# Get current energy of the system
eTilde = e - eBar \# Get difference between desired energy and current energy
\# Initial list variables
K = [k] \# List to hold discrete update count
T = [t] \# List to hold time values
Q = [q] \# List to hold configuration values
X = [x] \# List to hold state values
Fdx = [fdx] \# List to hold partial to x
E = [e] \# List to hold energy values
U = [] \# List to hold input values

```
```

L = [] \# List to hold cost values

Simulate the system forward

while mvi.t1 < tf-dt:
if mvi.t1 < tau:
if x[1] == 0:
u = np.array([uMax]) \# Kick if necessary
else:
u = np.array([-x[1]*KEnergy*eTilde]) \# Swing-up controller
else:
u = -dot(KStabilize, xTilde) \# Stabilizing controller
u = min(np.array([uMax]), max(np.array([-uMax]), u)) \# Constrain input
dsys.step(u) \# Step the system forward by one time step
\# Update variables
k = dsys.k
t = TVec[k]
q = mvi.q1
x = dsys.xk
fdx = dsys.fdx()
xTilde = np.array([wrapToPi(x[0] - xBar[0]), x[1]])
e = system.total_energy()
eTilde = e - eBar
l = cost.l(np.array([wrapTo2Pi(x[0]), x[1]]), u, k)
\# Append to lists
K.append (k)
T.append(t)
Q.append(q)
X.append(x)
Fdx.append(fdx)
E.append(e)
U. append(u)
L.append(1)
J = np.sum(L)
return (K, T, Q, X, Fdx, E, U, L, J)

```

The choice of which controller to use within the simulation function is decided based on if the simulation time is less than the switching time (highlighted above). If the simulation time is less than tau then the swing-up controller is used, otherwise the linear stabilizing controller is used. Also note that we store and return a vector of the derivatives of the dynamics with respect to the state (highlighted above) i.e. trep. discopt. DSystem.fdx.

\section*{Optimize}

The optimization of the switching time is done in the standard way of using a gradient decent method to minimize a cost function with respect to the switching time. Both a descent direction and a step size must be calculated. The negative gradient of the cost to the switching time is used for the descent direction. Therefore, the switching time is updated with the following
\[
\tau(k+1)=\tau(k)-\gamma * \frac{\partial J}{\partial \tau(k)}
\]
where \(\tau\) is the switching time, \(\gamma\) is the step size, and \(J\) is the cost function.

To calculate the negative gradient in each iteration of the optimization, first the system is simulated forward from the initial time to the final time. Then the costate of the system is simulated backward from the final time to the switching time. The gradient at the switching time is the inner product of the difference between the two control laws and the costate.

Trep greatly simplifies this calculation because it has already calculated the necessary derivatives. In the simulation function the derivative of the system with respect to \(x\) (highlighted above) is stored at each time instance. Also, the derivative of the cost with respect to \(x\) has been already calculated with trep. Both of these derivatives are used in the backward simulation of the costate (highlighted below).

An Armijo line search is used to calculate the step size in each iteration of the optimization.
```

cnt = 0
Tau = []
JVec = []
JdTau = float('Inf')
while cnt < 10 and abs(JdTau) > .001:
cnt = cnt + 1
\# Simulate forward from 0 to tf
(K, T, Q, X, Fdx, E, U, L, J) = simulateForward(tau, dsys, q0, xBar)
\# Simulate backward from tf to tau
k = K[-1]
lam = np.array([[0],[0]])
while T[k] > tau + dt/2:
lamDx = np.array([cost.l_dx(X[k], U[k-1], k)])
f2Dx = Fdx[k]
lamDt = -lamDx.T - dot(f2Dx.T,lam)
lam = lam - lamDt*dt
k = k - 1
\# Calculate dynamics of swing-up controller at switching time
x = X[k]
xTilde = np.array([wrapToPi(x[0] - xBar[0]), x[1]])
u1 = -dot(KStabilize, xTilde)
u1 = min(np.array([uMax]), max(np.array([-uMax]), ul))
dsys.set(X[k], ul, k)
f1 = dsys.f()
\# Calculate dynamics of stabilizing controller at switching time
eTilde = E[k] - eBar
u2 = np.array([-x[1]*KEnergy*eTilde])
u2 = min(np.array([uMax]), max(np.array([-uMax]), u2))
dsys.set(X[k], u2, k)
f2 = dsys.f()
\# Calculate value of change in cost to change in switch time
JdTau = dot(f1-f2, lam)
\# Armijo - used to determine step size
chi = 0
alpha = . 5
beta = .1
tauTemp = tau - (alpha**chi)*JdTau
(KTemp, TTemp, QTemp, XTemp, FdxTemp, ETemp, UTemp, LTemp, JTemp) =
\hookrightarrowsimulateForward(tauTemp, dsys, q0, xBar)
while JTemp > J + (alpha**chi)*beta*(JdTau**2):
tauTemp = tau - (alpha**chi)*JdTau

```
```

 (KTemp, TTemp, QTemp, XTemp, FdxTemp, ETemp, UTemp, LTemp, JTemp) =
 \hookrightarrowimulateForward(tauTemp, dsys, q0, xBar)
chi = chi + 1
gamma = alpha**chi \# Step size
\# Calculate new switching time
tauPlus = tau - gamma*JdTau
\# Print iteration results
print "Optimization iteration: %d" % cnt
print "Current switch time: %.2f" % tau
print "New switch time: %.2f" % tauPlus
print "Current cost: %.2f" % J
print "Parital of cost to switch time: %. 2f" % JdTau
print ""
\# Update to new switching time
tau = tauPlus
print "Optimal switch time: %.2f" % tau

```

The results of each iteration are then printed to the screen. The optimization stops when the gradient is smaller than 0.001 or the number iteration is 10 or more. Once the optimization completes the optimal switching time is printed to the screen.

\section*{Simulate with optimal switching time}

Once the optimal switching time is calculated the system can be simulated forward from its initial configuration. It will reach its desired configuration given the constrained input by switching between the two controllers. In addition, this switch is performed at the optimal time.
```

(K, T, Q, X, Fdx, E, U, L, J) = simulateForward(tau, dsys, q0, xBar)

```

From the output of the simulation you can see that it take 3 iteration to converge to the optimal switching time of 4.63.
```

>>> %run optimalSwitchingTime.py
Optimization iteration: 1
Current switch time: 5.00
New switch time: 4.79
Current cost: 9680.81
Parital of cost to switch time: 1.70

Optimization iteration: 2
Current switch time: 4.79
New switch time: 4.63
Current cost: 9214.82
Parital of cost to switch time: 0.62
Optimization iteration: 3
Current switch time: 4.63
New switch time: 4.63
Current cost: 9204.84
Parital of cost to switch time: 0.00

```
```

Optimal switch time: 4.63

```

\section*{Visualize the system in action}

The visualization is created just as in previous sections.
```

trep.visual.visualize_3d([trep.visual.VisualItem3D(system, T, Q)])

Plot results

ax1 = pylab.subplot(311)
pylab.plot(T, X)
pylab.title("Swing-up and stabilize with optimal switching time")
pylab.ylabel("X")
pylab.legend(["qd", "p"])
pylab.subplot(312, sharex=ax1)
pylab.plot(T[1:], U)
pylab.xlabel("T")
pylab.ylabel("U")
pylab.subplot(313, sharex=ax1)
pylab.plot(T[1:], L)
pylab.xlabel("T")
pylab.ylabel("L")
pylab.show()

```

Let's also plot the state, input, and cost verse time.


Just for reference the cost verse switching time is shown for all switching times from time zero to the final time. You can see that the optimization does find a switching time with a local minimum in the cost. Clearly, this cost verse switching time is non-convex, thus our gradient descent method only finds a local minimizer, and not a global minimizer.

Cost vs. Switch Time


\section*{optimalSwitchingTime.py code}

Below is the entire script used in this section of the tutorial.
```


optimalSwitchingTime.py

Import necessary python modules

import math
from math import pi
import numpy as np
from numpy import dot
import trep
import trep.discopt
from trep import tx, ty, tz, rx, ry, rz
import pylab

Build a pendulum system

m = 1.0 \# Mass of pendulum
l = 1.0 \# Length of pendulum
q0 = 0. \# Initial configuration of pendulum
t0 = 0.0 \# Initial time
tf = 10.0 \# Final time
dt = 0.01 \# Sampling time

```
```

qBar = pi \# Desired configuration
Qi = np.eye(2) \# Cost weights for states
Ri = np.eye(1) \# Cost weights for inputs
uMax = 5.0 \# Max absolute input value
tau = 5.0 \# Switching time
system = trep.System() \# Initialize system
frames = [
rx('theta', name="pendulumShoulder"), [
tz(-l, name="pendulumArm", mass=m)]]
system.import_frames(frames) \# Add frames

Add forces to the system

trep.potentials.Gravity(system, (0, 0, -9.8)) \# Add gravity
trep.forces.Damping(system, 1.0) \# Add damping
trep.forces.ConfigForce(system, 'theta', 'theta-torque') \# Add input

Create and initialize the variational integrator

mvi = trep.MidpointVI(system)
mvi.initialize_from_configs(t0, np.array([q0]), t0+dt, np.array([q0]))

Create discrete system

TVec = np.arange(t0, tf+dt, dt) \# Initialize discrete time vector
dsys = trep.discopt.DSystem(mvi, TVec) \# Initialize discrete system
xBar = dsys.build_state(qBar) \# Create desired state configuration

Design linear feedback controller

Qd = np.zeros((len(TVec), dsys.system.nQ)) \# Initialize desired configuration_
->trajectory
thetaIndex = dsys.system.get_config('theta').index \# Find index of theta config_
\hookrightarrowvariable
for i,t in enumerate(TVec):
Qd[i, thetaIndex] = qBar \# Set desired configuration trajectory
(Xd, Ud) = dsys.build_trajectory(Qd) \# Set desired state and input trajectory
Qk = lambda k: Qi \# Create lambda function for state cost weights
Rk = lambda k: Ri \# Create lambda function for input cost weights
KVec = dsys.calc_feedback_controller(Xd, Ud, Qk, Rk) \# Solve for linear feedback
\hookrightarrowcontroller gain
KStabilize = KVec[0] \# Use only use first value to approximate infinite-horizon
@optimal controller gain

Design energy shaping swing-up controller

system.get_config('theta').q = qBar
eBar = system.total_energy()
KEnergy = 1

Create cost

cost = trep.discopt.DCost(Xd, Ud, Qi, Ri)

Helper functions

def wrapTo2Pi(ang):
return ang % (2*pi)
def wrapToPi(ang):
return (ang + pi) % (2*pi) - pi

```
```

def simulateForward(tau, dsys, q0, xBar):
mvi = dsys.varint
tf = dsys.time[-1]
\# Reset discrete system state
dsys.set(np.array([q0, 0.]), np.array([0.]), 0)
\# Initial conditions
k = dsys.k
t = dsys.time[k]
q = mvi.q1
x = dsys.xk
fdx = dsys.fdx()
xTilde = np.array([wrapToPi(x[0] - xBar[0]), x[1]])
e = system.total_energy() \# Get current energy of the system
eTilde = e - eBar \# Get difference between desired energy and current energy
\# Initial list variables
K = [k] \# List to hold discrete update count
T = [t] \# List to hold time values
Q = [q] \# List to hold configuration values
X = [x] \# List to hold state values
Fdx = [fdx] \# List to hold partial to x
E = [e] \# List to hold energy values
U = [] \# List to hold input values
L = [] \# List to hold cost values
\# Simulate the system forward
while mvi.t1 < tf-dt:
if mvi.t1 < tau:
if x[1] == 0:
u = np.array([uMax]) \# Kick if necessary
else:
u = np.array([-x[1]*KEnergy*eTilde]) \# Swing-up controller
else:
u = -dot(KStabilize, xTilde) \# Stabilizing controller
u = min(np.array([uMax]), max(np.array([-uMax]), u)) \# Constrain input
dsys.step(u) \# Step the system forward by one time step
\# Update variables
k = dsys.k
t = TVec[k]
q = mvi.q1
x = dsys.xk
fdx = dsys.fdx()
xTilde = np.array([wrapToPi(x[0] - xBar[0]), x[1]])
e = system.total_energy()
eTilde = e - eBar
l = cost.l(np.array([wrapTo2Pi(x[0]), x[1]]), u, k)
\# Append to lists
K.append(k)
T.append(t)
Q.append (q)
X.append(x)
Fdx.append(fdx)
E.append(e)

```
```

 U. append(u)
 L.append(l)
 J = np.sum(L)
 return (K, T, Q, X, Fdx, E, U, L, J)

Optimize

cnt = 0
Tau = []
JVec = []
JdTau = float('Inf')
while cnt < 10 and abs(JdTau) > .001:
cnt = cnt + 1
\# Simulate forward from 0 to tf
(K, T, Q, X, Fdx, E, U, L, J) = simulateForward(tau, dsys, q0, xBar)
\# Simulate backward from tf to tau
k = K[-1]
lam = np.array([[0],[0]])
while T[k] > tau + dt/2:
lamDx = np.array([cost.l_dx(X[k], U[k-1], k)])
f2Dx = Fdx[k]
lamDt = -lamDx.T - dot(f2Dx.T,lam)
lam = lam - lamDt*dt
k = k - 1
\# Calculate dynamics of swing-up controller at switching time
x = X[k]
xTilde = np.array([wrapToPi(x[0] - xBar[0]), x[1]])
ul = -dot(KStabilize, xTilde)
u1 = min(np.array([uMax]), max(np.array([-uMax]), ul))
dsys.set(X[k], ul, k)
f1 = dsys.f()
\# Calculate dynamics of stabilizing controller at switching time
eTilde = E[k] - eBar
u2 = np.array([-x[1]*KEnergy*eTilde])
u2 = min(np.array([uMax]), max(np.array([-uMax]), u2))
dsys.set(X[k], u2, k)
f2 = dsys.f()
\# Calculate value of change in cost to change in switch time
JdTau = dot(f1-f2, lam)
\# Armijo - used to determine step size
chi = 0
alpha = . 5
beta = .1
tauTemp = tau - (alpha**chi) *JdTau
(KTemp, TTemp, QTemp, XTemp, FdxTemp, ETemp, UTemp, LTemp, JTemp) =_
\hookrightarrowimulateForward(tauTemp, dsys, q0, xBar)
while JTemp > J + (alpha**chi)*beta*(JdTau**2):
tauTemp = tau - (alpha**chi)*JdTau
(KTemp, TTemp, QTemp, XTemp, FdxTemp, ETemp, UTemp, LTemp, JTemp) =
\hookrightarrowsimulateForward(tauTemp, dsys, q0, xBar)
chi = chi + 1
gamma = alpha**chi \# Step size

```
```

 # Calculate new switching time
 tauPlus = tau - gamma*JdTau
 # Print iteration results
 print "Optimization iteration: %d" % cnt
 print "Current switch time: %.2f" % tau
 print "New switch time: %.2f" % tauPlus
 print "Current cost: %.2f" % J
 print "Parital of cost to switch time: %.2f" % JdTau
 print ""
 # Update to new switching time
 tau = tauPlus
 print "Optimal switch time: %.2f" % tau

Simulate with optimal switching time

(K, T, Q, X, Fdx, E, U, L, J) = simulateForward(tau, dsys, q0, xBar)

Visualize the system in action

trep.visual.visualize_3d([trep.visual.VisualItem3D(system, T, Q)])

Plot results

ax1 = pylab.subplot(311)
pylab.plot(T, X)
pylab.title("Swing-up and stabilize with optimal switching time")
pylab.ylabel("X")
pylab.legend(["qd","p"])
pylab.subplot(312, sharex=ax1)
pylab.plot(T[1:], U)
pylab.xlabel("T")
pylab.ylabel("U")
pylab.subplot(313, sharex=ax1)
pylab.plot(T[1:], L)
pylab.xlabel("T")
pylab.ylabel("L")
pylab.show()

```

\section*{CHAPTER 13}

\section*{Discrete Dynamics and Variational Integrators}

The variational integrator simulates a discrete mechanical systems. Given a known state (time \(t_{k-1}\), configuration \(q_{k-1}\), and discrete momentum \(p_{k-1}\) ) and inputs (force inputs \(u_{k-1}\) and next kinematic configuration \(\rho_{k-1}\) ), the integrator finds the next state:
\[
\left(t_{k-1}, q_{k-1}, p_{k-1}\right),\left(u_{k-1}, \rho_{k-1}\right) \Rightarrow\left(t_{k}, q_{k}, p_{k}\right)
\]

The integrator also finds the discrete constraint force variable \(\lambda_{k-1}\).
The variational integrator finds the next state by numerically solving the constrained Discrete Euler-Langrange (DEL) equation for \(q_{k}\) and \(\lambda_{k-1}\) :
\[
\begin{array}{r}
p_{k-1}+D_{1} L_{d}\left(q_{k-1}, q_{k}, t_{k-1}, t_{k-1}\right)+f_{d}^{-}\left(q_{k-1}, q_{k}, u_{k-1}, t_{k-1}, t_{k}\right)-D h^{T}\left(q_{k-1}\right) \dot{\lambda}_{k-1} \\
h\left(q_{k}\right)=0
\end{array}
\]
and then calculating the new discrete momentum:
\[
p_{k}=D_{2} L_{d}\left(q_{k-1}, q_{k}, t_{k-1}, t_{k}\right)
\]

In trep, we simplify notation by letting \(k=2\), so that we consider \(t_{1}, q_{1}\), and \(p_{1}\) to be the previous state, and \(t_{2}, q_{2}\), and \(p_{2}\) to be the new or current state.
\[
\begin{array}{r}
L_{2}=L_{d}\left(q_{1}, q_{2}, t_{1}, t_{2}\right) \\
f_{2}^{ \pm}=f_{d}^{ \pm}\left(q_{1}, q_{2}, u_{1}, t_{1}, t_{2}\right) \\
h_{1}=h\left(q_{1}\right) \\
h_{2}=h\left(q_{2}\right)
\end{array}
\]

\section*{chapter 14}

Indices and tables
- genindex
- modindex

\section*{Python Module Index}

\author{
t \\ trep (Linux, Mac, Windows), 3 \\ trep.constraints (Linux, Mac, Windows), 51 \\ trep. discopt (Linux, Mac, Windows), 55 \\ trep.forces (Linux, Mac, Windows), 43 \\ trep.potentials (Linux, Mac, Windows), 37 \\ trep.ros (Linux), 73
}

\section*{A}
add_structure_changed_func() (trep.System method), 11 armijo_alpha (trep.discopt.DOptimizer attribute), 69 armijo_beta (trep.discopt.DOptimizer attribute), 69 armijo_evaluation() (trep.discopt.DOptimizerMonitor method), 72
armijo_max_iterations (trep.discopt.DOptimizer attribute), 69
armijo_search() (trep.discopt.DOptimizer method), 69
armijo_search_failure() (trep.discopt.DOptimizerMonitor method), 72
armijo_simulate() (trep.discopt.DOptimizer method), 69 armijo_simulation_failure()
(trep.discopt.DOptimizerMonitor method), 72

\section*{B}
b (trep.potentials.NonlinearConfigSpring attribute), 41 build_input() (trep.discopt.DSystem method), 60 build_state() (trep.discopt.DSystem method), 60 build_trajectory() (trep.discopt.DSystem method), 60

\section*{C}
c (trep.forces.LinearDamper attribute), 45
calc_cost() (trep.discopt.DOptimizer method), 68
calc_dcost() (trep.discopt.DOptimizer method), 68
calc_ddcost() (trep.discopt.DOptimizer method), 68
calc_descent_direction() (trep.discopt.DOptimizer method), 69
calc_f() (trep.MidpointVI method), 33
calc_feedback_controller() (trep.discopt.DSystem method), 63
calc_newton_model() (trep.discopt.DOptimizer method), 68
calc_quasi_model() (trep.discopt.DOptimizer method), 68
calc_steepest_model() (trep.discopt.DOptimizer method), 68
check_dcost() (in module trep.discopt), 71
check_ddcost() (trep.discopt.DOptimizer method), 71
check_fdu() (trep.discopt.DSystem method), 63
check_fdudu() (trep.discopt.DSystem method), 63
check_fdx() (trep.discopt.DSystem method), 63
check_fdxdu() (trep.discopt.DSystem method), 63
check_fdxdx() (trep.discopt.DSystem method), 63
children (trep.Frame attribute), 16
coefficients (trep.Spline attribute), 75
Config (class in trep), 18
config (trep.constraints.Distance attribute), 51
config (trep.forces.ConfigForce attribute), 46
config (trep.Frame attribute), 16
config (trep.potentials.ConfigSpring attribute), 40
config (trep.potentials.NonlinearConfigSpring attribute), 41
ConfigForce (class in trep.forces), 46
configs (trep.System attribute), 4
ConfigSpring (class in trep.potentials), 40
CONST_SE3 (in module trep), 12
const_se3() (in module trep), 12
const_txyz() (in module trep), 12
Constraint (class in trep), 28
constraints (trep.System attribute), 4
convert_trajectory() (trep.discopt.DSystem method), 61
copy() (trep.Spline method), 76
cost_history (trep.discopt.DOptimizerDefaultMonitor attribute), 72

Damping (class in trep.forces), 44
DCost (class in trep.discopt), 64
dcost_history (trep.discopt.DOptimizerDefaultMonitor attribute), 72
ddq (trep.Config attribute), 19
ddq (trep.System attribute), 6
ddqd (trep.System attribute), 6
ddqk (trep.System attribute), 6
ddy() (trep.Spline method), 76
default (trep.forces.Damping attribute), 44
descent_plot() (trep.discopt.DOptimizer method), 70
descent_tolerance (trep.discopt.DOptimizer attribute), 67
Distance (class in trep.constraints), 51
distance (trep.constraints.Distance attribute), 52
DOptimizer (class in trep.discopt), 67
DOptimizerDefaultMonitor (class in trep.discopt), 72
DOptimizerMonitor (class in trep.discopt), 71
dproject() (trep.discopt.DSystem method), 63
dq (trep.Config attribute), 19
dq (trep.System attribute), 6
dqd (trep.System attribute), 6
dqk (trep.System attribute), 6
dsys (trep.discopt.DOptimizer attribute), 67
DSystem (class in trep.discopt), 59
dy() (trep.Spline method), 76
dyn_configs (trep.System attribute), 4

\section*{E}
export_frames() (trep.Frame method), 16
export_frames() (trep.System method), 5

\section*{F}
f() (trep.discopt.DSystem method), 62
f() (trep.Force method), 21
f() (trep.System method), 8
f_dddk() (trep.System method), 8
f_dddkdq() (trep.System method), 9
f_ddq() (trep.Force method), 22
f_ddq() (trep.System method), 8
f_ddqddq() (trep.Force method), 23
f_ddqddq() (trep.System method), 9
f_ddqdq() (trep.Force method), 23
f_ddqdq() (trep.System method), 9
f_dq() (trep.Force method), 21
f_dq() (trep.System method), 8
f_dqdq() (trep.Force method), 22
f_dqdq() (trep.System method), 9
f_du() (trep.Force method), 22
f_du() (trep.System method), 8
f_duddq() (trep.Force method), 24
f_duddq() (trep.System method), 9
f_dudq() (trep.Force method), 24
f_dudq() (trep.System method), 9
f_dudu() (trep.Force method), 24
f_dudu() (trep.System method), 9
fdu() (trep.discopt.DSystem method), 62
fdudu() (trep.discopt.DSystem method), 62
fdx() (trep.discopt.DSystem method), 62
fdxdu() (trep.discopt.DSystem method), 62
fdxdx() (trep.discopt.DSystem method), 62
finput (trep.forces.ConfigForce attribute), 46
first_method (trep.discopt.DOptimizer attribute), 70
first_method_iterations (trep.discopt.DOptimizer tribute), 70
flatten_tree() (trep.Frame method), 16
at-

Force (class in trep), 21
force (trep.Input attribute), 20
forces (trep.System attribute), 4
Frame (class in trep), 15
frame (trep.Config attribute), 19
frame (trep.forces.BodyWrench attribute), 47
frame (trep.forces.HybridWrench attribute), 48
frame (trep.forces.SpatialWrench attribute), 49
frame1 (trep.constraints.Distance attribute), 52
frame1 (trep.forces.LinearDamper attribute), 45
frame1 (trep.potentials.LinearSpring attribute), 39
frame2 (trep.constraints.Distance attribute), 52
frames (trep.System attribute), 4
frames (trep.TapeMeasure attribute), 77

\section*{G}
g() (trep.Frame method), 17
g_dq() (trep.Frame method), 17
g_dqdq() (trep.Frame method), 17
g_dqdqdq() (trep.Frame method), 17
g_dqdqdqdq() (trep.Frame method), 17
g_inv() (trep.Frame method), 17
g_inv_dq() (trep.Frame method), 17
g_inv_dqdq() (trep.Frame method), 17
get_actual_distance() (trep.constraints.Distance method), 52
get_actual_distance() (trep.constraints.PointToPoint1D method), 53
get_actual_distance() (trep.constraints.PointToPoint2D method), 53
get_actual_distance() (trep.constraints.PointToPoint3D method), 53
get_config() (trep.System method), 5
get_constraint() (trep.System method), 5
get_damping_coefficient() (trep.forces.Damping method), 44
get_force() (trep.System method), 5
get_frame() (trep.System method), 5
get_input() (trep.System method), 5
get_potential() (trep.System method), 5
Gravity (class in trep.potentials), 37
gravity (trep.potentials.Gravity attribute), 38

\section*{H}
h() (trep.Constraint method), 29
h_dq() (trep.Constraint method), 29
h_dqdq() (trep.Constraint method), 29
h_dqdqdq() (trep.Constraint method), 29
h_dqdqdqdq() (trep.Constraint method), 30
hold_structure_changes() (trep.System method), 11
import_frames() (trep.Frame method), 16
import_frames() (trep.System method), 5
import_urdf() (in module trep.ros), 73
import_urdf_file() (in module trep.ros), 73
index (trep.Config attribute), 20
index (trep.Constraint attribute), 29
index (trep.Input attribute), 21
initialize_from_configs() (trep.MidpointVI method), 32
initialize_from_state() (trep.MidpointVI method), 32
Input (class in trep), 20
inputs (trep.System attribute), 4
Ixx (trep.Frame attribute), 17
Iyy (trep.Frame attribute), 17
Izz (trep.Frame attribute), 17

\section*{K}
k (in module trep.discopt), 60
k (trep.potentials.ConfigSpring attribute), 41
k (trep.potentials.LinearSpring attribute), 39
k_index (trep.Config attribute), 20
kf() (trep.discopt.DSystem method), 60
kin_configs (trep.System attribute), 4
kinematic (trep.Config attribute), 19

\section*{L}
l() (trep.discopt.DCost method), 65
L() (trep.System method), 7
L_ddq() (trep.System method), 7
L_ddqddq() (trep.System method), 7
L_ddqddqdq() (trep.System method), 7
L_ddqddqdqdq() (trep.System method), 7
L_ddqdq() (trep.System method), 7
L_ddqdqdq() (trep.System method), 7
L_ddqdqdqdq() (trep.System method), 7
L_dq() (trep.System method), 7
L_dqdq() (trep.System method), 7
L_dqdqdq() (trep.System method), 7
1_du() (trep.discopt.DCost method), 65
1_dudu() (trep.discopt.DCost method), 66
1_dx() (trep.discopt.DCost method), 65
1_dxdu() (trep.discopt.DCost method), 66
1_dxdx() (trep.discopt.DCost method), 66
lambda1 (trep.MidpointVI attribute), 32
lambda1_dk2() (trep.MidpointVI method), 35
lambda1_dk2dk2() (trep.MidpointVI method), 35
lambda1_dp1() (trep.MidpointVI method), 35
lambda1_dp1dk2() (trep.MidpointVI method), 35
lambda1_dp1dp1() (trep.MidpointVI method), 35
lambda1_dp1du1() (trep.MidpointVI method), 35
lambda1_dq1() (trep.MidpointVI method), 35
lambda1_dq1dk2() (trep.MidpointVI method), 35
lambda1_dq1dp1() (trep.MidpointVI method), 35
lambda1_dq1dq1() (trep.MidpointVI method), 35
lambda1_dq1du1() (trep.MidpointVI method), 35
lambda1_du1() (trep.MidpointVI method), 35
lambda1_du1dk2() (trep.MidpointVI method), 35
lambda1_du1du1() (trep.MidpointVI method), 35
lambda_() (trep.System method), 10
lambda_dddk() (trep.System method), 10
lambda_dddkdq() (trep.System method), 10
lambda_ddq() (trep.System method), 10
lambda_ddqddq() (trep.System method), 10
lambda_ddqdq() (trep.System method), 10
lambda_dq() (trep.System method), 10
lambda_dqdq() (trep.System method), 10
lambda_du() (trep.System method), 10
lambda_duddq() (trep.System method), 10
lambda_dudq() (trep.System method), 10
lambda_dudu() (trep.System method), 10
length() (trep.TapeMeasure method), 77
length_dq() (trep.TapeMeasure method), 77
length_dqdq() (trep.TapeMeasure method), 77
length_dqdqdq() (trep.TapeMeasure method), 77
\(\lg ()\) (trep.Frame method), 17
\(\lg \_d q()\) (trep.Frame method), 17
\(\lg _{\text {_ }} \mathrm{dqdq}_{()}\)(trep.Frame method), 17
lg_dqdqdq() (trep.Frame method), 17
lg_dqdqdqdq() (trep.Frame method), 17
lg_inv() (trep.Frame method), 17
lg_inv_dq() (trep.Frame method), 17
lg_inv_dqdq() (trep.Frame method), 17
lg_inv_dqdqdq() (trep.Frame method), 17
lg_inv_dqdqdqdq() (trep.Frame method), 17
LinearDamper (class in trep.forces), 45
linearize_trajectory() (trep.discopt.DSystem method), 63
LinearSpring (class in trep.potentials), 39
load_state_trajectory() (trep.discopt.DSystem method), 61

\section*{M}
m (trep.potentials.NonlinearConfigSpring attribute), 41
m() (trep.discopt.DCost method), 65
m_dx() (trep.discopt.DCost method), 65
m_dxdx() (trep.discopt.DCost method), 66
mass (trep.Frame attribute), 17
masses (trep.Config attribute), 20
masses (trep.System attribute), 4
MidpointVI (class in trep), 31
minimize_potential_energy() (trep.System method), 7
monitor (trep.discopt.DOptimizer attribute), 67

\section*{N}
name (trep.Config attribute), 19
name (trep.Constraint attribute), 29
name (trep.Force attribute), 21
name (trep.Input attribute), 21
name (trep.Potential attribute), 26
nc (trep.MidpointVI attribute), 31
nc (trep.System attribute), 4
nd (trep.MidpointVI attribute), 31
nk (trep.MidpointVI attribute), 31
NonlinearConfigSpring (class in trep.potentials), 41
normal (trep.constraints.PointOnPlane attribute), 53
nq (trep.MidpointVI attribute), 31
nQ (trep.System attribute), 4
nQd (trep.System attribute), 4
nQk (trep.System attribute), 4
nU (trep.discopt.DSystem attribute), 59
nu (trep.MidpointVI attribute), 31
nu (trep.System attribute), 4
nX (trep.discopt.DSystem attribute), 59

\section*{0}
opengl_draw() (trep.Constraint method), 30
opengl_draw() (trep.Force method), 25
opengl_draw() (trep.Potential method), 28
opengl_draw() (trep.potentials.Gravity method), 38
opengl_draw() (trep.TapeMeasure method), 78
optimize() (trep.discopt.DOptimizer method), 70
optimize_begin() (trep.discopt.DOptimizerMonitor method), 71
optimize_end() (trep.discopt.DOptimizerMonitor method), 72
optimize_ic (trep.discopt.DOptimizer attribute), 67

\section*{P}
p() (trep.Frame method), 18
p1 (trep.MidpointVI attribute), 32
p2 (trep.MidpointVI attribute), 32
p2_dk2() (trep.MidpointVI method), 34
p2_dk2dk2() (trep.MidpointVI method), 34
p2_dp1() (trep.MidpointVI method), 34
p2_dp1dk2() (trep.MidpointVI method), 34
p2_dp1dp1() (trep.MidpointVI method), 34
p2_dp1du1() (trep.MidpointVI method), 34
p2_dq1() (trep.MidpointVI method), 34
p2_dq1dk2() (trep.MidpointVI method), 34
p2_dq1dp1() (trep.MidpointVI method), 34
p2_dq1dq1() (trep.MidpointVI method), 34
p2_dq1du1() (trep.MidpointVI method), 34
p2_du1() (trep.MidpointVI method), 34
p2_du1dk2() (trep.MidpointVI method), 34
p2_du1du1() (trep.MidpointVI method), 34
p_dq() (trep.Frame method), 18
p_dqdq() (trep.Frame method), 18
p_dqdqdq() (trep.Frame method), 18
p_dqdqdqdq() (trep.Frame method), 18
parent (trep.Frame attribute), 16
plane_frame (trep.constraints.PointOnPlane attribute), 53
point_frame (trep.constraints.PointOnPlane attribute), 53
PointOnPlane (class in trep.constraints), 53
PointToPoint1D (class in trep.constraints), 53
PointToPoint2D (class in trep.constraints), 52
PointToPoint3D (class in trep.constraints), 52

Potential (class in trep), 26
potentials (trep.System attribute), 4
project() (trep.discopt.DSystem method), 63
Q
q (trep.Config attribute), 19
Q (trep.discopt.DCost attribute), 64
q (trep.System attribute), 6
q0 (trep.potentials.ConfigSpring attribute), 41
q1 (trep.MidpointVI attribute), 32
q2 (trep.MidpointVI attribute), 32
q2_dk2() (trep.MidpointVI method), 33
q2_dk2dk2() (trep.MidpointVI method), 33
q2_dp1() (trep.MidpointVI method), 33
q2_dp1dk2() (trep.MidpointVI method), 33
q2_dp1dp1() (trep.MidpointVI method), 33
q2_dp1du1() (trep.MidpointVI method), 33
q2_dq1() (trep.MidpointVI method), 33
q2_dq1dk2() (trep.MidpointVI method), 33
q2_dq1dp1() (trep.MidpointVI method), 33
q2_dq1dq1() (trep.MidpointVI method), 33
q2_dq1du1() (trep.MidpointVI method), 33
q2_du1() (trep.MidpointVI method), 33
q2_du1dk2() (trep.MidpointVI method), 33
q2_du1du1() (trep.MidpointVI method), 33
qd (trep.System attribute), 6
qk (trep.System attribute), 6
Qproj (trep.discopt.DOptimizer attribute), 67

\section*{R}

R (trep.discopt.DCost attribute), 64
resume_structure_changes() (trep.System method), 11
ROSMidpointVI (class in trep.ros), 74
rotation_matrix() (in module trep), 15
Rproj (trep.discopt.DOptimizer attribute), 67
RX (in module trep), 12
rx() (in module trep), 12
RY (in module trep), 12
ry() (in module trep), 12
RZ (in module trep), 12
rz() (in module trep), 12

\section*{S}
satisfy_constraints() (trep.System method), 7
save_state_trajectory() (trep.discopt.DSystem method), 61
second_method (trep.discopt.DOptimizer attribute), 70
select_fallback_method() (trep.discopt.DOptimizer method), 70
select_method() (trep.discopt.DOptimizer method), 70
\(\operatorname{set}()\) (trep.discopt.DSystem method), 62
set_damping_coefficient() (trep.forces.Damping method), 44
set_mass() (trep.Frame method), 17
set_SE3() (trep.Frame method), 17
set_state() (trep.System method), 6
sleep() (trep.ros.ROSMidpointVI method), 74
solve_tv_lq() (in module trep.discopt), 57
solve_tv_lqr() (in module trep.discopt), 56
Spline (class in trep), 75
spline (trep.potentials.NonlinearConfigSpring attribute), 41
split_input() (trep.discopt.DSystem method), 60
split_state() (trep.discopt.DSystem method), 60
split_trajectory() (trep.discopt.DSystem method), 61
step() (trep.discopt.DOptimizer method), 69
step() (trep.discopt.DSystem method), 62
step() (trep.MidpointVI method), 32
step() (trep.ros.ROSMidpointVI method), 74
step_begin() (trep.discopt.DOptimizerMonitor method), 72
step_completed() (trep.discopt.DOptimizerMonitor method), 72
step_info() (trep.discopt.DOptimizerMonitor method), 72
step_method_failure() (trep.discopt.DOptimizerMonitor method), 72
step_termination() (trep.discopt.DOptimizerMonitor method), 72
System (class in trep), 3
system (trep.Config attribute), 19
system (trep.Constraint attribute), 29
system (trep.discopt.DSystem attribute), 59
system (trep.Force attribute), 21
system (trep.Frame attribute), 16
system (trep.Input attribute), 20
system (trep.MidpointVI attribute), 31
system (trep.Potential attribute), 26
system (trep.TapeMeasure attribute), 77

\section*{T}
t (trep.System attribute), 5
t1 (trep.MidpointVI attribute), 32
t2 (trep.MidpointVI attribute), 32
TapeMeasure (class in trep), 76
test_derivative_ddq() (trep.System method), 10
test_derivative_dq() (trep.System method), 10
time (trep.discopt.DSystem attribute), 59
tolerance (trep.Constraint attribute), 29
total_energy () (trep.System method), 7
transform_type (trep.Frame attribute), 17
transform_value (trep.Frame attribute), 17
tree_view() (trep.Frame method), 16
trep (module), 3
trep.constraints (module), 51
trep.discopt (module), 55
trep.forces (module), 43
trep.potentials (module), 37
trep.ros (module), 73
twist_hat() (trep.Frame method), 18
TX (in module trep), 12
\(\operatorname{tx}()\) (in module trep), 12
TY (in module trep), 12
ty() (in module trep), 12
TZ (in module trep), 12
tz() (in module trep), 12
U
u (trep.Input attribute), 20
u (trep.System attribute), 6
u1 (trep.MidpointVI attribute), 32
uk (in module trep.discopt), 59
uses_config() (trep.Frame method), 16

\section*{V}

V() (trep.Potential method), 26
v2 (trep.MidpointVI attribute), 32
V_dq() (trep.Potential method), 26
V_dqdq() (trep.Potential method), 27
V_dqdqdq() (trep.Potential method), 27
validate_h_ddq() (trep.Force method), 25
validate_h_ddqddq() (trep.Force method), 25
validate_h_ddqdq() (trep.Force method), 25
validate_h_dq() (trep.Constraint method), 30
validate_h_dq() (trep.Force method), 25
validate_h_dqdq() (trep.Constraint method), 30
validate_h_dqdq() (trep.Force method), 25
validate_h_dqdqdq() (trep.Constraint method), 30
validate_h_dqdqdqdq() (trep.Constraint method), 30
validate_h_du() (trep.Force method), 25
validate_h_duddq() (trep.Force method), 25
validate_h_dudq() (trep.Force method), 25
validate_h_dudu() (trep.Force method), 25
validate_length_dq() (trep.TapeMeasure method), 78
validate_length_dqdq() (trep.TapeMeasure method), 78
validate_length_dqdqdq() (trep.TapeMeasure method), 78
validate_V_dq() (trep.Potential method), 28
validate_V_dqdq() (trep.Potential method), 28
validate_V_dqdqdq() (trep.Potential method), 28
validate_velocity_ddq() (trep.TapeMeasure method), 78
validate_velocity_ddqdq() (trep.TapeMeasure method),
validate_velocity_dq() (trep.TapeMeasure method), 78
validate_velocity_dqdq() (trep.TapeMeasure method), 78
varint (trep.discopt.DSystem attribute), 59
vb() (trep.Frame method), 18
vb_ddq() (trep.Frame method), 18
vb_ddqdq() (trep.Frame method), 18
vb_ddqdqdq() (trep.Frame method), 18
vb_ddqdqdqdq() (trep.Frame method), 18
vb_dq() (trep.Frame method), 18
vb_dqdq() (trep.Frame method), 18
vb_dqdqdq() (trep.Frame method), 18
velocity() (trep.TapeMeasure method), 77
velocity_dddqdq() (trep.TapeMeasure method), 78
velocity_ddq() (trep.TapeMeasure method), 78
velocity_dq() (trep.TapeMeasure method), 78
velocity_dqdq() (trep.TapeMeasure method), 78

\section*{W}

WORLD (in module trep), 12
world_frame (trep.System attribute), 4 wrench (trep.forces.BodyWrench attribute), 47 wrench (trep.forces.HybridWrench attribute), 48 wrench (trep.forces.SpatialWrench attribute), 49 wrench_val (trep.forces.BodyWrench attribute), 47 wrench_val (trep.forces.HybridWrench attribute), 48 wrench_val (trep.forces.SpatialWrench attribute), 49

\section*{X}
x0 (trep.potentials.LinearSpring attribute), 39
x_points (trep.Spline attribute), 75
xk (in module trep.discopt), 59
Y
y() (trep.Spline method), 76
y_points (trep.Spline attribute), 75```


[^0]:    - System Components
    - Finding Specific Components
    - Importing and Exporting Frame Definitions
    - System State
    - Constraints
    - Lagrangian Calculations
    - Dynamics
    - Constraint Forces

