

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 The gateway configurations are persisted inside the redis database and can be altered through the Admin REST API, Node SDK or CLI tool.

Lets show here how to manage APIs into the gateway using the CLI tool.

Creating an API configuration

To configure an API under the gateway, you need to create a configuration file. You can configure it using YAML or JSON. For example, lets create a file called test.yaml:

name: Test
version: 1.0.0
path: "/test"
proxy:
 target:
 host: http://httpbin.org
 timeout: five seconds

And use the Tree Gateway CLI to configure it into the gateway:

treeGatewayConfig apis --add ./test.yaml

And its done. You can test it accessing in your browser: http://localhost:8000/test/get

If you open your test.yaml file, you will see that an ID was added to the configuration. This ID is created if you do not provide one in your configuration.

name: Test
version: 1.0.0
path: "/test"
proxy:
 target:
 host: http://httpbin.org
 timeout: five seconds
id: 5a69e1f8cbeed907f6acb328

Take a look at ApiConfig to learn more about the api configuration file.

List APIs configurations

To see the APIs configured, use the CLI as:

treeGatewayConfig apis --list

If you want to filter the results, you can add those filters to the command. Ex:

treeGatewayConfig apis --list name:test

Only configurations that has a name starting with test will be listed.

You can add more filters:

treeGatewayConfig apis --list name:test version:1.0.0

Read an API configuration

To retrieve a configuration for a given API, run the command:

treeGatewayConfig apis --get 5a69e1f8cbeed907f6acb328 > test.yaml

That command will retrieve the configuration for the API with the id 5a69e1f8cbeed907f6acb328 and save it to the file test.yaml.

if you prefer to export the configuration as json, run:

treeGatewayConfig apis --get 5a69e1f8cbeed907f6acb328 json > test.json

Update an API configuration

Just edit the config file you retrieved previously and then run the command

treeGatewayConfig apis --update test.yaml

or

treeGatewayConfig apis --update test.json

Remove an API configuration

Run the command:

treeGatewayConfig apis --remove 5a69e1f8cbeed907f6acb328

That will remove the API with id 5a69e1f8cbeed907f6acb328

 Describes the configuration for the AccessLog system. This log system logs only accesses (each request to the gateway server).

It support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
msg	string	customize the default logging message. You can access any express property in request or response.	false
expressFormat	string	Use the default Express/morgan request formatting. Enabling this will override any msg if true. Will only output colors when colorize set to true.	false
console	LogConsoleConfig	Configure a Console reporter for the log system.	false
file	LogFileConfig	Configure a File reporter for the log system.	false

Example:

{
 "accessLogger": {
 "msg": "HTTP {{req.method}} - {{res.statusCode}} - {{req.url}} ({{res.responseTime}}ms) ",
 "console": {
 "timestamp": true,
 "colorize": true
 },
 "file": {
 "timestamp": true,
 "json": false,
 "prettyPrint": true,
 "outputDir": "./logs"
 }
 }
}

or

accessLogger:
 msg: 'HTTP {{req.method}} - {{res.statusCode}} - {{req.url}} ({{res.responseTime}}ms) '
 console:
 timestamp: true
 colorize: true
 file:
 timestamp: true
 json: false
 prettyPrint: true
 outputDir: "./logs"

 In order to interact with the Gateway REST Api you must create first one user/password.

To create this fisrt user, you must use the CLI tool (treeGatewayConfig).

Accessing this URL http://localhost:8001/api-docs, you can see the swagger-ui interface, that allows you to explore and interact with the API.

[[images/rest-api.png]]

You can also access the API swagger file through:

http://localhost:8001/api-docs/json
or
http://localhost:8001/api-docs/yaml

You need to provide an access token to all methods on the Admin API. To obtain this token, you must authenticate with the user you created in the previous step, by calling the endpoint:

http://localhost:8001/users/authentication

Then you must inform this token through the Authorization: Bearer <token> header on every Admin API request.

To do this through this swagger-ui, just follow the next steps.

Call /users/authenticate endpoint.

[[images/token.png]]

Use the user you created with userAdmin tool. The service will return a JWT token. Copy it.

Now you can authenticate through the swagger-ui interface, clicking in the red i icon that appears on every api entrypoint to indicate you need authetication. Once you click it, a dialog will be opened to you enter your credentials. Just enter Bearer <your token> and authenticate.

[[images/auth.png]]

And the red icon becomes blue. You are authenticated and can call any API method.

[[images/authenticated.png]]

 It is used in the GatewayConfig to configure the Admin Service for the Gateway.

It support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
protocol	ProtocolConfig	The protocol configuration for the admin module.	true
userService	UsersConfig	Configurations for admin users service.	true
accessLogger	AccessLoggerConfig	Configurations for admin access log.	false
apiDocs	ApiDocs	If provided, the service will publish all api documentation under the informed path.	false
cors	CorsConfig	Configure cors support for Admin API requests.	false
filter	MiddlewareConfig[]	An array of installed Filter middlewares to be executed, in order, by the request pipeline.	false

UsersConfig

Configure the service used to manage the users that can access the admin tasks.

It support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
jwtSecret	string	The secret or a path to a secret key used to generate JWT tokens for users authentication.	true

ApiDocs

If provided, configure how to publish the api documentation.

It support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
path	string	The path where deploy the docs.	true
host	string	The hostname where swagger will point the operations.	false

If the host is not provided, the swagger file will point all operations to the hostname of the machine running the service.

Example:

{
 "admin": {
 "protocol": {
 "https": {
 "listenPort": 8001,
 "privateKey": "./server.key",
 "certificate": "./server.crt"
 }
 },
 "accessLogger": {
 "msg": "HTTP {{req.method}} - {{res.statusCode}} - {{req.url}} ({{res.responseTime}}ms) ",
 "console": {
 "timestamp": true,
 "colorize": true
 },
 "file": {
 "timestamp": true,
 "json": false,
 "prettyPrint": true,
 "outputDir": "./logs"
 }
 },
 "userService": {
 "jwtSecret": "secret"
 },
 "apiDocs": {
 "path": "api-docs",
 "host": "localhost"
 },
 "cors" : {
 "origin": {
 "allow": [{
 "value": "*"
 }]
 }
 },
 "filter": [{
 "name": "ipFilter",
 "options": {
 "whitelist": ["127.0.0.1", "::1"]
 }
 }]
 }
}

or

admin:
 protocol:
 https:
 listenPort: 8001
 privateKey: "./server.key"
 certificate: "./server.crt"
 accessLogger:
 msg: 'HTTP {{req.method}} - {{res.statusCode}} - {{req.url}} ({{res.responseTime}}ms) '
 console:
 timestamp: true
 colorize: true
 file:
 timestamp: true
 json: false
 prettyPrint: true
 outputDir: "./logs"
 userService:
 jwtSecret: secret
 apiDocs:
 path: api-docs
 host: localhost
 cors:
 origin:
 allow:
 - value: "*"
 filter:
 - name: ipFilter
 options:
 whitelist:
 - "127.0.0.1"
 - "::1"

 Configure authentication for API requests.

Tree gateway uses passportjs [http://passportjs.org/] to handle authentication.

The Authentication configuration object must be included in the API config and supports the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
strategy	MiddlewareConfig	The middleware that construct the strategy for authentication.	false
group	string[]	A list of group names that should be authenticated by this authenticator. If not provided, everything will be authenticated.	false
disableStats	boolean	If true, disable the statistical data recording for authentication events.	false
statsConfig	StatsConfig	Configurations for the authentication stats.	false
use	string	Import a configuration from gateway config session	false

You must provide one of strategyor useproperty.

Pre defined Authentications

Tree gateway provides some middlewares already installed for most common authentication strategies:

	Basic

	JWT

	Local

It is possible to use one of the pre defined authentication strategies, or to define your own, using a middleware.

Example (Custom):

{
 "authentication": [{
 "strategy": {
 "name": "myJwtStrategy",
 "options": {
 "secret": "secret"
 }
 }
 }]
}

or

{
 "authentication": [{
 "use": "my-custom-strategy"
 }]
}

The custom example above will use a middleware named myJwtStrategy, that must be installed to perform the authentication. The object configurated will be passed as parameter to the middleware initialization function:

{
 "secret": "secret"
}

Note that you can pass anything you need here.

Basic

Configure a authentication to use the http basic [https://github.com/jaredhanson/passport-http] strategy.

It support the following option properties:

Property	Type	Description	Required
——–	—-	———–	——–
verify	MiddlewareConfig	A middleware that check the credentials and call done with the authenticated user object.	true

The verify middleware should receive the following parameters:

	userid: The username.

	password: The password.

	done: is a passport error first callback accepting arguments done(error, user, info)

Example:

{
 "authentication": [{
 "strategy": {
 "name": "basic",
 "options": {
 "verify": {
 "name": "verifyBasicUser"
 }
 }
 },
 "group": ["Group1"]
 }]
}

Local

Configure a authentication to use the local [https://github.com/jaredhanson/passport-local] strategy.

It support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
verify	MiddlewareConfig	A middleware that check the credentials and call done with the authenticated user object.	true
usernameField	string	The name of the form field that informs the username. Defaults to ‘username’	false
passwordField	string	The name of the form field that informs the password. Defaults to ‘password’	false

The verify middleware should receive the following parameters:

	userid: The username.

	password: The password.

	done: is a passport error first callback accepting arguments done(error, user, info)

Example:

{
 "authentication": [{
 "strategy": {
 "name": "local",
 "options": {
 "usernameField": "userid",
 "passwordField": "passwd",
 "verify": {
 "name": "verifyBasicUser"
 }
 }
 }
 }]
}

JWT

Configure a authentication to use the JWT [https://github.com/themikenicholson/passport-jwt] strategy.

It support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
secretOrKey	string	Is a string containing the secret (symmetric) or PEM-encoded public key (asymmetric) for verifying the token’s signature.	true
extractFrom	JWTRequestExtractor	Defines how the JWT token will be extracted from request.	false
issuer	string	If defined the token issuer (iss) will be verified against this value.	false
audience	string	If defined, the token audience (aud) will be verified against this value.	false
algorithms	string[]	List of strings with the names of the allowed algorithms. For instance, [“HS256”, “HS384”].	false
ignoreExpiration	boolean	If true do not validate the expiration of the token.	false
verify	MiddlewareConfig	A middleware that check the credentials and call done with the authenticated user object.	false

The verify middleware should receive the following parameters:

	request: The user request.

	jwt_payload: Is an object literal containing the decoded JWT payload.

	done: Is a passport error first callback accepting arguments done(error, user, info)

JWTRequestExtractor

Configure how the JWT token will be extracted from request.

It support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
header	string	The name of the header that contains the token.	false
queryParam	string	The name of the param that contains the token.	false
authHeader	string	The name of shcema used in Authorization header. Ex: ‘JWT’.	false
bodyField	string	The name of the form param that contains the token.	false
cookie	string	The name of the cookie that contains the tolen.	false

Example:

{
 "authentication": [{
 "strategy": {
 "name": "jwt",
 "options": {
 "extractFrom": {
 "authHeader": "Bearer",
 "queryParam": "jwt"
 },
 "secretOrKey": "secret",
 "algorithms": ["HS256", "HS384"],
 "ignoreExpiration": true,
 "verify": {
 "name": "verifyJwtUser"
 }
 }
 }
 }]
}

 Configure cache for API requests.

The Caching system supports two kinds of cache (and both can be used together or alone):

	Browser cache: The gateway can handle HTTP response headers to make the client browsers keep a cache for configured resources.

	Memory Cache: The gateway save copies of the proxied API responses into the Redis database.

The Cache configuration object must be included in the API config and supports the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
client	ClientCacheConfig	Configuration for a client side cache (in browser).	false
server	ServerCacheConfig	Configuration for a server side cache (in a Redis store).	false
group	string[]	A list of group names that should be cached by this configuration. If not provided, everything will be cached.	false
use	string	Import a configuration from gateway config session	false

ClientCacheConfig

Configure HTTP response headers to make the client browsers keeping a cache for configured resources.

It support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
cacheTime	string or number	The time to keep the cached resources. You can inform the amount of milisencods, or use a human-interval [https://www.npmjs.com/package/human-interval] string.	true
cacheControl	'public', 'private', 'no-cache' or 'no-store'	Configure the HTTP Cache-Control header.	false
mustRevalidate	boolean	Configure the HTTP Cache-Control header.	false
noTransform	boolean	Configure the HTTP Cache-Control header.	false
proxyRevalidate	boolean	Configure the HTTP Cache-Control header.	false

Example:

{
 "cache": [
 {
 "client": {
 "cacheTime": "1 minute",
 "cacheControl": "public",
 "mustRevalidate": false,
 "noTransform": false,
 "proxyRevalidate": false
 }
 },
 {
 "use": "my-cache-config",
 "group": "group1"
 }
]
}

ServerCacheConfig

Configure the caching system to save copies of the proxied API responses into the Redis database.

It support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
cacheTime	string or number	The time to keep the cached resources. You can inform the amount of milisencods, or use a human-interval [https://www.npmjs.com/package/human-interval] string.	true
preserveHeaders	string[]	A list of response received headers that also need to be saved by cache system, to reproduce them to clients.	false
disableStats	boolean	If true, disable the statistical data recording for cache events.	false
statsConfig	StatsConfig	Configurations for the cache stats.	false

Example:

{
 "cache": [
 {
 "client": {
 "cacheTime": "1 minute",
 "cacheControl": "public",
 },
 "server": {
 "cacheTime": "10 minutes",
 "binary": true,
 "preserveHeaders" :["access-control-allow-credentials"]
 },
 "group": ["Group1"]
 }
]
}

 Configure circuit breaker [https://martinfowler.com/bliki/CircuitBreaker.html] for API requests.

The Circuitbreaker configuration object must be included in the API config and supports the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
timeout	string or number	Exceptions or calls exceeding the configured timeout increment a failure counter. You can inform the amount of milisencods, or use a human-interval [https://www.npmjs.com/package/human-interval] string. Defaults to '30 seconds'.	false
resetTimeout	string or number	After the configured resetTimeout, the circuit breaker enters a 'half-open' state. You can inform the amount of milisencods, or use a human-interval [https://www.npmjs.com/package/human-interval] string. Defaults to '2 minutes'.	false
timeWindow	Define a time window to count the api failures. If defined, the gateway will reset the total failures count by each period of time defined here.	false	
maxFailures	number	When the failure counter reaches a maxFailures count, the breaker is tripped into 'open' state.	false
group	string[]	A list of group names that should be cached by this configuration. If not provided, everything will be cached.	false
disableStats	boolean	If true, disable the statistical data recording for circuitbreaker events.	false
statsConfig	StatsConfig	Configurations for circuitbreaker stats.	false
onOpen	MiddlewareConfig	An installed 'circuitbreaker' middleware function, called when the circuit move to 'open' state.	false
onClose	MiddlewareConfig	An installed 'circuitbreaker' middleware function, called when the circuit move to 'close' state.	false
onRejected	MiddlewareConfig	An installed 'circuitbreaker' middleware function, called when the circuit rejected (fast fail) a request.	false
timeoutMessage	string	Message to be sent when an api call occurs in a timeout. Defaults to: 'Operation timeout'.	false
timeoutStatusCode	number	Status code to be sent when an api call occurs in a timeout. Defaults to: 504.	false
rejectMessage	string	Message to be sent when an api call is rejected because circuit is open. Defaults to: 'Service unavailable'.	false
rejectStatusCode	number	Status code to be sent when an api call is rejected because circuit is open. Defaults to: 503.	false
use	string	Import a configuration from gateway config session	false

Example:

{
 "circuitBreaker": [{
 "timeout": "45 seconds",
 "resetTimeout": "2 minutes and 30 seconds",
 "maxFailures": 10,
 "onOpen": {
 "name": "myOpenHandler"
 },
 "group": ["Group1"]
 },
 {
 "timeout": "15 seconds",
 "resetTimeout": "2 minutes",
 "maxFailures": 10,
 "onOpen": {
 "name": "myOpenHandler"
 },
 "group": ["Group2"]
 },
 {
 "use": "my-circuit-breaker",
 "group": ["Default"]
 }]
}

 This is the Api config descriptor. It supports following properties:

Property	Type	Description	Required
——–	—-	———–	——–
id	string	The API identifier. If not provided during API creation, an uuid is used.	false
name	string	The API name.	true
version	string	The API version. More than one version can be published for the same API name.	true
path	string	The path where the gateway will listen for requests that should be proxied for the current API.	true
description	string	An optional description for API.	false
group	Group[]	Configure groups of endpoints.	false
proxy	Proxy	Configure the proxy engine for this API.	true
authentication	AuthenticationConfig[]	Configure authentication for this API.	false
throttling	ThrottlingConfig[]	Configure rate limits for this API.	false
cache	CacheConfig[]	Configure cache for this API.	false
circuitBreaker	CircuitBreakerConfig[]	Configure a circuit breaker [http://doc.akka.io/docs/akka/snapshot/common/circuitbreaker.html] for this API.	false
cors	ApiCorsConfig[]	Configure cors [https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS] support for this API.	false
filter	Filter[]	A List of request filters to be added, in order, to the request pipeline.	false
errorHandler	MiddlewareConfig[]	An ErrorHandler middleware to be called to handle any error during request pipeline processing for this API.	false
interceptor	Interceptors	Configure request and response interceptors to be added to the request pipeline.	false
disableAnalytics	boolean	Disable all request log recording for this API.	false
parseReqBody	string or Array<string> or boolean	Allows you to control when to parse the request body. Just enable it if you need to access the request.body inside a proxy middleware, like a filter or interceptor. If disabled, the request is streamed to the target API, increasing performance. You can inform the expected types of body you are expecting: ["json", "urlencoded", "raw"]. Defaults to false.	false
parseCookies	boolean	Allows you to control when to parse the request cookies. Just enable it if you need to access the request.cookies inside a proxy middleware, like a filter or interceptor. Defaults to false.	false

Example:

{
 "name": "TestAPI",
 "version": "1.0.0",
 "path": "test/",
 "proxy": {
 "target": {
 "host": "http://httpbin.org"
 },
 "timeout": 5000
 }
}

or,

name: TestAPI
version: 1.0.0
path: test/
proxy:
 target:
 host: http://httpbin.org
 timeout: 5000

That configuration will map any request to the base path /test to be proxied to http://httpbin.org.

For example, the given URLs:

	http://localhost:8000/test/get will point to http://httpbin.org/test/get

	http://localhost:8000/test/get?param=1 will point to http://httpbin.org/test/get?param=1

Assuming that your gateway is running on http://localhost:8000.

Group

Groups allow you to organize your configurations. They can be referenced by other API configurations, like throttling, cache (and others) to define behaviors that only apply to a specific set of endpoints.

The Group configuration supports the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
id	string	The Group identifier.	true
member	Member[]	A list of group members.	true
description	string	An optional description for the group.	false

Member

Configure a member of a Group.

It supports the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
path	string[]	A list of request paths that belong to the group. Support glob patterns [https://www.npmjs.com/package/minimatch]	false
member	string[]	A list of HTTP methods that belong to the group.	false
protocol	string[]	A list of protocols that belong to the group.	false

Example:

{
 "name": "TestAPI",
 "version": "1.0.0",
 "path": "test/",
 "group": [
 {
 "id": "Group1",
 "description": "Endpoints Group One",
 "member": [
 {
 "path": ["get"],
 "method": ["GET"]
 },
 {
 "path": ["post"],
 "method": ["GET"]
 }
]
 },
 {
 "id": "Group2",
 "description": "Endpoints Group Two",
 "member": [
 {
 "path": ["user-agent"]
 },
 {
 "method": ["POST"]
 }
]
 }
],
 "proxy": {
 "target": {
 "host": "http://httpbin.org",
 "allow": ["Group1"],
 "deny": ["Group2"]
 },
 "timeout": 5000
 }
}

or

name: TestAPI
version: 1.0.0
path: test/
group:
- id: Group1
 description: Endpoints Group One
 member:
 - path:
 - get
 method:
 - GET
 - path:
 - post
 method:
 - GET
- id: Group2
 description: Endpoints Group Two
 member:
 - path:
 - user-agent
 - method:
 - POST
proxy:
 target:
 host: http://httpbin.org
 allow:
 - Group1
 deny:
 - Group2
 timeout: 5000

This example show how to use groups to define rules for the proxy engine allowing or denying requests that should target the configured API.

 Configurations for cors [https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS] on API requests.

This configuration object extends the CorsConfig and adds the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
group	string[]	A list of group names that should be handled by this configuration. If not provided, everything will be handled.	false

Example:

{
 "cors" : [{
 "origin": {
 "allow": { "value": "http://example1.com"}
 },
 "methods": ["GET", "PUT", "POST"],
 "allowedHeaders": ["Content-Type", "Authorization"],
 "group": ["Group1", "Group3"]

 },
 {
 "origin": {
 "allow": { "regexp": "/example\\.com$/"}
 },
 "methods": ["PUT", "POST"],
 "group": ["Group2"]
 }]
}

 Configure request and response to the request pipeline.

It supports the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
request	Interceptor[]	A list of request interceptor names	true
response	Interceptor[]	A list of response interceptor names	true

Interceptor

Configure a request or response interceptor.

It supports the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
middleware	MiddlewareConfig	The Interceptor configuration.	false
group	string[]	A list of group names that should be intercepted by this interceptor. If not provided, everything will be intercepted.	false
use	string	Import a configuration from gateway config session.	false

You must provide one of middleware or use property.

Example:

{
 "interceptor": {
 "request": [
 {
 "middleware": {
 "name":"myRequestInterceptor"
 },
 "group": ["Group1"]
 },
 {
 "middleware": {
 "name":"mySecondRequestInterceptor"
 }
 },
 {
 "use": "my-interceptor"
 }
],
 "response": [
 {
 "middleware": {
 "name":"myResponseInterceptor"}
 },
 {
 "middleware": {
 "name":"SecondInterceptor"
 },
 "group": ["Group1"]
 },
 {
 "use": "my-other-interceptor",
 "group": ["Group1"]
 }
]
 }
}

or

interceptor:
 request:
 - middleware:
 name: myRequestInterceptor
 group:
 - Group1
 - middleware:
 name: mySecondRequestInterceptor
 - use: my-interceptor
 response:
 - middleware:
 name: myResponseInterceptor
 - middleware:
 name: SecondInterceptor
 group:
 - Group1
 - use: my-other-interceptor
 group: Group2

 Configure throttling (Rate Limits) for API requests.

The Throttling configuration object must be included in the API config and supports the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
timeWindow	string or number	How long to keep records of requests in memory. You can inform the amount of milisencods, or use a human-interval [https://www.npmjs.com/package/human-interval] string. Defaults to ‘1 minute’	false
delayAfter	number	Max number of connections during timeWindow before starting to delay responses.	false
delay	string or number	How long to delay the response, multiplied by (number of recent hits - delayAfter). You can inform the amount of milisencods, or use a human-interval [https://www.npmjs.com/package/human-interval] string	false
max	number	Max number of connections during timeWindow before sending a 429 response. Defaults to 5.	false
message	string	Error message returned when max is exceeded. Defaults to ‘Too many requests, please try again later.’	false
statusCode	number	HTTP status code returned when max is exceeded. Defaults to 429.	false
headers	boolean	If true, enable header to show request limit and current usage.	false
keyGenerator	MiddlewareConfig	An installed 'throttling/keyGenerators' middleware function, called to identify the source of the request. By default user IP address (req.ip) is used as key.	false
skip	MiddlewareConfig	An installed 'throttling/skip' middleware function, called to verify if the throttling engine should not intercept some requests.	false
handler	MiddlewareConfig	An installed 'throttling/handlers' middleware function, called when the max limit is exceeded.	false
group	string[]	A list of group names that should be controlled by this engine. If not provided, everything will be controlled.	false
disableStats	boolean	If true, disable the statistical data recording for throttling events.	false
statsConfig	StatsConfig	Configurations for the throttling stats.	false
use	string	Import a configuration from gateway config session	false

Example:

 {
 "throttling": [
 {
 "timeWindow": "one minute",
 "max": 100,
 "delayAfter": 90,
 "delay": "1 second",
 "group": ["Group1"],
 "keyGenerator": {
 "name": "myThrollingKeyMiddleware"
 }
 }
]
 }

or

 {
 "throttling": [
 {
 "use": "my-throttling-config",
 "group": ["group1"]
 }
]
 }

 An Authentication Strategy middleware is a function than can instantiate any passportjs [http://passportjs.org/] strategy to satisfy a custom authentication method.

This functions receives a paramenter with any custom configurations you desire to pass when registering the middlware inside an API Authentication.

Each middleware must be defined on its own .js file.

Example:

'use strict';

var JwtStrategy = require('passport-jwt').Strategy,
 ExtractJwt = require('passport-jwt').ExtractJwt;

/**
 * You can define your own passportjs strategy here.
 * @param authConfig - Constains any configuration you inform on your API Authentication configuration.
 */
module.exports = function (authConfig) {
 var opts = {}
 opts.jwtFromRequest = ExtractJwt.fromUrlQueryParameter('jwt');
 opts.secretOrKey = authConfig.secret;
 return new JwtStrategy(opts, function(jwt_payload, done) {
 done(null,jwt_payload.sub);
 });
};

For instance, if you configure the authentication of your API like:

{
 "authentication": {
 "strategy": {
 "name": "myJwtStrategy",
 "options": {
 "secret": "secret"
 }
 }
 }}

The middleware function will receive as paramater:

{
 "secret": "secret"
}

You can configure an auth strategy middleware through:

	Admin Rest API: POST /midleware/authentication/strategies

	SDK: sdk.middleware.addAuthStrategy(name, fileName);

	CLI: treeGatewayConfig middleware authStrategy -a <name> ./filename.js

 An Authentication Verify is a function than can be used by the authentication strategy to verify parameters and build the authenticated user object.

Tree Gateway provides 3 pre configured strategies:

	JWT

	Basic

	Local

These strategies support the use of a verify function, but depending on the strategy adopted, the verify middleware function will receive different parameters.

Each middleware must be defined on its own .js file.

JWT

The JWT verify function receives the following parameters:

	request: The request received from client by the gateway.

	jwt_payload: The payload extracted from the JWT token received (already validated).

	done_callback: A callback function, following the convention: callback(error, value). Where value will be the user object injected into request.user property.

Example:

/**
 * @param request The request received from client by the gateway.
 * @param jwt_payload The payload extracted from the JWT token received (already validated).
 * @param done A callback function, following the convention: callback(error, value). Where
 * value will be the user object injected into request.user property.
 */
 */
module.exports = function (request, jwt_payload, done){
 console.log('Custom verify function called.');
 done(null, jwt_payload);
};

Basic and Local

The Basic and Local verify function receives the following parameters:

	userid: The username provided by user.

	password: The password provided by user.

	done: A callback function, following the convention: callback(error, value). Where value will be the user object injected into request.user property.

Example:

const User = require('./my-user-service');

/**
 * @param userid The username provided by user.
 * @param password The password provided by user.
 * @param done A callback function, following the convention: callback(error, value). Where
 * value will be the user object injected into request.user property.
 */
 */
module.exports = function (userid, password, done){
 // console.log('Custom verify function called.');
 User.findOne({ username: userid }, function (err, user) {
 if (err) { return done(err); }
 if (!user) { return done(null, false); }
 if (!user.verifyPassword(password)) { return done(null, false); }
 return done(null, user);
 });
};

You can configure an auth verify middleware through:

	Admin Rest API: POST /midleware/authentication/verify

	SDK: sdk.middleware.addAuthVerify(name, fileName);

	CLI: treeGatewayConfig middleware authVerify -a <name> ./filename.js

 Configure authentication for API requests.

Tree gateway uses passportjs [http://passportjs.org/] to handle authentication.

The Authentication configuration object must be included in the API config and supports the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
strategy	MiddlewareConfig	The middleware that construct the strategy for authentication.	true
disableStats	boolean	If true, disable the statistical data recording for authentication events.	false
statsConfig	StatsConfig	Configurations for the authentication stats.	false

Pre defined Authentications

Tree gateway provides some middlewares already installed for most common authentication strategies:

	Basic

	JWT

	Local

It is possible to use one of the pre defined authentication strategies, or to define your own, using a middleware.

Example (Custom):

{
 "authentication": {
 "strategy": {
 "name": "myJwtStrategy",
 "options": {
 "secret": "secret"
 }
 }
 }
}

The custom example above will use a middleware named myJwtStrategy, that must be installed to perform the authentication. The object configurated will be passed as parameter to the middleware initialization function:

{
 "secret": "secret"
}

Note that you can pass anything you need here.

Basic

Configure a authentication to use the http basic [https://github.com/jaredhanson/passport-http] strategy.

It support the following option properties:

Property	Type	Description	Required
——–	—-	———–	——–
verify	MiddlewareConfig	A middleware that check the credentials and call done with the authenticated user object.	true

The verify middleware should receive the following parameters:

	userid: The username.

	password: The password.

	done: is a passport error first callback accepting arguments done(error, user, info)

Example:

{
 "authentication": {
 "strategy": {
 "name": "basic",
 "options": {
 "verify": {
 "name": "verifyBasicUser"
 }
 }
 }
 }
}

Local

Configure a authentication to use the local [https://github.com/jaredhanson/passport-local] strategy.

It support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
verify	MiddlewareConfig	A middleware that check the credentials and call done with the authenticated user object.	true
usernameField	string	The name of the form field that informs the username. Defaults to ‘username’	false
passwordField	string	The name of the form field that informs the password. Defaults to ‘password’	false

The verify middleware should receive the following parameters:

	userid: The username.

	password: The password.

	done: is a passport error first callback accepting arguments done(error, user, info)

Example:

{
 "authentication": {
 "strategy": {
 "name": "local",
 "options": {
 "usernameField": "userid",
 "passwordField": "passwd",
 "verify": {
 "name": "verifyBasicUser"
 }
 }
 }
 }
}

JWT

Configure a authentication to use the JWT [https://github.com/themikenicholson/passport-jwt] strategy.

It support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
secretOrKey	string	Is a string containing the secret (symmetric) or PEM-encoded public key (asymmetric) for verifying the token’s signature.	true
extractFrom	JWTRequestExtractor	Defines how the JWT token will be extracted from request.	false
issuer	string	If defined the token issuer (iss) will be verified against this value.	false
audience	string	If defined, the token audience (aud) will be verified against this value.	false
algorithms	string[]	List of strings with the names of the allowed algorithms. For instance, [“HS256”, “HS384”].	false
ignoreExpiration	boolean	If true do not validate the expiration of the token.	false
verify	MiddlewareConfig	A middleware that check the credentials and call done with the authenticated user object.	false

The verify middleware should receive the following parameters:

	request: The user request.

	jwt_payload: Is an object literal containing the decoded JWT payload.

	done: Is a passport error first callback accepting arguments done(error, user, info)

JWTRequestExtractor

Configure how the JWT token will be extracted from request.

It support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
header	string	The name of the header that contains the token.	false
queryParam	string	The name of the param that contains the token.	false
authHeader	string	The name of shcema used in Authorization header. Ex: ‘JWT’.	false
bodyField	string	The name of the form param that contains the token.	false
cookie	string	The name of the cookie that contains the tolen.	false

Example:

{
 "authentication": {
 "strategy": {
 "name": "jwt",
 "options": {
 "extractFrom": {
 "authHeader": "Bearer",
 "queryParam": "jwt"
 },
 "secretOrKey": "secret",
 "algorithms": ["HS256", "HS384"],
 "ignoreExpiration": true,
 "verify": {
 "name": "verifyJwtUser"
 }
 }
 }
 }
}

 The command line tool uses the Node.js SDK to allow gateway management through command line scripts.

First of all, ensure that you have already installed the gateway and have an instance running:

$ npm install -g tree-gateway
$ treeGateway

The CLI tool will connect to that instance to execute all configuration commands. To do it, you need to inform tha path to the tree-gateway.yaml configuration file. You can do this by passing the paramenter -c (or –config) to the CLI:

$ treeGatewayConfig -c ./tree-gateway.yaml

If you don’t provide this parameter, the CLI will try to find the file tree-gateway.yaml under the folder where you are executing the command.

Whe can use the CLI to create an user to be used to access the REST API. Here’s a sample:

$ treeGatewayConfig users add -l sampleuserlogin -p sampleuserpassword -n sampleusername -r admin config

In the previous case, we created the user named “sampleusername” with two roles: “admin” and “config”.

You also can configure other the gateway functionalities using the CLI tool. To see all the available options check the program help:

$ treeGatewayConfig -h

Note that you can provide for all commands available the following option:

	-c (or –config): the gateway config file.

The program allow you to configure:

	the gateway;

	middlewares;

	apis;

	users for the REST Apis

	import / export gateway configurations

If you need help for a specific command, just type:

$ treeGatewayConfig <command> -h

Example:

$ treeGatewayConfig apis -h

This will show the list with descriptions of all operations supported by apis command.

Another helpfull command is to reload the Gateway properties. You can do this by the following command:

$ treeGatewayConfig gateway --update ./myGateway.config.json

 Configure cache for API requests.

The Caching system supports two kinds of cache (and both can be used together or alone):

	Browser cache: The gateway can handle HTTP response headers to make the client browsers keep a cache for configured resources.

	Memory Cache: The gateway save copies of the proxied API responses into the Redis database.

The Cache configuration object must be included in the API config and supports the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
client	ClientCacheConfig	Configuration for a client side cache (in browser).	false
server	ServerCacheConfig	Configuration for a server side cache (in a Redis store).	false

ClientCacheConfig

Configure HTTP response headers to make the client browsers keeping a cache for configured resources.

It support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
cacheTime	string or number	The time to keep the cached resources. You can inform the amount of milisencods, or use a human-interval [https://www.npmjs.com/package/human-interval] string.	true
cacheControl	'public', 'private', 'no-cache' or 'no-store'	Configure the HTTP Cache-Control header.	false
mustRevalidate	boolean	Configure the HTTP Cache-Control header.	false
noTransform	boolean	Configure the HTTP Cache-Control header.	false
proxyRevalidate	boolean	Configure the HTTP Cache-Control header.	false

Example:

{
 "cache": {
 "client": {
 "cacheTime": "1 minute",
 "cacheControl": "public",
 "mustRevalidate": false,
 "noTransform": false,
 "proxyRevalidate": false
 }
 }
}

ServerCacheConfig

Configure the caching system to save copies of the proxied API responses into the Redis database.

It support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
cacheTime	string or number	The time to keep the cached resources. You can inform the amount of milisencods, or use a human-interval [https://www.npmjs.com/package/human-interval] string.	true
preserveHeaders	string[]	A list of response received headers that also need to be saved by cache system, to reproduce them to clients.	false
disableStats	boolean	If true, disable the statistical data recording for cache events.	false
statsConfig	StatsConfig	Configurations for the cache stats.	false

Example:

{
 "cache": {
 "client": {
 "cacheTime": "1 minute",
 "cacheControl": "public",
 },
 "server": {
 "cacheTime": "10 minutes",
 "binary": true,
 "preserveHeaders" :["access-control-allow-credentials"]
 }
 }
}

 A CircuitBreaker Handler middleware is a function called when circuitbreaker events occurs. The events cal be a state change('open' or 'close') or a request rejection due to a circuit ‘open’ state.

It receives the following parameters:

	apiPath: The path being called to target API.

	event: The event that originated the call. Can be 'open', 'close' or 'rejected'.

Each middleware must be defined on its own .js file.

Example:

/**
 * @param apiPath The path being called to target API.
 * @param event The event that originated the call. Can be 'open', 'close' or 'rejected'.
 */
module.exports = function (apiPath, event) {
 sendEmail('Event received: '+ event, apiPath);
};

You can configure a circuitbreaker handler middleware through:

	Admin Rest API: POST /midleware/circuitbreaker

	SDK: sdk.middleware.addCircuitBreaker(name, fileName);

	CLI: treeGatewayConfig middleware circuitbreaker -a <name> ./filename.js

 Configure circuit breaker [https://martinfowler.com/bliki/CircuitBreaker.html] for API requests.

The Circuitbreaker configuration object must be included in the API config and supports the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
timeout	string or number	Exceptions or calls exceeding the configured timeout increment a failure counter. You can inform the amount of milisencods, or use a human-interval [https://www.npmjs.com/package/human-interval] string. Defaults to '30 seconds'.	false
resetTimeout	string or number	After the configured resetTimeout, the circuit breaker enters a 'half-open' state. You can inform the amount of milisencods, or use a human-interval [https://www.npmjs.com/package/human-interval] string. Defaults to '2 minutes'.	false
timeWindow	Define a time window to count the api failures. If defined, the gateway will reset the total failures count by each period of time defined here.	false	
maxFailures	number	When the failure counter reaches a maxFailures count, the breaker is tripped into 'open' state.	false
disableStats	boolean	If true, disable the statistical data recording for circuitbreaker events.	false
statsConfig	StatsConfig	Configurations for circuitbreaker stats.	false
onOpen	MiddlewareConfig	An installed 'circuitbreaker' middleware function, called when the circuit move to 'open' state.	false
onClose	MiddlewareConfig	An installed 'circuitbreaker' middleware function, called when the circuit move to 'close' state.	false
onRejected	MiddlewareConfig	An installed 'circuitbreaker' middleware function, called when the circuit rejected (fast fail) a request.	false
timeoutMessage	string	Message to be sent when an api call occurs in a timeout. Defaults to: 'Operation timeout'.	false
timeoutStatusCode	number	Status code to be sent when an api call occurs in a timeout. Defaults to: 504.	false
rejectMessage	string	Message to be sent when an api call is rejected because circuit is open. Defaults to: 'Service unavailable'.	false
rejectStatusCode	number	Status code to be sent when an api call is rejected because circuit is open. Defaults to: 503.	false

Example:

{
 "circuitBreaker": {
 "timeout": "45 seconds",
 "resetTimeout": "2 minutes and 30 seconds",
 "maxFailures": 10,
 "onOpen": {
 "name": "myOpenHandler"
 }
 }
}

 When tree-gateway starts, it uses the tree-gateway Config File to load the initial configuration needed.

When start the gateway, you can inform the location of this config file:

$ treeGateway -c ./tree-gateway.yaml

If you do not inform any file, the gateway will try to find one with the name tree-gateway.json or tree-gateway.yaml located in the directory where you start the gateway. If no config file exists, the gateway will start with its default configurations and will save it into the file ./tree-gateway.yaml.

This file contains the configurations needed to connect to the redis database. All the other configurations are then loaded from this database, such as:

	the gateway itself - which kind os services are enabled / monitors / protocols and ports for the listening services / loggers etc;

	the admin users - Who can access the configuration services;

	the installed middlewares - To extend gateway features / listen and handle events etc;

	and all API configurations - The main purpose of the gateway: to route, secure and manage your APIs.

So, all of those configurations are inserted directly into the config database. If you change a configuration (regardless of which is), messages are sent to all cluster nodes to inform the new values. This happens without any need for a gateway restart. We provide 3 different ways to you manage all of those configurations:

	Use the Admins REST API;

	Use the Node JS SDK;

	Use the CLI admin.

 A Cors middleware is a function that receives the request origin from the gateway and must return a boolean value (or a Promise) to inform if the given origin is allowed.

 CorsOrigin

 Configurations for cors [https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS] requests.

It support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
origin	CorsOrigin	Configures the Access-Control-Allow-Origin CORS header.	true
methods	string[]	Configures the Access-Control-Allow-Methods CORS header. (ex: [‘GET’, ‘PUT’, ‘POST’])	false
allowedHeaders	string[]	Configures the Access-Control-Allow-Headers CORS header. (ex: [‘Content-Type’, ‘Authorization’]). If not specified, defaults to reflecting the headers specified in the request’s Access-Control-Request-Headers header.	false
exposedHeaders	string[]	Configures the Access-Control-Expose-Headers CORS header. (ex: [‘Content-Range’, ‘X-Content-Range’]). If not specified, no custom headers are exposed.	false
credentials	boolean	Configures the Access-Control-Allow-Credentials CORS header. Set to true to pass the header, otherwise it is omitted.	false
maxAge	string	Configures the Access-Control-Max-Age CORS header. You can inform the amount of milisencods, or use a human-interval [https://www.npmjs.com/package/human-interval] string to pass the header, otherwise it is omitted.	false
preflightContinue	boolean	Pass the CORS preflight response to the next handler.	false

CorsOrigin

Configures the Access-Control-Allow-Origin CORS header.

It support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
enableAll	boolean	If true, enable all origins to make cors requests.	false
disableAll	boolean	If true, disable all origins to make cors requests.	false
allow	CorsOriginConfig[]	Specify which origins are allowed.	false
middleware	MiddlewareConfig	An installed 'cors' middleware function, called to resolve if the request should be allowed.	false

All of those properties are optional, but one (and only one) of them must be present in the configuration object.

Some examples:

{
 "cors" : {
 "origin": {
 "enableAll": true
 }
 }
}

and

{
 "cors" : {
 "origin": {
 "allow": { "value": "http://example1.com"}
 },
 "methods": ["GET", "PUT", "POST"],
 "allowedHeaders": ["Content-Type", "Authorization"]
 }
}

or

cors:
 origin:
 enableAll: true

and

cors:
 origin:
 allow:
 value: http://example1.com
 methods:
 - GET
 - PUT
 - POST
 allowedHeaders:
 - Content-Type
 - Authorization

CorsOriginConfig

Configures the allowed cors origins.

It support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
regexp	string	Use regular expressions to check origins that must be allowed.	false
value	string	The origin that must be allowed.	false

All of those properties are optional, but one (and only one) of them must be present in the configuration object.

Example:

{
 "cors" : {
 "origin": {
 "allow": { "regexp": "/example\\.com$/"}
 }
 }
}

or

cors:
 origin:
 allow:
 regexp: "/example\\.com$/"

This example will reflect any request that is coming from an origin ending with “example.com”.

 <no title>

 An ErrorHandler is a function that is called to handle all errors reported by the gateway.

The ErrorHandler middleware should be a valid expressjs error handler [http://expressjs.com/pt-br/guide/error-handling.html] function.

Each errorHandler middleware must be defined on its own .js file.

Example:

module.exports = (err, req, res, next) => {
 if (err && err.message) {
 if (res.headersSent) { // important to allow default error handler to close connection if headers already sent
 return next(err);
 }
 const mime = req.accepts('json', 'xml', 'html', 'text');
 res.status(err.statusCode || err.status || 500);
 switch (mime) {
 case 'json':
 res.set('Content-Type', 'application/json');
 res.json({ error: err.message });
 break;
 case 'xml':
 res.set('Content-Type', 'application/xml');
 res.send(`<error>${err.message}</error>`);
 break;
 case 'html':
 res.set('Content-Type', 'text/html');
 res.send(`<html><head></head><body>${err.message}</body></html>`);
 break;
 default:
 res.set('Content-Type', 'text/plain');
 res.send(err.message);
 }
 } else {
 next(err);
 }
};

If you need to receive some parameters to initialize your error handler, you can write a factory function, like:

module.exports = function(config) {
 validateMustacheConfig(config);
 const template = config.template;
 return (err, req, res, next) => {
 if (err && err.message) {
 if (res.headersSent) {
 return next(err);
 }
 res.set('Content-Type', config.contentType || 'text/html');
 res.status(err.statusCode || err.status || 500);

 let body;
 try {
 body = mustache.render(template, {
 error: err,
 req: req,
 res: res
 });
 } catch (e) {
 body = { error: err.message };
 }
 res.send(body);
 } else {
 next(err);
 }
 };
};
module.exports.factory = true;

You can configure an errorHandler middleware through:

	Admin Rest API: POST /midleware/errorhandler

	SDK: sdk.middleware.addErrorHandler(name, fileName);

	CLI: treeGatewayConfig middleware errorHandler -a <name> ./filename.js

Tree Gateway provide some error handler middlewares for common tasks already included in its distribution. Check the list here.

 Pre Defined Filters

 Configure request filters to the request pipeline. If you configure more than one filter, they are all applied following the same order as defined here into this list.

Each Filter Configuration has the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
middleware	MiddlewareConfig	The Filter configuration.	true
group	string[]	A list of group names that should be filtered by this filter. If not provided, everything will be filtered.	false

Example:

{
 "filter": [
 {
 "middleware": {
 "name": "myCustomFilter"
 },
 "group": ["Group1"]
 },
 {
 "middleware": {
 "name": "mySecondFilter"
 },
 "group": ["Group2"]
 }
]
}

or

filter:
 - middleware:
 name: myCustomFilter
 group:
 - Group1
 - middleware:
 name: mySecondFilter
 group:
 - Group2

Pre Defined Filters

Tree Gateway provide some filters to perform common tasks like ip filtering.

 Reading Gateway configuration

 Lets show here how to read or change the gateway config using the CLI tool.

Reading Gateway configuration

You can run the following command to retrieve the gateway config and save it in a file called gateway.yaml:

treeGatewayConfig gateway --get > gateway.yaml

If you prefer JSON:

treeGatewayConfig gateway --get json > gateway.json

It will return something like:

underProxy: false
protocol:
 http:
 listenPort: 8000
admin:
 protocol:
 http:
 listenPort: 8001
 accessLogger:
 msg: 'HTTP {{req.method}} - {{res.statusCode}} - {{req.url}} ({{res.responseTime}}ms)'
 console:
 timestamp: true
 colorize: true
 file:
 timestamp: true
 json: false
 prettyPrint: true
 outputDir: ./logs
 userService:
 jwtSecret: baf36534-b9db-4fc8-9aee-5574f07f19b1
 apiDocs:
 path: api-docs
logger:
 level: info
 console:
 colorize: true
 file:
 timestamp: true
 outputDir: ./logs
 json: false
 prettyPrint: true
accessLogger:
 msg: 'HTTP {{req.method}} - {{res.statusCode}} - {{req.url}} ({{res.responseTime}}ms)'
 console:
 timestamp: true
 colorize: true
 file:
 timestamp: true
 json: false
 prettyPrint: true
 outputDir: ./logs
healthcheck: /healthcheck

Writing Gateway configuration

You can then change anything in the gateway.yaml file and then update the gateway with that configuration, running:

treeGatewayConfig gateway --update gateway.yaml

Now, take a look at GatewayConfig to see all supported configuration options.

 ApiPipelineConfig

 This is the Gateway config descriptor. It support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
protocol	ProtocolConfig	The gateway protocol configuration.	true
underProxy	boolean	If we are behind a reverse proxy (Heroku, Bluemix, AWS if you use an ELB, custom Nginx setup, etc).	false
disableCompression	boolean	By default, all responses are compressed by the gateway. If you want to disable it set this property to true.	false
disableApiIdValidation	boolean	Disable the validation of API Ids. If the id is not validated, the data could not be synchronizable to Leanty dashboard.	false
logger	LoggerConfig	Configurations for gateway logger.	false
accessLogger	AccessLoggerConfig	Configurations for gateway access logger.	false
admin	AdminConfig	If provided, Configure the admin service for the gateway.	false
cors	CorsConfig	Configure default cors [https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS] support for API requests. It can be configured also in the API configuration.	false
timeout	string or number	Configure a timeout for the gateway http.Server. You can inform the amount of milisencods, or use a human-interval [https://www.npmjs.com/package/human-interval] string. Defaults to ‘one minute’.	false
filter	MiddlewareConfig[]	An array of installed Filter middlewares to be executed, in order, by the request pipeline.	false
serviceDiscovery	ServiceDiscoveryConfig[]	Configure Service Discovery Providers.	false
healthcheck	string	Configure an healthcheck endpoint for the gateway. Provide here the path where the healthcheck service will respond.	false
errorHandler	MiddlewareConfig[]	An ErrorHandler middleware to be called to handle any error during any request pipeline processing.	false
config	ApiPipelineConfig	Declare common configurations to be referenced by differente apis.	false
analytics	RequestAnalyticsConfig	Inform how request analytics should be stored by the gateway.	false

Example:

{
 "gateway": {
 "protocol": {
 "http": {
 "listenPort": 8000
 }
 },
 "admin": {
 "protocol": {
 "http": {
 "listenPort": 8001
 }
 },
 "accessLogger": {
 "msg": "HTTP {{req.method}} - {{res.statusCode}} - {{req.url}} ({{res.responseTime}}ms) ",
 "console": {
 "timestamp": true,
 "colorize": true
 }
 },
 "userService": {
 "jwtSecret": "secret"
 }
 },
 "logger": {
 "level": "info",
 "console": {
 "colorize": true
 },
 "file": {
 "timestamp": true,
 "outputDir": "./logs",
 "json": false,
 "prettyPrint": true
 }
 },
 "monitor": [
 {
 "name": "cpu",
 "statsConfig": {
 "granularity": {
 "duration": "1 minute",
 "ttl": "2 days"
 }
 }
 }
],
 "filter": [{
 "name": "ipFilter",
 "options": {
 "blacklist": ["10.100.*.*"]
 }
 }]
 }
}

or

gateway:
 protocol:
 http:
 listenPort: 8000
 admin:
 protocol:
 http:
 listenPort: 8001
 accessLogger:
 msg: 'HTTP {{req.method}} - {{res.statusCode}} - {{req.url}} ({{res.responseTime}}ms)'
 console:
 timestamp: true
 colorize: true
 userService:
 jwtSecret: secret
 logger:
 level: info
 console:
 colorize: true
 file:
 timestamp: true
 outputDir: "./logs"
 json: false
 prettyPrint: true
 monitor:
 - name: cpu
 statsConfig:
 granularity:
 duration: 1 minute
 ttl: 2 days
 filter:
 - name: ipFilter
 options:
 blacklist:
 - "10.100.*.*"
 analytics:
 enabled: true
 logger: redis

ApiPipelineConfig

Declare common configurations that can be used by different APIs.

The config configuration supports the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
authentication	{ [index: string]: AuthenticationConfig }	Authentication configuration.	false
cache	{ [index: string]: CacheConfig }	Cache configuration.	false
circuitBreaker	{ [index: string]: CircuitBreakerConfig }	CircuitBreaker configuration.	false
cors	{ [index: string]: CorsConfig }	Cors configuration.	false
filter	{ [index: string]: MiddlewareConfig }	Filter configuration.	false
throttling	{ [index: string]: ThrottlingConfig }	Throttling configuration.	false
interceptor	Interceptors	Interceptors configuration.	false
errorHandler	{ [index: string]: MiddlewareConfig }	ErrorHandler configuration.	false

Example:

gateway:
 config:
 authentication:
 my-basic-validator:
 strategy:
 id: basic
 options:
 verify:
 name: verifyBasicUser
 cache:
 my-cache:
 client:
 cacheTime: 1 minute
 cacheControl: public
 mustRevalidate: false
 noTransform: false
 proxyRevalidate: false
 server:
 cacheTime: 10 minutes
 binary: true
 preserveHeaders: access-control-allow-credentials
 circuitBreaker:
 my-circuit-breaker:
 timeout: 1
 resetTimeout: 3 seconds
 timeWindow: 2 seconds
 maxFailures: 1
 onOpen:
 name: myOpenHandler
 throttling:
 my-rate-limit:
 timeWindow: one minute
 delay: 1 second
 max: 1
 cors:
 my-cors:
 origin:
 enableAll: true
 filter:
 my-ip-filter:
 name: ipFilter
 options:
 blacklist:
 - "127.0.0.1"
 - "::1"
 statusCode: 403
 message: IP Filtered
 interceptor:
 request:
 my-interceptor:
 name: myRequestInterceptor
 options:
 parameter1: value1
 response:
 my-other- interceptor:
 name: myResponseInterceptor

RequestAnalyticsConfig

Inform how request analytics should be stored by the gateway. Supports the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
enabled	boolean	Enable log recording for the gateway requests.	false
logger	MiddlewareConfig	The logger middleware.	false

Example:

gateway:
 analytics:
 enabled: true
 logger:
 name: redis
 options:
 maxEntries: 2000

You can use any custom middleware to handle the gateway log requests. Tree Gateway already includes a middleware to store the logs into the redis.

This example configure the gateway to use the redis middleware. It will keep the last 2000 entries under a list called {REQUEST_LOG}

 Welcome to the Tree Gateway 3.0 Wiki!

Welcome to the Tree Gateway 3.0 Wiki!

Here, you will be guided through each functionality of our project.

	A brief introduction can be found on our README [https://github.com/Leanty/tree-gateway]

	To begin, first let’s Install Tree-Gateway

	After this, we can configure it in order to …

	Start using your APIs

If you have any concerns, issues or suggestions, please talk with us using the following channels:

	Bug report [https://github.com/Leanty/tree-gateway/issues]

	Programing Questions/Forum [http://stackoverflow.com/users/8044874]

If you are using an older tree-gateway version and want to upgrade, check ou migration guide.

 Requirements

Requirements

Tree Gateway uses a Redis database to store it’s configurations and to manage all nodes of it’s cluster.

So, if you don’t have a redis [https://redis.io/] database already running, install it before going further.

For docker [https://www.docker.com/] users, the easiest way to have a simple standalone redis is just running the following command:

$ docker run -p 6379:6379 -d --name redis redis

Installation

$ npm install tree-gateway -g

After this, you can run the gateway using the following command:

$ treeGateway

Or, for docker users:

$ docker run --name tree-gateway -p 8000:8000 --link redis:redis -d treegateway/tree-gateway:latest

Now, you can go to Configuration step.

 <no title>

 Configure request and response to the request pipeline.

It supports the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
request	{ [index: string]: Interceptors }	A list of request interceptor names	true
response	{ [index: string]: Interceptors }	A list of response interceptor names	true

Example:

{
 "interceptor": {
 "request": {
 "my-interceptor": {
 "name":"myRequestInterceptor",
 "options": {
 "parameter1": "value1"
 }
 }
 },
 "response": {
 "my-other-interceptor": {
 "name":"myResponseInterceptor"
 }
 }
 }
}

or

interceptor:
 request:
 my-interceptor:
 name: myRequestInterceptor
 options:
 parameter1: value1
 response:
 my-other- interceptor:
 name: myResponseInterceptor

 LogConsoleConfig

 Describes the configuration for the Log system.

It support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
level	'error', 'warn', 'info' or 'debug'	Configure the minimum log level.	false
console	LogConsoleConfig	Configure a Console reporter for the log system.	false
file	LogFileConfig	Configure a File reporter for the log system.	false

LogConsoleConfig

Configurations for the Console reporter of the Gateway Log system.

It support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
level	'error', 'warn', 'info' or 'debug'	Configure the minimum log level for this reporter.	false
timestamp	boolean	Flag indicating if we should prepend output with timestamps (default true).	false
silent	boolean	Flag indicating whether to suppress output.	false
colorize	boolean	Flag indicating if we should colorize output.	false
json	boolean	Flag indicating if messages should be logged as JSON (default true).	false
stringify	boolean	Flag indiciating if the output should be passed through JSON.stringify, resulting in single-line output. Most useful when used in conjunction with the json flag. (default false).	false
prettyPrint	boolean	If true, additional JSON metadata objects that are added to logging string messages will be displayed as a JSON string representation.	false
depth	number	Numeric indicating how many times to recurse while formatting the object with util.inspect (only used with prettyPrint: true) (default null, unlimited).	false
humanReadableUnhandledException	boolean	Flag indicating if uncaught exception should be output as human readable, instead of a single line.	false
showLevel	boolean	Flag indicating if we should prepend output with level (default true).	false
stderrLevels	string[]	Array of strings containing the levels to log to stderr instead of stdout, for example [‘error’, ‘debug’, ‘info’]. (default [‘error’, ‘debug’]).	false

LogFileConfig

Configurations for the File reporter of the Gateway Log system.

It support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
level	'error', 'warn', 'info' or 'debug'	Configure the minimum log level for this reporter.	false
outputDir	string	The directory name where the log files will be saved.	false
timestamp	boolean	Flag indicating if we should prepend output with timestamps (default true).	false
silent	boolean	Flag indicating whether to suppress output.	false
colorize	boolean	Flag indicating if we should colorize output.	false
json	boolean	Flag indicating if messages should be logged as JSON (default true).	false
stringify	boolean	Flag indiciating if the output should be passed through JSON.stringify, resulting in single-line output. Most useful when used in conjunction with the json flag. (default false).	false
prettyPrint	boolean	If true, additional JSON metadata objects that are added to logging string messages will be displayed as a JSON string representation.	false
depth	number	Numeric indicating how many times to recurse while formatting the object with util.inspect (only used with prettyPrint: true) (default null, unlimited).	false
humanReadableUnhandledException	boolean	Flag indicating if uncaught exception should be output as human readable, instead of a single line.	false
showLevel	boolean	Flag indicating if we should prepend output with level (default true).	false
stderrLevels	string[]	Array of strings containing the levels to log to stderr instead of stdout, for example [‘error’, ‘debug’, ‘info’]. (default [‘error’, ‘debug’]).	false
maxsize	number	Max size in bytes of the log file, if the size is exceeded then a new file is created, a counter will become a suffix of the log file.	false
maxFiles	number	Limit the number of files created when the size of the log file is exceeded.	false
eol	string	String indicating the end-of-line characters to use (default to \n).	false
logstash	boolean	If true, messages will be logged as JSON and formatted for logstash (default false).	false
tailable	boolean	If true, log files will be rolled based on maxsize and maxfiles, but in ascending order. The filename will always have the most recent log lines. The larger the appended number, the older the log file. This option requires maxFiles to be set, or it will be ignored.	false
maxRetries	number	The number of stream creation retry attempts before entering a failed state. In a failed state the transport stays active but performs a NOOP on it’s log function. (default 2).	false
zippedArchive	boolean	If true, all log files but the current one will be zipped.	false

Example:

{
 "logger": {
 "level": "info",
 "console": {
 "level": "error",
 "colorize": true
 },
 "file": {
 "timestamp": true,
 "outputDir": "./logs",
 "json": false,
 "prettyPrint": true
 }
 }
}

or

logger:
 level: info
 console:
 level: error
 colorize: true
 file:
 timestamp: true
 outputDir: "./logs"
 json: false
 prettyPrint: true

 <no title>

 This will configure a reference to a custom middleware and supports the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
name	string	The name of the middleware to be used.	true
options	any	Any options that will be passed to middleware initialization.	false

Example:

{
 "middleware": {
 "name": "jwt",
 "options": {
 "extractFrom": {
 "authHeader": "Bearer",
 "queryParam": "jwt"
 },
 "secretOrKey": "secret",
 "algorithms": ["HS256", "HS384"],
 "ignoreExpiration": true,
 "verify": {
 "name": "verifyJwtUser"
 }
 }
 }
}

or

middleware:
 name: jwt
 options:
 extractFrom:
 authHeader: Bearer
 queryParam: jwt
 secretOrKey: secret
 algorithms:
 - HS256
 - HS384
 ignoreExpiration: true
 verify:
 name: verifyJwtUser

Note that any middleware needs to follow the insctructions defined here.

 <no title>

 Middlewares are functions that allow you to customize some step of the request pipeline, such as Routing, Authentication, Throttling and so on.

Tree Gateway support different kinds of middleware:

	Filter - run before the request pipeline and decide if the request should or not be processed;

	Cors - you can define white and black lists, specific rules and so on for handle cor requests;

	Request and Response interceptors - allow you to customize your requests and responses information, such as headers, content body and others;

	Throttling - allow you to create a custom way to identify the source of your requests, to be used by the rate limit engine;

	Authentication - allows you to instantiate any passportjs strategy to satisfy a custom authentication method;

	Service Discovery - Integrate a service discovery provider, like consul, to your request pipeline to define the target of your service requests;

	Circuit Breaker - allows you to customize actions whenever some circuit breaker event occurs, such as ‘open’, ‘close’ or ‘rejected’.

	Error Handler - allow you to customize all error messages.

	Request Logger - allow you to customize waht to do with your logs collected during requests processing.

When defining a middleware, you must create a .js file that exports the middleware function, like:

module.exports = function (request, response) {
 return req.query.denyParam !== '1';
};

Sometimes, your middlewares can need to receive parameters to be initialized. Those middlewares need to:

	be exported as a function that receives the option parameter and return the initialized middleware.

	have a property factory=1exported too.

Example:

module.exports = function(options) {
 return function (request, response) {
 return options.allowedValues.indexOf(req.query.denyParam) < 0;
 };
};
module.exports.factory = true;

 <no title>

 The node SDK allow you to programmatically configure tree-gateway.

Example:

const fs = require('fs-extra')
const SDK = require('tree-gateway/admin/config/sdk')
const utils = require('tree-gateway/utils/config');
const config = require("./gateway.json");

SDK.initialize({
 defaultHost: utils.getSwaggerHost(config),
 swaggerUrl: utils.getSwaggerUrl(config),
 token: utils.generateSecurityToken(config)
 })
 .then(sdk => {
 const pathApi = './test/data/apis/';

 // read all apis config files from a test folder and install it
 fs.readdirAsync(pathApi)
 .then((files) => {
 const promises = files.map(file => fs.readJsonAsync(pathApi+file));
 return Promise.all(promises);
 })
 .then((apis: any[]) => {
 const promises = apis.map(apiConfig => sdk.apis.addApi(apiConfig));
 return Promise.all(promises);
 })
 .then((apis) => {
 console.log('All APIs found on folder '+pathApi+' installed.');
 })
 .catch(reject);
 })
 .catch(error => {
 console.error('Error initializing Tree Gateway SDK': error.message);
 });

The SDK, internaly, will call the gateway Admin Rest API.

The Node SDK also include typescript definitions (*.d.ts files) for Typescript users.

 HttpConfig

 Configure a protocol to be used by Tree-Gateway or by the Gateway Admin API.

It supports the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
http	HttpConfig	Configure the HTTP protocol.	false
https	HttpConfigs	Configure the HTTPS protocol.	false

HttpConfig

Configurations for HTTP listener.
It supports the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
listenPort	number	The listen port.	true

HttpsConfig

Configurations for HTTPS listener.
It supports the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
listenPort	number	The listen port.	true
privateKey	string	Path to the private key file.	true
certificate	string	Path to the certificate file.	true

Example:

{
 "protocol": {
 "http": {
 "listenPort": 8000
 },
 "https": {
 "listenPort": 8001,
 "privateKey": "./server.key",
 "certificate": "./server.crt"
 }
 }
}

or

protocol:
 http:
 listenPort: 8000
 https:
 listenPort: 8001
 privateKey: "./server.key"
 certificate: "./server.crt"

 Error Handlers

 Tree Gateway provides some pre defined middlewares:

Error Handlers

Middleware	Description
————	————
json	Create a json response using a jsonata [http://jsonata.org/] expression and the error object.
mustache	Create an error response using a mustache [https://mustache.github.io/] template and the error object.

Request Loggers

Middleware	Description
————	————
redis	Save the logs into a circular list on redis. This can be consumed by a logstash redis input directly.

 <no title>

 A Router is a function that receives the request object and must return a string value (or a Promise<string>) to inform the target destination for this proxy.

Each router must be defined on its own .js file.

Example:

/**
 * Where request is the original request received by the gateway.
 */
module.exports = function (request) {
 return req.query.version == '2'? 'http://myapiversiontwo/':'http://myapiversionone/';
};

or, using Promises:

module.exports = function (request) {
 return new Promise((resolve, reject) => {
 setTimeout(function(){resolve(req.query.version == '2'? 'http://myapiversiontwo/':'http://myapiversionone/');}, 10);
 };
};

You can configure a proxy router middleware through:

	Admin Rest API: POST /midleware/proxy/router

	SDK: sdk.middleware.addProxyRouter(name, fileName);

	CLI: treeGatewayConfig middleware proxyRouter -a <name> ./filename.js

Tree Gateway provide some router middlewares for common tasks already included in its distribution. Check the list here.

 Target

 Configure how requests must be proxied to the target API.

The Proxy configuration object must be included in the API config and supports the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
target	Target	The target of the proxied API.	true
httpAgent	HttpAgent	Configure the http.Agent [https://nodejs.org/api/http.html#http_class_http_agent] used by proxy requests.	false
supressViaHeader	boolean	Tree Gateway adds a Via header on response by default. Yhis option can be used to disable it.	false
preserveHostHdr	boolean	If true, the gateway will copy the host HTTP header to the proxied express server.	false
timeout	string or number	Configure a specific timeout for requests. Timed-out requests will respond with 504 status code and a X-Timeout-Reason header. You can inform the amount of milisencods, or use a human-interval [https://www.npmjs.com/package/human-interval] string	false
limit	string	This sets the body size limit (default: 1mb). If the body size is larger than the specified (or default) limit, a 413 Request Entity Too Large error will be returned. See bytes.js [https://www.npmjs.com/package/bytes] for a list of supported formats. This option is ignored if parseReqBody is false.	false

Target

Configure the target of the proxied API.

It supports the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
host	string	The proxy target host.	false
router	ProxyRouter	A Router middleware to decide how to route the requests.	false
allow	string[]	A list of group names that is allowed to access the target API.	false
deny	string[]	A list of group names that is not allowed to access the target API.	false

Note that you must define one of host or route properties.

Example:

{
 "proxy": {
 "target": {
 "host": "httpbin.org",
 "allow": ["Group1"],
 "deny": ["Group2"]
 },
 "timeout": "five seconds"
 }
}

or

proxy:
 target:
 host: httpbin.org
 allow:
 - Group1
 deny:
 - Group2
 timeout: five seconds

ProxyRouter

Defines dynamic routing for the proxy through a ProxyRouter and ServiceDiscovery middlewares.

Can have the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
ssl	boolean	Inform if the targets returned by the middleware should be invoked using ssl (https).	fasle
middleware	MiddlewareConfig	The ProxyRouter middleware configuration.	false
serviceDiscovery	MiddlewareConfig	The ServiceDiscovery middleware configuration.	false

Note that you must define at least one of middleware and serviceDiscovery middleware for the proxy router.

Middleware Example:

{
 "proxy": {
 "target": {
 "router": {
 "middleware": {
 "name": "trafficSplit",
 "options": {
 "destinations": [{
 "target": "http://httpbin.org",
 "weight": 75
 },
 {
 "target": "http://httpbin.org/anything",
 "weight": 25
 }]
 }
 }
 }
 },
 "timeout": "five seconds"
 }
}

or

proxy:
 target:
 router:
 middleware:
 name: trafficSplit
 options:
 destinations:
 - target: http://httpbin.org
 weight: 75
 - target: http://httpbin.org/anything
 weight: 25
 timeout: five seconds

Service Discovery:

Example:

{
 "proxy": {
 "target": {
 "router": {
 "serviceDiscovery": {
 "name": "consul",
 "options": {
 "serviceName": "testService"
 }
 }
 }
 },
 "timeout": "five seconds"
 }
}

or

proxy:
 target:
 router:
 serviceDiscovery:
 name: consul
 options:
 serviceName: testService
 timeout: five seconds

You must ensure that a service discovery provider is configured for the serviceDiscovery name consul on GatewayConfig.

You can use, also, both a proxy router and a serviceDiscovery middlewares. In this situation, the destination resolved by the proxy router is passed as input to the serviceDiscovery middleware. For example:

{
 "proxy": {
 "target": {
 "router": {
 "middleware": {
 "name": "trafficSplit",
 "options": {
 "destinations": [
 {
 "target": "testService_v1",
 "weight": 97
 },
 {
 "target": "testService_v2",
 "weight": 3
 }
]
 }
 },
 "serviceDiscovery": {
 "name": "consul",
 "options": {
 "serviceName": "testService",
 "loadBalancer": "round-robin"
 }
 }
 }
 },
 "timeout": "five seconds"
 }
}

or

proxy:
 target:
 router:
 middleware:
 name: trafficSplit
 options:
 destinations:
 - target: testService_v1
 weight: 97
 - target: testService_v2
 weight: 3
 serviceDiscovery:
 name: consul
 options:
 serviceName: testService
 loadBalancer: round-robin
 timeout: five seconds

This last example will route the requests sending 97% of the requests to the service testService_v1 and only 3% for the testService_v2. Then the service discovery middleware will find available nodes for the requested service and use a round-robin load balancer to choose one between these nodes.

Advanced Routing

Tree Gateway provide some middlewares to perform common tasks like request or response body transformations, traffic spliting, ip filtering and service discovery.

HttpAgent

Configure the http.Agent [https://nodejs.org/api/http.html#http_class_http_agent] used by proxy requests.

Can have the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
keepAlive	boolean	Keep sockets around in a pool to be used by other requests in the future. Defaults to true.	fasle
keepAliveTime	string or number	When using HTTP KeepAlive, how often to send TCP KeepAlive packets over sockets being kept alive. You can inform the amount of milisencods, or use a human-interval [https://www.npmjs.com/package/human-interval] string. Default = 'one second'. Only relevant if keepAlive is set to true.	fasle
freeSocketKeepAliveTimeout	string or number	Sets the free socket to timeout after freeSocketKeepAliveTimeout milliseconds of inactivity on the free socket. You can inform the amount of milisencods, or use a human-interval [https://www.npmjs.com/package/human-interval] string. Default is '15 seconds'. Only relevant if keepAlive is set to true.	fasle
timeout	string or number	Sets the working socket to timeout after timeout milliseconds of inactivity on the working socket. You can inform the amount of milisencods, or use a human-interval [https://www.npmjs.com/package/human-interval] string. Default is freeSocketKeepAliveTimeout * 2.	fasle
maxSockets	number	Maximum number of sockets to allow per host. Default = Infinity.	fasle
maxFreeSockets	number	Maximum number of sockets to leave open in a free state. Only relevant if keepAlive is set to true. Default = 256.	fasle

Example:

{
 "proxy": {
 "target": {
 "host": "http://localhost:9000"
 },
 "httpAgent": {
 "keepAlive": true,
 "keepAliveTime": "one second",
 "freeSocketKeepAliveTimeout": "30 seconds",
 "maxFreeSockets": 10,
 "maxSockets": 200,
 "timeout": "one minute"
 }
 }
}

or

proxy:
 target:
 host: http://localhost:9000
 httpAgent:
 keepAlive: true
 keepAliveTime: one second
 freeSocketKeepAliveTimeout: 30 seconds
 maxFreeSockets: 10
 maxSockets: 200
 timeout: one minute

 RedisNodeConfig

 This will configure how the gateway will connect to the Redis database. It is a required configuration in tree-gateway Config File and supports the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
standalone	RedisNodeConfig	Configure the connection to a standalone Redis.	false
sentinel	RedisSentinelConfig	Configure the connection to Redis using sentinels.	false
cluster	RedisNodeConfig[]	Configure the connection to a redis cluster.	false
options	RedisOptionsConfig	Configure additional options to be passed to redis driver.	false

It is important to observe that none of those properties are required, however, you need to specify one (and no more than one) option between standalone, sentinel and cluster.

RedisNodeConfig

Configure a redis node where the gateway will connect.

It support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
host	string	The hostname of the redis node.	true
port	string or number	The port of the redis node.	false
password	string	The password to connect on the redis node.	false

If none of these are provided, the port 6379 will be used as default.

Example:

 "database": {
 "redis": {
 "standalone": {
 "host": "localhost",
 "port": 6379
 }
 }
}

or

database:
 redis:
 standalone:
 host: "localhost"
 port: 6379

You can write the values for these properties between { and }, to inform to the gateway that an environment variable should be used:

 "database": {
 "redis": {
 "standalone": {
 "host": "{redis_hostname}",
 "port": "{redis_port}"
 }
 }
}

or

database:
 redis:
 standalone:
 host: "{redis_hostname}"
 port: "{redis_port}"

In this example above, the gateway will use an environment variable called redis_hostname to find out the name of the redis host and redis_port as the redis connection port.

RedisSentinelConfig

Configure a redis using sentinels [https://redis.io/topics/sentinel].

It support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
name	string	Group os instances to connect (master/slaves group).	true
nodes	RedisNodeConfig[]	List of sentinel nodes.	true

Example:

{
 "database": {
 "redis": {
 "sentinel": {
 "name": "redis1",
 "nodes": [
 {
 "host": "localhost",
 "port": 6379
 }
]
 }
 }
 }
}

or

database:
 redis:
 sentinel:
 name: redis1
 nodes:
 - host: localhost
 port: 6379

Redis Cluster

Configure a list of start nodes for a redis cluster [https://redis.io/topics/cluster-tutorial]. You don’t need to provide all cluster nodes. The gateway will use this start list and discover the cluster automatically.

Example:

{
 "database": {
 "redis": {
 "cluster": [
 {
 "host": "host1",
 "port": 6379
 },
 {
 "host": "host2",
 "port": 6379
 }
]
 }
 }
}

or

database:
 redis:
 cluster:
 - host: host1
 port: 6379
 - host: host2
 port: 6379

RedisOptionsConfig

Configure additional options to be passed to redis driver.

It support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
password	string	Fallback password. Used when not defined in a node.	false
keyPrefix	string	Prefix to be appended to all keys (defaults to ‘’).	false
connectionName	string	Connection name, for monitoring purposes.	false
db	number	Database index.	false

Example:

{
 "rootPath": ".",
 "database": {
 "redis": {
 "standalone": {
 "host": "{REDIS_PORT_6379_TCP_ADDR}",
 "port": "{REDIS_PORT_6379_TCP_PORT}"
 },
 "options": {
 "db": 1
 }
 }
 }
}

or

rootPath: "."
database:
 redis:
 standalone:
 host: "{REDIS_PORT_6379_TCP_ADDR}"
 port: "{REDIS_PORT_6379_TCP_PORT}"
 options:
 db: 1

 <no title>

 A Filter is a function that receives the request [https://nodejs.org/api/http.html#http_class_http_clientrequest] and the response [https://nodejs.org/api/http.html#http_class_http_serverresponse] object from the gateway and must return a boolean value (or a Promise<boolean>) to inform if the given request should target the destination API or if it should be ignored.

Each filter must be defined on its own .js file.

Example:

/**
 * Where request and response are the original request and response objects created by [http](https://nodejs.org/api/http.html) module.
 */
module.exports = function (request, response) {
 return req.query.denyParam !== '1';
};

or, using Promises:

/**
 * Where request and response are the original request and response objects created by [http](https://nodejs.org/api/http.html) module.
 */
module.exports = function (request, response) {
 return new Promise((resolve, reject) => {
 setTimeout(function(){resolve(req.query.denyParam !== '1');}, 10);
 };
};

You can configure a request filter middleware through:

	Admin Rest API: POST /midleware/filters

	SDK: sdk.middleware.addFilter(name, fileName);

	CLI: treeGatewayConfig middleware filter -a <name> ./filename.js

Tree Gateway provide some filter middlewares for common tasks already included in its distribution. Check the list here.

 <no title>

 A Request Interceptor is a function that receives two an object representing the request that will be sent by the proxy, targeting the destination API.

The interceptor must return an object containing the properties that needs to be overwriten in the proxy request.

The proxy request object contains the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
body	any	If proxy.parseReqBody is true, contains the parsed request body.	false
headers	any	An object contaning the headers to be added to the request.	false
method	string	The HTTP method to be used in the proxy request.	false
url	string	The url path of the request under the target destination API.	false

It is also possible to return a Promise.

Each interceptor must be defined on its own .js file.

Example:

/**
 * Where proxyReq and userlReq are request objects created by [http](https://nodejs.org/api/http.html) module.
 * @param proxyReq the request that is being created by the proxy engine targeting the destination API.
 * @param userReq the request received by the gateway from the client.
 */
module.exports = function(proxyReq) {
 // you can update headers
 proxyReq.headers['Content-Type'] = 'text/html';
 // you can change the method
 proxyReq.method = 'GET';
 // you can munge the bodyContent.
 proxyReq.body = proxyReq.body.toString().replace(/losing/, 'winning!');

 return proxyReq;
};

or

module.exports = function(request) {
 return new Promise((proxyReq, reject) => {
 var data = JSON.parse(proxyReq.toString('utf8'));
 var newHeaders = Object.assign(request.headers, {
 mySpecialHeader: 'header value',
 myOtherSpecialHeader: 'header value 2'
 });

 resolve({body: data, headers: newHeaders, url: '/changedPath'});
 });
};

Note that to be able to access the request body, you must set the parseReqBody to true on the proxy config.

You can configure a request interceptor middleware through:

	Admin Rest API: POST /midleware/interceptors/request

	SDK: sdk.middleware.addRequestInterceptor(name, fileName);

	CLI: treeGatewayConfig middleware requestInterceptor -a <name> ./filename.js

Tree Gateway provide some interceptor middlewares for common tasks already included in its distribution. Check the list here.

 <no title>

 A Request Logger is a function that is called to handle requests log entries. This middleware is responsible to save these log entries wherever you need this information.

Each request logger middleware must be defined on its own .js file.

Example:

const fs = require('fs');

module.exports = (requestLog) => {
 fs.appendFile('my-log.txt', JSON.stringify(requestLog)+'\n');
};

You can configure an requestMapper middleware through:

	Admin Rest API: POST /midleware/request/logger

	SDK: sdk.middleware.addRequestLogger(name, fileName);

	CLI: treeGatewayConfig middleware requestLogger -a <name> ./filename.js

Tree Gateway provide some request logger middlewares for common tasks already included in its distribution. Check the list here.

 <no title>

 A Response Interceptor is a function that receives the following parameters:

	body: the body of the response received from the destination API.

	headers the response headers to be sent by the gateway to the client.

	request: the request [https://nodejs.org/api/http.html#http_class_http_clientrequest] received by gateway from the client.

The interceptor must return an object containing:

Property	Type	Description	Required
——–	—-	———–	——–
body	any	If provided, modify the response body.	false
updateHeaders	any	An object contaning the headers to be added to the response. If the response already includes one of those headers, they will be overwritten.	false
removeHeaders	string[]	A list of headers that must be suprresed from the response.	false

It is also possible to return a Promise.

Each interceptor must be defined on its own .js file.

Example:

/**
 * Where request is the object created by [http](https://nodejs.org/api/http.html) module.
 * @param body the body of the response received from the destination API.
 * @param headers the response headers to be sent by the gateway to the client.
 * @param request the request received by gateway from the client.
 * @return An object that can contains:
 * - body: the response body,
 * - updateHeaders: inform a list of headers to be included into the response
 * - removeHeaders: a list of headers to be suppressed.
 */
module.exports = function(body, headers, request) {
 var data = JSON.parse(body.toString('utf8'));
 var newHeaders = {
 mySpecialHeader: 'header value',
 myOtherSpecialHeader: 'header value 2'
 };
 return {body: data, updateHeaders: newHeaders, removeHeaders: ['excludedHeader']};
};

or

module.exports = function(body, headers, request) {
 return new Promise((resolve, reject) => {
 var data = JSON.parse(body.toString('utf8'));
 var newHeaders = {
 mySpecialHeader: 'header value',
 myOtherSpecialHeader: 'header value 2'
 };
 resolve({body: data, updateHeaders: newHeaders, removeHeaders: ['excludedHeader']});
 });
};

If the response already includes one of those headers, they will be overwritten.

You can configure a request interceptor middleware through:

	Admin Rest API: POST /midleware/interceptors/response

	SDK: sdk.middleware.addResponseInterceptor(name, fileName);

	CLI: treeGatewayConfig middleware responseInterceptor -a <name> ./filename.js

Tree Gateway provide some interceptor middlewares for common tasks already included in its distribution. Check the list here.

 Proxy Routers

 Tree Gateway provides some pre defined middlewares to support advanced proxy features:

Proxy Routers

Router	Description
————	————
loadBalancer	Support load balancing for the possible targets.
trafficSplit	Support traffic splitting using weights for the possible targets.
query	Support route the destination, based on a query parameter in the request.
header	Support route the destination, based on a header in the request.

Filters

Filter	Description
————	————
ipFilter	Support ip filtering using whitelists and blacklists that can be updated from a database.

Interceptors

Interceptor	Description
————	————
requestBodyTransformer	Use jsonata [http://jsonata.org/] expressions to transform request body.
responseBodyTransformer	Use jsonata [http://jsonata.org/] expressions to transform response body.
requestHeaders	Allow to add / update or remove a request header, before send it to destination.
responseHeaders	Allow to add / update or remove a response header, before send it to client.
requestXml	Transform a javascript object (or a json string) in the body of the request to a XML string.
responseXml	Transform a XML string in the body of the request into a javascript object.
requestMustache	Use the object in the request body as a parameter to be applied to a mustache template. The result is the new request body.
responseMustache	Use the object in the response body as a parameter to be applied to a mustache template. The result is the new response body.
webSecurity	Add some response headers to increase the API security, protecting it from common attacks.

Service Discovery

Middleware	Description
————	————
consul	Consult consul [https://www.consul.io/] registry to find out the target destination for the request.

 <no title>

 A ServiceDiscovery Provider is a function that must return a client (or a Promise<any>) to be used to serviceDiscovery middlewares to search for services.

Each serviceDiscovery provider middleware must be defined on its own .js file.

Example:

/**
 */
module.exports = function(config) {
 validateConfig(config);
 const client = new MyClient(config);
 return () => {
 return client;
 };
};

or, using Promises:

module.exports = function (config) {
 return () => {
 return new Promise((resolve, reject) => {
 const client = new MyClient(config);
 config.init(config)
 .then(resolve)
 .catch(reject);
 };
 }
};

You can configure a serviceDiscovery Provider middleware through:

	Admin Rest API: POST /midleware/servicediscovery/provider

	SDK: sdk.middleware.addServiceDiscoveryProvider(name, fileName);

	CLI: treeGatewayConfig middleware serviceDiscoveryProvider -a <name> ./filename.js

Tree Gateway provide some service discovery middlewares for common tasks already included in its distribution. Check the list here.

 <no title>

 A ServiceDiscovery is a function that receives the desired service name and must return a string value (or a Promise<string>) to inform the target destination for this proxy.

The serviceDiscovery middleware is initialized receiving a config parameter that will receive any options declared in your middleware configuration plus two configurations:

Property	Type	Description	Required
——–	—-	———–	——–
clientAgent	any	The client created by the serviceDiscovery provider middleware.	true
ssl	boolean	True if the requests to the target service must use SSL (https).	false

Each serviceDiscovery middleware must be defined on its own .js file.

Example:

/**
 * Where config contains a reference by the clientAgent created by the serviceDiscovery provider and a ssl flag
 */
module.exports = function (config) {
 return (serviceName) => {
 return (config.ssl?'https://':'http://') +
 config.clientAgent.get(serviceName).address + ':' +
 config.clientAgent.get(serviceName).port;
 };
};

or, using Promises:

module.exports = function (config) {
 return (serviceName) => {
 return new Promise((resolve, reject) => {
 config.clientAgent.get(serviceName)
 .then(service => {
 resolve((config.ssl?'https://':'http://') + service.address + ': ' + service.port)
 }).catch(reject);
 };
 }
};

You must remeber to configure a serviceDiscovery provider middleware to initialize the clientAgent, used to interact with the service registry.

You can configure a serviceDiscovery middleware through:

	Admin Rest API: POST /midleware/servicediscovery

	SDK: sdk.middleware.addServiceDiscovery(name, fileName);

	CLI: treeGatewayConfig middleware serviceDiscovery -a <name> ./filename.js

Tree Gateway provide some service discovery middlewares for common tasks already included in its distribution. Check the list here.

 Pre Defined Providers

 Configure service discovery providers to the gateway. This providers can be used by API’s serviceDiscovery routers.

The Configuration has the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
provider	MiddlewareConfig[]	The Provider middleware configuration.	true

Example:

{
 "serviceDiscovery": [
 {
 "provider": {
 "name": "consul",
 "options": {
 "host": "localhost",
 "port": 8500,
 "defaults": {
 "wait": "3 minutes"
 }
 }
 }
 }
]
}

or

serviceDiscovery:
 provider:
 - name: consul
 options:
 host: localhost
 port: 8500
 defaults:
 wait: 3 minutes

Pre Defined Providers

Tree Gateway provide some serviceDiscovery providers to integrate to common service discovery tools like consul.

 <no title>

 A Throttling Handler middleware is a function executed when the throttling max limit is exceeded. It receives the following parameters:

	request: The request received by the Gateway from the user.

	response: The response to be sent by the Gateway to the user.

	next: The express [http://expressjs.com] next function, if you need to pass to the next middleware.

Each middleware must be defined on its own .js file.

Example:

/**
 * @param request The request received by the Gateway from the user.
 * @param response The response to be sent by the Gateway to the user.
 * @param next The [express](http://expressjs.com) next function, if you need to pass to the next middleware.
 */
module.exports = function (request, response, next) {
 response.format({
 html: function(){
 response.status(options.statusCode).end(options.message);
 },
 json: function(){
 response.status(options.statusCode).json({ message: options.message });
 }
 });
};

The above function is the default function used as handler for the throttling.

You can configure a Handler middleware through:

	Admin Rest API: POST /midleware/throttling/handlers

	SDK: sdk.middleware.addThrottlingHandler(name, fileName);

	CLI: treeGatewayConfig middleware throttlingHandler -a <name> ./filename.js

 <no title>

 A Throttling KeyGenerator middleware is a function that creates a key for the throttling engine to identify the source of the request. It receives the following parameters:

	request: The request received by the Gateway from the user.

Each middleware must be defined on its own .js file.

Example:

/**
 * @param request The request received by the Gateway from the user.
 */
module.exports = function (request) {
 return request.ip;
};

The above function is the default function used as key generator for the throttling.

You can configure a KeyGenerator middleware through:

	Admin Rest API: POST /midleware/throttling/keyGenerators

	SDK: sdk.middleware.addThrottlingKeyGenerator(name, fileName);

	CLI: treeGatewayConfig middleware throttlingKeyGenerator -a <name> ./filename.js

 <no title>

 A Throttling Skip middleware is a function used to skip some requests from the throttling engine verification. Returning true from the function will skip limiting for that request.

It receives the following parameters:

	request: The request received by the Gateway from the user.

	response: The response to be sent by the Gateway to the user.

Each middleware must be defined on its own .js file.

Example:

/**
 * @param request The request received by the Gateway from the user.
 */
module.exports = function (request, response) {
 return false;
};

The above function is the default function used as skip for the throttling.

You can configure a Skip middleware through:

	Admin Rest API: POST /midleware/throttling/skip

	SDK: sdk.middleware.addThrottlingSkip(name, fileName);

	CLI: treeGatewayConfig middleware throttlingSkip -a <name> ./filename.js

 <no title>

 Configure throttling (Rate Limits) for API requests.

The Throttling configuration object must be included in the API config and supports the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
timeWindow	string or number	How long to keep records of requests in memory. You can inform the amount of milisencods, or use a human-interval [https://www.npmjs.com/package/human-interval] string. Defaults to ‘1 minute’	false
delayAfter	number	Max number of connections during timeWindow before starting to delay responses.	false
delay	string or number	How long to delay the response, multiplied by (number of recent hits - delayAfter). You can inform the amount of milisencods, or use a human-interval [https://www.npmjs.com/package/human-interval] string	false
max	number	Max number of connections during timeWindow before sending a 429 response. Defaults to 5.	false
message	string	Error message returned when max is exceeded. Defaults to ‘Too many requests, please try again later.’	false
statusCode	number	HTTP status code returned when max is exceeded. Defaults to 429.	false
headers	boolean	If true, enable header to show request limit and current usage.	false
keyGenerator	MiddlewareConfig	An installed 'throttling/keyGenerators' middleware function, called to identify the source of the request. By default user IP address (req.ip) is used as key.	false
skip	MiddlewareConfig	An installed 'throttling/skip' middleware function, called to verify if the throttling engine should not intercept some requests.	false
handler	MiddlewareConfig	An installed 'throttling/handlers' middleware function, called when the max limit is exceeded.	false
disableStats	boolean	If true, disable the statistical data recording for throttling events.	false
statsConfig	StatsConfig	Configurations for the throttling stats.	false

Example:

 {
 "throttling": {
 "timeWindow": "one minute",
 "max": 100,
 "delayAfter": 90,
 "delay": "1 second",
 "keyGenerator": {
 "name": "myThrollingKeyMiddleware"
 }
 }
 }

 <no title>

 The Tree Gateway Dashboard can be accessed here [http://dashboard.leanty.com]. It is an online service that can be used to monitor your gateway machines and routed APIs.

The dashboard uses one local agent to collect data from the gateway database (Redis) and synchronize this data with the Dashboard Cloud. This agent must be installed on your infrasctructure and must be able to access the Redis gateway database.

To install the agent on your infrastructure, just run:

$ npm install -g tree-gateway-agent

Then, you can run the agent through the command:

$ treeGatewayAgent

You will be asked to input your Leanty API KEY.

That Key can be obtained from the Dashboard website, after you have created your account. Just access the Dashboard and click in the API KEY field, located on the top bar, near to your name. A dialog box will appear with your API KEY.

 Home

Home [https://github.com/Leanty/tree-gateway/wiki]

Install Gateway:

Configuring the Gateway:

	tree-gateway Config File

	RedisConfig

	Admin REST API

	CLI

	Node SDK

APIs Configuration:

	ApiConfig

	Routing (Proxy Config)

	Routers

	Service Discovery

	Advanced Routing

	Authentication

	Throttling (Rate Limits)

	Cache

	Client (Browser)

	Server (Redis)

	Circuit Breaker

	Cors

	Filter

	Interceptors

Gateway Configuration

	GatewayConfig

	ProtocolConfig

	LoggerConfig

	AccessLoggerConfig

	AdminConfig

	CorsConfig

	Filter

	ServiceDiscovery

	Monitoring

Advanced Routing

	Routers

	Filters

	Interceptors

	Service Discovery

Other Middlewares

	Error Handlers

	Request Logger

Middlewares:

	Cors Handler

	Request Filter

	Request Interceptor

	Response Interceptor

	Auth Strategy

	Auth Verify

	Throttling Key

	Throttling Handler

	Throttling Skip

	Circuit Breaker Handler

	Proxy Routers

	Service Discovery

	Service Discovery Provider

	Error Handler

	Request Logger

 Consul Discovery Provider

 This serviceDiscovery middleware needs to receive an options object containing the following properties.

Property	Type	Description	Required
——–	—-	———–	——–
serviceName	string	The name of the service to be searched in the service discovery.	true
ssl	boolean	True if the connection to service should use SSL (https).	false
dc	string	Consul datacenter (defaults to local for agent).	false
tag	string	filter by tag.	false
loadBalancer	random or round-robin	The Load Balancer strategy used to choose one between the available service nodes. Defaults to random.	false

Example:

name: TestServiceDiscoveryConsulAPI
version: 1.0.0
path: "/serviceDiscoveryConsul"
proxy:
 target:
 router:
 serviceDiscovery:
 name: consul
 options:
 serviceName: testConsulService

 timeout: 5000

This configuration will make searches in consul registry for available nodes for the service testConsulService.

You must ensure that you have a serviceDiscovery provider configured for consul.

Consul Discovery Provider

This consul provider will be used by all API’s configurations that use consul as serviceDiscovery middleware.

To configure a consul provider, you must use the consul middleware for serviceDiscovery Provider, on GatewayConfig object:

gateway:
 serviceDiscovery:
 provider:
 - name: consul
 options:
 host: localhost
 port: 8500

This serviceDiscovery provider middleware needs to receive an options object containing the following properties.

Property	Type	Description	Required	
——–	—-	———–	——–	
host	string	Agent address. Default: 127.0.0.1. It is not recommended to access consul agent remotely. see this [https://github.com/hashicorp/consul/issues/1916]. So, we recommend to use the default value.	false	
port	string	number	Agent HTTP(S) port. Default: 8500.	false
secure	boolean	Enable HTTPS. Default: false.	false	
ca	string[]	The filenames of trusted certificates in PEM format.	false	
defaults	DefaultsConsulConfig	Default options for all servicediscovery method calls.	false	

DefaultsConsulConfig

Configure default options for all servicediscovery method calls. Can have the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
dc	string	Datacenter (defaults to local for agent).	false
wan	boolean	Return WAN members instead of LAN members. Default: false.	false
consistent	boolean	Require strong consistency. Default: false.	false
stale	boolean	Use whatever is available, can be arbitrarily stale. Default: false.	false
index	string	Used with ModifyIndex to block and wait for changes.	false
wait	string or number	Limit how long to wait for changes (ex: 5 minutes), used with index. You can inform the amount of milisencods, or use a human-interval [https://www.npmjs.com/package/human-interval] string. Defaults to '30 seconds'.	false
token	string	ACL token.	false

 RouterDestination

 This router middleware can be used to route requests based on any request header provided by the user.

The middleware needs to receive an options object containing the possible targets for the routed API. This object contains the following properties.

Property	Type	Description	Required
——–	—-	———–	——–
destinations	RouterDestination[]	A list with possible destinations for the API request.	true
name	string	The request header name used by this router to take its decision.	true
defaultTarget	string	The default destination (when the expected header is not present).	true

RouterDestination

Configure a single destination for the router. Can contain the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
target	string	A target destination.	true
value	string	The expected heaeder value. The router will take this destination if the received header matches this value.	true

Example:

name: TestHeaderAPI
version: 1.0.0
path: "/headerTest"
proxy:
 target:
 router:
 middleware:
 name: header
 options:
 name: apiVersion
 defaultTarget: http://httpbin.org
 destinations:
 - target: http://httpbin.org
 value: '1'
 - target: http://httpbin.org/anything
 value: '2'
 timeout: 5000

This configuration will make requests be routed to http://httpbin.org when the request header apiVersion: 1 is provided http://httpbin.org/anything when the request header apiVersion: 2 is provided.

If no header is provided, the request will be routed to http://httpbin.org.

 DatabaseConfig

 This filter middleware needs to receive an options object containing the following properties.

Property	Type	Description	Required
——–	—-	———–	——–
blacklist	string[]	A list containing the IPs that should be blocked.	false
whitelist	string[]	A list containing the IPs that should be allowed.	false
message	string	The message to be sent when a source is blockd by this filter. Defaults to IP not allowed.	false
statusCode	number	The HTTP status code to be sent when a source is blockd by this filter. Defaults to 403.	false
database	DatabaseConfig	Provide a database configuration to the filter looks for changes in the whitelist or blacklist configurations.	false

You must inform one between blacklist and whiltelist paramenter (even if it is empty). According to the provided parameter, this filter will works as an whitelist or blaclist filter.

DatabaseConfig

Configure a database to be used to store configuration for the filter. Is the configuration changes on the database, the filter will be updated. Support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
key	string	The configuration key to be used in database config table. Defaults to ipFilter:whitelist or ipFilter:blacklist	false
checkInterval	string or number	The interval between database checks for changes in the configurations. You can inform the amount of milisencods, or use a human-interval [https://www.npmjs.com/package/human-interval] string. Defaults to '30 seconds'.	false

Example:

name: TestFilteredAPI
version: 1.0.0
path: filtered/
proxy:
 target:
 host: http://httpbin.org
 timeout: 5000
filter:
- middleware:
 name: ipFilter
 options:
 blacklist:
 - 127.0.0.1
 - "::1"
 statusCode: 403
 message: IP Filtered
 database:
 checkInterval: 'one minute'
 key: 'filteredApi:blacklist'

This configuration will filter requests from localhost and from all IPs stored in the database, referenced by the key filteredApi:blacklist.

 TrafficDestination

 This router middleware needs to receive an options object containing the possible targets for the routed API. This object contains the following properties.

Property	Type	Description	Required
——–	—-	———–	——–
destinations	TrafficDestination[]	A list with possible destinations for the API request.	true
database	DatabaseConfig	Provide a database configuration to the balancer looks for changes in the targets configurations.	false
strategy	round-robin or random or weight	The balancer strategy to be used. The dafilt value is random.	false
healthCheckOptions	HealthCheckOptions	Configure the health checkers.	false

TrafficDestination

Configure a single destination for the balancer. Can contain the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
target	string	A target destination.	true
weight	number	A weight to distribute the load to this target.	true
healthCheck	string	An URL to be used to check the health of this target. It must return a 200 status code, or the balancer will supose that the target is down. If not provided, no health checking will be performed.	false

DatabaseConfig

Configure a database to be used to store configuration for the filter. Is the configuration changes on the database, the filter will be updated. Support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
key	string	The configuration key to be used in database config table. Defaults to ipFilter:whitelist or ipFilter:blacklist	false
checkInterval	string or number	The interval between database checks for changes in the configurations. You can inform the amount of milisencods, or use a human-interval [https://www.npmjs.com/package/human-interval] string. Defaults to '30 seconds'.	false

HealthCheckOptions

Configure how the gateway will perform checks for services health. Support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
checkInterval	string or number	The interval between healthchecks. You can inform the amount of milisencods, or use a human-interval [https://www.npmjs.com/package/human-interval] string. Defaults to '30 seconds'.	false
waitTimeout	string or number	The amount of time to wait for healthcheck requests before fail with a tiemout. You can inform the amount of milisencods, or use a human-interval [https://www.npmjs.com/package/human-interval] string. Defaults to '2 seconds'.	false
failCount	number	The number of healthcheck failures before remove the server from the available list. Defaults to 2.	false

Example:

name: TestLoadBalancerAPI
version: 1.0.0
path: "/loadBalancer"
proxy:
 target:
 router:
 middleware:
 name: loadBalancer
 options:
 destinations:
 - target: http://httpbin.org
 weight: 75
 healthCheck: http://httpbin.org/get
 - target: http://httpbin.org/anything
 weight: 25
 healthCheck: http://httpbin.org/anything/get
 database:
 checkInterval: 5 minutes
 strategy: weight
 healthCheckOptions:
 checkInterval: 5 seconds
 failCount: 3
 waitTimeout: 5 seconds
 timeout: 5000

This configuration will route requests to http://httpbin.org and to http://httpbin.org/anything. The first target will receive a bigger load (3 times greater than the second one). It will use a database to be able to change the configuration dynamically and a health check will be performed to avoid traffic redirection to unavailable servers.

Round-robin example:

name: TestLoadBalancerAPI
version: 1.0.0
path: "/loadBalancer"
proxy:
 target:
 router:
 middleware:
 name: loadBalancer
 options:
 destinations:
 - target: http://httpbin.org
 healthCheck: http://httpbin.org/get
 - target: http://httpbin.org/anything
 healthCheck: http://httpbin.org/anything/get
 database:
 checkInterval: 5 minutes
 strategy: round-robin
 timeout: 5000

 Migration Guide

Migration Guide

Migrating from version 2 to version 3

Tree Gateway 3.0 changes completely hwo the requests are logged. The 2.x version saved the aggregate information and not the raw data of each request. The 3.0 version builds a log object that is enriched with information collected along the request pipeline, according to events that occur during pipeline processing. The requestLog object is passed to a requestLog middleware, that is responsible to persist this information (saving it to a file, sending it to a redis, logstash, timescale or anything else).

Monitors that collect information about the machine are also removed. You can use other external agents for this purpose if you need.

The config files for APIs are slightly different from version 2.0. When you start the gateway, it will automatically upgrade the configurations already present on its redis to the new format. However, if you have some configuration YAML or JSON files that you want to manualy converto to the new format, you can use our migration tool [https://github.com/Leanty/tree-gateway-migration].

Eg:

npm install -g tree-gateway-migration

treeGatewayMigration --from 2 --to 3 --api ./myfolder/**/*.yaml

Migrating from version 1 to version 2

The Tree Gateway 2.0 breaks compatibility with 1.0 version in some few points. Before update to the new version, ensure you have verified this changes:

Node Version:

We are recommending NodeJS 8 or newer. Starting from Tree Gateway version 2.0, we will be testing the gateway only in Node 8 and newer versions.

Middleware functions:

In version 2.0 if a middleware function needs to receive an option parameter to initialize the middleware, it needs to expose a factory=true property. So, you need to review any custom middleware you have created previously.

 RouterDestination

 This router middleware can be used to route requests based on a request query parameter provided by the user.

The middleware needs to receive an options object containing the possible targets for the routed API. This object contains the following properties.

Property	Type	Description	Required
——–	—-	———–	——–
destinations	RouterDestination[]	A list with possible destinations for the API request.	true
param	string	The query parameter name used by this router to take its decision.	true
defaultTarget	string	The default destination (when the expected param is not present).	true

RouterDestination

Configure a single destination for the router. Can contain the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
target	string	A target destination.	true
value	string	The expected parameter value. The router will take this destination if the received parameter matches this value.	true

Example:

name: TestQueryAPI
version: 1.0.0
path: "/queryTest"
proxy:
 target:
 router:
 middleware:
 name: query
 options:
 param: apiVersion
 defaultTarget: http://httpbin.org
 destinations:
 - target: http://httpbin.org
 value: '1'
 - target: http://httpbin.org/anything
 value: '2'
 timeout: 5000

This configuration will make requests to http://<gatewayaddress>/queryTest?apiVersion=1 be routed to http://httpbin.org and requests to http://<gatewayaddress>/queryTest?apiVersion=2 be routed to http://httpbin.org/anything.

If no parameter is provided, the request will be routed to http://httpbin.org.

 <no title>

 This interceptor needs to receive an options object containing the jsonata [http://jsonata.org/] expression to be applied for transformation.

This interceptor requires that you set parseReqBody: true in your proxy configuration.

The following configuration maps all endpoints from http://httpbin.org and applies a transformation on the request for the operation POST on path /post (POST http://httpbin.org/post).

name: TestInterceptedAPI
version: 1.0.0
path: "/requesttransform"
group:
- id: Group1
 description: Endpoints Group One
 member:
 - path:
 - post/
 method:
 - POST
proxy:
 target:
 host: http://httpbin.org
 timeout: five seconds
parseReqBody: true
interceptor:
 request:
 - middleware:
 name: requestBodyTransformer
 options:
 expression: >
 {
 'name': Account.'Account Name',
 'myPurpleProducts':Account.Order[*].Product[Description.Colour='Purple']
 }
 group:
 - Group1

It will transform the original request received by the Gateway. For Example:

{
 "Account": {
 "Account Name": "Firefly",
 "Order": [
 {
 "OrderID": "order103",
 "Product": [
 {
 "Product Name": "Bowler Hat",
 "ProductID": 858383,
 "SKU": "0406654608",
 "Description": {
 "Colour": "Purple",
 "Width": 300,
 "Height": 200,
 "Depth": 210,
 "Weight": 0.75
 },
 "Price": 34.45,
 "Quantity": 2
 },
 {
 "Product Name": "Trilby hat",
 "ProductID": 858236,
 "SKU": "0406634348",
 "Description": {
 "Colour": "Orange",
 "Width": 300,
 "Height": 200,
 "Depth": 210,
 "Weight": 0.6
 },
 "Price": 21.67,
 "Quantity": 1
 }
]
 }
]
 }
}

And our gateway configuration transforms it to:

{
 "name": "Firefly",
 "myPurpleProducts": [
 {
 "Product Name": "Bowler Hat",
 "ProductID": 858383,
 "SKU": "0406654608",
 "Description": {
 "Colour": "Purple",
 "Width": 300,
 "Height": 200,
 "Depth": 210,
 "Weight": 0.75
 },
 "Price": 34.45,
 "Quantity": 2
 }
]
}

 <no title>

 This interceptor needs to receive an options object containing the jsonata [http://jsonata.org/] expression to be applied for transformation.

The following configuration maps all endpoints from http://httpbin.org and applies a transformation on the response for the operation GET on path /get (GET http://httpbin.org/get).

name: TestInterceptedAPI
version: 1.0.0
path: "/responsetransform"
group:
- id: Group1
 description: Endpoints Group One
 member:
 - path:
 - get/
 method:
 - GET
proxy:
 target:
 host: http://httpbin.org
 timeout: five seconds
interceptor:
 response:
 - middleware:
 name: responseBodyTransformer
 options:
 expression: >
 {
 'argumentNames': $sort($keys(args), function($l, $r) {
 $l < $r
 })
 }
 group:
 - Group1

It will transform the original response returned by the API. For the given URL:

http://httpbin.org/get?arg1=1¶m2=2

Httpbin returns:

{
 "args": {
 "arg1": "1",
 "param2": "2"
 },
 "headers": {
 "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8",
 "Accept-Encoding": "gzip, deflate, sdch",
 "Accept-Language": "en-US,en;q=0.8,pt;q=0.6",
 "Connection": "close",
 "Cookie": "_ga=GA1.2.1324135042.1476879149; _gauges_unique_year=1; _gauges_unique=1",
 "Host": "httpbin.org",
 "Upgrade-Insecure-Requests": "1",
 "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36"
 },
 "origin": "189.13.176.105",
 "url": "http://httpbin.org/get?arg1=1¶m2=2"
}

And our gateway configuration transforms it to:

{
 "argumentNames": [
 "param2", "arg1"
]
}

when accessing http://<gatewayaddress>/responsetransform?get?arg1=1¶m2=2

 TrafficDestination

 This router middleware needs to receive an options object containing the possible targets for the routed API. This object contains the following properties.

Property	Type	Description	Required
——–	—-	———–	——–
destinations	TrafficDestination[]	A list with possible destinations for the API request.	true

TrafficDestination

Configure a single destination for traffic split. Can contain the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
target	string	A target destination.	true
weight	number	A weight to distribute the load to this target.	true

Example:

name: TestTrafficSplitAPI
version: 1.0.0
path: "/trafficSplit"
proxy:
 target:
 router:
 middleware:
 name: trafficSplit
 options:
 destinations:
 - target: http://httpbin.org
 weight: 75
 - target: http://httpbin.org/anything
 weight: 25
 timeout: 5000

This configuration will route requests to http://httpbin.org and to http://httpbin.org/anything. The first target will receive a bigger load (3 times greater than the second one).

 DatabaseConfig

 This is the Server config descriptor. It support the following properties:

Property	Type	Description	Required
——–	—-	———–	——–
database	DatabaseConfig	Configurations for gateway databases.	true
middlewarePath	string	Folder where the gateway will install its middleware functions.	false
rootPath	string	The root folder where the gateway will use as its work dir.	false

DatabaseConfig

Configure gateway database.

Property	Type	Description	Required
——–	—-	———–	——–
redis	RedisConfig	Configurations for gateway REDIS database.	true

The configuration file can be written in json or yaml formats.

Example:

{
 "rootPath": ".",
 "database": {
 "redis": {
 "standalone": {
 "host": "{REDIS_PORT_6379_TCP_ADDR}",
 "port": "{REDIS_PORT_6379_TCP_PORT}"
 }
 }
 }
}

or

rootPath: '.'
database:
 redis:
 standalone:
 host