

TRedis

An asynchronous Redis client for Tornado

[image: Version] [https://pypi.python.org/pypi/tredis] [image: License] [https://github.com/gmr/tredis]

Note

TRedis is a work in progress and does not support the entire Redis
command set. For a list of the currently supported commands by category, see
the Supported Commands documentation.

Installation

tredis is available from the Python Package Index [https://preview-pypi.python.org/project/tredis/] and can be installed by running pip install tredis

Contents

	API

	Exceptions

	Supported Commands

	Example

	Version History

Issues

Please report any issues to the Github repo at https://github.com/gmr/tredis/issues

Source

TRedis source is available on Github at https://github.com/gmr/tredis

Indices and tables

	Index

	Module Index

	Search Page

API

The Client class is the primary API interface for
interacting with Redis. While the per-method documentation attempts to be as
complete as possible, the best documentation source for each Redis command is
available on the redis site [http://redis.io/commands].

See the Supported Commands documentation if you are not able to find
a Redis command you are looking for.

	
class tredis.Client(hosts, on_close=None, io_loop=None, clustering=False, auto_connect=True)

	Asynchronous Redis client that supports Redis with master/slave failover
and clustering. When clustering is True, the client will
automatically discover all of the nodes in the cluster and connect to them.

The hosts argument should contain a list of Redis servers to connect
to. The connection information for the server should be a dict [https://docs.python.org/3/library/stdtypes.html#dict]. In
the following example, the client will connect to Redis running at
127.0.0.1 on port 6379 using database # 2:

class RequestHandler(web.RequestHandler):

 @gen.coroutine
 def connect_to_redis(self)
 client = tredis.Client([{
 'host': '127.0.0.1', 'port': 6379, 'db': 2
 }], auto_connect=False, clustering=True)
 yield client.connect()

When auto_connect is set to True, the connection to the Redis
server or the Redis cluster starts on creation of the client. You should be
aware that this will not block on creation and the connection will be
established asynchronously in the background. Any requests made with the
client while it is connecting will block until the connection is available.

When auto_connect is set to False, you will need to invoke the
connect() method, yielding to the
Future [http://www.tornadoweb.org/en/stable/concurrent.html#tornado.concurrent.Future] that it returns.

	Parameters

	
	hosts (list [https://docs.python.org/3/library/stdtypes.html#list](dict [https://docs.python.org/3/library/stdtypes.html#dict])) – A list of host connection values.

	io_loop (tornado.ioloop.IOLoop [http://www.tornadoweb.org/en/stable/ioloop.html#tornado.ioloop.IOLoop]) – Override the current Tornado IOLoop instance

	on_close (method) – The method to call if the connection is closed

	clustering (bool [https://docs.python.org/3/library/functions.html#bool]) – Toggle the cluster support in the client

	auto_connect (bool [https://docs.python.org/3/library/functions.html#bool]) – Toggle the auto-connect on creation feature

	
append(key, value)

	If key already exists and is a string, this command appends the
value at the end of the string. If key does not exist it is created and
set as an empty string, so append() will be
similar to set() in this special case.

New in version 0.2.0.

Note

Time complexity: O(1). The amortized time complexity
is O(1) assuming the appended value is small and the already
present value is of any size, since the dynamic string library used
by Redis will double the free space available on every reallocation.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get

	value (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The value to append to the key

	Returns

	The length of the string after the append operation

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
auth(password)

	Request for authentication in a password-protected Redis server.
Redis can be instructed to require a password before allowing clients
to execute commands. This is done using the requirepass directive
in the configuration file.

If the password does not match, an
AuthError exception
will be raised.

	Parameters

	password (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The password to authenticate with

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	AuthError,
RedisError

	
bitcount(key, start=None, end=None)

	Count the number of set bits (population counting) in a string.

By default all the bytes contained in the string are examined. It is
possible to specify the counting operation only in an interval passing
the additional arguments start and end.

Like for the getrange() command start and
end can contain negative values in order to index bytes starting from
the end of the string, where -1 is the last byte, -2 is the
penultimate, and so forth.

Non-existent keys are treated as empty strings, so the command will
return zero.

New in version 0.2.0.

Note

Time complexity: O(N)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get

	start (int [https://docs.python.org/3/library/functions.html#int]) – The start position to evaluate in the string

	end (int [https://docs.python.org/3/library/functions.html#int]) – The end position to evaluate in the string

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

	
bitop(operation, dest_key, *keys)

	Perform a bitwise operation between multiple keys (containing
string values) and store the result in the destination key.

The values for operation can be one of:

	b'AND'

	b'OR'

	b'XOR'

	b'NOT'

	tredis.BITOP_AND or b'&'

	tredis.BITOP_OR or b'|'

	tredis.BITOP_XOR or b'^'

	tredis.BITOP_NOT or b'~'

b'NOT' is special as it only takes an input key, because it
performs inversion of bits so it only makes sense as an unary operator.

The result of the operation is always stored at dest_key.

Handling of strings with different lengths

When an operation is performed between strings having different
lengths, all the strings shorter than the longest string in the set are
treated as if they were zero-padded up to the length of the longest
string.

The same holds true for non-existent keys, that are considered as a
stream of zero bytes up to the length of the longest string.

New in version 0.2.0.

Note

Time complexity: O(N)

	Parameters

	
	operation (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The operation to perform

	dest_key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to store the bitwise operation results to

	keys (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – One or more keys as keyword parameters for the bitwise op

	Returns

	The size of the string stored in the destination key, that is
equal to the size of the longest input string.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

	
bitpos(key, bit, start=None, end=None)

	Return the position of the first bit set to 1 or 0 in a
string.

The position is returned, thinking of the string as an array of bits
from left to right, where the first byte’s most significant bit is at
position 0, the second byte’s most significant bit is at position
8, and so forth.

The same bit position convention is followed by
getbit() and
setbit().

By default, all the bytes contained in the string are examined. It is
possible to look for bits only in a specified interval passing the
additional arguments start and end (it is possible to just pass start,
the operation will assume that the end is the last byte of the string.
However there are semantic differences as explained later). The range
is interpreted as a range of bytes and not a range of bits, so
start=0 and end=2 means to look at the first three bytes.

Note that bit positions are returned always as absolute values starting
from bit zero even when start and end are used to specify a range.

Like for the getrange() command start and
end can contain negative values in order to index bytes starting from
the end of the string, where -1 is the last byte, -2 is the
penultimate, and so forth.

Non-existent keys are treated as empty strings.

New in version 0.2.0.

Note

Time complexity: O(N)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get

	bit (int [https://docs.python.org/3/library/functions.html#int]) – The bit value to search for (1 or 0)

	start (int [https://docs.python.org/3/library/functions.html#int]) – The start position to evaluate in the string

	end (int [https://docs.python.org/3/library/functions.html#int]) – The end position to evaluate in the string

	Returns

	The position of the first bit set to 1 or 0

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

	
close()

	Close any open connections to Redis.

	Raises

	tredis.exceptions.ConnectionError

	
cluster_info()

	CLUSTER INFO provides INFO style information about Redis
Cluster vital parameters.

New in version 0.7.0.

	Returns

	A dictionary of current cluster information

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Key cluster_state

	State is ok if the node is able to receive
queries. fail if there is at least one hash slot which is unbound
(no node associated), in error state (node serving it is flagged
with FAIL flag), or if the majority of masters can’t be
reached by this node.

	Key cluster_slots_assigned

	Number of slots which are associated to
some node (not unbound). This number should be 16384 for the
node to work properly, which means that each hash slot should be
mapped to a node.

	Key cluster_slots_ok

	Number of hash slots mapping to a node not in
FAIL or PFAIL state.

	Key cluster_slots_pfail

	Number of hash slots mapping to a node in
PFAIL state. Note that those hash slots still work
correctly, as long as the PFAIL state is not promoted to
FAIL by the failure detection algorithm. PFAIL
only means that we are currently not able to talk with the node,
but may be just a transient error.

	Key cluster_slots_fail

	Number of hash slots mapping to a node in
FAIL state. If this number is not zero the node is not
able to serve queries unless cluster-require-full-coverage is set
to no in the configuration.

	Key cluster_known_nodes

	The total number of known nodes in the
cluster, including nodes in HANDSHAKE state that may not
currently be proper members of the cluster.

	Key cluster_size

	The number of master nodes serving at least one
hash slot in the cluster.

	Key cluster_current_epoch

	The local Current Epoch variable. This is
used in order to create unique increasing version numbers during
fail overs.

	Key cluster_my_epoch

	The Config Epoch of the node we are talking
with. This is the current configuration version assigned to this
node.

	Key cluster_stats_messages_sent

	Number of messages sent via the
cluster node-to-node binary bus.

	Key cluster_stats_messages_received

	Number of messages received via
the cluster node-to-node binary bus.

	Raises

	RedisError

	
cluster_nodes()

	Each node in a Redis Cluster has its view of the current cluster
configuration, given by the set of known nodes, the state of the
connection we have with such nodes, their flags, properties and
assigned slots, and so forth.

CLUSTER NODES provides all this information, that is, the current
cluster configuration of the node we are contacting, in a serialization
format which happens to be exactly the same as the one used by Redis
Cluster itself in order to store on disk the cluster state (however the
on disk cluster state has a few additional info appended at the end).

Note that normally clients willing to fetch the map between Cluster
hash slots and node addresses should use CLUSTER SLOTS instead.
CLUSTER NODES, that provides more information, should be used for
administrative tasks, debugging, and configuration inspections. It is
also used by redis-trib in order to manage a cluster.

New in version 0.7.0.

	Return type

	list(ClusterNode)

	Raises

	RedisError

	
connect()

	Connect to the Redis server or Cluster.

	Return type

	tornado.concurrent.Future [http://www.tornadoweb.org/en/stable/concurrent.html#tornado.concurrent.Future]

	
decr(key)

	Decrements the number stored at key by one. If the key does not
exist, it is set to 0 before performing the operation. An error is
returned if the key contains a value of the wrong type or contains a
string that can not be represented as integer. This operation is
limited to 64 bit signed integers.

See incr() for extra information on
increment/decrement operations.

New in version 0.2.0.

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to decrement

	Returns

	The value of key after the decrement

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
decrby(key, decrement)

	Decrements the number stored at key by decrement. If the key does
not exist, it is set to 0 before performing the operation. An error
is returned if the key contains a value of the wrong type or contains
a string that can not be represented as integer. This operation is
limited to 64 bit signed integers.

See incr() for extra information on
increment/decrement operations.

New in version 0.2.0.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to decrement

	decrement (int [https://docs.python.org/3/library/functions.html#int]) – The amount to decrement by

	Returns

	The value of key after the decrement

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
delete(*keys)

	Removes the specified keys. A key is ignored if it does not exist.
Returns True [https://docs.python.org/3/library/constants.html#True] if all keys are removed.

Note

Time complexity: O(N) where N is the number of keys that
will be removed. When a key to remove holds a value other than a
string, the individual complexity for this key is O(M) where
M is the number of elements in the list, set, sorted set or
hash. Removing a single key that holds a string value is O(1).

	Parameters

	keys (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – One or more keys to remove

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
dump(key)

	Serialize the value stored at key in a Redis-specific format and
return it to the user. The returned value can be synthesized back into
a Redis key using the restore() command.

The serialization format is opaque and non-standard, however it has a
few semantic characteristics:

	It contains a 64-bit checksum that is used to make sure errors
will be detected. The restore() command
makes sure to check the checksum before synthesizing a key using
the serialized value.

	Values are encoded in the same format used by RDB.

	An RDB version is encoded inside the serialized value, so that
different Redis versions with incompatible RDB formats will
refuse to process the serialized value.

	The serialized value does NOT contain expire information. In
order to capture the time to live of the current value the
pttl() command should be used.

If key does not exist None [https://docs.python.org/3/library/constants.html#None] is returned.

Note

Time complexity: O(1) to access the key and additional
O(N*M) to serialized it, where N is the number of Redis objects
composing the value and M their average size. For small string
values the time complexity is thus O(1)+O(1*M) where M is
small, so simply O(1).

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to dump

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes], None [https://docs.python.org/3/library/constants.html#None]

	
echo(message)

	Returns the message that was sent to the Redis server.

	Parameters

	message (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The message to echo

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Raises

	RedisError

	
eval(script, keys=None, args=None)

	eval() and
evalsha() are used to evaluate scripts using
the Lua interpreter built into Redis starting from version 2.6.0.

The first argument of EVAL is a Lua 5.1 script. The script does not
need to define a Lua function (and should not). It is just a Lua
program that will run in the context of the Redis server.

Note

Time complexity: Depends on the script that is executed.

	Parameters

	
	script (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Lua script to execute

	keys (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of keys to pass into the script

	args (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of args to pass into the script

	Returns

	mixed

	
evalsha(sha1, keys=None, args=None)

	Evaluates a script cached on the server side by its SHA1 digest.
Scripts are cached on the server side using the
script_load() command. The command is
otherwise identical to eval().

Note

Time complexity: Depends on the script that is executed.

	Parameters

	
	sha1 (str [https://docs.python.org/3/library/stdtypes.html#str]) – The sha1 hash of the script to execute

	keys (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of keys to pass into the script

	args (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of args to pass into the script

	Returns

	mixed

	
exists(key)

	Returns True [https://docs.python.org/3/library/constants.html#True] if the key exists.

Note

Time complexity: O(1)

Command Type: String

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – One or more keys to check for

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
expire(key, timeout)

	Set a timeout on key. After the timeout has expired, the key will
automatically be deleted. A key with an associated timeout is often
said to be volatile in Redis terminology.

The timeout is cleared only when the key is removed using the
delete() method or overwritten using the
set() or getset()
methods. This means that all the operations that conceptually alter the
value stored at the key without replacing it with a new one will leave
the timeout untouched. For instance, incrementing the value of a key
with incr(), pushing a new value into a
list with lpush(), or altering the field
value of a hash with hset() are all
operations that will leave the timeout untouched.

The timeout can also be cleared, turning the key back into a persistent
key, using the persist() method.

If a key is renamed with rename(),
the associated time to live is transferred to the new key name.

If a key is overwritten by rename(), like in
the case of an existing key Key_A that is overwritten by a call
like client.rename(Key_B, Key_A) it does not matter if the original
Key_A had a timeout associated or not, the new key Key_A will
inherit all the characteristics of Key_B.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to set an expiration for

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – The number of seconds to set the timeout to

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
expireat(key, timestamp)

	expireat() has the same effect and
semantic as expire(), but instead of
specifying the number of seconds representing the TTL (time to live),
it takes an absolute Unix timestamp (seconds since January 1, 1970).

Please for the specific semantics of the command refer to the
documentation of expire().

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to set an expiration for

	timestamp (int [https://docs.python.org/3/library/functions.html#int]) – The UNIX epoch value for the expiration

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
get(key)

	Get the value of key. If the key does not exist the special value
None [https://docs.python.org/3/library/constants.html#None] is returned. An error is returned if the value stored
at key is not a string, because get() only
handles string values.

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get

	Return type

	bytes|None

	Raises

	RedisError

	
getbit(key, offset)

	Returns the bit value at offset in the string value stored at key.

When offset is beyond the string length, the string is assumed to be a
contiguous space with 0 bits. When key does not exist it is assumed to
be an empty string, so offset is always out of range and the value is
also assumed to be a contiguous space with 0 bits.

New in version 0.2.0.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get the bit from

	offset (int [https://docs.python.org/3/library/functions.html#int]) – The bit offset to fetch the bit from

	Return type

	bytes|None

	Raises

	RedisError

	
getrange(key, start, end)

	Returns the bit value at offset in the string value stored at key.

When offset is beyond the string length, the string is assumed to be a
contiguous space with 0 bits. When key does not exist it is assumed to
be an empty string, so offset is always out of range and the value is
also assumed to be a contiguous space with 0 bits.

New in version 0.2.0.

Note

Time complexity: O(N) where N is the length of
the returned string. The complexity is ultimately determined by the
returned length, but because creating a substring from an existing
string is very cheap, it can be considered O(1) for small
strings.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get the bit from

	start (int [https://docs.python.org/3/library/functions.html#int]) – The start position to evaluate in the string

	end (int [https://docs.python.org/3/library/functions.html#int]) – The end position to evaluate in the string

	Return type

	bytes|None

	Raises

	RedisError

	
getset(key, value)

	Atomically sets key to value and returns the old value stored at
key. Returns an error when key exists but does not hold a string value.

New in version 0.2.0.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to remove

	value (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The value to set

	Returns

	The previous value

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Raises

	RedisError

	
hdel(key, *fields)

	Remove the specified fields from the hash stored at key.

Specified fields that do not exist within this hash are ignored.
If key does not exist, it is treated as an empty hash and this
command returns zero.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the hash

	fields – iterable of field names to retrieve

	Returns

	the number of fields that were removed from the hash,
not including specified by non-existing fields.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
hexists(key, field)

	Returns if field is an existing field in the hash stored at key.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the hash

	field – name of the field to test for

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
hget(key, field)

	Returns the value associated with field in the hash stored at key.

Note

Time complexity: always O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the hash

	field – The field in the hash to get

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes], list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	RedisError

	
hgetall(key)

	Returns all fields and values of the has stored at key.

The underlying redis HGETALL [http://redis.io/commands/hgetall] command returns an array of
pairs. This method converts that to a Python dict [https://docs.python.org/3/library/stdtypes.html#dict].
It will return an empty dict [https://docs.python.org/3/library/stdtypes.html#dict] when the key is not
found.

Note

Time complexity: O(N) where N is the size
of the hash.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the hash

	Returns

	a dict [https://docs.python.org/3/library/stdtypes.html#dict] of key to value mappings for all
fields in the hash

	
hincrby(key, field, increment)

	Increments the number stored at field in the hash stored at key.

If key does not exist, a new key holding a hash is created. If
field does not exist the value is set to 0 before the operation
is performed. The range of values supported is limited to 64-bit
signed integers.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the hash

	field – name of the field to increment

	increment (int [https://docs.python.org/3/library/functions.html#int]) – amount to increment by

	Returns

	the value at field after the increment occurs

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
hincrbyfloat(key, field, increment)

	Increments the number stored at field in the hash stored at key.

If the increment value is negative, the result is to have the hash
field decremented instead of incremented. If the field does not
exist, it is set to 0 before performing the operation. An error
is returned if one of the following conditions occur:

	the field contains a value of the wrong type (not a string)

	the current field content or the specified increment are not
parseable as a double precision floating point number

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the hash

	field – name of the field to increment

	increment (float [https://docs.python.org/3/library/functions.html#float]) – amount to increment by

	Returns

	the value at field after the increment occurs

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
hkeys(key)

	Returns all field names in the hash stored at key.

Note

Time complexity: O(N) where N is the size of the hash

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the hash

	Returns

	the list of fields in the hash

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
hlen(key)

	Returns the number of fields contained in the hash stored at key.

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the hash

	Returns

	the number of fields in the hash or zero when key
does not exist

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
hmget(key, *fields)

	Returns the values associated with the specified fields in a hash.

For every field that does not exist in the hash, None [https://docs.python.org/3/library/constants.html#None]
is returned. Because a non-existing keys are treated as empty
hashes, calling hmget() against a non-existing key will
return a list of None [https://docs.python.org/3/library/constants.html#None] values.

Note

Time complexity: O(N) where N is the number of fields
being requested.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the hash

	fields – iterable of field names to retrieve

	Returns

	a dict [https://docs.python.org/3/library/stdtypes.html#dict] of field name to value mappings for
each of the requested fields

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
hmset(key, value_dict)

	Sets fields to values as in value_dict in the hash stored at key.

Sets the specified fields to their respective values in the hash
stored at key. This command overwrites any specified fields
already existing in the hash. If key does not exist, a new key
holding a hash is created.

Note

Time complexity: O(N) where N is the number of
fields being set.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the hash

	value_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – field to value mapping

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
hset(key, field, value)

	Sets field in the hash stored at key to value.

If key does not exist, a new key holding a hash is created. If
field already exists in the hash, it is overwritten.

Note

Time complexity: always O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the hash

	field – The field in the hash to set

	value – The value to set the field to

	Returns

	1 if field is a new field in the hash and value
was set; otherwise, 0 if field already exists in the hash
and the value was updated

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
hsetnx(key, field, value)

	Sets field in the hash stored at key only if it does not exist.

Sets field in the hash stored at key only if field does not
yet exist. If key does not exist, a new key holding a hash is
created. If field already exists, this operation has no effect.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the hash

	field – The field in the hash to set

	value – The value to set the field to

	Returns

	1 if field is a new field in the hash and value
was set. 0 if field already exists in the hash and
no operation was performed

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
hvals(key)

	Returns all values in the hash stored at key.

Note

Time complexity O(N) where N is the size of the hash

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the hash

	Returns

	a list [https://docs.python.org/3/library/stdtypes.html#list] of bytes [https://docs.python.org/3/library/stdtypes.html#bytes] instances or an
empty list when key does not exist

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
incr(key)

	Increments the number stored at key by one. If the key does not
exist, it is set to 0 before performing the operation. An error is
returned if the key contains a value of the wrong type or contains a
string that can not be represented as integer. This operation is
limited to 64 bit signed integers.

Note

This is a string operation because Redis does not have a
dedicated integer type. The string stored at the key is interpreted
as a base-10 64 bit signed integer to execute the operation.

Redis stores integers in their integer representation, so for string
values that actually hold an integer, there is no overhead for storing
the string representation of the integer.

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to increment

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
incrby(key, increment)

	Increments the number stored at key by increment. If the key does
not exist, it is set to 0 before performing the operation. An error is
returned if the key contains a value of the wrong type or contains a
string that can not be represented as integer. This operation is
limited to 64 bit signed integers.

See incr() for extra information on
increment/decrement operations.

New in version 0.2.0.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to increment

	increment (int [https://docs.python.org/3/library/functions.html#int]) – The amount to increment by

	Returns

	The value of key after the increment

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
incrbyfloat(key, increment)

	Increment the string representing a floating point number stored at
key by the specified increment. If the key does not exist, it is set to
0 before performing the operation. An error is returned if one of the
following conditions occur:

	The key contains a value of the wrong type (not a string).

	The current key content or the specified increment are not
parsable as a double precision floating point number.

If the command is successful the new incremented value is stored as the
new value of the key (replacing the old one), and returned to the
caller as a string.

Both the value already contained in the string key and the increment
argument can be optionally provided in exponential notation, however
the value computed after the increment is stored consistently in the
same format, that is, an integer number followed (if needed) by a dot,
and a variable number of digits representing the decimal part of the
number. Trailing zeroes are always removed.

The precision of the output is fixed at 17 digits after the decimal
point regardless of the actual internal precision of the computation.

New in version 0.2.0.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to increment

	increment (float [https://docs.python.org/3/library/functions.html#float]) – The amount to increment by

	Returns

	The value of key after the increment

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Raises

	RedisError

	
info(section=None)

	The INFO command returns information and statistics about the server
in a format that is simple to parse by computers and easy to read by
humans.

The optional parameter can be used to select a specific section of
information:

	server: General information about the Redis server

	clients: Client connections section

	memory: Memory consumption related information

	persistence: RDB and AOF related information

	stats: General statistics

	replication: Master/slave replication information

	cpu: CPU consumption statistics

	commandstats: Redis command statistics

	cluster: Redis Cluster section

	keyspace: Database related statistics

It can also take the following values:

	all: Return all sections

	default: Return only the default set of sections

When no parameter is provided, the default option is assumed.

	Parameters

	section (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional

	Returns

	dict

	
keys(pattern)

	Returns all keys matching pattern.

While the time complexity for this operation is O(N), the constant
times are fairly low. For example, Redis running on an entry level
laptop can scan a 1 million key database in 40 milliseconds.

Warning

Consider keys() as a
command that should only be used in production environments with
extreme care. It may ruin performance when it is executed against
large databases. This command is intended for debugging and special
operations, such as changing your keyspace layout. Don’t use
keys() in your regular application code.
If you’re looking for a way to find keys in a subset of your
keyspace, consider using scan() or sets.

Supported glob-style patterns:

	h?llo matches hello, hallo and hxllo

	h*llo matches hllo and heeeello

	h[ae]llo matches hello and hallo, but not hillo

	h[^e]llo matches hallo, hbllo, but not hello

	h[a-b]llo matches hallo and hbllo

Use a backslash (\) to escape special characters if you want to
match them verbatim.

Note

Time complexity: O(N)

	Parameters

	pattern (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The pattern to use when looking for keys

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	RedisError

	
llen(key)

	Returns the length of the list stored at key.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The list’s key

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	TRedisException

If key does not exist, it is interpreted as an empty list and 0 is
returned. An error is returned when the value stored at key is not a
list.

Note

Time complexity O(1)

	
lpop(key)

	Removes and returns the first element of the list stored at key.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The list’s key

	Returns

	the element at the head of the list, None [https://docs.python.org/3/library/constants.html#None] if the
list does not exist

	Raises

	TRedisException

Note

Time complexity: O(1)

	
lpush(key, *values)

	Insert all the specified values at the head of the list stored at key.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The list’s key

	values – One or more positional arguments to insert at the
beginning of the list. Each value is inserted at the beginning
of the list individually (see discussion below).

	Returns

	the length of the list after push operations

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	TRedisException

If key does not exist, it is created as empty list before
performing the push operations. When key holds a value that is not a
list, an error is returned.

It is possible to push multiple elements using a single command call
just specifying multiple arguments at the end of the command.
Elements are inserted one after the other to the head of the list,
from the leftmost element to the rightmost element. So for instance
client.lpush('mylist', 'a', 'b', 'c') will result into a list
containing c as first element, b as second element and a
as third element.

Note

Time complexity: O(1)

	
lpushx(key, *values)

	Insert values at the head of an existing list.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The list’s key

	values – One or more positional arguments to insert at the
beginning of the list. Each value is inserted at the beginning
of the list individually (see discussion below).

	Returns

	the length of the list after push operations, zero if
key does not refer to a list

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	TRedisException

This method inserts values at the head of the list stored at key,
only if key already exists and holds a list. In contrary to
lpush(), no operation will be performed when key does not yet
exist.

Note

Time complexity: O(1)

	
lrange(key, start, end)

	Returns the specified elements of the list stored at key.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The list’s key

	start (int [https://docs.python.org/3/library/functions.html#int]) – zero-based index to start retrieving elements from

	end (int [https://docs.python.org/3/library/functions.html#int]) – zero-based index at which to stop retrieving elements

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	TRedisException

The offsets start and stop are zero-based indexes, with 0 being the
first element of the list (the head of the list), 1 being the next
element and so on.

These offsets can also be negative numbers indicating offsets
starting at the end of the list. For example, -1 is the last element
of the list, -2 the penultimate, and so on.

Note that if you have a list of numbers from 0 to 100,
lrange(key, 0, 10) will return 11 elements, that is, the
rightmost item is included. This may or may not be consistent with
behavior of range-related functions in your programming language of
choice (think Ruby’s Range.new, Array#slice or Python’s
range() function).

Out of range indexes will not produce an error. If start is larger
than the end of the list, an empty list is returned. If stop is
larger than the actual end of the list, Redis will treat it like the
last element of the list.

Note

Time complexity O(S+N) where S is the distance of
start offset from HEAD for small lists, from nearest end
(HEAD or TAIL) for large lists; and N is the number
of elements in the specified range.

	
ltrim(key, start, stop)

	Crop a list to the specified range.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The list’s key

	start (int [https://docs.python.org/3/library/functions.html#int]) – zero-based index to first element to retain

	stop (int [https://docs.python.org/3/library/functions.html#int]) – zero-based index of the last element to retain

	Returns

	did the operation succeed?

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	TRedisException

Trim an existing list so that it will contain only the specified
range of elements specified.

Both start and stop are zero-based indexes, where 0 is the first
element of the list (the head), 1 the next element and so on.
For example: ltrim('foobar', 0, 2) will modify the list stored at
foobar so that only the first three elements of the list will
remain.

start and stop can also be negative numbers indicating offsets
from the end of the list, where -1 is the last element of the list,
-2 the penultimate element and so on.

Out of range indexes will not produce an error: if start is larger
than the end of the list, or start > end, the result will be an
empty list (which causes key to be removed). If end is larger
than the end of the list, Redis will treat it like the last element
of the list.

A common use of LTRIM is together with LPUSH / RPUSH. For example:

client.lpush('mylist', 'somelement')
client.ltrim('mylist', 0, 99)

This pair of commands will push a new element on the list, while
making sure that the list will not grow larger than 100 elements.
This is very useful when using Redis to store logs for example. It is
important to note that when used in this way LTRIM is an O(1)
operation because in the average case just one element is removed
from the tail of the list.

Note

Time complexity: O(N) where N is the number of elements to
be removed by the operation.

	
mget(*keys)

	Returns the values of all specified keys. For every key that does
not hold a string value or does not exist, the special value nil is
returned. Because of this, the operation never fails.

New in version 0.2.0.

Note

Time complexity: O(N) where N is the number of
keys to retrieve.

	Parameters

	keys (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – One or more keys as keyword arguments to the function

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	RedisError

	
migrate(host, port, key, destination_db, timeout, copy=False, replace=False)

	Atomically transfer a key from a source Redis instance to a
destination Redis instance. On success the key is deleted from the
original instance and is guaranteed to exist in the target instance.

The command is atomic and blocks the two instances for the time
required to transfer the key, at any given time the key will appear to
exist in a given instance or in the other instance, unless a timeout
error occurs.

Note

Time complexity: This command actually executes a DUMP+DEL in
the source instance, and a RESTORE in the target instance. See the
pages of these commands for time complexity. Also an O(N) data
transfer between the two instances is performed.

	Parameters

	
	host (bytes [https://docs.python.org/3/library/stdtypes.html#bytes], str [https://docs.python.org/3/library/stdtypes.html#str]) – The host to migrate the key to

	port (int [https://docs.python.org/3/library/functions.html#int]) – The port to connect on

	key (bytes [https://docs.python.org/3/library/stdtypes.html#bytes], str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to migrate

	destination_db (int [https://docs.python.org/3/library/functions.html#int]) – The database number to select

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – The maximum idle time in milliseconds

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – Do not remove the key from the local instance

	replace (bool [https://docs.python.org/3/library/functions.html#bool]) – Replace existing key on the remote instance

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
move(key, db)

	Move key from the currently selected database (see
select()) to the specified destination
database. When key already exists in the destination database, or it
does not exist in the source database, it does nothing. It is possible
to use move() as a locking primitive because
of this.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to move

	db (int [https://docs.python.org/3/library/functions.html#int]) – The database number

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
mset(mapping)

	Sets the given keys to their respective values.
mset() replaces existing values with new
values, just as regular set(). See
msetnx() if you don’t want to overwrite
existing values.

mset() is atomic, so all given keys are set
at once. It is not possible for clients to see that some of the keys
were updated while others are unchanged.

New in version 0.2.0.

Note

Time complexity: O(N) where N is the number of
keys to set.

	Parameters

	mapping (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A mapping of key/value pairs to set

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
msetnx(mapping)

	Sets the given keys to their respective values.
msetnx() will not perform any operation at
all even if just a single key already exists.

Because of this semantic msetnx() can be used
in order to set different keys representing different fields of an
unique logic object in a way that ensures that either all the fields or
none at all are set.

msetnx() is atomic, so all given keys are set
at once. It is not possible for clients to see that some of the keys
were updated while others are unchanged.

New in version 0.2.0.

Note

Time complexity: O(N) where N is the number of
keys to set.

	Parameters

	mapping (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A mapping of key/value pairs to set

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
object_encoding(key)

	Return the kind of internal representation used in order to store
the value associated with a key

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get the encoding for

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Raises

	RedisError

	
object_idle_time(key)

	Return the number of seconds since the object stored at the
specified key is idle (not requested by read or write operations).
While the value is returned in seconds the actual resolution of this
timer is 10 seconds, but may vary in future implementations of Redis.

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get the idle time for

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
object_refcount(key)

	Return the number of references of the value associated with the
specified key. This command is mainly useful for debugging.

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get the refcount for

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
persist(key)

	Remove the existing timeout on key, turning the key from volatile
(a key with an expire set) to persistent (a key that will never expire
as no timeout is associated).

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to move

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
pexpire(key, timeout)

	This command works exactly like pexpire()
but the time to live of the key is specified in milliseconds instead of
seconds.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to set an expiration for

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – The number of milliseconds to set the timeout to

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
pexpireat(key, timestamp)

	pexpireat() has the same effect and
semantic as expireat(), but the Unix time
at which the key will expire is specified in milliseconds instead of
seconds.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to set an expiration for

	timestamp (int [https://docs.python.org/3/library/functions.html#int]) – The expiration UNIX epoch value in milliseconds

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
pfadd(key, *elements)

	Adds all the element arguments to the HyperLogLog data structure
stored at the variable name specified as first argument.

As a side effect of this command the HyperLogLog internals may be
updated to reflect a different estimation of the number of unique items
added so far (the cardinality of the set).

If the approximated cardinality estimated by the HyperLogLog changed
after executing the command, pfadd() returns
1, otherwise 0 is returned. The command automatically creates
an empty HyperLogLog structure (that is, a Redis String of a specified
length and with a given encoding) if the specified key does not exist.

To call the command without elements but just the variable name is
valid, this will result into no operation performed if the variable
already exists, or just the creation of the data structure if the key
does not exist (in the latter case 1 is returned).

For an introduction to HyperLogLog data structure check
pfcount().

New in version 0.2.0.

Note

Time complexity: O(1) to add every element.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to add the elements to

	elements (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – One or more elements to add

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
pfcount(*keys)

	When called with a single key, returns the approximated cardinality
computed by the HyperLogLog data structure stored at the specified
variable, which is 0 if the variable does not exist.

When called with multiple keys, returns the approximated cardinality of
the union of the HyperLogLogs passed, by internally merging the
HyperLogLogs stored at the provided keys into a temporary HyperLogLog.

The HyperLogLog data structure can be used in order to count unique
elements in a set using just a small constant amount of memory,
specifically 12k bytes for every HyperLogLog (plus a few bytes for the
key itself).

The returned cardinality of the observed set is not exact, but
approximated with a standard error of 0.81%.

For example in order to take the count of all the unique search queries
performed in a day, a program needs to call
pfcount() every time a query is processed. The
estimated number of unique queries can be retrieved with
pfcount() at any time.

Note

as a side effect of calling this function, it is possible
that the HyperLogLog is modified, since the last 8 bytes encode the
latest computed cardinality for caching purposes. So
pfcount() is technically a write command.

New in version 0.2.0.

Note

Time complexity: O(1) with every small average
constant times when called with a single key. O(N) with N
being the number of keys, and much bigger constant times, when
called with multiple keys.

	Parameters

	keys (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – One or more keys

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Returns

	The approximated number of unique elements observed

	Raises

	RedisError

	
pfmerge(dest_key, *keys)

	Merge multiple HyperLogLog values into an unique value that will
approximate the cardinality of the union of the observed Sets of the
source HyperLogLog structures.

The computed merged HyperLogLog is set to the destination variable,
which is created if does not exist (defaulting to an empty
HyperLogLog).

New in version 0.2.0.

Note

Time complexity: O(N) to merge N HyperLogLogs, but
with high constant times.

	Parameters

	
	dest_key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The destination key

	keys (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – One or more keys

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
ping()

	Returns PONG if no argument is provided, otherwise return a copy
of the argument as a bulk. This command is often used to test if a
connection is still alive, or to measure latency.

If the client is subscribed to a channel or a pattern, it will instead
return a multi-bulk with a pong in the first position and an empty
bulk in the second position, unless an argument is provided in which
case it returns a copy of the argument.

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Raises

	RedisError

	
psetex(key, milliseconds, value)

	psetex() works exactly like
psetex() with the sole difference that the
expire time is specified in milliseconds instead of seconds.

New in version 0.2.0.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to set

	milliseconds (int [https://docs.python.org/3/library/functions.html#int]) – Number of milliseconds for TTL

	value (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The value to set

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
pttl(key)

	Like ttl() this command returns the
remaining time to live of a key that has an expire set, with the sole
difference that ttl() returns the amount of
remaining time in seconds while pttl()
returns it in milliseconds.

In Redis 2.6 or older the command returns -1 if the key does not
exist or if the key exist but has no associated expire.

Starting with Redis 2.8 the return value in case of error changed:

	The command returns -2 if the key does not exist.

	The command returns -1 if the key exists but has no associated
expire.

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get the PTTL for

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
quit()

	Ask the server to close the connection. The connection is closed as
soon as all pending replies have been written to the client.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
randomkey()

	Return a random key from the currently selected database.

Note

Time complexity: O(1)

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Raises

	RedisError

	
ready

	Indicates that the client is connected to the Redis server or
cluster and is ready for use.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
rename(key, new_key)

	Renames key to new_key. It returns an error when the source
and destination names are the same, or when key does not exist.
If new_key already exists it is overwritten, when this happens
rename() executes an implicit
delete() operation, so if the deleted key
contains a very big value it may cause high latency even if
rename() itself is usually a constant-time
operation.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to rename

	new_key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to rename it to

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
renamenx(key, new_key)

	Renames key to new_key if new_key does not yet exist.
It returns an error under the same conditions as
rename().

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to rename

	new_key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to rename it to

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
restore(key, ttl, value, replace=False)

	Create a key associated with a value that is obtained by
deserializing the provided serialized value (obtained via
dump()).

If ttl is 0 the key is created without any expire, otherwise
the specified expire time (in milliseconds) is set.

restore() will return a
Target key name is busy error when key already exists unless you
use the restore() modifier (Redis 3.0 or
greater).

restore() checks the RDB version and data
checksum. If they don’t match an error is returned.

Note

Time complexity: O(1) to create the new key and additional
O(N*M) to reconstruct the serialized value, where N is the
number of Redis objects composing the value and M their average
size. For small string values the time complexity is thus
O(1)+O(1*M) where M is small, so simply O(1). However
for sorted set values the complexity is O(N*M*log(N)) because
inserting values into sorted sets is O(log(N)).

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get the TTL for

	ttl (int [https://docs.python.org/3/library/functions.html#int]) – The number of seconds to set the timeout to

	value (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The value to restore to the key

	replace (bool [https://docs.python.org/3/library/functions.html#bool]) – Replace a pre-existing key

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
rpop(key)

	Removes and returns the last element of the list stored at key.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The list’s key

	Returns

	the length of the list after push operations or
zero if key does not refer to a list

	Returns

	the element at the tail of the list, None [https://docs.python.org/3/library/constants.html#None] if the
list does not exist

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	TRedisException

	
rpush(key, *values)

	Insert all the specified values at the tail of the list stored at key.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The list’s key

	values – One or more positional arguments to insert at the
tail of the list.

	Returns

	the length of the list after push operations

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	TRedisException

If key does not exist, it is created as empty list before performing
the push operation. When key holds a value that is not a list, an
error is returned.

It is possible to push multiple elements using a single command call
just specifying multiple arguments at the end of the command.
Elements are inserted one after the other to the tail of the list,
from the leftmost element to the rightmost element. So for instance
the command client.rpush('mylist', 'a', 'b', 'c') will result
in a list containing a as first element, b as second element
and c as third element.

Note

Time complexity: O(1)

	
rpushx(key, *values)

	Insert values at the tail of an existing list.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The list’s key

	values – One or more positional arguments to insert at the
tail of the list.

	Returns

	the length of the list after push operations or
zero if key does not refer to a list

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	TRedisException

This method inserts value at the tail of the list stored at key,
only if key already exists and holds a list. In contrary to
method:.rpush, no operation will be performed when key does not
yet exist.

Note

Time complexity: O(1)

	
sadd(key, *members)

	Add the specified members to the set stored at key. Specified
members that are already a member of this set are ignored. If key does
not exist, a new set is created before adding the specified members.

An error is returned when the value stored at key is not a set.

Returns True [https://docs.python.org/3/library/constants.html#True] if all requested members are added. If more
than one member is passed in and not all members are added, the
number of added members is returned.

Note

Time complexity: O(N) where N is the number of members
to be added.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the set

	members – One or more positional arguments to add to the set

	Returns

	Number of items added to the set

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int]

	
scan(cursor=0, pattern=None, count=None)

	The scan() command and the closely related
commands sscan(),
hscan() and zscan()
are used in order to incrementally iterate over a collection of
elements.

	scan() iterates the set of keys in the
currently selected Redis database.

	sscan() iterates elements of Sets types.

	hscan() iterates fields of Hash types and
their associated values.

	zscan() iterates elements of Sorted Set
types and their associated scores.

Basic usage

scan() is a cursor based iterator.
This means that at every call of the command, the server returns an
updated cursor that the user needs to use as the cursor argument in
the next call.

An iteration starts when the cursor is set to 0, and terminates
when the cursor returned by the server is 0.

For more information on scan(),
visit the Redis docs on scan [http://redis.io/commands/scan].

Note

Time complexity: O(1) for every call. O(N) for a
complete iteration, including enough command calls for the cursor to
return back to 0. N is the number of elements inside the
collection.

	Parameters

	
	cursor (int [https://docs.python.org/3/library/functions.html#int]) – The server specified cursor value or 0

	pattern (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – An optional pattern to apply for key matching

	count (int [https://docs.python.org/3/library/functions.html#int]) – An optional amount of work to perform in the scan

	Return type

	int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]

	Returns

	A tuple containing the cursor and the list of keys

	Raises

	RedisError

	
scard(key)

	Returns the set cardinality (number of elements) of the set stored
at key.

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the set

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
script_exists(*hashes)

	Returns information about the existence of the scripts in the script
cache.

This command accepts one or more SHA1 digests and returns a list of
ones or zeros to signal if the scripts are already defined or not
inside the script cache. This can be useful before a pipelining
operation to ensure that scripts are loaded (and if not, to load them
using script_load()) so that the pipelining
operation can be performed solely using
evalsha() instead of
eval() to save bandwidth.

Please refer to the eval() documentation for
detailed information about Redis Lua scripting.

Note

Time complexity: O(N) with N being the number of scripts
to check (so checking a single script is an O(1) operation).

	Parameters

	hashes (str [https://docs.python.org/3/library/stdtypes.html#str]) – One or more sha1 hashes to check for in the cache

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Returns

	Returns a list of 1 or 0 indicating if the specified
script(s) exist in the cache.

	
script_flush()

	Flush the Lua scripts cache.

Please refer to the eval() documentation for
detailed information about Redis Lua scripting.

Note

Time complexity: O(N) with N being the number of scripts
in cache

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
script_kill()

	Kills the currently executing Lua script, assuming no write
operation was yet performed by the script.

This command is mainly useful to kill a script that is running for too
much time(for instance because it entered an infinite loop because of
a bug). The script will be killed and the client currently blocked into
eval() will see the command returning with an
error.

If the script already performed write operations it can not be killed
in this way because it would violate Lua script atomicity contract. In
such a case only SHUTDOWN NOSAVE is able to kill the script, killing
the Redis process in an hard way preventing it to persist with
half-written information.

Please refer to the eval() documentation for
detailed information about Redis Lua scripting.

Note

Time complexity: O(1)

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
script_load(script)

	Load a script into the scripts cache, without executing it. After
the specified command is loaded into the script cache it will be
callable using evalsha() with the correct
SHA1 digest of the script, exactly like after the first successful
invocation of eval().

The script is guaranteed to stay in the script cache forever (unless
script_flush() is called).

The command works in the same way even if the script was already
present in the script cache.

Please refer to the eval() documentation for
detailed information about Redis Lua scripting.

Note

Time complexity: O(N) with N being the length in bytes
of the script body.

	Parameters

	script (str [https://docs.python.org/3/library/stdtypes.html#str]) – The script to load into the script cache

	Returns

	str

	
sdiff(*keys)

	Returns the members of the set resulting from the difference between
the first set and all the successive sets.

For example:

key1 = {a,b,c,d}
key2 = {c}
key3 = {a,c,e}
SDIFF key1 key2 key3 = {b,d}

Keys that do not exist are considered to be empty sets.

Note

Time complexity: O(N) where N is the total number of
elements in all given sets.

	Parameters

	keys (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Two or more set keys as positional arguments

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	RedisError

	
sdiffstore(destination, *keys)

	This command is equal to sdiff(), but
instead of returning the resulting set, it is stored in destination.

If destination already exists, it is overwritten.

Note

Time complexity: O(N) where N is the total number of
elements in all given sets.

	Parameters

	
	destination (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The set to store the diff into

	keys (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – One or more set keys as positional arguments

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
select(index=0)

	Select the DB with having the specified zero-based numeric index.
New connections always use DB 0.

	Parameters

	index (int [https://docs.python.org/3/library/functions.html#int]) – The database to select

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	Raises

	InvalidClusterCommand

	
set(key, value, ex=None, px=None, nx=False, xx=False)

	Set key to hold the string value. If key already holds a value, it
is overwritten, regardless of its type. Any previous time to live
associated with the key is discarded on successful
set() operation.

If the value is not one of str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], or
int [https://docs.python.org/3/library/functions.html#int], a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] will be raised.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to remove

	value (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], int [https://docs.python.org/3/library/functions.html#int]) – The value to set

	ex (int [https://docs.python.org/3/library/functions.html#int]) – Set the specified expire time, in seconds

	px (int [https://docs.python.org/3/library/functions.html#int]) – Set the specified expire time, in milliseconds

	nx (bool [https://docs.python.org/3/library/functions.html#bool]) – Only set the key if it does not already exist

	xx (bool [https://docs.python.org/3/library/functions.html#bool]) – Only set the key if it already exist

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

	
setbit(key, offset, bit)

	Sets or clears the bit at offset in the string value stored at key.

The bit is either set or cleared depending on value, which can be
either 0 or 1. When key does not exist, a new string value is created.
The string is grown to make sure it can hold a bit at offset. The
offset argument is required to be greater than or equal to 0, and
smaller than 2 32 (this limits bitmaps to 512MB). When the
string at key is grown, added bits are set to 0.

Warning

When setting the last possible bit (offset equal to
2 32 -1) and the string value stored at key does not yet hold
a string value, or holds a small string value, Redis needs to
allocate all intermediate memory which can block the server for some
time. On a 2010 MacBook Pro, setting bit number 2 32 -1
(512MB allocation) takes ~300ms, setting bit number 2 30 -1
(128MB allocation) takes ~80ms, setting bit number 2 28 -1
(32MB allocation) takes ~30ms and setting bit number 2 26 -1
(8MB allocation) takes ~8ms. Note that once this first allocation is
done, subsequent calls to setbit() for the
same key will not have the allocation overhead.

New in version 0.2.0.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get the bit from

	offset (int [https://docs.python.org/3/library/functions.html#int]) – The bit offset to fetch the bit from

	bit (int [https://docs.python.org/3/library/functions.html#int]) – The value (0 or 1) to set for the bit

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
setex(key, seconds, value)

	Set key to hold the string value and set key to timeout after a
given number of seconds.

setex() is atomic, and can be reproduced by
using set() and
expire() inside an
multi() /
exec() block. It is provided as a faster
alternative to the given sequence of operations, because this operation
is very common when Redis is used as a cache.

An error is returned when seconds is invalid.

New in version 0.2.0.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to set

	seconds (int [https://docs.python.org/3/library/functions.html#int]) – Number of seconds for TTL

	value (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The value to set

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
setnx(key, value)

	Set key to hold string value if key does not exist. In that case, it
is equal to setnx(). When key already holds a
value, no operation is performed. setnx() is
short for “SET if Not eXists”.

New in version 0.2.0.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to set

	value (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], int [https://docs.python.org/3/library/functions.html#int]) – The value to set

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
setrange(key, offset, value)

	Overwrites part of the string stored at key, starting at the
specified offset, for the entire length of value. If the offset is
larger than the current length of the string at key, the string is
padded with zero-bytes to make offset fit. Non-existing keys are
considered as empty strings, so this command will make sure it holds a
string large enough to be able to set value at offset.

Note

The maximum offset that you can set is 2 29 -1
(536870911), as Redis Strings are limited to 512 megabytes. If you
need to grow beyond this size, you can use multiple keys.

Warning

When setting the last possible byte and the string value
stored at key does not yet hold a string value, or holds a small
string value, Redis needs to allocate all intermediate memory which
can block the server for some time. On a 2010 MacBook Pro, setting
byte number 536870911 (512MB allocation) takes ~300ms, setting byte
number 134217728 (128MB allocation) takes ~80ms, setting bit number
33554432 (32MB allocation) takes ~30ms and setting bit number
8388608 (8MB allocation) takes ~8ms. Note that once this first
allocation is done, subsequent calls to
setrange() for the same key will not have
the allocation overhead.

New in version 0.2.0.

Note

Time complexity: O(1), not counting the time taken to
copy the new string in place. Usually, this string is very small so
the amortized complexity is O(1). Otherwise, complexity is
O(M) with M being the length of the value argument.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get the bit from

	value (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], int [https://docs.python.org/3/library/functions.html#int]) – The value to set

	Returns

	The length of the string after it was modified by the command

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
sinter(*keys)

	Returns the members of the set resulting from the intersection of
all the given sets.

For example:

key1 = {a,b,c,d}
key2 = {c}
key3 = {a,c,e}
SINTER key1 key2 key3 = {c}

Keys that do not exist are considered to be empty sets. With one of
the keys being an empty set, the resulting set is also empty (since
set intersection with an empty set always results in an empty set).

Note

Time complexity: O(N*M) worst case where N is the
cardinality of the smallest set and M is the number of sets.

	Parameters

	keys (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Two or more set keys as positional arguments

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	RedisError

	
sinterstore(destination, *keys)

	This command is equal to sinter(), but
instead of returning the resulting set, it is stored in destination.

If destination already exists, it is overwritten.

Note

Time complexity: O(N*M) worst case where N is the
cardinality of the smallest set and M is the number of sets.

	Parameters

	
	destination (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The set to store the intersection into

	keys (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – One or more set keys as positional arguments

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
sismember(key, member)

	Returns True [https://docs.python.org/3/library/constants.html#True] if member is a member of the set stored
at key.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the set to check for membership in

	member (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The value to check for set membership with

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
smembers(key)

	Returns all the members of the set value stored at key.

This has the same effect as running sinter()
with one argument key.

Note

Time complexity: O(N) where N is the set cardinality.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the set to return the members from

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	RedisError

	
smove(source, destination, member)

	Move member from the set at source to the set at destination. This
operation is atomic. In every given moment the element will appear to
be a member of source or destination for other clients.

If the source set does not exist or does not contain the specified
element, no operation is performed and False [https://docs.python.org/3/library/constants.html#False] is returned.
Otherwise, the element is removed from the source set and added to the
destination set. When the specified element already exists in the
destination set, it is only removed from the source set.

An error is returned if source or destination does not hold a set
value.

Note

Time complexity: O(1)

	Parameters

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The source set key

	destination (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The destination set key

	member (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The member value to move

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
sort(key, by=None, external=None, offset=0, limit=None, order=None, alpha=False, store_as=None)

	Returns or stores the elements contained in the list, set or sorted
set at key. By default, sorting is numeric and elements are compared by
their value interpreted as double precision floating point number.

The external parameter is used to specify the
GET <http://redis.io/commands/sort#retrieving-external-keys>_
parameter for retrieving external keys. It can be a single string
or a list of strings.

Note

Time complexity: O(N+M*log(M)) where N is the number of
elements in the list or set to sort, and M the number of
returned elements. When the elements are not sorted, complexity is
currently O(N) as there is a copy step that will be avoided in
next releases.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get the refcount for

	by (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The optional pattern for external sorting keys

	external (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], list) – Pattern or list of patterns to return external keys

	offset (int [https://docs.python.org/3/library/functions.html#int]) – The starting offset when using limit

	limit (int [https://docs.python.org/3/library/functions.html#int]) – The number of elements to return

	order (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The sort order - one of ASC or DESC

	alpha (bool [https://docs.python.org/3/library/functions.html#bool]) – Sort the results lexicographically

	store_as (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], None) – When specified, the key to store the results as

	Return type

	list|int

	Raises

	RedisError

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

	
spop(key, count=None)

	Removes and returns one or more random elements from the set value
store at key.

This operation is similar to srandmember(),
that returns one or more random elements from a set but does not remove
it.

The count argument will be available in a later version and is not
available in 2.6, 2.8, 3.0

Redis 3.2 will be the first version where an optional count argument
can be passed to spop() in order to retrieve
multiple elements in a single call. The implementation is already
available in the unstable branch.

Note

Time complexity: Without the count argument O(1), otherwise
O(N) where N is the absolute value of the passed count.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get one or more random members from

	count (int [https://docs.python.org/3/library/functions.html#int]) – The number of members to return

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes], list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	RedisError

	
srandmember(key, count=None)

	When called with just the key argument, return a random element from
the set value stored at key.

Starting from Redis version 2.6, when called with the additional count
argument, return an array of count distinct elements if count is
positive. If called with a negative count the behavior changes and the
command is allowed to return the same element multiple times. In this
case the number of returned elements is the absolute value of the
specified count.

When called with just the key argument, the operation is similar to
spop(), however while
spop() also removes the randomly selected
element from the set, srandmember() will just
return a random element without altering the original set in any way.

Note

Time complexity: Without the count argument O(1), otherwise
O(N) where N is the absolute value of the passed count.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get one or more random members from

	count (int [https://docs.python.org/3/library/functions.html#int]) – The number of members to return

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes], list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	RedisError

	
srem(key, *members)

	Remove the specified members from the set stored at key. Specified
members that are not a member of this set are ignored. If key does not
exist, it is treated as an empty set and this command returns 0.

An error is returned when the value stored at key is not a set.

Returns True [https://docs.python.org/3/library/constants.html#True] if all requested members are removed. If more
than one member is passed in and not all members are removed, the
number of removed members is returned.

Note

Time complexity: O(N) where N is the number of members
to be removed.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to remove the member from

	members (mixed) – One or more member values to remove

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
sscan(key, cursor=0, pattern=None, count=None)

	The sscan() command and the closely
related commands scan(),
hscan() and zscan()
are used in order to incrementally iterate over a collection of
elements.

	scan() iterates the set of keys in the
currently selected Redis database.

	sscan() iterates elements of Sets types.

	hscan() iterates fields of Hash types and
their associated values.

	zscan() iterates elements of Sorted Set
types and their associated scores.

Basic usage

sscan() is a cursor based iterator. This
means that at every call of the command, the server returns an updated
cursor that the user needs to use as the cursor argument in the next
call.

An iteration starts when the cursor is set to 0, and terminates
when the cursor returned by the server is 0.

For more information on scan(),
visit the Redis docs on scan [http://redis.io/commands/scan].

Note

Time complexity: O(1) for every call. O(N) for a
complete iteration, including enough command calls for the cursor to
return back to 0. N is the number of elements inside the
collection.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to scan

	cursor (int [https://docs.python.org/3/library/functions.html#int]) – The server specified cursor value or 0

	pattern (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – An optional pattern to apply for key matching

	count (int [https://docs.python.org/3/library/functions.html#int]) – An optional amount of work to perform in the scan

	Return type

	int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]

	Returns

	A tuple containing the cursor and the list of set items

	Raises

	RedisError

	
strlen(key)

	Returns the length of the string value stored at key. An error is
returned when key holds a non-string value

New in version 0.2.0.

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to set

	Returns

	The length of the string at key, or 0 when key does not exist

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
sunion(*keys)

	Returns the members of the set resulting from the union of all the
given sets.

For example:

key1 = {a,b,c,d}
key2 = {c}
key3 = {a,c,e}
SUNION key1 key2 key3 = {a,b,c,d,e}

Note

Time complexity: O(N) where N is the total number of
elements in all given sets.

Keys that do not exist are considered to be empty sets.

	Parameters

	keys (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Two or more set keys as positional arguments

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	RedisError

	
sunionstore(destination, *keys)

	This command is equal to sunion(), but
instead of returning the resulting set, it is stored in destination.

If destination already exists, it is overwritten.

Note

Time complexity: O(N) where N is the total number of
elements in all given sets.

	Parameters

	
	destination (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The set to store the union into

	keys (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – One or more set keys as positional arguments

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
time()

	Retrieve the current time from the redis server.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Raises

	RedisError

	
ttl(key)

	Returns the remaining time to live of a key that has a timeout.
This introspection capability allows a Redis client to check how many
seconds a given key will continue to be part of the dataset.

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get the TTL for

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
type(key)

	Returns the string representation of the type of the value stored at
key. The different types that can be returned are: string,
list, set, zset, and hash.

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get the type for

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Raises

	RedisError

	
wait(num_slaves, timeout=0)

	his command blocks the current client until all the previous write
commands are successfully transferred and acknowledged by at least the
specified number of slaves. If the timeout, specified in milliseconds,
is reached, the command returns even if the specified number of slaves
were not yet reached.

The command will always return the number of slaves that acknowledged
the write commands sent before the wait()
command, both in the case where the specified number of slaves are
reached, or when the timeout is reached.

Note

Time complexity: O(1)

	Parameters

	
	num_slaves (int [https://docs.python.org/3/library/functions.html#int]) – Number of slaves to acknowledge previous writes

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – Timeout in milliseconds

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
zadd(key, *members, **kwargs)

	Adds all the specified members with the specified scores to the
sorted set stored at key. It is possible to specify multiple score /
member pairs. If a specified member is already a member of the sorted
set, the score is updated and the element reinserted at the right
position to ensure the correct ordering.

If key does not exist, a new sorted set with the specified members as
sole members is created, like if the sorted set was empty. If the key
exists but does not hold a sorted set, an error is returned.

The score values should be the string representation of a double
precision floating point number. +inf and -inf values are valid values
as well.

Members parameters

members could be either:
- a single dict where keys correspond to scores and values to elements
- multiple strings paired as score then element

yield client.zadd('myzset', {'1': 'one', '2': 'two'})
yield client.zadd('myzset', '1', 'one', '2', 'two')

ZADD options (Redis 3.0.2 or greater)

ZADD supports a list of options. Options are:

	xx: Only update elements that already exist. Never add elements.

	
	nx: Don’t update already existing elements. Always add new

	elements.

	
	ch: Modify the return value from the number of new elements

	added, to the total number of elements changed (CH is an
abbreviation of changed). Changed elements are new elements added
and elements already existing for which the score was updated. So
elements specified in the command having the same score as they had
in the past are not counted. Note: normally the return value of
ZADD only counts the number of new elements added.

	
	incr: When this option is specified ZADD acts like

	zincrby(). Only one score-element pair
can be specified in this mode.

Note

Time complexity: O(log(N)) for each item added, where N
is the number of elements in the sorted set.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the sorted set

	members (dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Elements to add

	xx (bool [https://docs.python.org/3/library/functions.html#bool]) – Only update elements that already exist

	nx (bool [https://docs.python.org/3/library/functions.html#bool]) – Don’t update already existing elements

	ch (bool [https://docs.python.org/3/library/functions.html#bool]) – Return the number of changed elements

	incr (bool [https://docs.python.org/3/library/functions.html#bool]) – Increment the score of an element

	Return type

	int, str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Returns

	Number of elements changed, or the new score if incr is set

	Raises

	RedisError

	
zcard(key)

	Returns the set cardinality (number of elements) of the sorted set
stored at key.

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the set

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
zrange(key, start=0, stop=-1, with_scores=False)

	Returns the specified range of elements in the sorted set stored at
key. The elements are considered to be ordered from the lowest to the
highest score. Lexicographical order is used for elements with equal
score.

See tredis.Client.zrevrange() when you need the elements ordered
from highest to lowest score (and descending lexicographical order for
elements with equal score).

Both start and stop are zero-based indexes, where 0 is the first
element, 1 is the next element and so on. They can also be negative
numbers indicating offsets from the end of the sorted set, with -1
being the last element of the sorted set, -2 the penultimate
element and so on.

start and stop are inclusive ranges, so for example
ZRANGE myzset 0 1 will return both the first and the second element
of the sorted set.

Out of range indexes will not produce an error. If start is larger than
the largest index in the sorted set, or start > stop, an empty list
is returned. If stop is larger than the end of the sorted set Redis
will treat it like it is the last element of the sorted set.

It is possible to pass the WITHSCORES option in order to return the
scores of the elements together with the elements. The returned list
will contain value1,score1,...,valueN,scoreN instead of
value1,...,valueN. Client libraries are free to return a more
appropriate data type (suggestion: an array with (value, score)
arrays/tuples).

Note

Time complexity: O(log(N)+M) with N being the number of
elements in the sorted set and M the number of elements
returned.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the sorted set

	start (int [https://docs.python.org/3/library/functions.html#int]) – The starting index of the sorted set

	stop (int [https://docs.python.org/3/library/functions.html#int]) – The ending index of the sorted set

	with_scores (bool [https://docs.python.org/3/library/functions.html#bool]) – Return the scores with the elements

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	RedisError

	
zrangebyscore(key, min_score, max_score, with_scores=False, offset=0, count=0)

	Returns all the elements in the sorted set at key with a score
between min and max (including elements with score equal to min or
max). The elements are considered to be ordered from low to high
scores.

The elements having the same score are returned in lexicographical
order (this follows from a property of the sorted set implementation in
Redis and does not involve further computation).

The optional offset and count arguments can be used to only get
a range of the matching elements (similar to SELECT LIMIT offset, count
in SQL). Keep in mind that if offset is large, the sorted set needs to
be traversed for offset elements before getting to the elements to
return, which can add up to O(N) time complexity.

The optional with_scores argument makes the command return both the
element and its score, instead of the element alone. This option is
available since Redis 2.0.

Exclusive intervals and infinity

min_score and max_score can be -inf and +inf, so that
you are not required to know the highest or lowest score in the sorted
set to get all elements from or up to a certain score.

By default, the interval specified by min_score and max_score
is closed (inclusive). It is possible to specify an open interval
(exclusive) by prefixing the score with the character (. For
example:

ZRANGEBYSCORE zset (1 5

Will return all elements with 1 < score <= 5 while:

ZRANGEBYSCORE zset (5 (10

Will return all the elements with 5 < score < 10 (5 and 10
excluded).

Note

Time complexity: O(log(N)+M) with N being the number of
elements in the sorted set and M the number of elements being
returned. If M is constant (e.g. always asking for the first
10 elements with count), you can consider it O(log(N)).

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the sorted set

	min_score (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Lowest score definition

	max_score (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Highest score definition

	with_scores (bool [https://docs.python.org/3/library/functions.html#bool]) – Return elements and scores

	offset – The number of elements to skip

	count – The number of elements to return

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	RedisError

	
zrem(key, *members)

	
	Removes the specified members from the sorted set stored at key.

	Non existing members are ignored.

An error is returned when key exists and does not hold a sorted set.

Note

Time complexity: O(M*log(N)) with N being the number of
elements in the sorted set and M the number of elements to be
removed.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the sorted set

	members (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – One or more member values to remove

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
zremrangebyscore(key, min_score, max_score)

	Removes all elements in the sorted set stored at key with a score
between min and max.

Intervals are described in zrangebyscore().

Returns the number of elements removed.

Note

Time complexity: O(log(N)+M) with N being the number of
elements in the sorted set and M the number of elements removed by
the operation.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the sorted set

	min_score (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Lowest score definition

	max_score (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Highest score definition

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
zrevrange(key, start=0, stop=-1, with_scores=False)

	Returns the specified range of elements in the sorted set stored at
key. The elements are considered to be ordered from the highest to the
lowest score. Descending lexicographical order is used for elements
with equal score.

Apart from the reversed ordering, zrevrange()
is similar to zrange() .

Note

Time complexity: O(log(N)+M) with N being the number of
elements in the sorted set and M the number of elements
returned.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the sorted set

	start (int [https://docs.python.org/3/library/functions.html#int]) – The starting index of the sorted set

	stop (int [https://docs.python.org/3/library/functions.html#int]) – The ending index of the sorted set

	with_scores (bool [https://docs.python.org/3/library/functions.html#bool]) – Return the scores with the elements

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	RedisError

	
zscore(key, member)

	Returns the score of member in the sorted set at key.
If member does not exist in the sorted set, or key does not exist
None is returned.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the set to check for membership in

	member (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The value to check for set membership with

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]

	Raises

	RedisError

	
class tredis.cluster.ClusterNode(id, ip, port, flags, master, ping_sent, pong_recv, config_epoch, link_state, slots)

	tredis.cluster.ClusterNode is a namedtuple
that contains the attributes for a single node returned by the
CLUSTER NODES command.

	Parameters

	
	id (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The node ID

	ip (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The IP address of the node

	port (int [https://docs.python.org/3/library/functions.html#int]) – The node TCP port

	flags (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – A list of comma separated flags: myself, master,
slave, fail?, fail, handshake, noaddr, noflags.

	master (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – If the node is a slave, and the master is known, the master
node ID, otherwise the - character.

	ping_sent (int [https://docs.python.org/3/library/functions.html#int]) – Milliseconds unix time at which the currently active ping
was sent, or zero if there are no pending pings.

	pong_recv (int [https://docs.python.org/3/library/functions.html#int]) – Milliseconds unix time the last pong was received.

	config_epoch (int [https://docs.python.org/3/library/functions.html#int]) – The configuration epoch (or version) of the current
node (or of the current master if the node is a slave). Each time there is
a failover, a new, unique, monotonically increasing configuration epoch is
created. If multiple nodes claim to serve the same hash slots, the one with
higher configuration epoch wins.

	link_state (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The state of the link used for the node-to-node cluster
bus. We use this link to communicate with the node. Can be connected or
disconnected.

	slots (list [https://docs.python.org/3/library/stdtypes.html#list](tuple [https://docs.python.org/3/library/stdtypes.html#tuple](int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]))) – A hash slot number or range. There may be up to 16384 entries in
total (limit never reached). This is the list of hash slots served by this
node. If the entry is just a number, is parsed as such. If it is a range,
it is in the form start-end, and means that the node is responsible for
all the hash slots from start to end including the start and end values.

	
class tredis.RedisClient(host='localhost', port=6379, db=0, on_close=None, clustering=False, auto_connect=True)

	This is provided for backwards compatibility for versions < 0.7.

Deprecated since version 0.7.

	Parameters

	
	host (str [https://docs.python.org/3/library/stdtypes.html#str]) – The hostname to connect to

	port (int [https://docs.python.org/3/library/functions.html#int]) – The port to connect on

	db (int [https://docs.python.org/3/library/functions.html#int]) – The database number to use

	on_close (method) – The method to call if the connection is closed

	clustering (bool [https://docs.python.org/3/library/functions.html#bool]) – Toggle the cluster support in the client

	auto_connect (bool [https://docs.python.org/3/library/functions.html#bool]) – Toggle the auto-connect on creation feature

	
append(key, value)

	If key already exists and is a string, this command appends the
value at the end of the string. If key does not exist it is created and
set as an empty string, so append() will be
similar to set() in this special case.

New in version 0.2.0.

Note

Time complexity: O(1). The amortized time complexity
is O(1) assuming the appended value is small and the already
present value is of any size, since the dynamic string library used
by Redis will double the free space available on every reallocation.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get

	value (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The value to append to the key

	Returns

	The length of the string after the append operation

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
auth(password)

	Request for authentication in a password-protected Redis server.
Redis can be instructed to require a password before allowing clients
to execute commands. This is done using the requirepass directive
in the configuration file.

If the password does not match, an
AuthError exception
will be raised.

	Parameters

	password (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The password to authenticate with

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	AuthError,
RedisError

	
bitcount(key, start=None, end=None)

	Count the number of set bits (population counting) in a string.

By default all the bytes contained in the string are examined. It is
possible to specify the counting operation only in an interval passing
the additional arguments start and end.

Like for the getrange() command start and
end can contain negative values in order to index bytes starting from
the end of the string, where -1 is the last byte, -2 is the
penultimate, and so forth.

Non-existent keys are treated as empty strings, so the command will
return zero.

New in version 0.2.0.

Note

Time complexity: O(N)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get

	start (int [https://docs.python.org/3/library/functions.html#int]) – The start position to evaluate in the string

	end (int [https://docs.python.org/3/library/functions.html#int]) – The end position to evaluate in the string

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

	
bitop(operation, dest_key, *keys)

	Perform a bitwise operation between multiple keys (containing
string values) and store the result in the destination key.

The values for operation can be one of:

	b'AND'

	b'OR'

	b'XOR'

	b'NOT'

	tredis.BITOP_AND or b'&'

	tredis.BITOP_OR or b'|'

	tredis.BITOP_XOR or b'^'

	tredis.BITOP_NOT or b'~'

b'NOT' is special as it only takes an input key, because it
performs inversion of bits so it only makes sense as an unary operator.

The result of the operation is always stored at dest_key.

Handling of strings with different lengths

When an operation is performed between strings having different
lengths, all the strings shorter than the longest string in the set are
treated as if they were zero-padded up to the length of the longest
string.

The same holds true for non-existent keys, that are considered as a
stream of zero bytes up to the length of the longest string.

New in version 0.2.0.

Note

Time complexity: O(N)

	Parameters

	
	operation (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The operation to perform

	dest_key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to store the bitwise operation results to

	keys (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – One or more keys as keyword parameters for the bitwise op

	Returns

	The size of the string stored in the destination key, that is
equal to the size of the longest input string.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

	
bitpos(key, bit, start=None, end=None)

	Return the position of the first bit set to 1 or 0 in a
string.

The position is returned, thinking of the string as an array of bits
from left to right, where the first byte’s most significant bit is at
position 0, the second byte’s most significant bit is at position
8, and so forth.

The same bit position convention is followed by
getbit() and
setbit().

By default, all the bytes contained in the string are examined. It is
possible to look for bits only in a specified interval passing the
additional arguments start and end (it is possible to just pass start,
the operation will assume that the end is the last byte of the string.
However there are semantic differences as explained later). The range
is interpreted as a range of bytes and not a range of bits, so
start=0 and end=2 means to look at the first three bytes.

Note that bit positions are returned always as absolute values starting
from bit zero even when start and end are used to specify a range.

Like for the getrange() command start and
end can contain negative values in order to index bytes starting from
the end of the string, where -1 is the last byte, -2 is the
penultimate, and so forth.

Non-existent keys are treated as empty strings.

New in version 0.2.0.

Note

Time complexity: O(N)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get

	bit (int [https://docs.python.org/3/library/functions.html#int]) – The bit value to search for (1 or 0)

	start (int [https://docs.python.org/3/library/functions.html#int]) – The start position to evaluate in the string

	end (int [https://docs.python.org/3/library/functions.html#int]) – The end position to evaluate in the string

	Returns

	The position of the first bit set to 1 or 0

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

	
close()

	Close any open connections to Redis.

	Raises

	tredis.exceptions.ConnectionError

	
cluster_info()

	CLUSTER INFO provides INFO style information about Redis
Cluster vital parameters.

New in version 0.7.0.

	Returns

	A dictionary of current cluster information

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Key cluster_state

	State is ok if the node is able to receive
queries. fail if there is at least one hash slot which is unbound
(no node associated), in error state (node serving it is flagged
with FAIL flag), or if the majority of masters can’t be
reached by this node.

	Key cluster_slots_assigned

	Number of slots which are associated to
some node (not unbound). This number should be 16384 for the
node to work properly, which means that each hash slot should be
mapped to a node.

	Key cluster_slots_ok

	Number of hash slots mapping to a node not in
FAIL or PFAIL state.

	Key cluster_slots_pfail

	Number of hash slots mapping to a node in
PFAIL state. Note that those hash slots still work
correctly, as long as the PFAIL state is not promoted to
FAIL by the failure detection algorithm. PFAIL
only means that we are currently not able to talk with the node,
but may be just a transient error.

	Key cluster_slots_fail

	Number of hash slots mapping to a node in
FAIL state. If this number is not zero the node is not
able to serve queries unless cluster-require-full-coverage is set
to no in the configuration.

	Key cluster_known_nodes

	The total number of known nodes in the
cluster, including nodes in HANDSHAKE state that may not
currently be proper members of the cluster.

	Key cluster_size

	The number of master nodes serving at least one
hash slot in the cluster.

	Key cluster_current_epoch

	The local Current Epoch variable. This is
used in order to create unique increasing version numbers during
fail overs.

	Key cluster_my_epoch

	The Config Epoch of the node we are talking
with. This is the current configuration version assigned to this
node.

	Key cluster_stats_messages_sent

	Number of messages sent via the
cluster node-to-node binary bus.

	Key cluster_stats_messages_received

	Number of messages received via
the cluster node-to-node binary bus.

	Raises

	RedisError

	
cluster_nodes()

	Each node in a Redis Cluster has its view of the current cluster
configuration, given by the set of known nodes, the state of the
connection we have with such nodes, their flags, properties and
assigned slots, and so forth.

CLUSTER NODES provides all this information, that is, the current
cluster configuration of the node we are contacting, in a serialization
format which happens to be exactly the same as the one used by Redis
Cluster itself in order to store on disk the cluster state (however the
on disk cluster state has a few additional info appended at the end).

Note that normally clients willing to fetch the map between Cluster
hash slots and node addresses should use CLUSTER SLOTS instead.
CLUSTER NODES, that provides more information, should be used for
administrative tasks, debugging, and configuration inspections. It is
also used by redis-trib in order to manage a cluster.

New in version 0.7.0.

	Return type

	list(ClusterNode)

	Raises

	RedisError

	
connect()

	Connect to the Redis server or Cluster.

	Return type

	tornado.concurrent.Future [http://www.tornadoweb.org/en/stable/concurrent.html#tornado.concurrent.Future]

	
decr(key)

	Decrements the number stored at key by one. If the key does not
exist, it is set to 0 before performing the operation. An error is
returned if the key contains a value of the wrong type or contains a
string that can not be represented as integer. This operation is
limited to 64 bit signed integers.

See incr() for extra information on
increment/decrement operations.

New in version 0.2.0.

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to decrement

	Returns

	The value of key after the decrement

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
decrby(key, decrement)

	Decrements the number stored at key by decrement. If the key does
not exist, it is set to 0 before performing the operation. An error
is returned if the key contains a value of the wrong type or contains
a string that can not be represented as integer. This operation is
limited to 64 bit signed integers.

See incr() for extra information on
increment/decrement operations.

New in version 0.2.0.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to decrement

	decrement (int [https://docs.python.org/3/library/functions.html#int]) – The amount to decrement by

	Returns

	The value of key after the decrement

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
delete(*keys)

	Removes the specified keys. A key is ignored if it does not exist.
Returns True [https://docs.python.org/3/library/constants.html#True] if all keys are removed.

Note

Time complexity: O(N) where N is the number of keys that
will be removed. When a key to remove holds a value other than a
string, the individual complexity for this key is O(M) where
M is the number of elements in the list, set, sorted set or
hash. Removing a single key that holds a string value is O(1).

	Parameters

	keys (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – One or more keys to remove

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
dump(key)

	Serialize the value stored at key in a Redis-specific format and
return it to the user. The returned value can be synthesized back into
a Redis key using the restore() command.

The serialization format is opaque and non-standard, however it has a
few semantic characteristics:

	It contains a 64-bit checksum that is used to make sure errors
will be detected. The restore() command
makes sure to check the checksum before synthesizing a key using
the serialized value.

	Values are encoded in the same format used by RDB.

	An RDB version is encoded inside the serialized value, so that
different Redis versions with incompatible RDB formats will
refuse to process the serialized value.

	The serialized value does NOT contain expire information. In
order to capture the time to live of the current value the
pttl() command should be used.

If key does not exist None [https://docs.python.org/3/library/constants.html#None] is returned.

Note

Time complexity: O(1) to access the key and additional
O(N*M) to serialized it, where N is the number of Redis objects
composing the value and M their average size. For small string
values the time complexity is thus O(1)+O(1*M) where M is
small, so simply O(1).

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to dump

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes], None [https://docs.python.org/3/library/constants.html#None]

	
echo(message)

	Returns the message that was sent to the Redis server.

	Parameters

	message (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The message to echo

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Raises

	RedisError

	
eval(script, keys=None, args=None)

	eval() and
evalsha() are used to evaluate scripts using
the Lua interpreter built into Redis starting from version 2.6.0.

The first argument of EVAL is a Lua 5.1 script. The script does not
need to define a Lua function (and should not). It is just a Lua
program that will run in the context of the Redis server.

Note

Time complexity: Depends on the script that is executed.

	Parameters

	
	script (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Lua script to execute

	keys (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of keys to pass into the script

	args (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of args to pass into the script

	Returns

	mixed

	
evalsha(sha1, keys=None, args=None)

	Evaluates a script cached on the server side by its SHA1 digest.
Scripts are cached on the server side using the
script_load() command. The command is
otherwise identical to eval().

Note

Time complexity: Depends on the script that is executed.

	Parameters

	
	sha1 (str [https://docs.python.org/3/library/stdtypes.html#str]) – The sha1 hash of the script to execute

	keys (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of keys to pass into the script

	args (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of args to pass into the script

	Returns

	mixed

	
exists(key)

	Returns True [https://docs.python.org/3/library/constants.html#True] if the key exists.

Note

Time complexity: O(1)

Command Type: String

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – One or more keys to check for

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
expire(key, timeout)

	Set a timeout on key. After the timeout has expired, the key will
automatically be deleted. A key with an associated timeout is often
said to be volatile in Redis terminology.

The timeout is cleared only when the key is removed using the
delete() method or overwritten using the
set() or getset()
methods. This means that all the operations that conceptually alter the
value stored at the key without replacing it with a new one will leave
the timeout untouched. For instance, incrementing the value of a key
with incr(), pushing a new value into a
list with lpush(), or altering the field
value of a hash with hset() are all
operations that will leave the timeout untouched.

The timeout can also be cleared, turning the key back into a persistent
key, using the persist() method.

If a key is renamed with rename(),
the associated time to live is transferred to the new key name.

If a key is overwritten by rename(), like in
the case of an existing key Key_A that is overwritten by a call
like client.rename(Key_B, Key_A) it does not matter if the original
Key_A had a timeout associated or not, the new key Key_A will
inherit all the characteristics of Key_B.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to set an expiration for

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – The number of seconds to set the timeout to

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
expireat(key, timestamp)

	expireat() has the same effect and
semantic as expire(), but instead of
specifying the number of seconds representing the TTL (time to live),
it takes an absolute Unix timestamp (seconds since January 1, 1970).

Please for the specific semantics of the command refer to the
documentation of expire().

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to set an expiration for

	timestamp (int [https://docs.python.org/3/library/functions.html#int]) – The UNIX epoch value for the expiration

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
get(key)

	Get the value of key. If the key does not exist the special value
None [https://docs.python.org/3/library/constants.html#None] is returned. An error is returned if the value stored
at key is not a string, because get() only
handles string values.

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get

	Return type

	bytes|None

	Raises

	RedisError

	
getbit(key, offset)

	Returns the bit value at offset in the string value stored at key.

When offset is beyond the string length, the string is assumed to be a
contiguous space with 0 bits. When key does not exist it is assumed to
be an empty string, so offset is always out of range and the value is
also assumed to be a contiguous space with 0 bits.

New in version 0.2.0.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get the bit from

	offset (int [https://docs.python.org/3/library/functions.html#int]) – The bit offset to fetch the bit from

	Return type

	bytes|None

	Raises

	RedisError

	
getrange(key, start, end)

	Returns the bit value at offset in the string value stored at key.

When offset is beyond the string length, the string is assumed to be a
contiguous space with 0 bits. When key does not exist it is assumed to
be an empty string, so offset is always out of range and the value is
also assumed to be a contiguous space with 0 bits.

New in version 0.2.0.

Note

Time complexity: O(N) where N is the length of
the returned string. The complexity is ultimately determined by the
returned length, but because creating a substring from an existing
string is very cheap, it can be considered O(1) for small
strings.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get the bit from

	start (int [https://docs.python.org/3/library/functions.html#int]) – The start position to evaluate in the string

	end (int [https://docs.python.org/3/library/functions.html#int]) – The end position to evaluate in the string

	Return type

	bytes|None

	Raises

	RedisError

	
getset(key, value)

	Atomically sets key to value and returns the old value stored at
key. Returns an error when key exists but does not hold a string value.

New in version 0.2.0.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to remove

	value (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The value to set

	Returns

	The previous value

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Raises

	RedisError

	
hdel(key, *fields)

	Remove the specified fields from the hash stored at key.

Specified fields that do not exist within this hash are ignored.
If key does not exist, it is treated as an empty hash and this
command returns zero.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the hash

	fields – iterable of field names to retrieve

	Returns

	the number of fields that were removed from the hash,
not including specified by non-existing fields.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
hexists(key, field)

	Returns if field is an existing field in the hash stored at key.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the hash

	field – name of the field to test for

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
hget(key, field)

	Returns the value associated with field in the hash stored at key.

Note

Time complexity: always O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the hash

	field – The field in the hash to get

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes], list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	RedisError

	
hgetall(key)

	Returns all fields and values of the has stored at key.

The underlying redis HGETALL [http://redis.io/commands/hgetall] command returns an array of
pairs. This method converts that to a Python dict [https://docs.python.org/3/library/stdtypes.html#dict].
It will return an empty dict [https://docs.python.org/3/library/stdtypes.html#dict] when the key is not
found.

Note

Time complexity: O(N) where N is the size
of the hash.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the hash

	Returns

	a dict [https://docs.python.org/3/library/stdtypes.html#dict] of key to value mappings for all
fields in the hash

	
hincrby(key, field, increment)

	Increments the number stored at field in the hash stored at key.

If key does not exist, a new key holding a hash is created. If
field does not exist the value is set to 0 before the operation
is performed. The range of values supported is limited to 64-bit
signed integers.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the hash

	field – name of the field to increment

	increment (int [https://docs.python.org/3/library/functions.html#int]) – amount to increment by

	Returns

	the value at field after the increment occurs

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
hincrbyfloat(key, field, increment)

	Increments the number stored at field in the hash stored at key.

If the increment value is negative, the result is to have the hash
field decremented instead of incremented. If the field does not
exist, it is set to 0 before performing the operation. An error
is returned if one of the following conditions occur:

	the field contains a value of the wrong type (not a string)

	the current field content or the specified increment are not
parseable as a double precision floating point number

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the hash

	field – name of the field to increment

	increment (float [https://docs.python.org/3/library/functions.html#float]) – amount to increment by

	Returns

	the value at field after the increment occurs

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
hkeys(key)

	Returns all field names in the hash stored at key.

Note

Time complexity: O(N) where N is the size of the hash

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the hash

	Returns

	the list of fields in the hash

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
hlen(key)

	Returns the number of fields contained in the hash stored at key.

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the hash

	Returns

	the number of fields in the hash or zero when key
does not exist

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
hmget(key, *fields)

	Returns the values associated with the specified fields in a hash.

For every field that does not exist in the hash, None [https://docs.python.org/3/library/constants.html#None]
is returned. Because a non-existing keys are treated as empty
hashes, calling hmget() against a non-existing key will
return a list of None [https://docs.python.org/3/library/constants.html#None] values.

Note

Time complexity: O(N) where N is the number of fields
being requested.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the hash

	fields – iterable of field names to retrieve

	Returns

	a dict [https://docs.python.org/3/library/stdtypes.html#dict] of field name to value mappings for
each of the requested fields

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
hmset(key, value_dict)

	Sets fields to values as in value_dict in the hash stored at key.

Sets the specified fields to their respective values in the hash
stored at key. This command overwrites any specified fields
already existing in the hash. If key does not exist, a new key
holding a hash is created.

Note

Time complexity: O(N) where N is the number of
fields being set.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the hash

	value_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – field to value mapping

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
hset(key, field, value)

	Sets field in the hash stored at key to value.

If key does not exist, a new key holding a hash is created. If
field already exists in the hash, it is overwritten.

Note

Time complexity: always O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the hash

	field – The field in the hash to set

	value – The value to set the field to

	Returns

	1 if field is a new field in the hash and value
was set; otherwise, 0 if field already exists in the hash
and the value was updated

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
hsetnx(key, field, value)

	Sets field in the hash stored at key only if it does not exist.

Sets field in the hash stored at key only if field does not
yet exist. If key does not exist, a new key holding a hash is
created. If field already exists, this operation has no effect.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the hash

	field – The field in the hash to set

	value – The value to set the field to

	Returns

	1 if field is a new field in the hash and value
was set. 0 if field already exists in the hash and
no operation was performed

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
hvals(key)

	Returns all values in the hash stored at key.

Note

Time complexity O(N) where N is the size of the hash

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the hash

	Returns

	a list [https://docs.python.org/3/library/stdtypes.html#list] of bytes [https://docs.python.org/3/library/stdtypes.html#bytes] instances or an
empty list when key does not exist

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
incr(key)

	Increments the number stored at key by one. If the key does not
exist, it is set to 0 before performing the operation. An error is
returned if the key contains a value of the wrong type or contains a
string that can not be represented as integer. This operation is
limited to 64 bit signed integers.

Note

This is a string operation because Redis does not have a
dedicated integer type. The string stored at the key is interpreted
as a base-10 64 bit signed integer to execute the operation.

Redis stores integers in their integer representation, so for string
values that actually hold an integer, there is no overhead for storing
the string representation of the integer.

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to increment

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
incrby(key, increment)

	Increments the number stored at key by increment. If the key does
not exist, it is set to 0 before performing the operation. An error is
returned if the key contains a value of the wrong type or contains a
string that can not be represented as integer. This operation is
limited to 64 bit signed integers.

See incr() for extra information on
increment/decrement operations.

New in version 0.2.0.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to increment

	increment (int [https://docs.python.org/3/library/functions.html#int]) – The amount to increment by

	Returns

	The value of key after the increment

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
incrbyfloat(key, increment)

	Increment the string representing a floating point number stored at
key by the specified increment. If the key does not exist, it is set to
0 before performing the operation. An error is returned if one of the
following conditions occur:

	The key contains a value of the wrong type (not a string).

	The current key content or the specified increment are not
parsable as a double precision floating point number.

If the command is successful the new incremented value is stored as the
new value of the key (replacing the old one), and returned to the
caller as a string.

Both the value already contained in the string key and the increment
argument can be optionally provided in exponential notation, however
the value computed after the increment is stored consistently in the
same format, that is, an integer number followed (if needed) by a dot,
and a variable number of digits representing the decimal part of the
number. Trailing zeroes are always removed.

The precision of the output is fixed at 17 digits after the decimal
point regardless of the actual internal precision of the computation.

New in version 0.2.0.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to increment

	increment (float [https://docs.python.org/3/library/functions.html#float]) – The amount to increment by

	Returns

	The value of key after the increment

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Raises

	RedisError

	
info(section=None)

	The INFO command returns information and statistics about the server
in a format that is simple to parse by computers and easy to read by
humans.

The optional parameter can be used to select a specific section of
information:

	server: General information about the Redis server

	clients: Client connections section

	memory: Memory consumption related information

	persistence: RDB and AOF related information

	stats: General statistics

	replication: Master/slave replication information

	cpu: CPU consumption statistics

	commandstats: Redis command statistics

	cluster: Redis Cluster section

	keyspace: Database related statistics

It can also take the following values:

	all: Return all sections

	default: Return only the default set of sections

When no parameter is provided, the default option is assumed.

	Parameters

	section (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional

	Returns

	dict

	
keys(pattern)

	Returns all keys matching pattern.

While the time complexity for this operation is O(N), the constant
times are fairly low. For example, Redis running on an entry level
laptop can scan a 1 million key database in 40 milliseconds.

Warning

Consider keys() as a
command that should only be used in production environments with
extreme care. It may ruin performance when it is executed against
large databases. This command is intended for debugging and special
operations, such as changing your keyspace layout. Don’t use
keys() in your regular application code.
If you’re looking for a way to find keys in a subset of your
keyspace, consider using scan() or sets.

Supported glob-style patterns:

	h?llo matches hello, hallo and hxllo

	h*llo matches hllo and heeeello

	h[ae]llo matches hello and hallo, but not hillo

	h[^e]llo matches hallo, hbllo, but not hello

	h[a-b]llo matches hallo and hbllo

Use a backslash (\) to escape special characters if you want to
match them verbatim.

Note

Time complexity: O(N)

	Parameters

	pattern (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The pattern to use when looking for keys

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	RedisError

	
llen(key)

	Returns the length of the list stored at key.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The list’s key

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	TRedisException

If key does not exist, it is interpreted as an empty list and 0 is
returned. An error is returned when the value stored at key is not a
list.

Note

Time complexity O(1)

	
lpop(key)

	Removes and returns the first element of the list stored at key.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The list’s key

	Returns

	the element at the head of the list, None [https://docs.python.org/3/library/constants.html#None] if the
list does not exist

	Raises

	TRedisException

Note

Time complexity: O(1)

	
lpush(key, *values)

	Insert all the specified values at the head of the list stored at key.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The list’s key

	values – One or more positional arguments to insert at the
beginning of the list. Each value is inserted at the beginning
of the list individually (see discussion below).

	Returns

	the length of the list after push operations

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	TRedisException

If key does not exist, it is created as empty list before
performing the push operations. When key holds a value that is not a
list, an error is returned.

It is possible to push multiple elements using a single command call
just specifying multiple arguments at the end of the command.
Elements are inserted one after the other to the head of the list,
from the leftmost element to the rightmost element. So for instance
client.lpush('mylist', 'a', 'b', 'c') will result into a list
containing c as first element, b as second element and a
as third element.

Note

Time complexity: O(1)

	
lpushx(key, *values)

	Insert values at the head of an existing list.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The list’s key

	values – One or more positional arguments to insert at the
beginning of the list. Each value is inserted at the beginning
of the list individually (see discussion below).

	Returns

	the length of the list after push operations, zero if
key does not refer to a list

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	TRedisException

This method inserts values at the head of the list stored at key,
only if key already exists and holds a list. In contrary to
lpush(), no operation will be performed when key does not yet
exist.

Note

Time complexity: O(1)

	
lrange(key, start, end)

	Returns the specified elements of the list stored at key.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The list’s key

	start (int [https://docs.python.org/3/library/functions.html#int]) – zero-based index to start retrieving elements from

	end (int [https://docs.python.org/3/library/functions.html#int]) – zero-based index at which to stop retrieving elements

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	TRedisException

The offsets start and stop are zero-based indexes, with 0 being the
first element of the list (the head of the list), 1 being the next
element and so on.

These offsets can also be negative numbers indicating offsets
starting at the end of the list. For example, -1 is the last element
of the list, -2 the penultimate, and so on.

Note that if you have a list of numbers from 0 to 100,
lrange(key, 0, 10) will return 11 elements, that is, the
rightmost item is included. This may or may not be consistent with
behavior of range-related functions in your programming language of
choice (think Ruby’s Range.new, Array#slice or Python’s
range() function).

Out of range indexes will not produce an error. If start is larger
than the end of the list, an empty list is returned. If stop is
larger than the actual end of the list, Redis will treat it like the
last element of the list.

Note

Time complexity O(S+N) where S is the distance of
start offset from HEAD for small lists, from nearest end
(HEAD or TAIL) for large lists; and N is the number
of elements in the specified range.

	
ltrim(key, start, stop)

	Crop a list to the specified range.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The list’s key

	start (int [https://docs.python.org/3/library/functions.html#int]) – zero-based index to first element to retain

	stop (int [https://docs.python.org/3/library/functions.html#int]) – zero-based index of the last element to retain

	Returns

	did the operation succeed?

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	TRedisException

Trim an existing list so that it will contain only the specified
range of elements specified.

Both start and stop are zero-based indexes, where 0 is the first
element of the list (the head), 1 the next element and so on.
For example: ltrim('foobar', 0, 2) will modify the list stored at
foobar so that only the first three elements of the list will
remain.

start and stop can also be negative numbers indicating offsets
from the end of the list, where -1 is the last element of the list,
-2 the penultimate element and so on.

Out of range indexes will not produce an error: if start is larger
than the end of the list, or start > end, the result will be an
empty list (which causes key to be removed). If end is larger
than the end of the list, Redis will treat it like the last element
of the list.

A common use of LTRIM is together with LPUSH / RPUSH. For example:

client.lpush('mylist', 'somelement')
client.ltrim('mylist', 0, 99)

This pair of commands will push a new element on the list, while
making sure that the list will not grow larger than 100 elements.
This is very useful when using Redis to store logs for example. It is
important to note that when used in this way LTRIM is an O(1)
operation because in the average case just one element is removed
from the tail of the list.

Note

Time complexity: O(N) where N is the number of elements to
be removed by the operation.

	
mget(*keys)

	Returns the values of all specified keys. For every key that does
not hold a string value or does not exist, the special value nil is
returned. Because of this, the operation never fails.

New in version 0.2.0.

Note

Time complexity: O(N) where N is the number of
keys to retrieve.

	Parameters

	keys (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – One or more keys as keyword arguments to the function

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	RedisError

	
migrate(host, port, key, destination_db, timeout, copy=False, replace=False)

	Atomically transfer a key from a source Redis instance to a
destination Redis instance. On success the key is deleted from the
original instance and is guaranteed to exist in the target instance.

The command is atomic and blocks the two instances for the time
required to transfer the key, at any given time the key will appear to
exist in a given instance or in the other instance, unless a timeout
error occurs.

Note

Time complexity: This command actually executes a DUMP+DEL in
the source instance, and a RESTORE in the target instance. See the
pages of these commands for time complexity. Also an O(N) data
transfer between the two instances is performed.

	Parameters

	
	host (bytes [https://docs.python.org/3/library/stdtypes.html#bytes], str [https://docs.python.org/3/library/stdtypes.html#str]) – The host to migrate the key to

	port (int [https://docs.python.org/3/library/functions.html#int]) – The port to connect on

	key (bytes [https://docs.python.org/3/library/stdtypes.html#bytes], str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to migrate

	destination_db (int [https://docs.python.org/3/library/functions.html#int]) – The database number to select

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – The maximum idle time in milliseconds

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – Do not remove the key from the local instance

	replace (bool [https://docs.python.org/3/library/functions.html#bool]) – Replace existing key on the remote instance

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
move(key, db)

	Move key from the currently selected database (see
select()) to the specified destination
database. When key already exists in the destination database, or it
does not exist in the source database, it does nothing. It is possible
to use move() as a locking primitive because
of this.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to move

	db (int [https://docs.python.org/3/library/functions.html#int]) – The database number

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
mset(mapping)

	Sets the given keys to their respective values.
mset() replaces existing values with new
values, just as regular set(). See
msetnx() if you don’t want to overwrite
existing values.

mset() is atomic, so all given keys are set
at once. It is not possible for clients to see that some of the keys
were updated while others are unchanged.

New in version 0.2.0.

Note

Time complexity: O(N) where N is the number of
keys to set.

	Parameters

	mapping (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A mapping of key/value pairs to set

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
msetnx(mapping)

	Sets the given keys to their respective values.
msetnx() will not perform any operation at
all even if just a single key already exists.

Because of this semantic msetnx() can be used
in order to set different keys representing different fields of an
unique logic object in a way that ensures that either all the fields or
none at all are set.

msetnx() is atomic, so all given keys are set
at once. It is not possible for clients to see that some of the keys
were updated while others are unchanged.

New in version 0.2.0.

Note

Time complexity: O(N) where N is the number of
keys to set.

	Parameters

	mapping (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A mapping of key/value pairs to set

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
object_encoding(key)

	Return the kind of internal representation used in order to store
the value associated with a key

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get the encoding for

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Raises

	RedisError

	
object_idle_time(key)

	Return the number of seconds since the object stored at the
specified key is idle (not requested by read or write operations).
While the value is returned in seconds the actual resolution of this
timer is 10 seconds, but may vary in future implementations of Redis.

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get the idle time for

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
object_refcount(key)

	Return the number of references of the value associated with the
specified key. This command is mainly useful for debugging.

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get the refcount for

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
persist(key)

	Remove the existing timeout on key, turning the key from volatile
(a key with an expire set) to persistent (a key that will never expire
as no timeout is associated).

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to move

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
pexpire(key, timeout)

	This command works exactly like pexpire()
but the time to live of the key is specified in milliseconds instead of
seconds.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to set an expiration for

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – The number of milliseconds to set the timeout to

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
pexpireat(key, timestamp)

	pexpireat() has the same effect and
semantic as expireat(), but the Unix time
at which the key will expire is specified in milliseconds instead of
seconds.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to set an expiration for

	timestamp (int [https://docs.python.org/3/library/functions.html#int]) – The expiration UNIX epoch value in milliseconds

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
pfadd(key, *elements)

	Adds all the element arguments to the HyperLogLog data structure
stored at the variable name specified as first argument.

As a side effect of this command the HyperLogLog internals may be
updated to reflect a different estimation of the number of unique items
added so far (the cardinality of the set).

If the approximated cardinality estimated by the HyperLogLog changed
after executing the command, pfadd() returns
1, otherwise 0 is returned. The command automatically creates
an empty HyperLogLog structure (that is, a Redis String of a specified
length and with a given encoding) if the specified key does not exist.

To call the command without elements but just the variable name is
valid, this will result into no operation performed if the variable
already exists, or just the creation of the data structure if the key
does not exist (in the latter case 1 is returned).

For an introduction to HyperLogLog data structure check
pfcount().

New in version 0.2.0.

Note

Time complexity: O(1) to add every element.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to add the elements to

	elements (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – One or more elements to add

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
pfcount(*keys)

	When called with a single key, returns the approximated cardinality
computed by the HyperLogLog data structure stored at the specified
variable, which is 0 if the variable does not exist.

When called with multiple keys, returns the approximated cardinality of
the union of the HyperLogLogs passed, by internally merging the
HyperLogLogs stored at the provided keys into a temporary HyperLogLog.

The HyperLogLog data structure can be used in order to count unique
elements in a set using just a small constant amount of memory,
specifically 12k bytes for every HyperLogLog (plus a few bytes for the
key itself).

The returned cardinality of the observed set is not exact, but
approximated with a standard error of 0.81%.

For example in order to take the count of all the unique search queries
performed in a day, a program needs to call
pfcount() every time a query is processed. The
estimated number of unique queries can be retrieved with
pfcount() at any time.

Note

as a side effect of calling this function, it is possible
that the HyperLogLog is modified, since the last 8 bytes encode the
latest computed cardinality for caching purposes. So
pfcount() is technically a write command.

New in version 0.2.0.

Note

Time complexity: O(1) with every small average
constant times when called with a single key. O(N) with N
being the number of keys, and much bigger constant times, when
called with multiple keys.

	Parameters

	keys (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – One or more keys

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Returns

	The approximated number of unique elements observed

	Raises

	RedisError

	
pfmerge(dest_key, *keys)

	Merge multiple HyperLogLog values into an unique value that will
approximate the cardinality of the union of the observed Sets of the
source HyperLogLog structures.

The computed merged HyperLogLog is set to the destination variable,
which is created if does not exist (defaulting to an empty
HyperLogLog).

New in version 0.2.0.

Note

Time complexity: O(N) to merge N HyperLogLogs, but
with high constant times.

	Parameters

	
	dest_key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The destination key

	keys (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – One or more keys

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
ping()

	Returns PONG if no argument is provided, otherwise return a copy
of the argument as a bulk. This command is often used to test if a
connection is still alive, or to measure latency.

If the client is subscribed to a channel or a pattern, it will instead
return a multi-bulk with a pong in the first position and an empty
bulk in the second position, unless an argument is provided in which
case it returns a copy of the argument.

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Raises

	RedisError

	
psetex(key, milliseconds, value)

	psetex() works exactly like
psetex() with the sole difference that the
expire time is specified in milliseconds instead of seconds.

New in version 0.2.0.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to set

	milliseconds (int [https://docs.python.org/3/library/functions.html#int]) – Number of milliseconds for TTL

	value (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The value to set

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
pttl(key)

	Like ttl() this command returns the
remaining time to live of a key that has an expire set, with the sole
difference that ttl() returns the amount of
remaining time in seconds while pttl()
returns it in milliseconds.

In Redis 2.6 or older the command returns -1 if the key does not
exist or if the key exist but has no associated expire.

Starting with Redis 2.8 the return value in case of error changed:

	The command returns -2 if the key does not exist.

	The command returns -1 if the key exists but has no associated
expire.

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get the PTTL for

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
quit()

	Ask the server to close the connection. The connection is closed as
soon as all pending replies have been written to the client.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
randomkey()

	Return a random key from the currently selected database.

Note

Time complexity: O(1)

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Raises

	RedisError

	
ready

	Indicates that the client is connected to the Redis server or
cluster and is ready for use.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
rename(key, new_key)

	Renames key to new_key. It returns an error when the source
and destination names are the same, or when key does not exist.
If new_key already exists it is overwritten, when this happens
rename() executes an implicit
delete() operation, so if the deleted key
contains a very big value it may cause high latency even if
rename() itself is usually a constant-time
operation.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to rename

	new_key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to rename it to

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
renamenx(key, new_key)

	Renames key to new_key if new_key does not yet exist.
It returns an error under the same conditions as
rename().

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to rename

	new_key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to rename it to

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
restore(key, ttl, value, replace=False)

	Create a key associated with a value that is obtained by
deserializing the provided serialized value (obtained via
dump()).

If ttl is 0 the key is created without any expire, otherwise
the specified expire time (in milliseconds) is set.

restore() will return a
Target key name is busy error when key already exists unless you
use the restore() modifier (Redis 3.0 or
greater).

restore() checks the RDB version and data
checksum. If they don’t match an error is returned.

Note

Time complexity: O(1) to create the new key and additional
O(N*M) to reconstruct the serialized value, where N is the
number of Redis objects composing the value and M their average
size. For small string values the time complexity is thus
O(1)+O(1*M) where M is small, so simply O(1). However
for sorted set values the complexity is O(N*M*log(N)) because
inserting values into sorted sets is O(log(N)).

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get the TTL for

	ttl (int [https://docs.python.org/3/library/functions.html#int]) – The number of seconds to set the timeout to

	value (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The value to restore to the key

	replace (bool [https://docs.python.org/3/library/functions.html#bool]) – Replace a pre-existing key

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
rpop(key)

	Removes and returns the last element of the list stored at key.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The list’s key

	Returns

	the length of the list after push operations or
zero if key does not refer to a list

	Returns

	the element at the tail of the list, None [https://docs.python.org/3/library/constants.html#None] if the
list does not exist

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	TRedisException

	
rpush(key, *values)

	Insert all the specified values at the tail of the list stored at key.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The list’s key

	values – One or more positional arguments to insert at the
tail of the list.

	Returns

	the length of the list after push operations

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	TRedisException

If key does not exist, it is created as empty list before performing
the push operation. When key holds a value that is not a list, an
error is returned.

It is possible to push multiple elements using a single command call
just specifying multiple arguments at the end of the command.
Elements are inserted one after the other to the tail of the list,
from the leftmost element to the rightmost element. So for instance
the command client.rpush('mylist', 'a', 'b', 'c') will result
in a list containing a as first element, b as second element
and c as third element.

Note

Time complexity: O(1)

	
rpushx(key, *values)

	Insert values at the tail of an existing list.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The list’s key

	values – One or more positional arguments to insert at the
tail of the list.

	Returns

	the length of the list after push operations or
zero if key does not refer to a list

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	TRedisException

This method inserts value at the tail of the list stored at key,
only if key already exists and holds a list. In contrary to
method:.rpush, no operation will be performed when key does not
yet exist.

Note

Time complexity: O(1)

	
sadd(key, *members)

	Add the specified members to the set stored at key. Specified
members that are already a member of this set are ignored. If key does
not exist, a new set is created before adding the specified members.

An error is returned when the value stored at key is not a set.

Returns True [https://docs.python.org/3/library/constants.html#True] if all requested members are added. If more
than one member is passed in and not all members are added, the
number of added members is returned.

Note

Time complexity: O(N) where N is the number of members
to be added.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the set

	members – One or more positional arguments to add to the set

	Returns

	Number of items added to the set

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int]

	
scan(cursor=0, pattern=None, count=None)

	The scan() command and the closely related
commands sscan(),
hscan() and zscan()
are used in order to incrementally iterate over a collection of
elements.

	scan() iterates the set of keys in the
currently selected Redis database.

	sscan() iterates elements of Sets types.

	hscan() iterates fields of Hash types and
their associated values.

	zscan() iterates elements of Sorted Set
types and their associated scores.

Basic usage

scan() is a cursor based iterator.
This means that at every call of the command, the server returns an
updated cursor that the user needs to use as the cursor argument in
the next call.

An iteration starts when the cursor is set to 0, and terminates
when the cursor returned by the server is 0.

For more information on scan(),
visit the Redis docs on scan [http://redis.io/commands/scan].

Note

Time complexity: O(1) for every call. O(N) for a
complete iteration, including enough command calls for the cursor to
return back to 0. N is the number of elements inside the
collection.

	Parameters

	
	cursor (int [https://docs.python.org/3/library/functions.html#int]) – The server specified cursor value or 0

	pattern (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – An optional pattern to apply for key matching

	count (int [https://docs.python.org/3/library/functions.html#int]) – An optional amount of work to perform in the scan

	Return type

	int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]

	Returns

	A tuple containing the cursor and the list of keys

	Raises

	RedisError

	
scard(key)

	Returns the set cardinality (number of elements) of the set stored
at key.

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the set

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
script_exists(*hashes)

	Returns information about the existence of the scripts in the script
cache.

This command accepts one or more SHA1 digests and returns a list of
ones or zeros to signal if the scripts are already defined or not
inside the script cache. This can be useful before a pipelining
operation to ensure that scripts are loaded (and if not, to load them
using script_load()) so that the pipelining
operation can be performed solely using
evalsha() instead of
eval() to save bandwidth.

Please refer to the eval() documentation for
detailed information about Redis Lua scripting.

Note

Time complexity: O(N) with N being the number of scripts
to check (so checking a single script is an O(1) operation).

	Parameters

	hashes (str [https://docs.python.org/3/library/stdtypes.html#str]) – One or more sha1 hashes to check for in the cache

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Returns

	Returns a list of 1 or 0 indicating if the specified
script(s) exist in the cache.

	
script_flush()

	Flush the Lua scripts cache.

Please refer to the eval() documentation for
detailed information about Redis Lua scripting.

Note

Time complexity: O(N) with N being the number of scripts
in cache

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
script_kill()

	Kills the currently executing Lua script, assuming no write
operation was yet performed by the script.

This command is mainly useful to kill a script that is running for too
much time(for instance because it entered an infinite loop because of
a bug). The script will be killed and the client currently blocked into
eval() will see the command returning with an
error.

If the script already performed write operations it can not be killed
in this way because it would violate Lua script atomicity contract. In
such a case only SHUTDOWN NOSAVE is able to kill the script, killing
the Redis process in an hard way preventing it to persist with
half-written information.

Please refer to the eval() documentation for
detailed information about Redis Lua scripting.

Note

Time complexity: O(1)

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
script_load(script)

	Load a script into the scripts cache, without executing it. After
the specified command is loaded into the script cache it will be
callable using evalsha() with the correct
SHA1 digest of the script, exactly like after the first successful
invocation of eval().

The script is guaranteed to stay in the script cache forever (unless
script_flush() is called).

The command works in the same way even if the script was already
present in the script cache.

Please refer to the eval() documentation for
detailed information about Redis Lua scripting.

Note

Time complexity: O(N) with N being the length in bytes
of the script body.

	Parameters

	script (str [https://docs.python.org/3/library/stdtypes.html#str]) – The script to load into the script cache

	Returns

	str

	
sdiff(*keys)

	Returns the members of the set resulting from the difference between
the first set and all the successive sets.

For example:

key1 = {a,b,c,d}
key2 = {c}
key3 = {a,c,e}
SDIFF key1 key2 key3 = {b,d}

Keys that do not exist are considered to be empty sets.

Note

Time complexity: O(N) where N is the total number of
elements in all given sets.

	Parameters

	keys (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Two or more set keys as positional arguments

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	RedisError

	
sdiffstore(destination, *keys)

	This command is equal to sdiff(), but
instead of returning the resulting set, it is stored in destination.

If destination already exists, it is overwritten.

Note

Time complexity: O(N) where N is the total number of
elements in all given sets.

	Parameters

	
	destination (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The set to store the diff into

	keys (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – One or more set keys as positional arguments

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
select(index=0)

	Select the DB with having the specified zero-based numeric index.
New connections always use DB 0.

	Parameters

	index (int [https://docs.python.org/3/library/functions.html#int]) – The database to select

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	Raises

	InvalidClusterCommand

	
set(key, value, ex=None, px=None, nx=False, xx=False)

	Set key to hold the string value. If key already holds a value, it
is overwritten, regardless of its type. Any previous time to live
associated with the key is discarded on successful
set() operation.

If the value is not one of str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], or
int [https://docs.python.org/3/library/functions.html#int], a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] will be raised.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to remove

	value (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], int [https://docs.python.org/3/library/functions.html#int]) – The value to set

	ex (int [https://docs.python.org/3/library/functions.html#int]) – Set the specified expire time, in seconds

	px (int [https://docs.python.org/3/library/functions.html#int]) – Set the specified expire time, in milliseconds

	nx (bool [https://docs.python.org/3/library/functions.html#bool]) – Only set the key if it does not already exist

	xx (bool [https://docs.python.org/3/library/functions.html#bool]) – Only set the key if it already exist

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

	
setbit(key, offset, bit)

	Sets or clears the bit at offset in the string value stored at key.

The bit is either set or cleared depending on value, which can be
either 0 or 1. When key does not exist, a new string value is created.
The string is grown to make sure it can hold a bit at offset. The
offset argument is required to be greater than or equal to 0, and
smaller than 2 32 (this limits bitmaps to 512MB). When the
string at key is grown, added bits are set to 0.

Warning

When setting the last possible bit (offset equal to
2 32 -1) and the string value stored at key does not yet hold
a string value, or holds a small string value, Redis needs to
allocate all intermediate memory which can block the server for some
time. On a 2010 MacBook Pro, setting bit number 2 32 -1
(512MB allocation) takes ~300ms, setting bit number 2 30 -1
(128MB allocation) takes ~80ms, setting bit number 2 28 -1
(32MB allocation) takes ~30ms and setting bit number 2 26 -1
(8MB allocation) takes ~8ms. Note that once this first allocation is
done, subsequent calls to setbit() for the
same key will not have the allocation overhead.

New in version 0.2.0.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get the bit from

	offset (int [https://docs.python.org/3/library/functions.html#int]) – The bit offset to fetch the bit from

	bit (int [https://docs.python.org/3/library/functions.html#int]) – The value (0 or 1) to set for the bit

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
setex(key, seconds, value)

	Set key to hold the string value and set key to timeout after a
given number of seconds.

setex() is atomic, and can be reproduced by
using set() and
expire() inside an
multi() /
exec() block. It is provided as a faster
alternative to the given sequence of operations, because this operation
is very common when Redis is used as a cache.

An error is returned when seconds is invalid.

New in version 0.2.0.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to set

	seconds (int [https://docs.python.org/3/library/functions.html#int]) – Number of seconds for TTL

	value (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The value to set

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
setnx(key, value)

	Set key to hold string value if key does not exist. In that case, it
is equal to setnx(). When key already holds a
value, no operation is performed. setnx() is
short for “SET if Not eXists”.

New in version 0.2.0.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to set

	value (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], int [https://docs.python.org/3/library/functions.html#int]) – The value to set

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
setrange(key, offset, value)

	Overwrites part of the string stored at key, starting at the
specified offset, for the entire length of value. If the offset is
larger than the current length of the string at key, the string is
padded with zero-bytes to make offset fit. Non-existing keys are
considered as empty strings, so this command will make sure it holds a
string large enough to be able to set value at offset.

Note

The maximum offset that you can set is 2 29 -1
(536870911), as Redis Strings are limited to 512 megabytes. If you
need to grow beyond this size, you can use multiple keys.

Warning

When setting the last possible byte and the string value
stored at key does not yet hold a string value, or holds a small
string value, Redis needs to allocate all intermediate memory which
can block the server for some time. On a 2010 MacBook Pro, setting
byte number 536870911 (512MB allocation) takes ~300ms, setting byte
number 134217728 (128MB allocation) takes ~80ms, setting bit number
33554432 (32MB allocation) takes ~30ms and setting bit number
8388608 (8MB allocation) takes ~8ms. Note that once this first
allocation is done, subsequent calls to
setrange() for the same key will not have
the allocation overhead.

New in version 0.2.0.

Note

Time complexity: O(1), not counting the time taken to
copy the new string in place. Usually, this string is very small so
the amortized complexity is O(1). Otherwise, complexity is
O(M) with M being the length of the value argument.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get the bit from

	value (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], int [https://docs.python.org/3/library/functions.html#int]) – The value to set

	Returns

	The length of the string after it was modified by the command

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
sinter(*keys)

	Returns the members of the set resulting from the intersection of
all the given sets.

For example:

key1 = {a,b,c,d}
key2 = {c}
key3 = {a,c,e}
SINTER key1 key2 key3 = {c}

Keys that do not exist are considered to be empty sets. With one of
the keys being an empty set, the resulting set is also empty (since
set intersection with an empty set always results in an empty set).

Note

Time complexity: O(N*M) worst case where N is the
cardinality of the smallest set and M is the number of sets.

	Parameters

	keys (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Two or more set keys as positional arguments

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	RedisError

	
sinterstore(destination, *keys)

	This command is equal to sinter(), but
instead of returning the resulting set, it is stored in destination.

If destination already exists, it is overwritten.

Note

Time complexity: O(N*M) worst case where N is the
cardinality of the smallest set and M is the number of sets.

	Parameters

	
	destination (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The set to store the intersection into

	keys (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – One or more set keys as positional arguments

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
sismember(key, member)

	Returns True [https://docs.python.org/3/library/constants.html#True] if member is a member of the set stored
at key.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the set to check for membership in

	member (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The value to check for set membership with

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
smembers(key)

	Returns all the members of the set value stored at key.

This has the same effect as running sinter()
with one argument key.

Note

Time complexity: O(N) where N is the set cardinality.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the set to return the members from

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	RedisError

	
smove(source, destination, member)

	Move member from the set at source to the set at destination. This
operation is atomic. In every given moment the element will appear to
be a member of source or destination for other clients.

If the source set does not exist or does not contain the specified
element, no operation is performed and False [https://docs.python.org/3/library/constants.html#False] is returned.
Otherwise, the element is removed from the source set and added to the
destination set. When the specified element already exists in the
destination set, it is only removed from the source set.

An error is returned if source or destination does not hold a set
value.

Note

Time complexity: O(1)

	Parameters

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The source set key

	destination (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The destination set key

	member (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The member value to move

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	RedisError

	
sort(key, by=None, external=None, offset=0, limit=None, order=None, alpha=False, store_as=None)

	Returns or stores the elements contained in the list, set or sorted
set at key. By default, sorting is numeric and elements are compared by
their value interpreted as double precision floating point number.

The external parameter is used to specify the
GET <http://redis.io/commands/sort#retrieving-external-keys>_
parameter for retrieving external keys. It can be a single string
or a list of strings.

Note

Time complexity: O(N+M*log(M)) where N is the number of
elements in the list or set to sort, and M the number of
returned elements. When the elements are not sorted, complexity is
currently O(N) as there is a copy step that will be avoided in
next releases.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get the refcount for

	by (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The optional pattern for external sorting keys

	external (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], list) – Pattern or list of patterns to return external keys

	offset (int [https://docs.python.org/3/library/functions.html#int]) – The starting offset when using limit

	limit (int [https://docs.python.org/3/library/functions.html#int]) – The number of elements to return

	order (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The sort order - one of ASC or DESC

	alpha (bool [https://docs.python.org/3/library/functions.html#bool]) – Sort the results lexicographically

	store_as (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], None) – When specified, the key to store the results as

	Return type

	list|int

	Raises

	RedisError

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

	
spop(key, count=None)

	Removes and returns one or more random elements from the set value
store at key.

This operation is similar to srandmember(),
that returns one or more random elements from a set but does not remove
it.

The count argument will be available in a later version and is not
available in 2.6, 2.8, 3.0

Redis 3.2 will be the first version where an optional count argument
can be passed to spop() in order to retrieve
multiple elements in a single call. The implementation is already
available in the unstable branch.

Note

Time complexity: Without the count argument O(1), otherwise
O(N) where N is the absolute value of the passed count.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get one or more random members from

	count (int [https://docs.python.org/3/library/functions.html#int]) – The number of members to return

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes], list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	RedisError

	
srandmember(key, count=None)

	When called with just the key argument, return a random element from
the set value stored at key.

Starting from Redis version 2.6, when called with the additional count
argument, return an array of count distinct elements if count is
positive. If called with a negative count the behavior changes and the
command is allowed to return the same element multiple times. In this
case the number of returned elements is the absolute value of the
specified count.

When called with just the key argument, the operation is similar to
spop(), however while
spop() also removes the randomly selected
element from the set, srandmember() will just
return a random element without altering the original set in any way.

Note

Time complexity: Without the count argument O(1), otherwise
O(N) where N is the absolute value of the passed count.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get one or more random members from

	count (int [https://docs.python.org/3/library/functions.html#int]) – The number of members to return

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes], list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	RedisError

	
srem(key, *members)

	Remove the specified members from the set stored at key. Specified
members that are not a member of this set are ignored. If key does not
exist, it is treated as an empty set and this command returns 0.

An error is returned when the value stored at key is not a set.

Returns True [https://docs.python.org/3/library/constants.html#True] if all requested members are removed. If more
than one member is passed in and not all members are removed, the
number of removed members is returned.

Note

Time complexity: O(N) where N is the number of members
to be removed.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to remove the member from

	members (mixed) – One or more member values to remove

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
sscan(key, cursor=0, pattern=None, count=None)

	The sscan() command and the closely
related commands scan(),
hscan() and zscan()
are used in order to incrementally iterate over a collection of
elements.

	scan() iterates the set of keys in the
currently selected Redis database.

	sscan() iterates elements of Sets types.

	hscan() iterates fields of Hash types and
their associated values.

	zscan() iterates elements of Sorted Set
types and their associated scores.

Basic usage

sscan() is a cursor based iterator. This
means that at every call of the command, the server returns an updated
cursor that the user needs to use as the cursor argument in the next
call.

An iteration starts when the cursor is set to 0, and terminates
when the cursor returned by the server is 0.

For more information on scan(),
visit the Redis docs on scan [http://redis.io/commands/scan].

Note

Time complexity: O(1) for every call. O(N) for a
complete iteration, including enough command calls for the cursor to
return back to 0. N is the number of elements inside the
collection.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to scan

	cursor (int [https://docs.python.org/3/library/functions.html#int]) – The server specified cursor value or 0

	pattern (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – An optional pattern to apply for key matching

	count (int [https://docs.python.org/3/library/functions.html#int]) – An optional amount of work to perform in the scan

	Return type

	int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]

	Returns

	A tuple containing the cursor and the list of set items

	Raises

	RedisError

	
strlen(key)

	Returns the length of the string value stored at key. An error is
returned when key holds a non-string value

New in version 0.2.0.

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to set

	Returns

	The length of the string at key, or 0 when key does not exist

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
sunion(*keys)

	Returns the members of the set resulting from the union of all the
given sets.

For example:

key1 = {a,b,c,d}
key2 = {c}
key3 = {a,c,e}
SUNION key1 key2 key3 = {a,b,c,d,e}

Note

Time complexity: O(N) where N is the total number of
elements in all given sets.

Keys that do not exist are considered to be empty sets.

	Parameters

	keys (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Two or more set keys as positional arguments

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	RedisError

	
sunionstore(destination, *keys)

	This command is equal to sunion(), but
instead of returning the resulting set, it is stored in destination.

If destination already exists, it is overwritten.

Note

Time complexity: O(N) where N is the total number of
elements in all given sets.

	Parameters

	
	destination (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The set to store the union into

	keys (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – One or more set keys as positional arguments

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
time()

	Retrieve the current time from the redis server.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Raises

	RedisError

	
ttl(key)

	Returns the remaining time to live of a key that has a timeout.
This introspection capability allows a Redis client to check how many
seconds a given key will continue to be part of the dataset.

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get the TTL for

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
type(key)

	Returns the string representation of the type of the value stored at
key. The different types that can be returned are: string,
list, set, zset, and hash.

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to get the type for

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Raises

	RedisError

	
wait(num_slaves, timeout=0)

	his command blocks the current client until all the previous write
commands are successfully transferred and acknowledged by at least the
specified number of slaves. If the timeout, specified in milliseconds,
is reached, the command returns even if the specified number of slaves
were not yet reached.

The command will always return the number of slaves that acknowledged
the write commands sent before the wait()
command, both in the case where the specified number of slaves are
reached, or when the timeout is reached.

Note

Time complexity: O(1)

	Parameters

	
	num_slaves (int [https://docs.python.org/3/library/functions.html#int]) – Number of slaves to acknowledge previous writes

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – Timeout in milliseconds

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
zadd(key, *members, **kwargs)

	Adds all the specified members with the specified scores to the
sorted set stored at key. It is possible to specify multiple score /
member pairs. If a specified member is already a member of the sorted
set, the score is updated and the element reinserted at the right
position to ensure the correct ordering.

If key does not exist, a new sorted set with the specified members as
sole members is created, like if the sorted set was empty. If the key
exists but does not hold a sorted set, an error is returned.

The score values should be the string representation of a double
precision floating point number. +inf and -inf values are valid values
as well.

Members parameters

members could be either:
- a single dict where keys correspond to scores and values to elements
- multiple strings paired as score then element

yield client.zadd('myzset', {'1': 'one', '2': 'two'})
yield client.zadd('myzset', '1', 'one', '2', 'two')

ZADD options (Redis 3.0.2 or greater)

ZADD supports a list of options. Options are:

	xx: Only update elements that already exist. Never add elements.

	
	nx: Don’t update already existing elements. Always add new

	elements.

	
	ch: Modify the return value from the number of new elements

	added, to the total number of elements changed (CH is an
abbreviation of changed). Changed elements are new elements added
and elements already existing for which the score was updated. So
elements specified in the command having the same score as they had
in the past are not counted. Note: normally the return value of
ZADD only counts the number of new elements added.

	
	incr: When this option is specified ZADD acts like

	zincrby(). Only one score-element pair
can be specified in this mode.

Note

Time complexity: O(log(N)) for each item added, where N
is the number of elements in the sorted set.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the sorted set

	members (dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Elements to add

	xx (bool [https://docs.python.org/3/library/functions.html#bool]) – Only update elements that already exist

	nx (bool [https://docs.python.org/3/library/functions.html#bool]) – Don’t update already existing elements

	ch (bool [https://docs.python.org/3/library/functions.html#bool]) – Return the number of changed elements

	incr (bool [https://docs.python.org/3/library/functions.html#bool]) – Increment the score of an element

	Return type

	int, str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Returns

	Number of elements changed, or the new score if incr is set

	Raises

	RedisError

	
zcard(key)

	Returns the set cardinality (number of elements) of the sorted set
stored at key.

Note

Time complexity: O(1)

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the set

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
zrange(key, start=0, stop=-1, with_scores=False)

	Returns the specified range of elements in the sorted set stored at
key. The elements are considered to be ordered from the lowest to the
highest score. Lexicographical order is used for elements with equal
score.

See tredis.Client.zrevrange() when you need the elements ordered
from highest to lowest score (and descending lexicographical order for
elements with equal score).

Both start and stop are zero-based indexes, where 0 is the first
element, 1 is the next element and so on. They can also be negative
numbers indicating offsets from the end of the sorted set, with -1
being the last element of the sorted set, -2 the penultimate
element and so on.

start and stop are inclusive ranges, so for example
ZRANGE myzset 0 1 will return both the first and the second element
of the sorted set.

Out of range indexes will not produce an error. If start is larger than
the largest index in the sorted set, or start > stop, an empty list
is returned. If stop is larger than the end of the sorted set Redis
will treat it like it is the last element of the sorted set.

It is possible to pass the WITHSCORES option in order to return the
scores of the elements together with the elements. The returned list
will contain value1,score1,...,valueN,scoreN instead of
value1,...,valueN. Client libraries are free to return a more
appropriate data type (suggestion: an array with (value, score)
arrays/tuples).

Note

Time complexity: O(log(N)+M) with N being the number of
elements in the sorted set and M the number of elements
returned.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the sorted set

	start (int [https://docs.python.org/3/library/functions.html#int]) – The starting index of the sorted set

	stop (int [https://docs.python.org/3/library/functions.html#int]) – The ending index of the sorted set

	with_scores (bool [https://docs.python.org/3/library/functions.html#bool]) – Return the scores with the elements

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	RedisError

	
zrangebyscore(key, min_score, max_score, with_scores=False, offset=0, count=0)

	Returns all the elements in the sorted set at key with a score
between min and max (including elements with score equal to min or
max). The elements are considered to be ordered from low to high
scores.

The elements having the same score are returned in lexicographical
order (this follows from a property of the sorted set implementation in
Redis and does not involve further computation).

The optional offset and count arguments can be used to only get
a range of the matching elements (similar to SELECT LIMIT offset, count
in SQL). Keep in mind that if offset is large, the sorted set needs to
be traversed for offset elements before getting to the elements to
return, which can add up to O(N) time complexity.

The optional with_scores argument makes the command return both the
element and its score, instead of the element alone. This option is
available since Redis 2.0.

Exclusive intervals and infinity

min_score and max_score can be -inf and +inf, so that
you are not required to know the highest or lowest score in the sorted
set to get all elements from or up to a certain score.

By default, the interval specified by min_score and max_score
is closed (inclusive). It is possible to specify an open interval
(exclusive) by prefixing the score with the character (. For
example:

ZRANGEBYSCORE zset (1 5

Will return all elements with 1 < score <= 5 while:

ZRANGEBYSCORE zset (5 (10

Will return all the elements with 5 < score < 10 (5 and 10
excluded).

Note

Time complexity: O(log(N)+M) with N being the number of
elements in the sorted set and M the number of elements being
returned. If M is constant (e.g. always asking for the first
10 elements with count), you can consider it O(log(N)).

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the sorted set

	min_score (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Lowest score definition

	max_score (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Highest score definition

	with_scores (bool [https://docs.python.org/3/library/functions.html#bool]) – Return elements and scores

	offset – The number of elements to skip

	count – The number of elements to return

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	RedisError

	
zrem(key, *members)

	
	Removes the specified members from the sorted set stored at key.

	Non existing members are ignored.

An error is returned when key exists and does not hold a sorted set.

Note

Time complexity: O(M*log(N)) with N being the number of
elements in the sorted set and M the number of elements to be
removed.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the sorted set

	members (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – One or more member values to remove

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
zremrangebyscore(key, min_score, max_score)

	Removes all elements in the sorted set stored at key with a score
between min and max.

Intervals are described in zrangebyscore().

Returns the number of elements removed.

Note

Time complexity: O(log(N)+M) with N being the number of
elements in the sorted set and M the number of elements removed by
the operation.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the sorted set

	min_score (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Lowest score definition

	max_score (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Highest score definition

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RedisError

	
zrevrange(key, start=0, stop=-1, with_scores=False)

	Returns the specified range of elements in the sorted set stored at
key. The elements are considered to be ordered from the highest to the
lowest score. Descending lexicographical order is used for elements
with equal score.

Apart from the reversed ordering, zrevrange()
is similar to zrange() .

Note

Time complexity: O(log(N)+M) with N being the number of
elements in the sorted set and M the number of elements
returned.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the sorted set

	start (int [https://docs.python.org/3/library/functions.html#int]) – The starting index of the sorted set

	stop (int [https://docs.python.org/3/library/functions.html#int]) – The ending index of the sorted set

	with_scores (bool [https://docs.python.org/3/library/functions.html#bool]) – Return the scores with the elements

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	RedisError

	
zscore(key, member)

	Returns the score of member in the sorted set at key.
If member does not exist in the sorted set, or key does not exist
None is returned.

Note

Time complexity: O(1)

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key of the set to check for membership in

	member (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The value to check for set membership with

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]

	Raises

	RedisError

Exceptions

	
class tredis.exceptions.TRedisException

	Raised as a top-level exception class for all exceptions raised by
RedisClient.

	
class tredis.exceptions.ConnectError

	Raised when RedisClient can not connect to the
specified Redis server.

	
class tredis.exceptions.ConnectionError

	Raised when RedisClient has had its connection to the
Redis server interrupted unexpectedly.

	
class tredis.exceptions.InvalidClusterCommand

	Raised when a method is invoked that is not able to be used when
acting as a client for a Redis cluster.

	
class tredis.exceptions.AuthError

	Raised when auth() is invoked and the Redis
server returns an error.

	
class tredis.exceptions.RedisError

	Raised when the Redis server returns a error to
RedisClient. The string representation of this class will
contain the error response from the Redis server, if one is sent.

Supported Commands

The following table summarizes the number of commands supported by category:

	Category

	Count

	Version Added

	Cluster

	2 of 20

	0.7.0

	Connection

	5 of 5

	0.1.0

	Geo

	0 of 6

	—

	Hashes

	13 of 15

	0.4.0

	HyperLogLog

	3 of 3

	0.2.0

	Keys

	22 of 22

	0.1.0

	Lists

	9 of 17

	0.8.0

	Pub/Sub

	0 of 6

	
	

	Scripting

	6 of 6

	0.3.0

	Server

	7 of 30

	0.1.0+

	Sets

	15 of 15

	0.1.0

	Sorted Sets

	8 of 21

	0.4.0+

	Strings

	23 of 23

	0.2.0

	Transactions

	0 of 5

	—

Example

The following examples expect a pre-existing asynchronous application:

A simple set and get of a key from Redis

 import logging
 import pprint

 from tornado import gen, ioloop
 import tredis

 @gen.engine
 def run():
 client = tredis.Client([{"host": "127.0.0.1", "port": 6379, "db": 0}],
 auto_connect=False)
 yield client.connect()
 yield client.set("foo", "bar")
 value = yield client.get("foo")
 pprint.pprint(value)
 ioloop.IOLoop.current().stop()

 if __name__ == '__main__':
 logging.basicConfig(level=logging.DEBUG)
 io_loop = ioloop.IOLoop.current()
 io_loop.add_callback(run)
 io_loop.start()

Version History

	0.8.0 - released 2018-07-20

	Add List [http://redis.io/commands#list] commands (9 of 17) (#7 - dave-shawley)

	Add zcard() (#8 - ibnpaul)

	Add zscore() (#8 - ibnpaul)

	Documentation fixes (#6 - Zephor5)

	0.7.0 - released 2017-02-03

	Add zrange()

	Add zrevrange()

	0.7.0 - released 2017-02-02

	Add support for Redis Clusters in the new Client class

	Add cluster_info() and cluster_nodes()

	0.6.0 - released 2017-01-27

	Add zrem() to the Sorted Sets [http://redis.io/commands#sorted_set] commands

	Locate master and reconnect when a READONLY response is received

	Add time() command

	0.5.0 - released 2016-11-08

	Add Hash [http://redis.io/commands#hash] commands (13 of 15)

	Add Sorted Sets [http://redis.io/commands#sorted_set] commands (3 of 21)

	0.4.0 - released 2016-01-25

	Add info command

	0.3.0 - released 2016-01-18

	Remove broken pipelining implementation

	Add scripting commands

	0.2.1 - released 2015-11-23

	Add hiredis to the requirements

	0.2.0 - released 2015-11-23

	Add per-command execution locking, preventing errors with concurrency in command processing
- Clean up connection logic to simplify connecting to exist within the command execution lock instead of maintaining its own event

	Add all missing methods in the strings category

	Add hyperloglog methods

	Add support for mixins to extend core tredis.RedisClient methods in future versions

	Significant updates to docstrings

	0.1.0 - released 2015-11-20

	initial version

Index

 A
 | B
 | C
 | D
 | E
 | G
 | H
 | I
 | K
 | L
 | M
 | O
 | P
 | Q
 | R
 | S
 | T
 | W
 | Z

A

 	
 	append() (tredis.Client method)

 	(tredis.RedisClient method)

 	
 	auth() (tredis.Client method)

 	(tredis.RedisClient method)

 	AuthError (class in tredis.exceptions)

B

 	
 	bitcount() (tredis.Client method)

 	(tredis.RedisClient method)

 	bitop() (tredis.Client method)

 	(tredis.RedisClient method)

 	
 	bitpos() (tredis.Client method)

 	(tredis.RedisClient method)

C

 	
 	Client (class in tredis)

 	close() (tredis.Client method)

 	(tredis.RedisClient method)

 	cluster_info() (tredis.Client method)

 	(tredis.RedisClient method)

 	cluster_nodes() (tredis.Client method)

 	(tredis.RedisClient method)

 	
 	ClusterNode (class in tredis.cluster)

 	connect() (tredis.Client method)

 	(tredis.RedisClient method)

 	ConnectError (class in tredis.exceptions)

 	ConnectionError (class in tredis.exceptions)

D

 	
 	decr() (tredis.Client method)

 	(tredis.RedisClient method)

 	decrby() (tredis.Client method)

 	(tredis.RedisClient method)

 	
 	delete() (tredis.Client method)

 	(tredis.RedisClient method)

 	dump() (tredis.Client method)

 	(tredis.RedisClient method)

E

 	
 	echo() (tredis.Client method)

 	(tredis.RedisClient method)

 	eval() (tredis.Client method)

 	(tredis.RedisClient method)

 	evalsha() (tredis.Client method)

 	(tredis.RedisClient method)

 	
 	exists() (tredis.Client method)

 	(tredis.RedisClient method)

 	expire() (tredis.Client method)

 	(tredis.RedisClient method)

 	expireat() (tredis.Client method)

 	(tredis.RedisClient method)

G

 	
 	get() (tredis.Client method)

 	(tredis.RedisClient method)

 	getbit() (tredis.Client method)

 	(tredis.RedisClient method)

 	
 	getrange() (tredis.Client method)

 	(tredis.RedisClient method)

 	getset() (tredis.Client method)

 	(tredis.RedisClient method)

H

 	
 	hdel() (tredis.Client method)

 	(tredis.RedisClient method)

 	hexists() (tredis.Client method)

 	(tredis.RedisClient method)

 	hget() (tredis.Client method)

 	(tredis.RedisClient method)

 	hgetall() (tredis.Client method)

 	(tredis.RedisClient method)

 	hincrby() (tredis.Client method)

 	(tredis.RedisClient method)

 	hincrbyfloat() (tredis.Client method)

 	(tredis.RedisClient method)

 	hkeys() (tredis.Client method)

 	(tredis.RedisClient method)

 	
 	hlen() (tredis.Client method)

 	(tredis.RedisClient method)

 	hmget() (tredis.Client method)

 	(tredis.RedisClient method)

 	hmset() (tredis.Client method)

 	(tredis.RedisClient method)

 	hset() (tredis.Client method)

 	(tredis.RedisClient method)

 	hsetnx() (tredis.Client method)

 	(tredis.RedisClient method)

 	hvals() (tredis.Client method)

 	(tredis.RedisClient method)

I

 	
 	incr() (tredis.Client method)

 	(tredis.RedisClient method)

 	incrby() (tredis.Client method)

 	(tredis.RedisClient method)

 	
 	incrbyfloat() (tredis.Client method)

 	(tredis.RedisClient method)

 	info() (tredis.Client method)

 	(tredis.RedisClient method)

 	InvalidClusterCommand (class in tredis.exceptions)

K

 	
 	keys() (tredis.Client method)

 	(tredis.RedisClient method)

L

 	
 	llen() (tredis.Client method)

 	(tredis.RedisClient method)

 	lpop() (tredis.Client method)

 	(tredis.RedisClient method)

 	lpush() (tredis.Client method)

 	(tredis.RedisClient method)

 	
 	lpushx() (tredis.Client method)

 	(tredis.RedisClient method)

 	lrange() (tredis.Client method)

 	(tredis.RedisClient method)

 	ltrim() (tredis.Client method)

 	(tredis.RedisClient method)

M

 	
 	mget() (tredis.Client method)

 	(tredis.RedisClient method)

 	migrate() (tredis.Client method)

 	(tredis.RedisClient method)

 	move() (tredis.Client method)

 	(tredis.RedisClient method)

 	
 	mset() (tredis.Client method)

 	(tredis.RedisClient method)

 	msetnx() (tredis.Client method)

 	(tredis.RedisClient method)

O

 	
 	object_encoding() (tredis.Client method)

 	(tredis.RedisClient method)

 	object_idle_time() (tredis.Client method)

 	(tredis.RedisClient method)

 	
 	object_refcount() (tredis.Client method)

 	(tredis.RedisClient method)

P

 	
 	persist() (tredis.Client method)

 	(tredis.RedisClient method)

 	pexpire() (tredis.Client method)

 	(tredis.RedisClient method)

 	pexpireat() (tredis.Client method)

 	(tredis.RedisClient method)

 	pfadd() (tredis.Client method)

 	(tredis.RedisClient method)

 	pfcount() (tredis.Client method)

 	(tredis.RedisClient method)

 	
 	pfmerge() (tredis.Client method)

 	(tredis.RedisClient method)

 	ping() (tredis.Client method)

 	(tredis.RedisClient method)

 	psetex() (tredis.Client method)

 	(tredis.RedisClient method)

 	pttl() (tredis.Client method)

 	(tredis.RedisClient method)

Q

 	
 	quit() (tredis.Client method)

 	(tredis.RedisClient method)

R

 	
 	randomkey() (tredis.Client method)

 	(tredis.RedisClient method)

 	ready (tredis.Client attribute)

 	(tredis.RedisClient attribute)

 	RedisClient (class in tredis)

 	RedisError (class in tredis.exceptions)

 	rename() (tredis.Client method)

 	(tredis.RedisClient method)

 	renamenx() (tredis.Client method)

 	(tredis.RedisClient method)

 	
 	restore() (tredis.Client method)

 	(tredis.RedisClient method)

 	rpop() (tredis.Client method)

 	(tredis.RedisClient method)

 	rpush() (tredis.Client method)

 	(tredis.RedisClient method)

 	rpushx() (tredis.Client method)

 	(tredis.RedisClient method)

S

 	
 	sadd() (tredis.Client method)

 	(tredis.RedisClient method)

 	scan() (tredis.Client method)

 	(tredis.RedisClient method)

 	scard() (tredis.Client method)

 	(tredis.RedisClient method)

 	script_exists() (tredis.Client method)

 	(tredis.RedisClient method)

 	script_flush() (tredis.Client method)

 	(tredis.RedisClient method)

 	script_kill() (tredis.Client method)

 	(tredis.RedisClient method)

 	script_load() (tredis.Client method)

 	(tredis.RedisClient method)

 	sdiff() (tredis.Client method)

 	(tredis.RedisClient method)

 	sdiffstore() (tredis.Client method)

 	(tredis.RedisClient method)

 	select() (tredis.Client method)

 	(tredis.RedisClient method)

 	set() (tredis.Client method)

 	(tredis.RedisClient method)

 	setbit() (tredis.Client method)

 	(tredis.RedisClient method)

 	setex() (tredis.Client method)

 	(tredis.RedisClient method)

 	setnx() (tredis.Client method)

 	(tredis.RedisClient method)

 	
 	setrange() (tredis.Client method)

 	(tredis.RedisClient method)

 	sinter() (tredis.Client method)

 	(tredis.RedisClient method)

 	sinterstore() (tredis.Client method)

 	(tredis.RedisClient method)

 	sismember() (tredis.Client method)

 	(tredis.RedisClient method)

 	smembers() (tredis.Client method)

 	(tredis.RedisClient method)

 	smove() (tredis.Client method)

 	(tredis.RedisClient method)

 	sort() (tredis.Client method)

 	(tredis.RedisClient method)

 	spop() (tredis.Client method)

 	(tredis.RedisClient method)

 	srandmember() (tredis.Client method)

 	(tredis.RedisClient method)

 	srem() (tredis.Client method)

 	(tredis.RedisClient method)

 	sscan() (tredis.Client method)

 	(tredis.RedisClient method)

 	strlen() (tredis.Client method)

 	(tredis.RedisClient method)

 	sunion() (tredis.Client method)

 	(tredis.RedisClient method)

 	sunionstore() (tredis.Client method)

 	(tredis.RedisClient method)

T

 	
 	time() (tredis.Client method)

 	(tredis.RedisClient method)

 	TRedisException (class in tredis.exceptions)

 	
 	ttl() (tredis.Client method)

 	(tredis.RedisClient method)

 	type() (tredis.Client method)

 	(tredis.RedisClient method)

W

 	
 	wait() (tredis.Client method)

 	(tredis.RedisClient method)

Z

 	
 	zadd() (tredis.Client method)

 	(tredis.RedisClient method)

 	zcard() (tredis.Client method)

 	(tredis.RedisClient method)

 	zrange() (tredis.Client method)

 	(tredis.RedisClient method)

 	zrangebyscore() (tredis.Client method)

 	(tredis.RedisClient method)

 	
 	zrem() (tredis.Client method)

 	(tredis.RedisClient method)

 	zremrangebyscore() (tredis.Client method)

 	(tredis.RedisClient method)

 	zrevrange() (tredis.Client method)

 	(tredis.RedisClient method)

 	zscore() (tredis.Client method)

 	(tredis.RedisClient method)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 TRedis

 		
 API

 		
 Exceptions

 		
 Supported Commands

 		
 Example

 		
 Version History

_static/up-pressed.png

_static/up.png

