
TraX Documentation
Release 4.0.0

Luka Cehovin

May 04, 2023

Contents

1 Citing 3

2 Index 5
2.1 TraX protocol specification . 5
2.2 API documentation . 9
2.3 Support utilities . 39
2.4 Tutorials . 39
2.5 Contributions and development . 55
2.6 Protocol adoption . 55

Index 57

i

ii

TraX Documentation, Release 4.0.0

Welcome to TraX reference library documentation. TraX stands for visual Tracking eXchange, the protocol was
designed to make development and testing of visual tracking algorithms simpler and faster. This documentation
describes the protocol specification but also documents the reference library that implements the protocol and can be
used to add support to visual tracking programs quickly and without the need to understand the low-level details.

The source code for the reference library is availabe on GitHub under Lesser GPL v3.0 license.

Contents 1

https://github.com/votchallenge/trax/
https://www.gnu.org/licenses/lgpl-3.0.en.html

TraX Documentation, Release 4.0.0

2 Contents

CHAPTER 1

Citing

If you are using TraX protocol in your research, please cite the following publication that describes the protocol and
the library.

@article{cehovin2017trax,
author = {{\v{C}}ehovin, Luka},
doi = {http://dx.doi.org/10.1016/j.neucom.2017.02.036},
issn = {0925-2312},
journal = {Neurocomputing},
title = {{TraX: The visual Tracking eXchange Protocol and Library}},
year = {2017}

}

3

http://dx.doi.org/10.1016/j.neucom.2017.02.036

TraX Documentation, Release 4.0.0

4 Chapter 1. Citing

CHAPTER 2

Index

2.1 TraX protocol specification

The TraX protocol is designed with simplicity of integration in mind, but is also flexible enough to allow extensions
and custom use-cases. The protocol is primarily based on the a mechanism that all modern operating systems provide
and requires no additional dependencies - standard input and output streams of a process. However, other media, such
as TCP streams can also be used, the main idea is that the protocol communication is embedded the communication
between the tracker process and the control process in these streams. The communication is divided into line-based
messages. Each message can be identified by a prefix that allows us to filter out tracker custom output from the
protocol communication.

2.1.1 Definitions

We adopt the standard client-server terminology when describing the interaction, although the definition is a bit coun-
terintuitive in some aspects. We define the basic terms of the protocol as:

• Server: A server is a tracker process that is providing tracking information to the client that is supplying
the server with requests – a sequence of images. Unlike traditional servers that are persistent processes that
communicate with multiple clients, the server in our case is started by a single client and is only communicating
with it.

• Client: A client is a process that is initiating tracking requests as well as controlling the process. In most cases
this would be an evaluation software that would aggregate tracking data for performance analysis, however,
additional use-cases can be accommodated in this scheme.

• Message: Server and client communicate with each other using messages. Each message begins in new line, is
prefixed by an unique string and ends with the end of the line. Generic message structure is defined in Message
format and types of messages are defined in Protocol messages and states.

5

TraX Documentation, Release 4.0.0

2.1.2 Message format

Individual message in the protocol is a line, which means that it is separated from the past and future stream content by
the new line (EOL) character. The format of all client or server messages is the same. To distinguish between arbitrary
program outputs and embedded TraX messages a prefix @@TRAX: is used. The prefix is followed immediately (with-
out white space character) by the name of the message, which is then followed by space-separated arguments. The
format is illustrated in figure below. The message header is followed by a number of mandatory message arguments.
This number depends on the type of the message and on the runtime configuration. The mandatory arguments are then
followed by a variable number of optional named arguments which consist of a key and a value part and can be used
to communicate additional data.

Escape sequences

All the arguments can contain spaces, however, they have to be enclosed by double-quote (") symbols. If you want to
use to use the same symbol inside the argument, it has to be prefixed by back-slash (\) symbol, i.e. you have to use an
escape sequence. Similarly escape sequence is also used to denote a bach-slash character itself (written as \\) and a
newline symbol, which has to be replaced by the \n character sequence.

Named arguments

Named arguments consist of a key, followed by character (=) and an arbitrary value character sequence. The key
sequence may only include alphanumerical characters, dot (.) and underscore (_) and has to be at most 64 characters
long. If a key is not valid the remote party may reject the argument or terminate the connection because of an illegal
message format.

2.1.3 Protocol messages and states

Below we list the valid messages of the protocol as well as the states of the client and server. Despite the apparent
simplicity of the protocol its execution should be strict. An inappropriate or indecipherable message should result in
immediate termination of connection in case of both parties.

• hello (server): The message is sent by the server to introduce itself and list its capabilities. This
message specifies no mandatory arguments, however, the server can report the capabilities using the
optional named arguments. The official arguments, recognized by the first version of the protocol
are:

6 Chapter 2. Index

TraX Documentation, Release 4.0.0

• trax.version (integer): Specifies the supported version of the protocol. If not present, version
1 is assumed.

• trax.name (string): Specifies the name of the tracker. The name can be used by the client to
verify that the correct algorithm is executed.

• trax.identifier (string): Specifies the identifier of the current implementation. The identifier
can be used to determine the version of the tracker.

• trax.image (string): Specifies the supported image format. See Section Image formats for the
list of supported formats. By default it is assumed that the tracker can accept file paths as image
source.

• trax.region (string): Specifies the supported region format. See Section Region formats for the
list of supported formats. By default it is assumed that the tracker can accept rectangles as region
specification.

• trax.channels (string, version 2+): Specifies support for multi-modal images. See Section
Image channels for more information.

• initialize (client): This message is sent by the client to initialize the tracker. The message
contains the image data (for one or more images) and the region of the object. The actual format of
the required arguments is determined by the image and region formats specified by the server.

• frame (client): This message is sent by the client to request processing of a new image (or multiple
images). The message contains the image data. The actual format of the required argument is
determined by the image format specified by the server.

• state (server): This message is used by the server to send the new region to the client. The
message contains region data in arbitrary supported format (most commonly the same format that
the server proposed in the introduction message).

• quit (client, server): This message can be sent by both parties to terminate the session. The server
process should exit after the message is sent or received. This message specifies no mandatory
arguments.

The state diagram of server and client is defined by a simple automata, shown in figure below. The state changes upon
receiving appropriate messages from the opposite party. The client state automata consists of the following states:

• Introduction: The client waits for hello message from the server. In this message the server describes its
capabilities that the client can accept and continue the conversation by moving to initialization state, or reject it
and terminate the session by sending the quit message.

• Initialization: The client sends a initialize message with the image and the object region data. Then the
client moves to observing state.

• Observing: The client waits for a message from the server. If the received message is state then the client
processes the incoming state data and either moves to initialization, termination or stays in observing state. If
the received message is quit then the client moves to termination state.

• Termination: If initiated internally, the client sends the quit message. If the server does not terminate in a
certain amount of time, the client can terminate the server process.

The server state automata consists of the following states:

• Introduction: The server sends an introductory hello message where it optionally specifies its capabilities.

• Initialization: The server waits for the initialize or quit message. In case of initialize message a
tracker is initialized with the given data and the server moves to {em reporting} state. The new state is reported
back to the client with a state message. In case of the quit message the server moves to termination state.

• Reporting: The server waits for the frame, initialize, or quit message. In case of {tt frame} message
the tracker is updated with the new image information and the new state is reported back to the client with a

2.1. TraX protocol specification 7

TraX Documentation, Release 4.0.0

state message. In case of initialize message a tracker is initialized with the given data and the new
state is reported back to the client with a state message. In case of the quit message the server moves to
termination state.

• Termination: If initiated internally, the server sends the quit message and then exits.

2.1.4 Region formats

The region can be encoded in two point-based formats. All two formats are comma-separated and illustrated graphi-
cally in figure below.

• Rectangle (rectangle): The simplest form of region format is the axis-aligned bounding box. It is described
using four values, left, top, width, and height that are separated by commas.

• Polygon (polygon): A more complex and flexible region description that is specified by even number of at
least six values, separated by commas that define points in the polygon (x and y coordinates).

2.1.5 Image formats

The image can be encoded in a form of Uniform Resource Identifiers. Currently the protocol specifies support for four
types of resources.

• File path (path): Image is specified by an URL to an absolute path on a local file-system that points to a JPEG
or PNG file. The server should take care of the loading of the image to the memory in this case. Some examples
of image paths are file:///home/user/sequence/00001.jpg for Unix systems or file://c:/
user/sequence/00001.jpg.

• Memory (memory): Raw image data encoded in an URI with scheme identifier {tt image:}. The encoding
header contains information about width, height, and the pixel format. The protocol specifies support for the
following formats: single channel 8 or 16 bit intensity image (gray8 and gray16) and 3 channel 8-bit RGB
image (rgb). Note that the intensity format can also be used to encode infra-red or depth information. The
header is followed by the raw image data row after row using Base64 encoding. An example first part of the
data for a 320 x 240 RGB image is therefore image:320;240;rgb;....

• Data (data): The image is encoded as a data URI using JPEG or PNG format and encoded using Base64
encoding. The server has to support decoding the image from the memory buffer directly. An example of the
first part of such data is data:image/jpeg;base64;...

8 Chapter 2. Index

TraX Documentation, Release 4.0.0

• URL (url): Image is specified by a general URL for the image resource which does not fall into any of the
above categories. Tipically HTTP remote resources, such as http://example.com/sequence/0001.
jpg.

2.1.6 Image channels

Version 2 of the protocol also specifies support for multi-modal images, encoded in multiple image planes. To use
this feature, the server must sent the trax.channels argument in the introduction message. The content of this
argument is a comma-separated list of channels that are required. Currently supported channels are:

• Visible light (color): Image is in visible light spectrum, by default only this channel is available.

• Depth (depth): Channel contains depth information, useful for RGBD data.

• Infra Red (ir): Infra red information, useful for IR sequences or for RGB + IR seqences.

Upon receiving the intorduction, the client evaluates if it can provide the data in requested format. If it proceeds, each
channel is sent to the server as one or more arguments, encoded as specified in Section Image formats. The order of
the images is always the same as the order of the identifier list elements.

2.2 API documentation

The TraX API documentation describes technical details of TraX library and bindings to other languages.

2.2.1 Reference C library

The TraX protocol can be implemented using the protocol specification, the protocol is quite easy to implement in
many high-level languages. However, a reference C implementation is provided to serve as a practical model of
implementation and to make the adoption of the protocol easier.

2.2. API documentation 9

TraX Documentation, Release 4.0.0

Requirements and building

The library is built using CMake build tool which generates build instructions for a given platform. The code is written
in C89 for maximum portability and the library has no external dependencies apart from the standard C library. For
more details on building check out the tutorial on compiling the project.

Documentation

All the public functionality of the library is described in the trax.h header file, below is a summary of individual
functions that are available in the library.

Communication

TRAX_ERROR
Value that indicates protocol error

TRAX_OK
Value that indicates success of a function call

TRAX_HELLO
Value that indicates introduction message

TRAX_INITIALIZE
Value that indicates initialization message

TRAX_FRAME
Value that indicates frame message

TRAX_QUIT
Value that indicates quit message

TRAX_STATE
Value that indicates status message

trax_logging
Structure that describes logging handle.

trax_bounds
Structure that describes region bounds.

trax_handle
Structure that describes a protocol state for either client or server.

trax_image
Structure that describes an image.

trax_region
Structure that describes a region.

trax_properties
Structure that contains an key-value dictionary.

trax_logging trax_no_log
A constant to indicate that no logging will be done.

trax_bounds trax_no_bounds
A constant to indicate that here are no bounds.

10 Chapter 2. Index

https://cmake.org/

TraX Documentation, Release 4.0.0

const char* trax_version()
Returns a string version of the library for debugging purposes. If possible, this version is defined during compi-
lation time and corresponds to Git hash for the current revision.

Returns Version string as a constant character array

trax_metadata* trax_metadata_create(int region_formats, int image_formats, int channels, const
char* tracker_name, const char* tracker_description, const
char* tracker_family)

Parameters

• region_formats – Supported regions formats bit-set.

• image_formats – Supported image formats bit-set.

• channels – Required image channels bit-set. If empty then only
TRAX_CHANNEL_VISIBLE is assumed.

Create a tracker metadata structure returning its pointer

Returns A pointer to a metadata structure that can be released using
trax_metadata_release().

void trax_metadata_release(trax_metadata** metadata)
Releases a given metadata structure, clearing its memory.

Parameters

• metadata – Pointer of a pointer of tracker metadata structure.

trax_logging trax_logger_setup(trax_logger callback, void* data, int flags)
A function that can be used to initialize a logging configuration structure.

Parameters

• callback – Callback function used to process a chunk of log data

• data – Additional data passed to the callback function as an argument

• flags – Optional flags for logger

Returns A logging structure for the given data

trax_logging trax_logger_setup_file(FILE* file)
A handy function to initialize a logging configuration structure for file logging. Internally the function calls
trax_logger_setup().

Parameters

• file – File object, opened for writing, can also be stdout or stderr

Returns A logging structure for the given file

trax_handle* trax_client_setup_file(int input, int output, trax_logging log)
Setups the protocol state object for the client. It is assumed that the tracker process is already running (how this
is done is not specified by the protocol). This function tries to parse tracker’s introduction message and fails if
it is unable to do so or if the handshake fails (e.g. unsupported format version).

Parameters

• input – Stream identifier, opened for reading, used to read server output

• output – Stream identifier, opened for writing, used to write messages

• log – Logging structure

Returns A handle object used for further communication or NULL if initialization was unsuccessful

2.2. API documentation 11

TraX Documentation, Release 4.0.0

trax_handle* trax_client_setup_socket(int server, int timeout, trax_logging log)
Setups the protocol state object for the client using a bi-directional socket. It is assumed that the connection
was already established (how this is done is not specified by the protocol). This function tries to parse tracker’s
introduction message and fails if it is unable to do so or if the handshake fails (e.g. unsupported format version).

Parameters

• server – Socket identifier, used to read communcate with tracker

• log – Logging structure

Returns A handle object used for further communication or NULL if initialization was unsuccessful

int trax_client_wait(trax_handle* client, trax_region** region, trax_properties* properties)
Waits for a valid protocol message from the server.

Parameters

• client – Client state object

• region – Pointer to current region for an object, set if the response is TRAX_STATE,
otherwise NULL

• properties – Additional properties

Returns Integer value indicating status, can be either TRAX_STATE, TRAX_QUIT, or
TRAX_ERROR

int trax_client_initialize(trax_handle* client, trax_image* image, trax_region* region,
trax_properties* properties)

Sends an initialize message to server.

Parameters

• client – Client state object

• image – Image frame data

• region – Initialization region

• properties – Additional properties object

Returns Integer value indicating status, can be either TRAX_OK or TRAX_ERROR

int trax_client_frame(trax_handle* client, trax_image* image, trax_properties* properties)

Sends a frame message to server.

Parameters

• client – Client state object

• image – Image frame data

• properties – Additional properties

Returns Integer value indicating status, can be either TRAX_OK or TRAX_ERROR

trax_handle* trax_server_setup(trax_metadata* metadata, trax_logging log)
Setups the protocol for the server side and returns a handle object.

Parameters

• metadata – Tracker metadata

• log – Logging structure

12 Chapter 2. Index

TraX Documentation, Release 4.0.0

Returns A handle object used for further communication or NULL if initialization was unsuccessful

trax_handle* trax_server_setup_file(trax_metadata* metadata, int input, int output,
trax_logging log)

Setups the protocol for the server side based on input and output stream and returns a handle object.

Parameters

• metadata – Tracker metadata

• input – Stream identifier, opened for reading, used to read client output

• output – Stream identifier, opened for writing, used to write messages

• log – Logging structure

Returns A handle object used for further communication or NULL if initialization was unsuccessful

int trax_server_wait(trax_handle* server, trax_image** image, trax_region** region,
trax_properties* properties)

Waits for a valid protocol message from the client.

Parameters

• server – Server state object

• image – Pointer to image frame data, set if the response is not TRAX_QUIT or
TRAX_ERROR, otherwise NULL

• region – Pointer to initialization region, set if the response is TRAX_INITIALIZE, oth-
erwise NULL

• properties – Additional properties

Returns Integer value indicating status, can be either TRAX_INITIALIZE, TRAX_FRAME,
TRAX_QUIT, or TRAX_ERROR

int trax_server_reply(trax_handle* server, trax_region* region, trax_properties* properties)

Sends a status reply to the client.

Parameters

• server – Server state object

• region – Current region of an object

• properties – Additional properties

Returns Integer value indicating status, can be either TRAX_OK or TRAX_ERROR

int trax_terminate(trax_handle* handle)
Used in client and server. Closes communication, sends quit message if needed. This function is implicitly
called in trax_cleanup().

Parameters

• handle – Server or client state object

Returns Integer value indicating status, can be either TRAX_OK or TRAX_ERROR

int trax_cleanup(trax_handle** handle)
Used in client and server. Closes communication, sends quit message if needed. Releases the handle structure.

Parameters

2.2. API documentation 13

TraX Documentation, Release 4.0.0

• handle – Pointer to state object pointer

Returns Integer value indicating status, can be either TRAX_OK or TRAX_ERROR

const char* trax_get_error(trax_handle* handle)
Retrieve last error message encountered by the server or client.

Parameters

• handle – Pointer to state object

Returns Returns NULL if no error occured.

int trax_is_alive(trax_handle* handle)
Check if the handle has been terminated.

Parameters

• handle – Pointer to state object

Returns Returns zero if handle is not alive and non-zero if it is.

int trax_set_parameter(trax_handle* handle, int id, int value)
Sets the parameter of the client or server instance.

int trax_get_parameter(trax_handle* handle, int id, int* value)
Gets the parameter of the client or server instance.

ImageList

TRAX_CHANNEL_VISIBLE
Visible light channel identifier.

TRAX_CHANNEL_DEPTH
Depth channel identifier.

TRAX_CHANNEL_IR
IR channel identifier.

TRAX_CHANNELS
Number of available channels.

TRAX_CHANNEL_INDEX(I)
Convert channel identifier into index.

TRAX_CHANNEL_ID(I)
Convert channel index into identifier.

trax_image_list* trax_image_list_create()

Create an emptry image list

Returns Pointer to image list container

void trax_image_list_release(trax_image_list** list)

Release image list structure, does not release any channel images

Parameters

• list – Image list container pointer

void trax_image_list_clear(trax_image_list* list)

14 Chapter 2. Index

TraX Documentation, Release 4.0.0

Cleans image list, releases all allocated channel images

Parameters

• list – Image list container pointer

trax_image* trax_image_list_get(const trax_image_list* list, int channel)

Get image for a specific channel

Parameters

• list – Image list structure pointer

• channel – Channel idenfifier

Returns Image structure pointer

void trax_image_list_set(trax_image_list* list, trax_image* image, int channel)

Set image for a specific channel

Parameters

• list – Image list structure pointer

• image – Image structure pointer

• channel – Channel idenfifier

Returns Pointer to null-terminated character array

int trax_image_list_count(int channels)

Count available channels in provided bit-set

Parameters

• channels – Bit-set of channel identifiers

Returns Number of on bits.

Image

TRAX_IMAGE_EMPTY
Empty image type, not usable in any way but to signify that there is no data.

TRAX_IMAGE_PATH
Image data is provided in a file on a file system. Only a path is provided.

TRAX_IMAGE_URL
Image data is provided in a local or remote resource. Only a URL is provided.

TRAX_IMAGE_MEMORY
Image data is provided in a memory buffer and can be accessed directly.

TRAX_IMAGE_BUFFER
Image data is provided in a memory buffer but has to be decoded first.

TRAX_IMAGE_BUFFER_ILLEGAL
Image buffer is of an unknown data type.

2.2. API documentation 15

TraX Documentation, Release 4.0.0

TRAX_IMAGE_BUFFER_PNG
Image data is encoded as PNG image.

TRAX_IMAGE_BUFFER_JPEG
Image data is encoded as JPEG image.

TRAX_IMAGE_MEMORY_ILLEGAL
Image data is available in an unknown format.

TRAX_IMAGE_MEMORY_GRAY8
Image data is available in 8 bit per pixel format.

TRAX_IMAGE_MEMORY_GRAY16
Image data is available in 16 bit per pixel format.

TRAX_IMAGE_MEMORY_RGB
Image data is available in RGB format with three bytes per pixel.

void trax_image_release(trax_image** image)
Releases image structure, frees allocated memory.

Parameters

• image – Pointer to image structure pointer (the pointer is set to NULL if the structure is
destroyed successfuly)

trax_image* trax_image_create_path(const char* path)
Creates a file-system path image description.

Parameters

• url – File path string, it is copied internally

Returns Image structure pointer

trax_image* trax_image_create_url(const char* url)
Creates a URL path image description.

Parameters

• url – URL string, it is copied internally

Returns Image structure pointer

trax_image* trax_image_create_memory(int width, int height, int format)
Creates a raw in-memory buffer image description. The memory is not initialized, you have do this manually.

Parameters

• width – Image width

• height – Image height

• format – Image format, see format type constants for options

Returns Image structure pointer

trax_image* trax_image_create_buffer(int length, const char* data)
Creates a file buffer image description.

Parameters

• length – Length of the buffer

• data – Character array with data, the buffer is copied

Returns Image structure pointer

16 Chapter 2. Index

TraX Documentation, Release 4.0.0

int trax_image_get_type(const trax_image* image)
Returns a type of the image handle.

Parameters

• image – Image structure pointer

Returns Image type code, see image type constants for more details

const char* trax_image_get_path(const trax_image* image)
Returns a file path from a file-system path image description. This function returns a pointer to the internal data
which should not be modified.

Parameters

• image – Image structure pointer

Returns Pointer to null-terminated character array

const char* trax_image_get_url(const trax_image* image)
Returns a file path from a URL path image description. This function returns a pointer to the internal data which
should not be modified.

Parameters

• image – Image structure pointer

Returns Pointer to null-terminated character array

void trax_image_get_memory_header(const trax_image* image, int* width, int* height, int* format)
Returns the header data of a memory image.

Parameters

• image – Image structure pointer

• width – Pointer to variable that is populated with width of the image

• height – Pointer to variable that is populated with height of the image

• format – Pointer to variable that is populated with format of the image, see format con-
stants for options

char* trax_image_write_memory_row(trax_image* image, int row)
Returns a pointer for a writeable row in a data array of an image.

Parameters

• image – Image structure pointer

• row – Number of row

Returns Pointer to character array of the line

const char* trax_image_get_memory_row(const trax_image* image, int row)
Returns a read-only pointer for a row in a data array of an image.

Parameters

• image – Image structure pointer

• row – Number of row

Returns Pointer to character array of the line

const char* trax_image_get_buffer(const trax_image* image, int* length, int* format)
Returns a file buffer and its length. This function returns a pointer to the internal data which should not be
modified.

2.2. API documentation 17

TraX Documentation, Release 4.0.0

Parameters

• image – Image structure pointer

• length – Pointer to variable that is populated with buffer length

• format – Pointer to variable that is populated with buffer format code

Returns Pointer to character array

Region

TRAX_REGION_EMPTY
Empty region type, not usable in any way but to signify that there is no data.

TRAX_REGION_SPECIAL
Special code region type, only one value avalable that can have a defined meaning.

TRAX_REGION_RECTANGLE
Rectangle region type. Left, top, width and height values available.

TRAX_REGION_POLYGON
Polygon region type. Three or more points available with x and y coordinates.

. . . c:macro:: TRAX_REGION_MASK

TRAX_REGION_ANY
Any region type, a shortcut to specify that any supported region type can be used.

void trax_region_release(trax_region** region)
Releases region structure, frees allocated memory.

Parameters

• region – Pointer to region structure pointer (the pointer is set to NULL if the structure is
destroyed successfuly)

int trax_region_get_type(const trax_region* region)
Returns type identifier of the region object.

Parameters

• region – Region structure pointer

Returns One of the region type constants

trax_region* trax_region_create_special(int code)
Creates a special region object.

Parameters

• code – A numerical value that is contained in the region type

Returns A pointer to the region object

void trax_region_set_special(trax_region* region, int code)
Sets the code of a special region.

Parameters

• region – Region structure pointer

• code – The new numerical value

18 Chapter 2. Index

TraX Documentation, Release 4.0.0

int trax_region_get_special(const trax_region* region)
Returns a code of a special region object if the region is of special type.

Parameters

• region – Region structure pointer

Returns The numerical value

trax_region* trax_region_create_rectangle(float x, float y, float width, float height)
Creates a rectangle region.

Parameters

• x – Left offset

• y – Top offset

• width – Width of rectangle

• height – Height of rectangle

Returns A pointer to the region object

void trax_region_set_rectangle(trax_region* region, float x, float y, float width, float height)
Sets the coordinates for a rectangle region.

Parameters

• region – A pointer to the region object

• x – Left offset

• y – Top offset

• width – Width of rectangle

• height – Height of rectangle

void trax_region_get_rectangle(const trax_region* region, float* x, float* y, float* width,
float* height)

Retreives coordinate from a rectangle region object.

Parameters

• region – A pointer to the region object

• x – Pointer to left offset value variable

• y – Pointer to top offset value variable

• width – Pointer to width value variable

• height – Pointer to height value variable

trax_region* trax_region_create_polygon(int count)
Creates a polygon region object for a given amout of points. Note that the coordinates of the points are arbitrary
and have to be set after allocation.

Parameters

• code – The number of points in the polygon

Returns A pointer to the region object

void trax_region_set_polygon_point(trax_region* region, int index, float x, float y)
Sets coordinates of a given point in the polygon.

Parameters

2.2. API documentation 19

TraX Documentation, Release 4.0.0

• region – A pointer to the region object

• index – Index of point

• x – Horizontal coordinate

• y – Vertical coordinate

void trax_region_get_polygon_point(const trax_region* region, int index, float* x, float* y)
Retrieves the coordinates of a specific point in the polygon.

Parameters

• region – A pointer to the region object

• index – Index of point

• x – Pointer to horizontal coordinate value variable

• y – Pointer to vertical coordinate value variable

int trax_region_get_polygon_count(const trax_region* region)
Returns the number of points in the polygon.

Parameters

• region – A pointer to the region object

Returns Number of points

trax_region* trax_region_create_mask(int x, int y, int width, int height)
Creates a mask region object of given size. Note that the mask data is not initialized.

Parameters

• x – Left offset

• y – Top offset

• width – Mask width

• height – Mask height

Returns A pointer to the region object

void trax_region_get_mask_header(const trax_region* region, int* x, int* y, int* width, int* height)
Returns the header data of a mask region.

Parameters

• region – A pointer to the region object

• x – Pointer to left offset value variable

• y – Pointer to top offset value variable

• width – Pointer to width value variable

• height – Pointer to height value variable

char* trax_region_write_mask_row(trax_region* region, int row)
Returns a pointer for a writeable row in a data array of a mask.

Parameters

• region – Region structure pointer

• row – Number of row

Returns Pointer to character array of the line

20 Chapter 2. Index

TraX Documentation, Release 4.0.0

const char* trax_region_get_mask_row(const trax_region* region, int row)
Returns a read-only pointer for a row in a data array of a mask.

Parameters

• region – Region structure pointer

• row – Number of row

Returns Pointer to character array of the line

trax_bounds trax_region_bounds(const trax_region* region)
Calculates a bounding box region that bounds the input region.

Parameters

• region – A pointer to the region object

Returns A bounding box structure that contains values for left, top, right, and bottom

trax_region* trax_region_clone(const trax_region* region)
Clones a region object.

Parameters

• region – A pointer to the region object

Returns A cloned region object pointer

trax_region* trax_region_convert(const trax_region* region, int format)
Converts region between different formats (if possible).

Parameters

• region – A pointer to the region object

• format – One of the format type constants

Returns A converted region object pointer

float trax_region_contains(const trax_region* region, float x, float y)
Calculates if the region contains a given point.

Parameters

• region – A pointer to the region object

• x – X coordinate of the point

• y – Y coordinate of the point

Returns Returns zero if the point is not in the region or one if it is

float trax_region_overlap(const trax_region* a, const trax_region* b, const trax_bounds bounds)
Calculates the spatial Jaccard index for two regions (overlap).

Parameters

• a – A pointer to the region object

• b – A pointer to the region object

Returns A bounds structure to contain only overlap within bounds or trax_no_bounds if no
bounds are specified

char* trax_region_encode(const trax_region* region)
Encodes a region object to a string representation.

Parameters

2.2. API documentation 21

TraX Documentation, Release 4.0.0

• region – A pointer to the region object

Returns A character array with textual representation of the region data

trax_region* trax_region_decode(const char* data)
Decodes string representation of a region to an object.

Parameters

• region – A character array with textual representation of the region data

Returns A pointer to the region object or NULL if string does not contain valid region data

Properties

trax_properties* trax_properties_create()
Create an empty properties dictionary.

Returns A pointer to a properties object

void trax_properties_release(trax_properties** properties)
Destroy a properties object and clean up the memory.

Parameters

• properties – A pointer to a properties object pointer

void trax_properties_clear(trax_properties* properties)
Clears a properties dictionary making it empty.

Parameters

• properties – A pointer to a properties object

void trax_properties_set(trax_properties* properties, const char* key, const char* value)
Set a string property for a given key. The value string is cloned.

Parameters

• properties – A pointer to a properties object

• key – A key for the property, only keys valid according to the protocol are accepted

• value – The value for the property, the string is cloned internally

void trax_properties_set_int(trax_properties* properties, const char* key, int value)
Set an integer property. The value will be encoded as a string.

Parameters

• properties – A pointer to a properties object

• key – A key for the property, only keys valid according to the protocol are accepted

• value – The value for the property

void trax_properties_set_float(trax_properties* properties, const char* key, float value)
Set an floating point value property. The value will be encoded as a string.

Parameters

• properties – A pointer to a properties object

• key – A key for the property, only keys valid according to the protocol are accepted

• value – The value for the property

22 Chapter 2. Index

TraX Documentation, Release 4.0.0

char* trax_properties_get(const trax_properties* properties, const char* key)
Get a string property. The resulting string is a clone of the one stored so it should be released when not needed
anymore.

Parameters

• properties – A pointer to a properties object

• key – A key for the property

Returns The value for the property or NULL if there is no value associated with the key

int trax_properties_get_int(const trax_properties* properties, const char* key, int def)

Get an integer property. A stored string value is converted to an integer. If this is not possible or the
property does not exist a given default value is returned.

Parameters

• properties – A pointer to a properties object

• key – A key for the property

• def – Default value for the property

Returns The value for the property or default value if there is no value associated with the key or
conversion from string is impossible

float trax_properties_get_float(const trax_properties* properties, const char* key, float def)
Get an floating point value property. A stored string value is converted to an integer. If this is not possible or the
property does not exist a given default value is returned.

Parameters

• properties – A pointer to a properties object

• key – A key for the property

• def – Default value for the property

Returns The value for the property or default value if there is no value associated with the key or
conversion from string is impossible

int trax_properties_count(const trax_properties* properties)
Get a number of all pairs in the properties object.

Parameters

• properties – A pointer to a properties object

Returns Number of key-value pairs in the properties object

void trax_properties_enumerate(trax_properties* properties, trax_enumerator enumerator, const
void* object)

Iterate over the property set using a callback function. An optional pointer can be given and is forwarded to the
callback.

Parameters

• properties – A pointer to a properties object

• enumerator – A pointer to the enumerator function that is called for every key-value pair

• object – A pointer to additional data for the enumerator function

2.2. API documentation 23

TraX Documentation, Release 4.0.0

Integration example

The library can be easily integrated into C and C++ code (although a C++ wrapper also exists) and can be also linked
into other programming languages that enable linking of C libraries. Below is an sripped-down example of a C tracker
skeleton with a typical tracking loop. Note that this is not a complete example and servers only as a demonstration of
a typical tracker on a tracking-loop level.

1 #include <stdio.h>
2

3 int main(int argc, char** argv)
4 {
5 int i;
6 FILE* out;
7 rectangle_type region;
8 image_type image;
9

10 out = fopen("trajectory.txt", "w");
11

12 region = read_bounding_box();
13 image = read_image(1);
14 region = initialize_tracker(region, image);
15

16 write_frame(out, region);
17

18 for (i = 2; ; i++)
19 {
20 image = read_image(i);
21 region = update_tracker(image);
22 write_frame(out, region);
23 }
24

25 fclose(out);
26 return 0;
27 }

The code above can be modified to use the TraX protocol by including the C library header and changing the tracking
loop to accept frames from the protocol insead of directly reading them from the filesystem. It also requires linking
the protocol library (libtrax) when building the tracker executable.

1 #include <stdio.h>
2

3 // Include TraX library header
4 #include "trax.h"
5

6 int main(int argc, char** argv)
7 {
8 int run = 1;
9 trax_image_list* img = NULL;

10 trax_region* reg = NULL;
11

12 // Call trax_server_setup at the beginning
13 trax_handle* handle;
14 trax_metadata* meta = trax_metadata_create(TRAX_REGION_RECTANGLE, TRAX_IMAGE_PATH,

→˓ TRAX_CHANNEL_VISIBLE, "Name", NULL, NULL);
15

16 handle = trax_server_setup(meta, trax_no_log);
17

(continues on next page)

24 Chapter 2. Index

TraX Documentation, Release 4.0.0

(continued from previous page)

18 trax_metadata_release(&meta);
19

20 while(run)
21 {
22 int tr = trax_server_wait(handle, &img, ®, NULL);
23

24 // There are two important commands. The first one is
25 // TRAX_INITIALIZE that tells the tracker how to initialize.
26 if (tr == TRAX_INITIALIZE) {
27

28 rectangle_type region = initialize_tracker(
29 region_to_rectangle(reg), load_image(img));
30 trax_server_reply(handle, rectangle_to_region(region), NULL);
31

32 } else
33 // The second one is TRAX_FRAME that tells the tracker what to process next.
34 if (tr == TRAX_FRAME) {
35

36 rectangle_type region = update_tracker(load_image(trax_image_list_get(img,
→˓ TRAX_CHANNEL_VISIBLE)));

37 trax_server_reply(handle, rectangle_to_region(region), NULL);
38

39 }
40 // Any other command is either TRAX_QUIT or illegal, so we exit.
41 else {
42 run = 0;
43 }
44

45 if (img) {
46 trax_image_list_clear(img); // Also delete individual images
47 trax_image_list_release(&img);
48 }
49 if (reg) trax_region_release(®);
50

51 }
52

53 // TraX: Call trax_cleanup at the end
54 trax_cleanup(&handle);
55

56 return 0;
57 }

2.2.2 Library C++ wrapper

The main functionality of the reference library is written in pure C, however, it also offers a C++ wrapper if used
with a C++ compiler. This wrapper uses classes and objects as well as reference counting for memory management,
making is more suitable choice when using the reference library in a C++ algorithm.

Requirements and building

No additional requirements are necessary for building the wrapper but a C++ compiler.

2.2. API documentation 25

TraX Documentation, Release 4.0.0

Documentation

The wrapper is composed of several classes, mostly following the underlying C functions. All the classes are contained
in trax namespace.

class Metadata
A wrapper class for tracker metadata structure

Metadata(int region_formats, int image_formats, std::string tracker_name, std::string
tracker_description, std::string tracker_family)

Creates a new metadata object.

~Metadata()

int image_formats()
Returns supported image formats as a bit field.

int region_formats()
Returns supported region formats as a bit field.

std::string tracker_name()
Returns tracker name string or empty string.

std::string tracker_description()
Returns tracker description string or empty string.

std::string tracker_family()
Returns tracker family string or empty string.

class Logging
A wrapper class for logging configuration structure

Logging(trax_logging logging)

Logging(trax_logger callback = NULL, void *data = NULL, int flags = 0)

~Logging()

class Bounds

Bounds()

Bounds(trax_bounds bounds)

Bounds(float left, float top, float right, float bottom)

~Bounds()

class Handle

~Handle()

const Metadata metadata()

const bool terminate()
Terminate session by sending quit message. Implicitly called when object is destroyed.

std::string get_error()
Return last error string or empty string if no error has occured in last call to handle.

bool is_alive()
Check if the handle is opened or not.

26 Chapter 2. Index

TraX Documentation, Release 4.0.0

class Client

Client(int input, int output, Logging logger)
Sets up the protocol for the client side and returns a handle object.

Client(int server, Logging logger, int timeout = -1)
Sets up the protocol for the client side and returns a handle object.

~Client()

int wait(Region ®ion, Properties &properties)
Waits for a valid protocol message from the server.

int initialize(const Image &image, const Region ®ion, const Properties &properties)
Sends an initialize message.

int frame(const Image &image, const Properties &properties)
Sends a frame message.

class Server

Server(Configuration configuration, Logging log)
Sets up the protocol for the server side and returns a handle object.

~Server()

int wait(Image &image, Region ®ion, Properties &properties)
Waits for a valid protocol message from the client.

int reply(const Region ®ion, const Properties &properties)
Sends a status reply to the client.

class Image

Image()

Image(const Image &original)

static Image create_path(const std::string &path)
Creates a file-system path image description. See trax_image_create_path().

static Image create_url(const std::string &url)
Creates a URL path image description. See trax_image_create_url().

static Image create_memory(int width, int height, int format)
Creates a raw buffer image description.See trax_image_create_memory().

static Image create_buffer(int length, const char *data)
Creates a file buffer image description. See trax_image_create_buffer().

~Image()
Releases image structure, frees allocated memory.

int type() const
Returns a type of the image handle. See trax_image_get_type().

bool empty() const
Checks if image container is empty.

const std::string get_path() const
Returns a file path from a file-system path image description. This function returns a pointer to the internal
data which should not be modified.

2.2. API documentation 27

TraX Documentation, Release 4.0.0

const std::string get_url() const
Returns a file path from a URL path image description. This function returns a pointer to the internal data
which should not be modified.

void get_memory_header(int *width, int *height, int *format) const
Returns the header data of a memory image.

char *write_memory_row(int row)
Returns a pointer for a writeable row in a data array of an image.

const char *get_memory_row(int row) const
Returns a read-only pointer for a row in a data array of an image.

const char *get_buffer(int *length, int *format) const
Returns a file buffer and its length. This function returns a pointer to the internal data which should not be
modified.

class Region

Region()
Creates a new empty region.

Region(const Region &original)
Creates a clone of region.

static Region create_special(int code)
Creates a special region object. Only one paramter (region code) required.

static Region create_rectangle(float x, float y, float width, float height)
Creates a rectangle region.

static Region create_polygon(int count)
Creates a polygon region object for a given amout of points. Note that the coordinates of the points are
arbitrary and have to be set after allocation.

static Region create_mask(int x, int y, int width, int height)
Creates a mask region object of given size. Note that the mask data is not initialized.

~Region()
Releases region, frees allocated memory.

int type() const
Returns type identifier of the region object.

bool empty() const
Checks if region container is empty.

void set(int code)
Sets the code of a special region.

int get() const
Returns a code of a special region object.

void set(float x, float y, float width, float height)
Sets the coordinates for a rectangle region.

void get(float *x, float *y, float *width, float *height) const
Retreives coordinate from a rectangle region object.

void set_polygon_point(int index, float x, float y)
Sets coordinates of a given point in the polygon.

28 Chapter 2. Index

TraX Documentation, Release 4.0.0

void get_polygon_point(int index, float *x, float *y) const
Retrieves the coordinates of a specific point in the polygon.

int get_polygon_count() const
Returns the number of points in the polygon.

void get_mask_header(int *x, int *y, int *width, int *height) const
Returns the header data of a mask region.

char *write_mask_row(int row)
Returns a pointer for a writeable row in a data array of a mask.

const char *get_mask_row(int row) const
Returns a read-only pointer for a row in a data array of a mask.

Bounds bounds() const
Computes bounds of a region.

Region convert(int type) const
Convert region to one of the other types if possible.

float overlap(const Region ®ion, const Bounds &bounds = Bounds()) const
Calculates the Jaccard index overlap measure for the given regions with optional bounds that limit the
calculation area.

class Properties

Properties()
Create a property object.

Properties(const Properties &original)
A copy constructor.

~Properties()
Destroy a properties object and clean up the memory.

int size()
Return the number of elements.

void clear()
Clear a properties object.

void set(const std::string key, const std::string value)
Set a string property (the value string is cloned).

void set(const std::string key, int value)
Set an integer property. The value will be encoded as a string.

void set(const std::string key, float value)
Set an floating point value property. The value will be encoded as a string.

std::string get(const std::string key, const std::string &def)
Get a string property.

int get(const std::string key, int def)
Get an integer property. A stored string value is converted to an integer. If this is not possible or the
property does not exist a given default value is returned.

float get(const std::string key, float def)
Get an floating point value property. A stored string value is converted to an float. If this is not possible or
the property does not exist a given default value is returned.

2.2. API documentation 29

TraX Documentation, Release 4.0.0

bool get(const std::string key, bool def)
Get an boolean point value property. A stored string value is converted to an integer and checked if it is
zero. If this is not possible or the property does not exist a given default value is returned.

void enumerate(Enumerator enumerator, void *object)
Iterate over the property set using a callback function. An optional pointer can be given and is forwarded
to the callback.

void from_map(const std::map<std::string, std::string> &m)
Adds values from a dictionary to the properties object.

void to_map(std::map<std::string, std::string> &m)
Copies key-value pairs in the properties object into the given dictionary.

void to_vector(std::vector<std::string> &v)
Copies keys from the properties object into the given vector.

Integration example

In C++ tracker implementations you can use either the C++ wrapper or basic C protocol implementation. The wrapper
is more conveninent as it is object-oriented and provides automatic deallocation of resources via reference counting.
Below is an sripped-down example of a C++ tracker skeleton with a typical tracking loop. Note that this is not a
complete example and servers only as a demonstration of a typical tracker on a tracking-loop level.

1 #include <iostream>
2 #include <fstream>
3

4 using namescpace std;
5

6 int main(int argc, char** argv)
7 {
8 int i;
9 FILE* out;

10 Rectangle region;
11 Image image;
12 Tracker tracker;
13

14 ofstream out;
15 output.open("trajectory.txt", ofstream::out);
16

17 region = read_bounding_box();
18 image = read_image(1);
19 region = tracker.initialize(region, image);
20

21 out << region << endl;
22

23 for (i = 2; ; i++)
24 {
25 image = read_image(i);
26 region = tracker.update(image);
27 out << region << endl;
28 }
29

30 out.close();
31 return 0;
32 }

The code above can be modified to use the TraX protocol by including the C/C++ library header and changing the

30 Chapter 2. Index

TraX Documentation, Release 4.0.0

tracking loop to accept frames from the protocol insead of directly reading them from the filesystem. It also requires
linking the protocol library (libtrax) when building the tracker executable.

1 #include <stdio.h>
2

3 // Include TraX library header
4 #include "trax.h"
5

6 using namespace std;
7

8 int main(int argc, char** argv)
9 {

10 int run = 1;
11

12 // Initialize protocol
13 trax::Server handle(trax::Metadata(TRAX_REGION_RECTANGLE,
14 TRAX_IMAGE_PATH), trax_no_log);
15

16 while(run)
17 {
18 trax::Image image;
19 trax::Region region;
20 trax::Properties properties;
21

22 int tr = handle.wait(image, region, properties);
23

24 // There are two important commands. The first one is
25 // TRAX_INITIALIZE that tells the tracker how to initialize.
26 if (tr == TRAX_INITIALIZE) {
27

28 cv::Rect result = tracker.initialize(
29 trax::region_to_rect(region), trax::image_to_mat(image));
30

31 handle.reply(trax::rect_to_region(result), trax::Properties());
32

33 } else
34 // The second one is TRAX_FRAME that tells the tracker what to process next.
35 if (tr == TRAX_FRAME) {
36

37 cv::Rect result = tracker.update(image_to_mat(image));
38 handle.reply(trax::rect_to_region(result), trax::Properties());
39

40 }
41 // Any other command is either TRAX_QUIT or illegal, so we exit.
42 else {
43 run = 0;
44 }
45

46 }
47

48 return 0;
49 }

2.2.3 Python wrapper

2.2. API documentation 31

TraX Documentation, Release 4.0.0

Requirements and support

The Python wrapper requires only core Python libraries and numpy for handling mask data. The Python code itself is
a CTypes wrapper arround the trax C library.

Documentation

Main module

Server-side communication

Client-side communication

Image module

Region module

Integration example

Below is a simple example of a Python code skeleton for a tracker, exposing its tracking loop but hidding all tracker-
specific details to keep things clear.

1 tracker = Tracker()
2 trajectory = [];
3 i = 1
4

5 rectangle = read_bounding_box()
6 image = read_image(i)
7 rectangle = tracker.initialize(rectangle, image)
8

9 trajectory.append(rectangle)
10

11 while True:
12 i = i + 1
13 image = read_image(i)
14 rectangle = tracker.update(image)
15 trajectory.append(rectangle)
16

17 write_trajectory(trajectory)

To make the tracker work with the TraX protocol you have to modify the above code in the following way and also
make sure that the trax module will be available at runtime.

1 import trax.server
2 import trax.region
3 import trax.image
4 import time
5

6 tracker = Tracker()
7

8 with trax.server.Server(trax.region.RECTANGLE, trax.image.PATH) as server:
9 while True:

10 request = server.wait()

(continues on next page)

32 Chapter 2. Index

TraX Documentation, Release 4.0.0

(continued from previous page)

11 if request.type in ["quit", "error"]:
12 break
13 if request.type == "initialize":
14 rectangle = tracker.initialize(get_rectangle(request.region),
15 load_image(request.image))
16 else:
17 rectangle = tracker.update(load_image(request.image))
18

19 server.status(get_region(rectangle))

2.2.4 Matlab/Octave wrappers

Matlab is a multi-paradigm numerical computing environment and a programming language, very popular among
computer vision researchers. Octave is its open-source counterpart that is sometimes used as a free alternative. Both
environments are by themselves quite limiting in terms of low-lever operating system access required for the TraX
protocol to work, but offer integration of C/C++ code in the scripting language, tipically via MEX mechanism (dy-
namic libraries with a predefined entry point). Using this mechanism a reference C implementation can be wrapped
and used in a Matlab/Octave tracker.

Requirements and building

To compile traxserverMEX function manually you need a MEX compiled configured correctly on your computer.

Since the MEX function is only a wrapper for the C library, you first have to ensure that the C library is compiled
and available in a subdirectory of the project. Then go to Matlab/Octave console, move to the support/matlab/
subdirectory and execute compile_trax script. If the script finishes correctly you will have a MEX script (ex-
tension varies from platform to platform) available in the directory. If the location of the TraX library is not found
automatically, you have to verify that it exists and possibly enter the path to its location manually.

Documentation

The traxserver MEX function is essentially used to send or receive a protocol message and parse it. It accepts
several parameters, the first one is a string of a command that you want execute.

[response] = traxserver('setup', region_formats, image_formats, ...);

The call setups the protocol and has to be called only once at the beginning of your tracking algorithm. The two
mandatory input arguments are:

• region_formats: A string that specifies region format that is supported by the algorithm. Any other formats
should be either converted by the client or the client should terminate if it is unable to provide data in correct
format. Possible values are: rectangle or polygon, see protocol specification for more details.

• image_formats: A string or specifies the image format that are supported by the algorithm. Any other formats
should be either converted by the client or the client should terminate if it is unable to provide data in correct
format. Possible values are: path, url, memory or data, see protocol specification for more details.

Additionally, you can also specify tracker name, description and family taxonomy as strings using named arguments
technique. A single output argument is a boolean value that is true if the initialization was successful.

[image, region, parameters] = traxserver('wait');

2.2. API documentation 33

TraX Documentation, Release 4.0.0

A call blocks until a protocol message is received from the client, parses it and returns the data. Based on the type of
message, some output arguments will be initialized as empty which also helps determining the type of the message.

• image: Image data in requested format. If the variable is empty then the termination request was received and
the tracker can exit.

• region: Region data in requested format. If the variable is set then an initialization request was received and the
tracker should be (re)initialized with the specified region. If the variable is empty (but the image variable is not)
then a new frame is received and should be processed.

[response] = traxserver('state', region, parameters);

A call sends a status message back to the client specifying the region for the current frame as well as the optional
parameters. The two input arguments are:

• region: Region data in requested format.

• parameters (optional): Arbitrary output parameters used for debugging or any other purposes. The parameters
are provided either in a single-level structure (no nested structures, just numbers or strings for values) or a N x
2 cell matrix with string keys in the first column and values in the second. Note that the protocol restricts the
characters used for parameter names and limits their length.

[response] = traxserver('quit', parameters);

Sends a quit message to the client specifying that the algorithm wants to terminate the tracking session. Additional
parameters can be specified using an input argument.

• parameters (optional): Arbitrary output parameters used for debugging or any other purposes, formats same as
above.

Image data

Image data is stored in a matrix. For file path and URL types this is a one-dimensional char sequence, for in-memory
image this is a 3-dimensional matrix of type uint8 with raw image data, ready for processing and for data type it is
in a structure with fields format and data that contain encoding format (JPEG or PNG) and raw file data.

Region data

Region data for rectangle and polygon types is stored in a one-dimensional floating-point matrix. For rectangle the
number of elements is 4, for polygon it is an even number, greater or equal than 6 (three points). In all cases the first
coordinate is in the horizontal dimension (columns) and not the way Matlab/Octave usually addresses matrices.

Internals

Additionally the function also looks for the TRAX_SOCKET environmental variable that is used to determine that the
server has to be set up using TCP sockets and that a TCP server is opened (the port or IP address and port are provide
as the value of the variable) and waiting for connections from the tracker. This mechanism is important for Matlab on
Microsoft Windows because the standard streams are closed at startup and cannot be used.

Integration example

As with all tracker implementations it is important to identify a tracking loop. Below is a very simple example of how a
typical tracking loop looks in Matlab/Octave with all the tracker specific code removed and placed in self-explanatory
functions.

34 Chapter 2. Index

TraX Documentation, Release 4.0.0

1 % Initialize the tracker
2 region = read_bounding_box('init.txt');
3 image = imread('0001.jpg');
4 region = initialize_tracker(region, image);
5

6 result = {region};
7 i = 2;
8

9 while true
10 % End-of-sequence criteria
11 if ~exist(sprintf('%04d.jpg', i), 'file')
12 break;
13 end;
14 i = i + 1;
15

16 % Read the next image.
17 image = imread(sprintf('%04d.jpg', i));
18

19 % Run the update step
20 region = update_tracker(image);
21

22 % Save the region
23 result{end+1} = region;
24 end
25

26 % Save the result
27 save_trajectory(result);

To enable tracker to receive the images over the protocol you have to change a few lines. First, you have to initialize
the protocol at the begining of the script and tell what kind of image and region formats the tracker supports. Then the
initialization of a tracker has to be placed into a loop because the protocol

1 % Initialize the protocol
2 traxserver('setup', 'rectangle', 'path', 'Name', 'Example');
3

4 while true
5 % Wait for data
6 [image, region] = traxserver('wait');
7

8 % Stopping criteria
9 if isempty(image)

10 break;
11 end;
12

13 % We are reading a given path
14 mat_image = imread(image);
15

16 if ~isempty(region)
17 % Initialize tracker
18 region = initialize_tracker(region, mat_image);
19 else
20 region = update_tracker(mat_image);
21 end
22

23 % Report back result to advance to next frame
24 traxserver('status', region);
25

(continues on next page)

2.2. API documentation 35

TraX Documentation, Release 4.0.0

(continued from previous page)

26 end
27

28 % Quit session if that was not done already
29 traxserver('quit');

2.2.5 Client library

The client support library provides a C++ client class that uses C++ protocol API to communicate with the tracker
process, besides communication the class also takes care of launching tracker process, handling timeouts, logging, and
other things. The class also supports setting up communication over streams as well as over TCP sockets. A detailed
tutorial on how to use the client library is available here. To compile the module you have to enable BUILD_CLIENT
flag in CMake build system (check out the tutorial on compiling the project for more details).

CONNECTION_DEFAULT
Default connection mode, standard input and output streams.

CONNECTION_EXPLICIT
Non-standard input and output streams are created, passed to tracker via environment variables TRAX_IN and
TRAX_OUT.

CONNECTION_SOCKETS
Using TCP socket for communication, connection parameters passed to tracker via environment variable
TRAX_SOCKET.

class TrackerProcess

TrackerProcess(const std::string &command, const std::map<string, string>
environment, int timeout = 10, trax::ConnectionMode connec-
tion = trax::CONNECTION_DEFAULT, VerbosityMode verbosity =
trax::VERBOSITY_DEFAULT)

Parameters

• command – The name of tracker program followed by its input arguments

• environment – A map of environmental variables that have to be set for the tracker
process

• timeout – Number of seconds to wait for tracker’s response before terminating the ses-
sion

• connection – Type of connection, supported are either CONNECTION_DEFAULT,
CONNECTION_EXPLICIT, or CONNECTION_SOCKETS.

• verbosity – How verbose should the output be

~TrackerProcess()
Destroys the process and cleans up data.

int image_formats()

Returns A bitset of image formats supported by the tracker.

int region_formats()

Returns A bitset of region formats supported by the tracker.

bool ready()

Returns True if the tracker process is alive.

36 Chapter 2. Index

TraX Documentation, Release 4.0.0

bool tracking()

Returns True if the tracker process is tracking an object (was initalized).

bool initialize(const trax::Image &image, const trax::Region ®ion, const trax::Properties
&properties = trax::Properties())

Request tracker initialization with a given image and region.

Parameters

• image – Input image object

• region – Input region object

• properties – Optional properties passed to the tracker

Returns True on success, if the function returns false check
trax::TrackerProcess::ready() if the process has crashed or simply requested
termination

bool frame(const trax::Image &image, const trax::Properties &properties = trax::Properties())
Request tracker update with a given image.

Parameters

• image – Input image object

• properties – Optional properties passed to the tracker

Returns True on success, if the function returns false check
trax::TrackerProcess::ready() if the process has crashed or simply requested
termination

bool wait(trax::Region ®ion, trax::Properties &properties)
Waits for tracker’s response to the previous request (either initialization or update).

Parameters

• region – Output region object, on success populated with output region

• properties – Optional output properties object, populated by returned optional values,
if any

Returns True on success, if the function returns false check
trax::TrackerProcess::ready() if the process has crashed or simply requested
termination

bool reset()
Restarts the tracker process. The function terminates the tracker process and starts a new one.

int load_trajectory(const std::string &file, std::vector<Region> &trajectory)
Utility function to load a trajectory (a sequence of object states) form a text file.

Parameters

• file – Filename string

• trajectory – Empty vector that will be populated with region states

Returns Number of read states

void save_trajectory(const std::string &file, std::vector<Region> &trajectory)
Utility function to save a trajectory (a sequence of object states) to a text file.

Parameters

• file – Filename string

2.2. API documentation 37

TraX Documentation, Release 4.0.0

• trajectory – Vector that contains the trajectory

2.2.6 OpenCV conversions library

OpenCV is one of most frequently used C++ libraries in computer vision. This support library provides conversion
functions so that protocol image and region objects can be quickly converted to corresponding OpenCV objects and
vice-versa.

Requirements and building

To compile the module you have to enable the BUILD_OPENCV flag in CMake build system (check out the tutorial
on compiling the project for more details). You will of course need OpenCV library available on the system, version
2.4 or higher is supported.

Documentation

cv::Mat image_to_mat(const Image &image)
Converts a protocol image object to an OpenCV matrix that represents the image.

Parameters image – Protocol image object

Returns OpenCV matrix object

cv::Rect region_to_rect(const Region ®ion)
Converts a protocol region object to an OpenCV rectangle structure.

Parameters image – Protocol region object

Returns OpenCV rectangle structure

std::vector<cv::Point2f> region_to_points(const Region ®ion)
Converts a protocol region object to a list of OpenCV points.

Parameters image – Protocol region object

Returns List of points

Image mat_to_image(const cv::Mat &mat)
Converts an OpenCV matrix to a new protocol image object.

Parameters mat – OpenCV image

Returns Protocol image object

Region rect_to_region(const cv::Rect rect)
Converts an OpenCV rectangle structure to a protocol region object of type rectangle.

Parameters rect – Rectangle structure

Returns Protocol region object

Region points_to_region(const std::vector<cv::Point2f> points)
Converts a list of OpenCV points to a protocol region object of type polygon.

Parameters rect – List of points

Returns Protocol region object

void draw_region(cv::Mat &canvas, const Region ®ion, cv::Scalar color, int width = 1)
Draws a given region to an OpenCV image with a given color and line width.

38 Chapter 2. Index

http://opencv.org/

TraX Documentation, Release 4.0.0

Parameters

• canvas – Target OpenCV image to which the region is drawn

• region – Protocol region object

• color – Color of the line as a an OpenCV scalar structure

• width – Width of the line

2.3 Support utilities

Besides protocol implementation and utility libraries the repository also contains several tools that can be used for
testing and performing simple experiments these tools are part of the client support module as they utilize the client
library.

2.3.1 CLI interface

Client support module also provides a traxclient, a simple CLI (command line interface) to the client that can be used
for simple tracker execution. If the OpenCV support module is also compiled then the CLI interface uses it for some
extra conversions that are otherwise not supported (e.g. loading images and sending them in their raw form over the
communication channel if the server requests it).

The traxclient utility is in fact quite powerful and can be used to perform many batch experiments if run multiple times
with different parameters. It is internally used by the VOT toolkit and can be used to perform other batch experiments
as well. If we assume that image sequence is stored in images.txt file (one absolute image path per line) and that
groundtruth are stored in groundtruth.txt file (one region per line, corresponding to the images), we can run a tracker
on this sequence by calling:

traxclient -g groundtruth.txt -I images.txt -o result.txt -- <tracker command>

This command will load the groundtruth and use it to initialize the tracker, then it will monitor the tracker until the end
of the sequence and storing the resulting trajectory to result.txt. More complex behavior can be achieved by adding
other command-line flags (run traxclient -h to get their list).

2.3.2 Protocol testing

The traxtest utility can be used for protocol support testing even if no sequence is available. The tool can produce a
static image stream to test if the tracker is responding properly.

2.3.3 OpenCV player

If the OpenCV support module is also compiled then a traxplayer utility is available. This utility can be used to
interactively test trackers with the data from video or camera stream.

2.4 Tutorials

This is a list of official tutorials on TraX, covering a wide set of topics form compiling the library to its integration
on various platforms and in various languages and even creating a specialized TraX client. The list does not cover
all the possible use cases so contributions (as well as corrections) are welcome and will could be included in the
documentation.

2.3. Support utilities 39

https://github.com/votchallenge/vot-toolkit

TraX Documentation, Release 4.0.0

2.4.1 General remarks and guidelines

Before starting implementing a new tracker or trying to adapt existing implementation to support TraX protocol,
please read the following guidelines on the structure of the code. A lot of these remarks are very common and are
not important only for easy integration of the protocol but for general code readability which is an important aspect of
reproducibility of results.

Tracking loop

From the implementation point of view, all on-line trackers should implement the tracking loop pattern in some way,
however, the loop is much harder to identify in some project than in the other. The tracking loop describes the general
state of the tracker. A tracker is initialized (is given and image and the state of the object to initialize its internal state),
is updated in a loop for a given amount of frames for which it produces a predicted state of the tracked object, and is
eventually terminated.

A clear separation of the tracking loop means that it is clear where these three stages are located in the source code.
This kind of organization makes integration of the TraX protocol much easier.

Algorithm abstraction

Clear abstraction of the tracking algorithm is related to the tracking loop pattern. It means that the boilerplate code that
handles input data retrieval, manages tracking loop, and eventually takes care of result storage is clearly separated from
the main algorithm. How this separation is achieved depends greatly on the programming language used, the most
common approach is to use object-oriented structure and present the algorithm as a class with functions to initialize
and update the state.

2.4.2 Compiling TraX library

The TraX library and supporting modules are built using CMake build tool. If you have not used CMake before the
best way to familiarize with it is by going through the official tutorial. CMake does not build the code by itself but
generates build instructions for a given platform, e.g. Make on Unix systems, Visual Studio on Windows, and Xcode
on OSX.

Note: In addition to CMake you will also have to install Python distutil if you want to build a Python package
(although you do not have to do this to use the Python implementation) and Octave development packages if you want
to build Octave-compatible MEX file (this can also be done from within the Octave or Matlab console).

If you want to build optional OpenCV support, you will have to install OpenCV library (together with development
header files). Depending on your OpenCV installation location you may have to tell the CMake where to find the
library.

Compiling using Make (Unix)

Building the project using Make tool is the typical for Unix systems (e.g. Linux and Max OSX). After installing all
the dependencies and obtaining TraX source code you can open the terminal, go to the library source root directory
and type the following commands:

$ mkdir build
$ cd build
$ cmake ..
$ make

40 Chapter 2. Index

https://cmake.org/
https://cmake.org/cmake-tutorial/

TraX Documentation, Release 4.0.0

With this you will create a subdirectory named build that will contain all the build artifacts, move to the directory, use
CMake to generate build instructions and run Make to build the code.

Note: On Unix systems it is also possible to install the library and all public files directly from the build using make
install command. The result of the command is system-depended but it will very likely install the library and other files
in the /usr/local directory where they will be available to all users. While this kind of installation is not recommended
it is a fast way of getting library available without having to manually configure search paths.

By default only the C library is built, if you want to enable additional modules you have to tell this to CMake by
adding flags:

$ cmake -DBUILD_OPENCV=ON -DBUILD_CLIENT=ON ..

This way both OpenCV module and client module will be built when running the Make command.

Compiling using Visual Studio (Windows)

On Windows CMake provides a GUI interface that can be used to generate a Visual Studio solution. Open the interface
and set the source and build paths. According to the CMake best practices we perform build in a separate sub-directory
to separate the generated binaries that can be safely removed and the source code. An example is shown in the
screenshot of the interface below.

2.4. Tutorials 41

TraX Documentation, Release 4.0.0

When configuring the project, first select the appropriate generator for you version of Visual Studio. After first gener-
ation stage, the variables table will be populated with default variable values. Optional modules, such as client support
library or OpenCV extensions can be turned on using variables (OpenCV extensions will also require OpenCV 2.4 or
higher to be available on the computer, you may have to tell CMake where to find it).

After the configuration stage is successful, you can generate Visual Studio solution, open it can compile the project
by compiling the target ALL_BUILD. The compiled files will be available in either Debug or Release subdirectory of
your build directory. Alternatively you can also compile target INSTALL to install the libraries to the folder, specified
by variable CMAKE_INSTALL_PREFIX or targer PACKAGE to generate a ZIP archive of compiled artifacts.

2.4.3 Using TraX on Linux

This tutorial will show you how to compile C and C++ trackers on Linux systems using CMake build system. It is
assumed that you have read the general remarks on tracker structure.

There are many Linux distributions, this tutorial will focus on the most popular one, Ubuntu, and its derivatives (e.g.
Linux Mint). For these systems a PPA repository is available so that you do not have to compile the TraX library
yourself. For other distributions you have to compile and install the library before continuing with the second step of
this tutorial.

Step 1: Installing library from PPA

To install the library from PPA you have to add the PPA to your package repository list:

42 Chapter 2. Index

https://launchpad.net/~lukacu/+archive/ubuntu/trax

TraX Documentation, Release 4.0.0

sudo add-apt-repository ppa:lukacu/trax
sudo apt-get update

Then install the required packages:

sudo apt-get install libtrax0 libtrax-dev

Note: The project is separated in multiple packages in the PPA, if you want to install OpenCV support you will have
to install additional packages

sudo apt-get install libtrax-opencv0 libtrax-opencv-dev

Step 2: Preparing your project

For the purposes of this tutorial we will use a simple NCC tracker that uses OpenCV library (because of this we will
also use OpenCV support library to make integration easier and more general). The original source code for the tracker
is available in the project repository in directory docs/tutorials/tracker. All the source code of the tracker is contained
in a single file called ncc.cpp.

Inspect the source code to see that it is composed of three parts. The first one is the tracker implementation which
contains the actual tracking algorithm. The second one contains utility functions that take care of loading the input
data and writing the results. The final part contains the main tracking loop. Since this code is properly structured, all
the adaptation work has to be done on this final part of the code. The initial tracking loop looks like:

1 int main(int argc, char** argv) {
2

3 // Reading
4 std::vector<std::string> images = readsequence("images.txt");
5 cv::Rect initialization = readrectangle("region.txt");
6 std::vector<std::Rect> output;
7

8 NCCTracker tracker;
9

10 // Initializing the tracker with first image
11 cv::Mat image = cv::imread(images[0]);
12 tracker.init(image, initialization);
13 // Adding first output to maintain equal length of outputs and
14 // input images.
15 output.push_back(initialization);
16

17 // The tracking loop, iterating through the rest of the sequence
18 for (size_t i = 1; i < images.size(); i++) {
19

20 cv::Mat image = cv::imread(images[i]);
21 cv::Rect rect = tracker.update(image);
22 output.push_back(rect);
23

24 }
25

26 // Writing the tracking result and exiting
27 writerectangles("output.txt", output);
28

29 }

2.4. Tutorials 43

TraX Documentation, Release 4.0.0

To modify the source code to use the TraX protocol we have to remove explicit loading of the initialization data and
let the protocol take care of this.

1 int main(int argc, char** argv) {
2

3 NCCTracker tracker;
4

5 trax::Server handle(trax::Metadata(TRAX_REGION_RECTANGLE, TRAX_IMAGE_PATH |
6 TRAX_IMAGE_MEMORY | TRAX_IMAGE_BUFFER), trax_no_log);
7

8 while (true) {
9

10 trax::Image image;
11 trax::Region region;
12 trax::Properties properties;
13

14 int tr = handle.wait(image, region, properties);
15 if (tr == TRAX_INITIALIZE) {
16

17 tracker.init(trax::image_to_mat(image), trax::region_to_rect(region));
18 handle.reply(region, trax::Properties());
19

20 } else if (tr == TRAX_FRAME) {
21

22 cv::Rect result = tracker.update(image_to_mat(image));
23 handle.reply(trax::rect_to_region(result), trax::Properties());
24

25 }
26 else break;
27 }
28

29 }

Lets now look at individual modifications. The creation handle object provides a protocol server handle that initializes
the protocol and sends the introductory message. The handle is given protocol configuration structure that specifies
what kind of data the server can handle as well as the optional output log that can be used for debugging:

trax::Server handle(trax::Configuration(TRAX_IMAGE_PATH | TRAX_IMAGE_MEMORY |
TRAX_IMAGE_BUFFER, TRAX_REGION_RECTANGLE), trax_no_log);

When using OpenCV support library’s function trax::image_to_mat(), the conversion from file path, raw
memory and image buffer types happens automatically so supporting them all is really easy. Without this function you
have to convert the image yourself.

The tracking loop has been modified to accept commands from the client. This happens with the call to the
trax::Server::wait() function. The function populates the provided variables: new image, object state (on
initialization), and optional parameters.

Since this kind of client-guided session means that the server does not know in advance how long will the tracking
session be, the loop is only broken when a quit message is received from the client. The other two options are the
initialization and new frame (which can always only follow successful initialization). The re-initialization can happen
at any time throughout the session so the server should be capable of reinitializing the tracker (note that in untrusted
setups the client may also terminate the session and start a new one).

Requests for initialization or update must be answered with a state message generated by
trax::Server::reply(). This function accepts the object state as predicted by the tracker as well as
any additional parameters that can be accumulated by the client for development or debugging purposes.

Because all the results are processed and stored by the client, we can remove the explicit results storage at the end of

44 Chapter 2. Index

TraX Documentation, Release 4.0.0

the loop. All these modifications also make all the utility functions in from the initial tracker implementation (second
part of the source code) obsolete, they can be removed as their function is handled by the client.

Step 3: Compiling the project

Finally we will modify the example’s CMake file. Properly installed TraX library supports CMake discovery mecha-
nism, the only line that we have to add is therefore:

FIND_PACKAGE(trax REQUIRED COMPONENTS core opencv)
TARGET_LINK_LIBRARIES(ncc_tracker ${TRAX_LIBRARIES})
INCLUDE_DIRECTORIES(AFTER ${TRAX_INCLUDE_DIRS})
LINK_DIRECTORIES(AFTER ${TRAX_LIBRARY_DIRS})

This command will locate the TraX core library and the OpenCV support library and configure several variables.

The project is compiled as a standard CMake project. First, we call CMake to generate a Makefile, then we call the
make tool to build the project. According to the CMake best practices we perform build in a separate sub-directory to
separate the generated binaries that can be safely removed and the source code:

$ mkdir bulild
$ cd build
$ cmake ..
$ make

Step 4: Testing integration

A successful build results in a binary program (in the case of this tutorial the program is called ncc_tracker. To test
if the program correctly supports TraX protocol we can use the client traxtest provided by the client support module
of the project. This program tries to run the tracker on a sequence of static images to see if the protocol is correctly
supported. Note that this test does not discover all the logical problems of the implementation as they may only occur
during very specific conditions; it only tests the basic TraX compliance.

To run the test move to the build directory and type:

$ traxtest -d -- ncc_tracker

If the integration is successful this command should output something like:

CLIENT: Starting process "ncc_tracker"
CLIENT: Setting up TraX with standard streams connection
@@TRAX:hello "trax.image=path;memory;buffer;" "trax.region=rectangle;" "trax.version=1
→˓"
CLIENT: Tracker process ID: 13019
CLIENT: Connection with tracker established.
@@TRAX:initialize "data:image/...
Tracker initialized
@@TRAX:state "130.0000,80.0000,70.0000,110.0000"
@@TRAX:frame "data:image/...
Tracker updated
@@TRAX:state "130.0000,80.0000,70.0000,110.0000"
@@TRAX:frame "data:image/@@TRAX:frame "data:image/...
Tracker updated
@@TRAX:state "130.0000,80.0000,70.0000,110.0000"
@@TRAX:frame "data:image/...
Tracker updated

(continues on next page)

2.4. Tutorials 45

TraX Documentation, Release 4.0.0

(continued from previous page)

...

...

2.4.4 Using TraX on Windows

This tutorial will show you how to compile C and C++ trackers on Windows systems using CMake build system. It is
assumed that you have read the general remarks on tracker structure.

This tutorial assumes that you are using Visual Studio 2012 or 2015 for your development and are reasonably familiar
with Visual Studio in general. For other build systems and version of Visual Studio you have to compile and install
the library before continuing with the second step of this tutorial.

Step 1: Downloading binaries

Prebuilt binaries are available here. They are compiled using the AppVeyor Continious Integration service. The
binaries are compiled for Visual Studio 2012 (32bit and 64bit versions, linked with OpenCV 2.4) and 2015 (64bit
version, linked with OpenCV 3.1).

Download the appropriate archive and unzip it to the desired location. Then add path to the bin subdirectory of the
extracted bundle to the system PATH variable so that you will be able to use client tools and that programs will find
the TraX dynamic library.

Step 2: Preparing your project

For the purposes of this tutorial we will use a simple NCC tracker that uses OpenCV library (because of this we will
also use OpenCV support library to make integration easier and more general). The original source code for the tracker
is available in the project repository in directory docstutorialstracker. All the source code of the tracker is contained
in a single file called ncc.cpp.

Inspect the source code to see that it is composed of three parts. The first one is the tracker implementation which
contains the actual tracking algorithm. The second one contains utility functions that take care of loading the input
data and writing the results. The final part contains the main tracking loop. Since this code is properly structured, all
the adaptation work has to be done on this final part of the code. The initial tracking loop looks like:

1 int main(int argc, char** argv) {
2

3 // Reading
4 std::vector<std::string> images = readsequence("images.txt");
5 cv::Rect initialization = readrectangle("region.txt");
6 std::vector<std::Rect> output;
7

8 NCCTracker tracker;
9

10 // Initializing the tracker with first image
11 cv::Mat image = cv::imread(images[0]);
12 tracker.init(image, initialization);
13 // Adding first output to maintain equal length of outputs and
14 // input images.
15 output.push_back(initialization);
16

17 // The tracking loop, iterating through the rest of the sequence
18 for (size_t i = 1; i < images.size(); i++) {
19

(continues on next page)

46 Chapter 2. Index

http://box.vicos.si/vot/trax/
https://ci.appveyor.com/project/lukacu/trax
https://en.wikipedia.org/wiki/PATH_(variable)#DOS.2C_OS.2F2.2C_and_Windows

TraX Documentation, Release 4.0.0

(continued from previous page)

20 cv::Mat image = cv::imread(images[i]);
21 cv::Rect rect = tracker.update(image);
22 output.push_back(rect);
23

24 }
25

26 // Writing the tracking result and exiting
27 writerectangles("output.txt", output);
28

29 }

To modify the source code to use the TraX protocol we have to remove explicit loading of the initialization data and
let the protocol take care of this.

1 int main(int argc, char** argv) {
2

3 NCCTracker tracker;
4

5 trax::Server handle(trax::Metadata(TRAX_REGION_RECTANGLE, TRAX_IMAGE_PATH |
6 TRAX_IMAGE_MEMORY | TRAX_IMAGE_BUFFER), trax_no_log);
7

8 while (true) {
9

10 trax::Image image;
11 trax::Region region;
12 trax::Properties properties;
13

14 int tr = handle.wait(image, region, properties);
15 if (tr == TRAX_INITIALIZE) {
16

17 tracker.init(trax::image_to_mat(image), trax::region_to_rect(region));
18 handle.reply(region, trax::Properties());
19

20 } else if (tr == TRAX_FRAME) {
21

22 cv::Rect result = tracker.update(image_to_mat(image));
23 handle.reply(trax::rect_to_region(result), trax::Properties());
24

25 }
26 else break;
27 }
28

29 }

Lets now look at individual modifications. The creation handle object provides a protocol server handle that initializes
the protocol and sends the introductory message. The handle is given protocol configuration structure that specifies
what kind of data the server can handle as well as the optional output log that can be used for debugging:

trax::Server handle(trax::Configuration(TRAX_IMAGE_PATH | TRAX_IMAGE_MEMORY |
TRAX_IMAGE_BUFFER, TRAX_REGION_RECTANGLE), trax_no_log);

When using OpenCV support library’s function trax::image_to_mat(), the conversion from file path, raw
memory and image buffer types happens automatically so supporting them all is really easy. Without this function you
have to convert the image yourself.

The tracking loop has been modified to accept commands from the client. This happens with the call to the
trax::Server::wait() function. The function populates the provided variables: new image, object state (on

2.4. Tutorials 47

TraX Documentation, Release 4.0.0

initialization), and optional parameters.

Since this kind of client-guided session means that the server does not know in advance how long will the tracking
session be, the loop is only broken when a quit message is received from the client. The other two options are the
initialization and new frame (which can always only follow successful initialization). The re-initialization can happen
at any time throughout the session so the server should be capable of reinitializing the tracker (note that in untrusted
setups the client may also terminate the session and start a new one).

Requests for initialization or update must be answered with a state message generated by
trax::Server::reply(). This function accepts the object state as predicted by the tracker as well as
any additional parameters that can be accumulated by the client for development or debugging purposes.

Because all the results are processed and stored by the client, we can remove the explicit results storage at the end of
the loop. All these modifications also make all the utility functions in from the initial tracker implementation (second
part of the source code) obsolete, they can be removed as their function is handled by the client.

Step 3: Compiling the project

Finally we will modify the example’s CMake file. Properly installed TraX library supports CMake discovery mecha-
nism, the only line that we have to add is therefore:

FIND_PACKAGE(trax REQUIRED COMPONENTS core opencv)
TARGET_LINK_LIBRARIES(ncc_tracker ${TRAX_LIBRARIES})
INCLUDE_DIRECTORIES(AFTER ${TRAX_INCLUDE_DIRS})
LINK_DIRECTORIES(AFTER ${TRAX_LIBRARY_DIRS})

The project is compiled as a standard CMake project. First, we open CMake GUI tool, select the source and build
directories as shown in the example below.

During the configuration phase we select the appropriate generator. In case CMake is unable to find TraX library
automatically we have to set the trax_DIR variable manually (set the variable to the share subdirectory of the local
TraX installation root since this is the directory where the CMake configuration files are stored). When there are
no more configuration errors we can generate the Visual Studio solution in the build folder open it and compile the
project.

Step 4: Testing integration

A successful build results in a binary program (in this tutorial the program is called ncc_tracker.exe and is available
in the Debug or Release subdirectory of your build directory). To test if the program correctly supports TraX protocol
we can use the client traxtest.exe provided by the client support module of the project. This program tries to run the
tracker on a sequence of static images to see if the protocol is correctly supported. Note that this test does not discover
all the logical problems of the implementation as they may only occur during very specific conditions; it only tests the
basic TraX compliance.

To run the test move to the build directory and type:

$ traxtest.exe -d -- ncc_tracker.exe

If the integration is successful this command should output something like:

CLIENT: Starting process "ncc_tracker.exe"
CLIENT: Setting up TraX with standard streams connection
@@TRAX:hello "trax.image=path;memory;buffer;" "trax.region=rectangle;" "trax.version=1
→˓"
CLIENT: Tracker process ID: 13019
CLIENT: Connection with tracker established.

(continues on next page)

48 Chapter 2. Index

TraX Documentation, Release 4.0.0

2.4. Tutorials 49

TraX Documentation, Release 4.0.0

50 Chapter 2. Index

TraX Documentation, Release 4.0.0

(continued from previous page)

@@TRAX:initialize "data:image/...
Tracker initialized
@@TRAX:state "130.0000,80.0000,70.0000,110.0000"
@@TRAX:frame "data:image/...
Tracker updated
@@TRAX:state "130.0000,80.0000,70.0000,110.0000"
@@TRAX:frame "data:image/@@TRAX:frame "data:image/...
Tracker updated
@@TRAX:state "130.0000,80.0000,70.0000,110.0000"
@@TRAX:frame "data:image/...
Tracker updated
...
...

2.4.5 TraX in Matlab and Octave

This tutorial will guide you through integration of support for TraX protocol to your Matlab/Octave tracker using the
reference library. It is assumed that you already have TraX compiled or installed on your computer and that you have
read the general remarks on tracker structure.

Step 1: Enabling TraX support

To enable TraX support you have to compile the traxserver MEX file that provides a bridge between the library and
scripting environment.

Note: On Ubuntu systems you can install a pre-compiled Octave package named octave-trax from the PPA repository.
Then all you have to do is type pkg load trax in Octave console to get access to traxserver function.

The source files for traxserver are located in support/matlab subdirectory of the source code repository. In the same
directory there is also an utility script, compile_trax.m, that compiles the source using the available MEX compiler (If
you have never compiled MEX files before you will probably have to configure the compiler first.).

If you have compiled the TraX library yourself then all you have to do is to run the utility script. If you are using a
pre-built version then you will have to pass the script the path to the root directory where TraX libraries are located:

compile_trax('< ... path to TraX ... >');

Step 2: Preparing your project

In this tutorial we will use a simple NCC tracker written in Matlab/Octave language. The original source code for the
tracker is available in the project repository in directory docs/tutorials/matlab. All the code of the tracker is contained
in a single file called ncc_tracker.m. In the main function we can observe a typical tracking loop. The data is loaded
from the files, image list from images.txt and initialization region from region.txt. The result is stored to output.txt.

1 % Load initalization data
2 fid = fopen('images.txt','r');
3 images = textscan(fid, '%s', 'delimiter', '\n');
4 fclose(fid); images = images{1};
5 region = dlmread('region.txt');
6

(continues on next page)

2.4. Tutorials 51

https://launchpad.net/~lukacu/+archive/ubuntu/trax
https://www.mathworks.com/help/matlab/matlab_external/changing-default-compiler.html

TraX Documentation, Release 4.0.0

(continued from previous page)

7 % Initialize the tracker
8 [state, ~] = ncc_initialize(imread(images{1}), region);
9

10 output = zeros(length(images), 4);
11 output(1, :) = region;
12

13 % Iterate through images
14 for i = 2:length(images)
15

16 % Perform a tracking step, obtain new region
17 [state, region] = ncc_update(state, imread(images{i}));
18 output(i, :) = region;
19

20 end;
21

22 % Write the result
23 csvwrite('output.txt', output);

To modify the source code to use the TraX protocol we have to remove explicit loading of the initialization data and
let the protocol take care of this. Then we modify the tracking loop to wait for client requests and respond to them.

1 traxserver('setup', 'rectangle', {'path'});
2

3 while true
4

5 [image, region] = traxserver('wait');
6

7 if isempty(image)
8 break;
9 end;

10

11 if ~isempty(region)
12 [state, ~] = ncc_initialize(imread(image), region);
13 else
14 [state, region] = ncc_update(state, imread(image));
15 end
16

17 traxserver('status', region);
18 end
19

20 traxserver('quit');

All interactions with TraX protocol are done using the traxserver function. The function is first called at line 1 to
setup the protocol, then at line 5 wait for instructions. The request type is specified by the first two output arguments
(image and region). If the first argument is empty this means that the client requested termination of session. If first
and second arguments are not empty then tracker initialization is requested, if only the second argument is empty
tracker update is requested. The tracker state is reported back to the client at line 17. Outside the tracking loop the
function is called again at line 20 to terminate the tracking session.

It is also recommended that the main tracking function contains an onCleanup handle which triggers on exit from
the method and ensures that the program closes. This is especially needed in Matlab since by default the interpreter
returns to interactive mode at the end. This way we guarantee that the program will exit no matter the outcome (even
in case of exceptions).

cleanup = onCleanup(@() exit());

52 Chapter 2. Index

https://www.mathworks.com/help/matlab/ref/oncleanup.html

TraX Documentation, Release 4.0.0

Step 3: Testing integration

To test if the tracker correctly supports TraX protocol we can use the client traxtest provided by the client support
module of the project. This program tries to run the tracker on a sequence of static images to see if the protocol is
correctly supported and the tracker correctly responds to requests. Note that this test does not discover all the logical
problems of the implementation as they may only occur during very specific conditions; it only tests the basic TraX
compliance.

Matlab

To run the tracker using Matlab interpreter, Matlab has to be run in command line mode (no GUI). This is easy
to achieve on Linux and partially on OSX, but a bit harder on Windows so we will address this operating system
separately.

On Linux and OSX Matlab has to be run in headless mode to avoid redirecting input and output to GUI. We achieve
this with flags -nodesktop and -nosplash. We tell Matlab what code to evaluate with -r flag. The inline
script should call the main tracker file, in our case this is ncc_tracker. Additionally the script can also be used to add
directories to search path list using the addpath command. The final call to traxtest therefore looks something like:

$ traxtest -d -- matlab -nodesktop -nosplash -r "ncc_tracker"

On Windows, the process is a bit trickier since Matlab forks a process and prevents communication over system
streams. Because of this we have to switch to TCP stream by adding -X flag to traxtest. We also have to add flag
-wait to Matlab command to tell Matlab not to quit the original process (otherwise the client will think that the
tracker has terminated) as well as flag -minimize to minimize the command window that is opened by Matlab in
any case. The final call to traxtest therefore looks something like:

$ traxtest -X -d -- matlab -nodesktop -nosplash -wait -minimize -r "ncc_tracker"

Octave

In contrast to previous versions Octave 4.0 has integrated GUI which has to be disabled to run the process in the
background. We achieve this by passing --no-gui flag. Then, we tell Octave where to find tracker code using -p
flag which adds path to Octave search path list. Finally we tell Octave what code to evaluate with --eval flag. The
inline script should call the main tracker file, in our case this is ncc_tracker. Since packages have to be explicitly
loaded in Octave this can also be done inline (unless you add these commands to the tracker script). Finally, we
can also disable writing of octave-workspace file with crash_dumps_octave_core command. The final call to
traxtest therefore looks something like:

$ traxtest -d -- octave --no-gui --eval "pkg load trax; pkg load image; crash_dumps_
→˓octave_core(0); ncc_tracker"

2.4.6 Creating a TraX client

According to TraX specification a client is an application that provides tracking task to the tracker, i.e. the server.
The client typically has to start the server process, initialize the tracker, provide image sequence data and monitor the
tracker’s progress. Examples of fully functional clients in the TraX project are the CLI utility traxclient which can be
used to perform simple experiments on a given sequence and traxplayer which can be used to interactively initialize
the tracker and run it on the data from a video or even camera.

In this tutorial we will create a client that runs a tracker for 50 frames (the sequence is loaded from a given directory)
and automatically reinitializes it after that. We will utilize the TraX client support library that takes care of common

2.4. Tutorials 53

TraX Documentation, Release 4.0.0

and platform specific tasks like managing the tracker process. The complete source code of the example is available
in docs/tutorials/client directory of the repository.

To include the client support we first have to include its header file (besides all other header files):

// System utilities
#include <sstream>

// TraX headers
#include <trax.h>
#include <trax/client.hpp>

We will begin by parsing the input arguments, provided by the user. For simplicity sake we will assume that the
input sequence is defined by the groundtruth.txt file which defines the annotated groundtruth state and that the image
files are also available in the same folder and follow a eight digit zero-padded number, starting with 1: 00000001.jpg,
00000002.jpg, The only remaining input is the tracker command which we have to parse from the input arguments
and encode it as a string:

int main(int argc, char** argv) {

// Quit if tracker command not given
if (argc < 2)

return -1;

std::vector<trax::Region> groundtruth;
trax::load_trajectory("groundtruth.txt", groundtruth);

int total_frames = groundtruth.size();

std::stringstream buffer;
for (int i = 1; i < argc; i++)

buffer << " \"" << std::string(argv[i]) << "\" ";
std::string tracker_command = buffer.str();

To obtain tracker handle we create a TrackerProcess object. This object internally starts a new process using the given
command parameter. The construction of the object will faill if the tracker will not send an introduction TraX message
which will also provide client with the information about tracker’s capabilites (what kind of image formats does it
support). We can also check if the process is still alive by calling ready method.

trax::TrackerProcess tracker(tracker_command);

For now we will leave these advanced options and look at the client tracking loop. The client is aware of the length of
the sequence so the loop iterates for a known number of steps. At each step we generate a path image descriptor to the
new image. The client has complete control over what is going on which we can use to re-initialize the tracker every
50 frames.

for (int i = 0; i < total_frames; i++) {

char buff[32];
snprintf(buff, sizeof(buff), "%08d.jpg", i + 1);
trax::Image image = trax::Image::create_path(string(buff));

// Initialize every 50 frames
if (i % 50 == 0) {

if (!tracker.initialize(image, groundtruth[i]))
// Something went wrong, break the loop
break;

(continues on next page)

54 Chapter 2. Index

TraX Documentation, Release 4.0.0

(continued from previous page)

} else {
if (!tracker.frame(image))

// Something went wrong, break the loop
break;

}

After issuing the command we wait for the reply. Unless the tracker terminates execution, a valid reply will contain
the status of the object as well as optional properties. All of this information can be simply stored or used to adjust
tracking session.

trax::Region status; // Will receive object state predicted by tracker
trax::Properties properties; // Will receive any optional data

// Wait for tracker response to the request
bool success = tracker.wait(status, properties);

if (success) {
// The tracker returns a valid status.
// Process the result ...

} else {
if (tracker.ready()) {

// The tracker has requested termination.
break;

} else {
// In case of an error ...

}
}

}

}

And all we have to do now is to compile the code. We will use CMake to find the TraX library and configure the build.
Notice that we have to tell CMake to include ´core´ and ´client´ TraX components:

ADD_EXECUTABLE(sample_client client.cpp)
FIND_PACKAGE(trax REQUIRED COMPONENTS core client)
TARGET_LINK_LIBRARIES(sample_client ${TRAX_LIBRARIES})
INCLUDE_DIRECTORIES(AFTER ${TRAX_INCLUDE_DIRS})
LINK_DIRECTORIES(AFTER ${TRAX_LIBRARY_DIRS})

2.5 Contributions and development

Contributions to the TraX protocol and library are welcome, the preferred way to do it is by submitting issues or pull
requests on GitHub.

2.6 Protocol adoption

On this site we list public projects that have adopted the TraX protocol (either using the reference library or custom
implementations). If you want to be on the list please write an email to the developers.

2.5. Contributions and development 55

https://github.com/votchallenge/trax

TraX Documentation, Release 4.0.0

2.6.1 Trackers

• LGT and ANT: The repository contains Matlab implementations of LGT (TPAMI 2013), ANT (WACV 2016),
IVT (IJCV 2007), MEEM (ECCV 2014), and L1-APG (CVPR 2012) trackers.

• KCF: A C++ re-implementation of the KCF (TPAMI 2015) tracker.

• ASMS: A C++ implementation of the ASMS (PRL 2014) tracker.

• MIL: An adapted original C++ implementation of the MIL (CVPR 2009) that works with OpenCV 2.

• Struck: A fork of the original Struck (ICCV 2011) implementation with protocol support and support OpenCV
2.

• CMT: A fork of the original CMT (CVPR 2015) implementation.

2.6.2 Applications

• VOT toolkit: the toolkit uses the TraX protocol as the default integration mechanism.

56 Chapter 2. Index

https://github.com/lukacu/visual-tracking-matlab
https://github.com/vojirt/kcf
https://github.com/vojirt/asms
https://github.com/lukacu/mil
https://github.com/lukacu/struck
https://github.com/lukacu/CMT
https://github.com/votchallenge/vot-toolkit

Index

C
CONNECTION_DEFAULT (C macro), 36
CONNECTION_EXPLICIT (C macro), 36
CONNECTION_SOCKETS (C macro), 36

T
trax::Bounds (C++ class), 26
trax::Bounds::~Bounds (C++ function), 26
trax::Bounds::Bounds (C++ function), 26
trax::Client (C++ class), 26
trax::Client::~Client (C++ function), 27
trax::Client::Client (C++ function), 27
trax::Client::frame (C++ function), 27
trax::Client::initialize (C++ function), 27
trax::Client::wait (C++ function), 27
trax::draw_region (C++ function), 38
trax::Handle (C++ class), 26
trax::Handle::~Handle (C++ function), 26
trax::Handle::get_error (C++ function), 26
trax::Handle::is_alive (C++ function), 26
trax::Handle::metadata (C++ function), 26
trax::Handle::terminate (C++ function), 26
trax::Image (C++ class), 27
trax::Image::~Image (C++ function), 27
trax::Image::create_buffer (C++ function),

27
trax::Image::create_memory (C++ function),

27
trax::Image::create_path (C++ function), 27
trax::Image::create_url (C++ function), 27
trax::Image::empty (C++ function), 27
trax::Image::get_buffer (C++ function), 28
trax::Image::get_memory_header (C++ func-

tion), 28
trax::Image::get_memory_row (C++ function),

28
trax::Image::get_path (C++ function), 27
trax::Image::get_url (C++ function), 27
trax::Image::Image (C++ function), 27

trax::Image::type (C++ function), 27
trax::Image::write_memory_row (C++ func-

tion), 28
trax::image_to_mat (C++ function), 38
trax::load_trajectory (C++ function), 37
trax::Logging (C++ class), 26
trax::Logging::~Logging (C++ function), 26
trax::Logging::Logging (C++ function), 26
trax::mat_to_image (C++ function), 38
trax::Metadata (C++ class), 26
trax::Metadata::~Metadata (C++ function), 26
trax::Metadata::image_formats (C++ func-

tion), 26
trax::Metadata::Metadata (C++ function), 26
trax::Metadata::region_formats (C++ func-

tion), 26
trax::Metadata::tracker_description

(C++ function), 26
trax::Metadata::tracker_family (C++ func-

tion), 26
trax::Metadata::tracker_name (C++ func-

tion), 26
trax::points_to_region (C++ function), 38
trax::Properties (C++ class), 29
trax::Properties::~Properties (C++ func-

tion), 29
trax::Properties::clear (C++ function), 29
trax::Properties::enumerate (C++ function),

30
trax::Properties::from_map (C++ function),

30
trax::Properties::get (C++ function), 29
trax::Properties::Properties (C++ func-

tion), 29
trax::Properties::set (C++ function), 29
trax::Properties::size (C++ function), 29
trax::Properties::to_map (C++ function), 30
trax::Properties::to_vector (C++ function),

30
trax::rect_to_region (C++ function), 38

57

TraX Documentation, Release 4.0.0

trax::Region (C++ class), 28
trax::Region::~Region (C++ function), 28
trax::Region::bounds (C++ function), 29
trax::Region::convert (C++ function), 29
trax::Region::create_mask (C++ function), 28
trax::Region::create_polygon (C++ func-

tion), 28
trax::Region::create_rectangle (C++ func-

tion), 28
trax::Region::create_special (C++ func-

tion), 28
trax::Region::empty (C++ function), 28
trax::Region::get (C++ function), 28
trax::Region::get_mask_header (C++ func-

tion), 29
trax::Region::get_mask_row (C++ function),

29
trax::Region::get_polygon_count (C++

function), 29
trax::Region::get_polygon_point (C++

function), 28
trax::Region::overlap (C++ function), 29
trax::Region::Region (C++ function), 28
trax::Region::set (C++ function), 28
trax::Region::set_polygon_point (C++

function), 28
trax::Region::type (C++ function), 28
trax::Region::write_mask_row (C++ func-

tion), 29
trax::region_to_points (C++ function), 38
trax::region_to_rect (C++ function), 38
trax::save_trajectory (C++ function), 37
trax::Server (C++ class), 27
trax::Server::~Server (C++ function), 27
trax::Server::reply (C++ function), 27
trax::Server::Server (C++ function), 27
trax::Server::wait (C++ function), 27
trax::TrackerProcess (C++ class), 36
trax::TrackerProcess::~TrackerProcess

(C++ function), 36
trax::TrackerProcess::frame (C++ function),

37
trax::TrackerProcess::image_formats

(C++ function), 36
trax::TrackerProcess::initialize (C++

function), 37
trax::TrackerProcess::ready (C++ function),

36
trax::TrackerProcess::region_formats

(C++ function), 36
trax::TrackerProcess::reset (C++ function),

37
trax::TrackerProcess::TrackerProcess

(C++ function), 36

trax::TrackerProcess::tracking (C++ func-
tion), 36

trax::TrackerProcess::wait (C++ function),
37

trax_bounds (C type), 10
TRAX_CHANNEL_DEPTH (C macro), 14
TRAX_CHANNEL_ID (C macro), 14
TRAX_CHANNEL_INDEX (C macro), 14
TRAX_CHANNEL_IR (C macro), 14
TRAX_CHANNEL_VISIBLE (C macro), 14
TRAX_CHANNELS (C macro), 14
trax_cleanup (C function), 13
trax_client_frame (C function), 12
trax_client_initialize (C function), 12
trax_client_setup_file (C function), 11
trax_client_setup_socket (C function), 12
trax_client_wait (C function), 12
TRAX_ERROR (C macro), 10
TRAX_FRAME (C macro), 10
trax_get_error (C function), 14
trax_get_parameter (C function), 14
trax_handle (C type), 10
TRAX_HELLO (C macro), 10
trax_image (C type), 10
TRAX_IMAGE_BUFFER (C macro), 15
TRAX_IMAGE_BUFFER_ILLEGAL (C macro), 15
TRAX_IMAGE_BUFFER_JPEG (C macro), 16
TRAX_IMAGE_BUFFER_PNG (C macro), 15
trax_image_create_buffer (C function), 16
trax_image_create_memory (C function), 16
trax_image_create_path (C function), 16
trax_image_create_url (C function), 16
TRAX_IMAGE_EMPTY (C macro), 15
trax_image_get_buffer (C function), 17
trax_image_get_memory_header (C function),

17
trax_image_get_memory_row (C function), 17
trax_image_get_path (C function), 17
trax_image_get_type (C function), 16
trax_image_get_url (C function), 17
trax_image_list_clear (C function), 14
trax_image_list_count (C function), 15
trax_image_list_create (C function), 14
trax_image_list_get (C function), 15
trax_image_list_release (C function), 14
trax_image_list_set (C function), 15
TRAX_IMAGE_MEMORY (C macro), 15
TRAX_IMAGE_MEMORY_GRAY16 (C macro), 16
TRAX_IMAGE_MEMORY_GRAY8 (C macro), 16
TRAX_IMAGE_MEMORY_ILLEGAL (C macro), 16
TRAX_IMAGE_MEMORY_RGB (C macro), 16
TRAX_IMAGE_PATH (C macro), 15
trax_image_release (C function), 16
TRAX_IMAGE_URL (C macro), 15

58 Index

TraX Documentation, Release 4.0.0

trax_image_write_memory_row (C function), 17
TRAX_INITIALIZE (C macro), 10
trax_is_alive (C function), 14
trax_logger_setup (C function), 11
trax_logger_setup_file (C function), 11
trax_logging (C type), 10
trax_metadata_create (C function), 11
trax_metadata_release (C function), 11
trax_no_bounds (C variable), 10
trax_no_log (C variable), 10
TRAX_OK (C macro), 10
trax_properties (C type), 10
trax_properties_clear (C function), 22
trax_properties_count (C function), 23
trax_properties_create (C function), 22
trax_properties_enumerate (C function), 23
trax_properties_get (C function), 22
trax_properties_get_float (C function), 23
trax_properties_get_int (C function), 23
trax_properties_release (C function), 22
trax_properties_set (C function), 22
trax_properties_set_float (C function), 22
trax_properties_set_int (C function), 22
TRAX_QUIT (C macro), 10
trax_region (C type), 10
TRAX_REGION_ANY (C macro), 18
trax_region_bounds (C function), 21
trax_region_clone (C function), 21
trax_region_contains (C function), 21
trax_region_convert (C function), 21
trax_region_create_mask (C function), 20
trax_region_create_polygon (C function), 19
trax_region_create_rectangle (C function),

19
trax_region_create_special (C function), 18
trax_region_decode (C function), 22
TRAX_REGION_EMPTY (C macro), 18
trax_region_encode (C function), 21
trax_region_get_mask_header (C function), 20
trax_region_get_mask_row (C function), 20
trax_region_get_polygon_count (C function),

20
trax_region_get_polygon_point (C function),

20
trax_region_get_rectangle (C function), 19
trax_region_get_special (C function), 18
trax_region_get_type (C function), 18
trax_region_overlap (C function), 21
TRAX_REGION_POLYGON (C macro), 18
TRAX_REGION_RECTANGLE (C macro), 18
trax_region_release (C function), 18
trax_region_set_polygon_point (C function),

19
trax_region_set_rectangle (C function), 19

trax_region_set_special (C function), 18
TRAX_REGION_SPECIAL (C macro), 18
trax_region_write_mask_row (C function), 20
trax_server_reply (C function), 13
trax_server_setup (C function), 12
trax_server_setup_file (C function), 13
trax_server_wait (C function), 13
trax_set_parameter (C function), 14
TRAX_STATE (C macro), 10
trax_terminate (C function), 13
trax_version (C function), 10

Index 59

	Citing
	Index
	TraX protocol specification
	API documentation
	Support utilities
	Tutorials
	Contributions and development
	Protocol adoption

	Index

