
transit Documentation
Release v2.1.2

Michael A. DeJesus

May 06, 2018

TRANSIT Manual

1 Quick Links 3

2 Mailing List 5
2.1 Overview . 5
2.2 Installation . 12
2.3 Running TRANSIT . 20
2.4 Features . 23
2.5 Analysis Methods . 28
2.6 Console Mode Cheat-Sheet . 37
2.7 Tutorial: Essentiality Analysis in a Single Condition . 38
2.8 Tutorial: Essentiality Analysis of the Entire Genome . 43
2.9 Tutorial: Comparative Analysis - Glycerol vs Cholesterol . 48
2.10 Tutorial: Normalize datasets . 56
2.11 Tutorial: Export datasets . 60
2.12 Overview . 63
2.13 Installation . 64
2.14 Running TPP . 64
2.15 Overview of Data Processing Procedure . 67
2.16 Statistics . 68
2.17 transit package . 70

Bibliography 95

Python Module Index 97

i

ii

transit Documentation, Release v2.1.2

The main documentation for the site is organized into the following sections:

• TRANSIT Manual

• TRANSIT Tutorials

• TPP Manual

• Code Documentation

TRANSIT Manual 1

transit Documentation, Release v2.1.2

2 TRANSIT Manual

CHAPTER 1

Quick Links

• Installation

• Console Mode Cheat-Sheet

3

transit Documentation, Release v2.1.2

4 Chapter 1. Quick Links

CHAPTER 2

Mailing List

You can join our mailing list to get announcements of new versions, discuss any bugs, or request features! Just head
over to the following site and enter your email address:

• https://groups.google.com/forum/#!forum/tnseq-transit/join

2.1 Overview

• This is a software that can be used to analyze Tn-Seq datasets. It includes various statistical calculations of es-
sentiality of genes or genomic regions (including conditional essentiality between 2 conditions). These methods
were developed and tested as a collaboration between the Sassetti lab (UMass) and the Ioerger lab (Texas A&M)
[DeJesus2015TRANSIT].

5

https://groups.google.com/forum/#!forum/tnseq-transit/join

transit Documentation, Release v2.1.2

• TRANSIT is capable of analyzing TnSeq libraries constructed with Himar1 or Tn5 datasets.

• TRANSIT assumes you have already done pre-processing of raw sequencing files (.fastq) and extracted read
counts into a .wig formatted file. The .wig file should contain the counts at all sites where an insertion could
take place (including sites with no reads). For Himar1 datasets this is all TA sites in the genome. For Tn5
datasets this would be all nucleotides in the genome.

• Note that while refer to “read-counts” throughout the documentation, the current Himar1 protocol utilizes inter-
nal barcodes that can be used to reduce raw read counts to unique template counts, and this this is the intended
input to TRANSIT from Himar1 datasets.

• There are various methods available for pre-processing (converting .fastq files to .wig files). You might have
your own scripts (if so, massage the data into .wig format), or you might get the scripts used in the Sassetti lab.
For convenience, we are including a separate tool called TPP (Tn-Seq Pre-Processor) with this distribution that
encodes the way we process .fastq files in the Ioerger lab. It’s a complicated process with many steps (removing
transposon prefixes of reads, mapping into genome, identifying barcodes and reducing read counts to template
counts).

6 Chapter 2. Mailing List

http://genome.ucsc.edu/goldenpath/help/wiggle.html
http://www.springer.com/biomed/human+genetics/book/978-1-4939-2397-7
http://saclab.tamu.edu/tom/TPP.html

transit Documentation, Release v2.1.2

• Most of the analysis methods in TRANSIT require an annotation to know the gene coordinates and names.
This is the top file input in the GUI window. The annotation has to be in a somewhat non-standard format
called a “.prot_table”. If you know what you are doing, it is easy to convert annotations for other organisms
into .prot_table format. But for convenience, we are distributing the prot_tables for 3 common versions of
the H37Rv genome: H37Rv.prot_table (NC_000962.2, from Stewart Cole), H37RvMA2.prot_table (sequenced
version from the Sassetti lab), and H37RvBD.prot_table (sequenced by the Broad Institute). All of these are
slightly different, and it is critical that you use the same annotation file as the reference genome sequence used
for mapping the reads (during pre-processing).

• There are 2 main types of essentiality analyses: individual, comparative. In individual analysis, the goal is to
distinguish essential vs. non-essential in a single growth condition, and to assess the statistical significance of
these calls. Two methods for this are the Gumbel method and the HMM. They are computationally distinct. The
Gumbel method is looking for significant stretches of TA sites lacking insertions, whereas the HMM looks for
regions where the mean read count is locally suppressed or increased. The HMM can detect ‘growth-advantaged’
and ‘growth-defect’ regions. The HMM is also a bit more robust on low-density datasets (insertion density
20-30%). But both methods have their merits and are complementary. For comparative analysis, TRANSIT
uses ‘re-sampling’, which is analogous to a permutation test, to determine if the sum of read counts differs
significantly between two conditions. Hence this can be used to identify conditionally essential regions and
quantify the statistical significance.

• TRANSIT has been designed to handle multiple replicates. If you have two or more replicate dataset of the
same library selected in the same condition, you can provide them, and more of the computational methods will
do something reasonable with them.

• For those methods that generate p-values, we often also calculate adjusted p-value (or ‘q-values’) which are
corrected for multiple tests typically the Benjamini-Hochberg procedure. A typical threshold for significance
would be q<0.05 (not p<0.05).

• It is important to understand the GUI model that TRANSIT uses It allows you to load up datasets (.wig files),
select them, choose an analysis method, set parameters, and start the computation. It will generate output files
in your local directory with the results. These files can then be loaded into the interface and browser with
custom displays and graphs. The interface has 3 main windows or sections: ‘Control Samples’, ‘Experimental
Samples’, ‘Results Files.’ The first two are for loading input files (‘Control Samples’ would be like replicate
datasets from a reference condition, like in vitro, rich media, etc.; ‘Experimental Samples’ would be where
you would load replicates for a comparative conditions, like in vivo, or minimal media, or low-iron, etc.) The
‘Results Files’ section is initially empty, but after a computation finishes, it will automatically be populated with
the corresponding output file. See the ‘Tutorial’ section below in this documentation for an illustration of the
overall process for a typical work-flow.

2.1. Overview 7

transit Documentation, Release v2.1.2

• TRANSIT incorporates many interesting ways of looking at your data.

• Track view shows you a visual representation of the read counts at each site at a locus of interest (for selected
datasets) somewhat like IGV.

• Scatter plots can show the correlation of counts between 2 datasets.

8 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

+ Volcano plots can be used to visualize the results of resampling and assess the distribution between over- and
under-represented genes in condition B vs. condition A. In addition you can look at histogram of the re-sample
distributions for each gene.

2.1. Overview 9

transit Documentation, Release v2.1.2

10 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

• Most of the methods take a few minutes to run. (it depends on parameters, CPU clock speed, etc., but the point
is, a) these calculations are complex and not instaneous, but b) we have tried to implement it so that they don’t
take hours)

• Note: in this version of TRANSIT, most of the methods are oriented toward gene-level analysis. There are
methods for analyzing essentiality of arbitrary genomic regions (e.g. sliding windows, HMMs. . .). We plan to
incorporate some of these in future versions.

2.1.1 Tn5 Datasets

Transit can now process and analyze Tn5 datasets This is a different transposon than Himar1. The major difference
is Tn5 can insert at any site in the genome, and is not restricted to TA dinucleotides (and saturation is typically much
lower). This affects the statistical analyses (which were originally designed for Himar1 and can’t directly be applied to
Tn5). Therefore, Resampling was extended to handle Tn5 for comparative analysis, and Tn5Gaps is a new statistical
model for identifying essential genes in single Tn5 datasets. Amplification of Tn5 libraries uses different primers, and
this affects the pre-processing by TPP. But TPP has be modified to recognize the primer sequence for the most widely
used protocol for Tn5. Furthermore, TPP now has an option for users to define their own primer sequences, if they use
a different sample prep protocol.

2.1. Overview 11

transit Documentation, Release v2.1.2

2.1.2 Developers

Name Time Active Contact Information
Michael A. DeJesus 2015-Present http://students.cs.tamu.edu/mad
Thomas R. Ioerger 2015-Present http://faculty.cs.tamu.edu/ioerger/
Chaitra Ambadipudi 2015
Eric Nelson 2016

2.1.3 References

If you use TRANSIT, please cite the following reference:

Development of TRANSIT is funded by the National Institutes of Health (www.nih.gov/) grant U19 AI107774.

Other references, including methods utilized by TRANSIT:

2.2 Installation

TRANSIT can be downloaded from the public GitHub server, http://github.com/mad-lab/transit. It is released under a
GPL License. It can be downloaded with git as follows:

git clone https://github.com/mad-lab/transit/

TRANSIT is python-based You must have python installed (installed by default on most systems). In addition, TRAN-
SIT relies on some python packages/libraries/modules that you might need to install (see Requirements).

If you encounter problems, please contact us or head to the Troubleshooting section.

2.2.1 Requirements

The following libraries/modules are required to run TRANSIT:

• Python 2.7

• Numpy (tested on 1.13.0)

• Scipy (tested on 0.19.1)

• matplotlib (tested on 2.0.2)

• wxpython 2.8.0+ (for Mac OSX, use the cocoa version of wxPython; If using El Capitan, please see OSX El
Capitan notice for special instructions)

• PIL (Python Imaging Library) or Pillow.

Generally, these requirements are install using the appropriate methods for your operating system, i.e. apt-get or yum
for unix machines, pip or easy_install for OSX, or binary installers on Windows. Below more detailed instructions are
provided.

12 Chapter 2. Mailing List

http://students.cs.tamu.edu/mad
http://faculty.cs.tamu.edu/ioerger/
http://github.com/mad-lab/transit
http://www.python.org
http://www.numpy.org/
http://www.scipy.org/
http://matplotlib.org/users/installing.html
http://www.wxpython.org/
http://www.pythonware.com/products/pil/

transit Documentation, Release v2.1.2

2.2.2 Use as a Python Package

TRANSIT can be (optionally) installed as a python package. This can simplify the installation process as it will
automatically install most of the requirements. In addition, it will allow users to use some of transit functions in their
own scripts if they desire. Below is a brief example of importing transit functions into python. See the documentation
of the package for further examples:

Example

>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/
→˓glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig
→˓"])
>>> print data
array([[0., 0., 0., ..., 0., 0., 0.],

[0., 0., 0., ..., 0., 0., 0.]])
>>> factors = norm_tools.TTR_factors(data)
>>> print factors
array([[1.],

[0.62862886]])

See also:

transit

2.2.3 Detailed Instructions: Linux

Method 1: Install as a Python Package

Most of the requirements are available in default package sources in most Linux distributions. The following com-
mands will install python, pip, wxPython, and several other dependencies needed by the python modules:

#Ubuntu:
sudo apt-get install python python-dev python-pip pkg-config python-wxgtk3.0 libpng-
→˓dev libjpeg8-dev libfreetype6-dev

#Fedora:
sudo yum install python python-dev python-pip pkg-config python-wxgtk3.0 libpng-dev
→˓libjpeg8-dev libfreetype6-dev

Finally you can use pip to install the TRANSIT package:

sudo pip install tnseq-transit

This will automatically download and install TRANSIT as a package, and all remaining required python packages.
Once TRANSIT is installed as a package, it can be executed as

Note: If you will be using the pre-processor, TPP, you will also need to install install BWA.

2.2. Installation 13

transit Documentation, Release v2.1.2

Method 2: Install Source Locally

Most of the requirements are available in default package sources in most Linux distributions. The following com-
mands will install python, numpy, scipy, matplotlib on the Ubuntu or Fedora Linux distributions:

#Ubuntu:
sudo apt-get install python python-numpy python-scipy python-matplotlib python-wxgtk3.
→˓0

#Fedora:
sudo yum install python numpy scipy python-matplotlib python-wxgtk3.0

The final requirement left to install is Pillow. First you need install pip which simplifies the process of installing certain
python modules like Pillow:

#Ubuntu:
sudo apt-get install pip

#Fedora:
sudo yum install pip

Next, using pip you must have a clean installation of Pillow, and the desired libraries. You can achieve this through
the following commands:

#Ubuntu:
pip uninstall pillow
pip uninstall Pillow
sudo apt-get install libjpeg-dev zlib1g-dev
pip install -I Pillow

#Fedora:
pip uninstall pillow
pip uninstall Pillow
sudo yum install install libjpeg-dev zlib1g-dev
pip install -I Pillow

Note: If you will be using the pre-processor, TPP, you will also need to install install BWA.

2.2.4 Detailed Instructions: OSX

Method 1: Install as a Python Package

First, download and install the latest Python 2.7.x installation file from the official python website:

• http://www.python.org/downloads/

Next make sure you have pip installed. Pip can be installed through easy_install, which should come with OSX:

sudo easy_install pip

Download and install the OSX binary of wxpython (cocoa version) for python 2.7:

14 Chapter 2. Mailing List

http://www.python.org/downloads/

transit Documentation, Release v2.1.2

• http://downloads.sourceforge.net/wxpython/wxPython3.0-osx-3.0.2.0-cocoa-py2.7.dmg

Note: If you are running OSX El Capitan or later, you will need to use a repackaged version of the wxpython installer.
You can download a repackaged version from our servers or you can follow these detailed instructions to repackage
the installer if you prefer.

Finally you can use pip to install the TRANSIT package:

sudo pip install tnseq-transit

This will automatically download and install TRANSIT and all remaining requirements.

Note: If you will be using the pre-processor, TPP, you will also need to install install BWA.

Method 2: Install Source Locally

First, download and install the latest Python 2.7.x installation file from the official python website:

• http://www.python.org/downloads/

Next make sure you have pip installed. Pip can be installed through easy_install, which should come with OSX:

sudo easy_install pip

Next install numpy, scipy, and matplotlib and pillow using pip:

sudo pip install numpy
sudo pip install scipy
sudo pip install matplotlib
sudo pip install pillow

Download and install the OSX binary of wxpython (cocoa version) for python 2.7:

• http://downloads.sourceforge.net/wxpython/wxPython3.0-osx-3.0.2.0-cocoa-py2.7.dmg

Note: If you are running OSX El Capitan or later, you will need to use a repackaged version of the wxpython installer.
You can download a repackaged version from our servers or you can follow these detailed instructions to repackage
the installer if you prefer.

Note: If you will be using the pre-processor, TPP, you will also need to install install BWA.

2.2. Installation 15

http://downloads.sourceforge.net/wxpython/wxPython3.0-osx-3.0.2.0-cocoa-py2.7.dmg
http://orca1.tamu.edu/essentiality/transit/wxPython3.0-osx-cocoa-py2.7_mad_elcapitan.pkg
http://davixx.fr/blog/2016/01/25/wxpython-on-os-x-el-capitan/
http://davixx.fr/blog/2016/01/25/wxpython-on-os-x-el-capitan/
http://www.python.org/downloads/
http://downloads.sourceforge.net/wxpython/wxPython3.0-osx-3.0.2.0-cocoa-py2.7.dmg
http://orca1.tamu.edu/essentiality/transit/wxPython3.0-osx-cocoa-py2.7_mad_elcapitan.pkg
http://davixx.fr/blog/2016/01/25/wxpython-on-os-x-el-capitan/
http://davixx.fr/blog/2016/01/25/wxpython-on-os-x-el-capitan/

transit Documentation, Release v2.1.2

2.2.5 Detailed Instructions: Windows

Method 1: Install as a Python Package

First, download and install the latest Python 2.7.x installation file from the official python website:

• http://www.python.org/downloads/

Next, you will need to install pip. If you are using python 2.7.9+ then pip will come pre-installed and included in the
default script directory (i.e. C:Python27Scripts). If you are using python 2.7.8 or older, you will need to manually
install pip by downloading and running the get-pip.py script:

python.exe get-pip.py

Make sure that “wheel” is installed. This is necessary to allow you to install .whl (wheel) files:

pip.exe install wheel

Next install the transit package using pip:

pip.exe install tnseq-transit

To use transit in GUI mode you will need to install wxPython versions 3.0 or earlier. We have provided .whl files
which you can download and install below. (Note: Make sure to choose the files that match your Windows version i.e.
32/64 bit)

• wxPython-3.0.2.0-cp27-none-win_amd64.whl or [32 bit]

• wxPython_common-3.0.2.0-py2-none-any.whl or [32 bit]

Finally, install the files using pip:

pip.exe install wxPython-3.0.2.0-cp27-none-win_amd64.whl
pip.exe install wxPython_common-3.0.2.0-py2-none-any.whl

making sure to replace the name with the file you downloaded (i.e. 32bit vs 64 bit)

Note: If you will be using the pre-processor, TPP, you will also need to install install BWA.

Method 2: Install Source Locally

First, download and install the latest Python 2.7.x installation file from the official python website:

• http://www.python.org/downloads/

Next, you will need to install pip. If you are using python 2.7.9+ then pip will come pre-installed and included in the
default script directory (i.e. C:Python27Scripts). If you are using python 2.7.8 or older, you will need to manually
install pip by downloading and running the get-pip.py script:

python.exe get-pip.py

Make sure that “wheel” is installed. This is necessary to allow you to install .whl (wheel) files:

pip.exe install wheel

Download the .whl files for all the requirements (Note: Make sure to choose the files that match your Windows version
i.e. 32/64 bit)

16 Chapter 2. Mailing List

http://www.python.org/downloads/
https://bootstrap.pypa.io/get-pip.py
http://saclab.tamu.edu/essentiality/transit/wxPython-3.0.2.0-cp27-none-win_amd64.whl
http://saclab.tamu.edu/essentiality/transit/wxPython-3.0.2.0-cp27-none-win32.whl
http://saclab.tamu.edu/essentiality/transit/wxPython_common-3.0.2.0-py2-none-any.whl
http://saclab.tamu.edu/essentiality/transit/wxPython_common-3.0.2.0-py2-none-any.whl
http://www.python.org/downloads/
https://bootstrap.pypa.io/get-pip.py

transit Documentation, Release v2.1.2

• numpy-1.9.2+mkl-cp27-none-win_amd64.whl or [32 bit]

• scipy-0.15.1-cp27-none-win_amd64.whl or [32 bit]

• matplotlib-1.4.3-cp27-none-win_amd64.whl or [32 bit]

• Pillow-2.8.2-cp27-none-win_amd64.whl or [32 bit]

• wxPython-3.0.2.0-cp27-none-win_amd64.whl or [32 bit]

• wxPython_common-3.0.2.0-py2-none-any.whl or [32 bit]

Source: These files were obtained from the Unofficial Windows Binaries for Python Extension Packages by Christoph
Gohlke, Laboratory for Fluorescence Dynamics, University of California, Irvine.

Finally, install the files using pip:

pip.exe install numpy-1.9.2+mkl-cp27-none-win_amd64.whl
pip.exe install scipy-0.15.1-cp27-none-win_amd64.whl
pip.exe install matplotlib-1.4.3-cp27-none-win_amd64.whl
pip.exe install Pillow-2.8.1-cp27-none-win_amd64.whl
pip.exe install wxPython-3.0.2.0-cp27-none-win_amd64.whl
pip.exe install wxPython_common-3.0.2.0-py2-none-any.whl

Note: If you will be using the pre-processor, TPP, you will also need to install install BWA.

2.2.6 Optional: Install BWA to use with TPP pre-processor

If you will be using the pre-processor, TPP, you will also need to install BWA.

Linux & OSX Instructions

Download the source files:

• http://sourceforge.net/projects/bio-bwa/files/

Extract the files:

tar -xvjf bwa-0.7.12.tar.bz2

Go to the directory with the extracted source-code, and run make to create the executable files:

cd bwa-0.7.12
make

Windows Instructions

For Windows, we provide a windows executable (.exe) for Windows 64 bit:

• bwa-0.7.12_windows.zip

The 32-bit version of Windows is not recommended as it is limited in the amount of system memory that can be used.

2.2. Installation 17

http://saclab.tamu.edu/essentiality/transit/numpy-1.9.2+mkl-cp27-none-win_amd64.whl
http://saclab.tamu.edu/essentiality/transit/numpy-1.9.2+mkl-cp27-none-win32.whl
http://saclab.tamu.edu/essentiality/transit/scipy-0.15.1-cp27-none-win_amd64.whl
http://saclab.tamu.edu/essentiality/transit/scipy-0.15.1-cp27-none-win32.whl
http://saclab.tamu.edu/essentiality/transit/matplotlib-1.4.3-cp27-none-win_amd64.whl
http://saclab.tamu.edu/essentiality/transit/matplotlib-1.4.3-cp27-none-win32.whl
http://saclab.tamu.edu/essentiality/transit/Pillow-2.8.2-cp27-none-win_amd64.whl
http://saclab.tamu.edu/essentiality/transit/Pillow-2.8.2-cp27-none-win32.whl
http://saclab.tamu.edu/essentiality/transit/wxPython-3.0.2.0-cp27-none-win_amd64.whl
http://saclab.tamu.edu/essentiality/transit/wxPython-3.0.2.0-cp27-none-win32.whl
http://saclab.tamu.edu/essentiality/transit/wxPython_common-3.0.2.0-py2-none-any.whl
http://saclab.tamu.edu/essentiality/transit/wxPython_common-3.0.2.0-py2-none-any.whl
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://bio-bwa.sourceforge.net/
http://sourceforge.net/projects/bio-bwa/files/
http://saclab.tamu.edu/essentiality/transit/bwa-0.7.12_windows.zip

transit Documentation, Release v2.1.2

2.2.7 Troubleshooting

1. Gtk-ERROR **: GTK+ 2.x symbols detected

This error can occur if you have GTK2 already installed and then install wxPython version 3.0+. To fix this, please try
installing version 2.8 of wxPython or install a new version of GTK3. More information on this error to come.

2. wxPython & OSX: “The Installer could not install the software because there was no software
found to install.”

If you are running OSX El Capitan or later, you will need to use a repackaged version of the wxpython installer as OSX
El Capitan has removed support for older packaging methods still used by wxPython. You can download a repackaged
version of wxPython from our servers or you can follow these detailed instructions to repackage the installer if you
prefer.

3. No window appears when running in GUI mode.

This problem is likely due to running an unsupported version of matplotlib. Please download and install the version
2.0.2. You can download and manually install the source from the following location:

• matplotlib-1.4.3

Or, if you have pip installed, you can install using pip and specify the desired version:

pip install 'matplotlib' --force-reinstall

18 Chapter 2. Mailing List

http://orca1.tamu.edu/essentiality/transit/wxPython3.0-osx-cocoa-py2.7_mad_elcapitan.pkg
http://orca1.tamu.edu/essentiality/transit/wxPython3.0-osx-cocoa-py2.7_mad_elcapitan.pkg
http://davixx.fr/blog/2016/01/25/wxpython-on-os-x-el-capitan/
https://sourceforge.net/projects/matplotlib/files/matplotlib/

transit Documentation, Release v2.1.2

4. Unable to locate package python-wxgtk3.0

Your version of Linux might not have the repository address that includes python-wxgtk3.0. You can attempt to install
version 2.8 instead:

sudo apt-get install python-wxgtk2.8

or you can add the repository that includes version 3.0 and install it:

Add repo for 14.04
sudo add-apt-repository "deb http://archive.ubuntu.com/ubuntu utopic main restricted
→˓universe"

#Update repo information
sudo apt-get update

#Install wxPython 3.0
sudo apt-get install python-wxgtk3.0

#Remove repo to prevent version conflicts
sudo add-apt-repository --remove "deb http://archive.ubuntu.com/ubuntu utopic main
→˓restricted universe"

5. pip: SystemError: Cannot compile ‘Python.h’.

This occurs when you do not have the development libraries for python. You can fix this by installing the python-dev
packages:

sudo apt-get install python-dev

6. pip: “The following required packages can not be built: freetype,png,” etc.

This occurs when you do not have some dependencies that are necessary to build some of the python modules TRAN-
SIT requires (usually matplotlib). Installing the following linux dependencies should fix this:

sudo apt-get install libpng-dev libjpeg8-dev libfreetype6-dev

7. pip: “No lapack/blas resources found”

This occurs when you do not have some dependencies that are necessary to build some of the python modules TRAN-
SIT requires (usually numpy/scipy). Installing the following linux dependencies should fix this:

2.2. Installation 19

transit Documentation, Release v2.1.2

sudo apt-get install libblas-dev liblapack-dev libatlas-base-dev gfortran

8. “resources.ContextualVersionConflict (six 1.5.2). . . ”

This occurs some of the python modules are out of date. You can use pip to upgrade them as follows:

sudo pip install six --upgrade

2.3 Running TRANSIT

2.3.1 GUI Mode

To run TRANSIT in GUI mode (should be the same on Linux, Windows and MacOS), from the command line run:

python PATH/src/transit.py

where PATH is the path to the TRANSIT installation directory. You might be able to double-click on icon for transit.py,
if your OS associates .py files with python and automatically runs them. Note, because TRANSIT has a graphical user
interface, if you are trying to run TRANSIT across a network, for example, running on a unix server but displaying on
a desktop machine, you will probably need to use ‘ssh -Y’ and a local X11 client (like Xming or Cygwin/X on PCs).

2.3.2 Command line Mode

TRANSIT can also be run from the command line, without the GUI interface. This is convenient if you want to run
many analyses in batch, as you can write a script that automatically runs that automatically runs TRANSIT from the
command line. TRANSIT expects the user to specify which analysis method they wish to run. The user can choose
from “gumbel”, “hmm”, or “resampling”. By choosing a method, and adding the “-h” flag, you will get a list of all the
necessary parameters and optional flags for the chosen method:

python PATH/src/transit.py gumbel -h

Gumbel

To run the Gumbel analysis from the command line, type “python PATH/src/transit.py gumbel” followed by the fol-
lowing arguments:

20 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

Argu-
ment

Type Description De-
fault

Example

annota-
tion

Re-
quired

Path to annotation file in .prot_table format genomes/H37Rv. prot_table

con-
trol_files

Re-
quired

Comma-separate d list of paths to the *.wig repli-
cate datasets

data/glycerol_reads_rep1.w
ig,data/glycer ol_reads_rep 2.wig

out-
put_file

Re-
quired

Name of the output file with the results. results/gumbel _glycerol.dat

-s
SAM-
PLES

Op-
tional

Number of samples to take. 10000 -s 20000

-m
MIN-
READ

Op-
tional

Smallest read-count considered to be an insertion. 1 -m 2

-b
BURNIN

Op-
tional

Burn in period, Skips this number of samples be-
fore getting estimates. See documentation.

500 -b 100

-t TRIM Op-
tional

Number of samples to trim. See documentation. 1 -t 2

-r REP Op-
tional

How to handle replicates read-counts: ‘Sum’ or
‘Mean’.

Sum -r Mean

-iN IG-
NOREN

Op-
tional

Ignore TAs occuring at X% of the N terminus. 5 -iN 0

-iC IG-
NOREC

Op-
tional

Ignore TAs occuring at X% of the C terminus. 5 -iC 10

python PATH/src/transit.py gumbel genomes/H37Rv.prot_table data/glycerol_reads_rep1.
→˓wig,data/glycerol_reads_rep2.wig test_console_gumbel.dat -s 20000 -b 1000

Tn5 Gaps

To run the Tn5 Gaps analysis from the command line, type “python PATH/src/transit.py tn5gaps” followed by the
following arguments:

Argument Type Description Default Example annotation Required Path to annotation file in .prot_table format
genomes/Salmonella- Ty2.prot_table control_files Required Comma-separated list of paths to the *.wig replicate
datasets data/salmonella_2122_rep1.wig,data/salmonella_2122_rep2.wig output_file Required Name of the output file
with the results. results/test_console_tn5gaps.dat -m MINREAD Optional Smallest read- count considered to be an
insertion. 1 -m 2 -r REP Optional How to handle replicates read-counts: ‘Sum’ or ‘Mean’. Sum -r Sum

Example Tn5 Gaps command:

python PATH/src/transit.py tn5gaps genomes/Salmonella-Ty2.prot_table data/salmonella_
→˓2122_rep1.wig,data/salmonella_2122_rep2.wig results/test_console_tn5gaps.dat -m 2 -
→˓r Sum

Example HMM command:

python PATH/src/transit.py hmm genomes/H37Rv.prot_table data/glycerol_reads_rep1.wig,
→˓data/glycerol_reads_rep2.wig test_console_hmm.dat -r Sum

2.3. Running TRANSIT 21

transit Documentation, Release v2.1.2

Resampling

To run the Resampling analysis from the command line, type “python PATH/src/transit.py resampling” followed by
the following arguments:

Ar-
gu-
ment

Type Description De-
fault

Example

an-
no-
ta-
tion

Re-
quired

Path to annotation file in .prot_table format genomes/H37Rv.
prot_table

con-
trol_files

Re-
quired

Comma-separate d list of paths to the *.wig replicate datasets for the
control condition

data/glycerol_reads_rep1.w
ig,data/glycer
ol_reads_rep 2.wig

exp_filesRe-
quired

Comma-separate d list of paths to the *.wig replicate datasets for the
experimental condition

data/cholester
ol_reads_rep
1.wig,data/cho
lesterol_read
s_rep2.wig

out-
put_file

Re-
quired

Name of the output file with the results. results/gumbel
_glycerol.dat

-s
SAM-
PLES

Op-
tional

Number of permutations performed. 10000 -s 5000

-H Op-
tional

Creates histograms of the permutations for all genes. Not
set

-H

-a Op-
tional

Performs adaptive appoximation to resampling. Not
set

-a

-N Op-
tional

Select which normalizing procedure to use. Can choose between
‘TTR’, ‘nzmean’, ‘totreads’, ‘zinfnb’, ‘betageom’, and ‘nonorm’. See
the parameters section for the Re-sampling method for a description
of these normalization options.

nzmean-N nzmean

-iN
IG-
NOREN

Op-
tional

Ignore TAs occuring at X% of the N terminus. 5 -iN 0

-iC
IG-
NOREC

Op-
tional

Ignore TAs occuring at X% of the C terminus. 5 -iC 10

Example Resampling command:

python PATH/src/transit.py resampling genomes/H37Rv.prot_table data/glycerol_reads_
→˓rep1.wig,data/glycerol_reads_rep2.wig data/cholesterol_reads_rep1.wig,data/
→˓cholesterol_reads_rep2.wig,data/cholesterol_reads_rep3.wig test_console_resampling.
→˓dat -H -s 10000 -N nzmean

22 Chapter 2. Mailing List

http://saclab.tamu.edu/essentiality/transit/transit.html#resampling

transit Documentation, Release v2.1.2

2.4 Features

TRANSIT has several useful features to help inspect the quality of datasets as and export them to different formats.

2.4.1 Quality Control

As you add datasets to the control or experimental sections, TRANSIT automatically provides some metrics like
density, average, read-counts and max read-count to give you an idea of how the quality of the dataset.

However, TRANSIT provides more in-depth statistics in the Quality Control window. To use this feature, add the
annotation file for your organism (in .prot_table or GFF3 format). Next, add and highlight/select the desired read-
count datasets in .wig format. Finally, click on View -> Quality Control. This will open up a new window containing
a table of metrics for the datasets as well as figures corresponding to whatever dataset is currently highlighted.

2.4. Features 23

transit Documentation, Release v2.1.2

_images/transit_quality_control_window.png

QC Metrics Table

The Quality Control window contains a table of the datasets and metrics, similar to the one in the main TRANSIT
interface. This table has an extended set of metrics to provide a better picture of the quality of the datasets:

24 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

Column
Header

Column Definition Comments

File Name of dataset file.
Density Fraction of sites with in-

sertions.
“Well saturated” Himar1 datasets have >30% saturation. Beneath this, sta-
tistical methods may have trouble.

Mean
Read

Average read-count, in-
cluding empty sites.

NZMean
Read

Average read-count, ex-
cluding empty sites.

A value between 30-200 is usually good for Himar1 datasets. Too high or
too low can indicate problems.

NZMe-
dian
Read

Median read-count, ex-
cluding empty sites.

As read-counts can often have spikes, median serves as a good robust esti-
mate.

Max
Read

Largest read-count in
the dataset.

Useful to determine whether there are outliers/spikes, which may indicate
sequencing issues.

Total
Reads

Sum of total read-
counts in the dataset.

Indicates how much sequencing material was obtained. Typically >1M
reads is desired for Himar1 datasets.

Skew Skew of read-counts in
the dataset.

Large skew may indicate issues with a dataset. Typically a skew < 50 is
desired. May be higher when library is under strong selection

Kurtosis Kurtosis of the read-
counts in the dataset.

QC Figures

The Quality Control window also contains several plots that are helpful to visualize the quality of the datasets. These
plots are unique to the dataset selected in the Metrics Table (below the figures). They will update depending on which
row in the Metrics Table is selected:

2.4. Features 25

transit Documentation, Release v2.1.2

Figure 1: Histogram of Reads

_images/transit_quality_control_histogram.png

The first plot in the Quality Control window is a histogram of the non-zero read-counts in the selected dataset. While
read-counts are not truly geometrically distributed, “well-behaved” datasets often look “Geometric-like”, i.e. low
counts are more frequent than very large counts. Datasets which where this is not the case may reflect a problem.

26 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

Figure 2: QQ Plot of Reads vs Geometric Distribution

_images/transit_quality_control_qqplot.png

The second plot in the Quality Control window is a quantile-quantile plot (“QQ plot”) of the non-zero read-counts
in the selected dataset, versus a theoretical geometric distribution fit on these read-counts. While read-counts are not
truly geometrically distributed, the geometric distribution (a special case of the Negative Binomial distribution), can
serve as a quick comparison to see how well-behaved the datasets are.

As the read-counts are not truly geometric, some curvature in the QQplot is expected. However, if the plot curves
strongly from the identity line (y=x) then the read-counts may be highly skewed. In this case, using the “betageom”
normalization option when doing statistical analyses may be a good idea as it is helpful in correcting the skew.

2.4. Features 27

transit Documentation, Release v2.1.2

Figure 3: Ranked plot of Read-Counts

_images/transit_quality_control_ranked.png

The second plot in the Quality Control window is a plot of the read-counts in sorted order. This may be helpful in
indentifying outliers that may exist in the dataset. Typically, some large counts are expected and some normalization
methods, like TTR, are robust to such outliers. However, too many outliers, or one single outlier that is overhwelmingly
different than the rest may indicate an issue like PCR amplification (especially in libraries constructed older protocols).

2.5 Analysis Methods

TRANSIT has analysis methods capable of analyzing Himar1 and Tn5 datasets. Below is a description of some of
the methods.

28 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

2.5.1 Gumbel

The Gumbel can be used to determine which genes are essential in a single condition. It does a gene-by-gene analysis
of the insertions at TA sites with each gene, makes a call based on the longest consecutive sequence of TA sites without
insertion in the genes, calculates the probability of this using a Bayesian model.

Note: Intended only for Himar1 datasets.

How does it work?

For a formal description of how this method works, see our paper [DeJesus2013]:

DeJesus, M.A., Zhang, Y.J., Sassettti, C.M., Rubin, E.J., Sacchettini, J.C., and Ioerger, T.R. (2013).
Bayesian analysis of gene essentiality based on sequencing of transposon insertion libraries. Bioinformatics,
29(6):695-703.

Parameters

• Samples: Gumbel uses Metropolis-Hastings (MH) to generate samples of posterior distributions. The default
setting is to run the simulation for 10,000 iterations. This is usually enough to assure convergence of the sampler
and to provide accurate estimates of posterior probabilities. Less iterations may work, but at the risk of lower
accuracy.

• Burn-In: Because the MH sampler many not have stabilized in the first few iterations, a “burn-in” period is
defined. Samples obtained in this “burn-in” period are discarded, and do not count towards estimates.

• Trim: The MH sampler produces Markov samples that are correlated. This parameter dictates how many sam-
ples must be attempted for every sampled obtained. Increasing this parameter will decrease the auto-correlation,
at the cost of dramatically increasing the run-time. For most situations, this parameter should be left at the
default of “1”.

• Minimum Read: The minimum read count that is considered a true read. Because the Gumbel method depends
on determining gaps of TA sites lacking insertions, it may be susceptible to spurious reads (e.g. errors). The
default value of 1 will consider all reads as true reads. A value of 2, for example, will ignore read counts of 1.

• Replicates: Determines how to deal with replicates by averaging the read-counts or summing read counts across
datasets. This should not have an affect for the Gumbel method, aside from potentially affecting spurious reads.

2.5. Analysis Methods 29

http://www.ncbi.nlm.nih.gov/pubmed/23361328

transit Documentation, Release v2.1.2

Outputs and diagnostics

The Gumbel method generates a tab-separated output file at the location chosen by the user. This file will automatically
be loaded into the Results Files section of the GUI, allowing you to display it as a table. Alternatively, the file can
be opened in a spreadsheet software like Excel as a tab-separated file. The columns of the output file are defined as
follows:

Note: Technically, Bayesian models are used to calculate posterior probabilities, not p-values (which is a
concept associated with the frequentist framework). However, we have implemented a method for computing
the approximate false-discovery rate (FDR) that serves a similar purpose. This determines a threshold for
significance on the posterior probabilities that is corrected for multiple tests. The actual thresholds used are
reported in the headers of the output file (and are near 1 for essentials and near 0 for non-essentials). There can
be many genes that score between the two thresholds (t1 < zbar < t2). This reflects intrinsic uncertainty
associated with either low read counts, sparse insertion density, or small genes. If the insertion_density is too
low (< ~30%), the method may not work as well, and might indicate an unusually large number of Uncertain or
Essential genes.

Run-time

The Gumbel method takes on the order of 10 minutes for 10,000 samples. Run-time is linearly proportional to the
‘samples’ parameter, or length of MH sampling trajectory. Other notes: Gumbel can be run on multiple replicates;
replicate datasets will be automatically merged.

2.5.2 Tn5Gaps

The Tn5Gaps method can be used to determine which genes are essential in a single condition for Tn5 datasets. It
does an analysis of the insertions at each site within the genome, makes a call for a given gene based on the length
of the most heavily overlapping run of sites without insertions (gaps), calculates the probability of this using a the
Gumbel distribution.

Note: Intended only for Tn5 datasets.

How does it work?

This method is loosely is based on the original gumbel analysis method described in this paper:

30 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

Griffin, J.E., Gawronski, J.D., DeJesus, M.A., Ioerger, T.R., Akerley, B.J., Sassetti, C.M. (2011). High-resolution
phenotypic profiling defines genes essential for mycobacterial survival and cholesterol catabolism. PLoS Pathogens,
7(9):e1002251.

The Tn5Gaps method modifies the original method in order to work on Tn5 datasets, which have significantly lower
saturation of insertion sites than Himar1 datasets. The main difference comes from the fact that the runs of non-
insertion (or “gaps”) are analyzed throughout the whole genome, including non-coding regions, instead of within
single genes. In doing so, the expected maximum run length is calculated and a p-value can be derived for every run.
A gene is then classified by using the p-value of the run with the largest number of nucleotides overlapping with the
gene.

This method was tested on a salmonella Tn5 dataset presented in this paper:

Langridge GC1, Phan MD, Turner DJ, Perkins TT, Parts L, Haase J, Charles I, Maskell DJ, Peters SE, Dougan G, Wain
J, Parkhill J, Turner AK. (2009). Simultaneous assay of every Salmonella Typhi gene using one million transposon
mutants. Genome Res. , 19(12):2308-16.

This data was downloaded from SRA (located herei) , and used to make wig files (base and bile) and the following 4
baseline datasets were merged to make a wig file: (IL2_2122_1,3,6,8). Our analysis produced 415 genes with adjusted
p-values less than 0.05, indicating essentiality, and the analysis from the above paper produced 356 essential genes.
Of these 356 essential genes, 344 overlap with the output of our analysis.

Parameters

• Minimum Read: The minimum read count that is considered a true read. Because the Gumbel method depends
on determining gaps of TA sites lacking insertions, it may be suceptible to spurious reads (e.g. errors). The
default value of 1 will consider all reads as true reads. A value of 2, for example, will ignore read counts of 1.

• Replicates: Determines how to deal with replicates by averaging the read-counts or suming read counts accross
datasets. This should not have an affect for the Gumbel method, aside from potentially affecting spurious reads.

Outputs and diagnostics

The Tn5Gaps method generates a tab-separated output file at the location chosen by the user. This file will automat-
ically be loaded into the Results Files section of the GUI, allowing you to display it as a table. Alternatively, the file
can be opened in a spreadsheet software like Excel as a tab-separated file. The columns of the output file are defined
as follows:

2.5. Analysis Methods 31

http://www.ncbi.nlm.nih.gov/pubmed/21980284
http://www.ncbi.nlm.nih.gov/pubmed/21980284
http://www.ncbi.nlm.nih.gov/pubmed/19826075
http://www.ncbi.nlm.nih.gov/pubmed/19826075
http://trace.ncbi.nlm.nih.gov/Traces/sra/?study=ERP000051
http://orca1.tamu.edu/essentiality/transit/data/salmonella_base.wig
http://orca1.tamu.edu/essentiality/transit/data/salmonella_bile.wig

transit Documentation, Release v2.1.2

Column
Header

Column Definition

ORF Gene ID.
Name Name of the gene.
Desc Gene description.
k Number of Transposon Insertions Observed within the ORF.
n Total Number of TA dinucleotides within the ORF.
r Length of the Maximum Run of Non-Insertions observed.
ovr The number of nucleotides in the overlap with the longest run partially covering the gene.
lenovr The length of the above run with the largest overlap with the gene.
pval P-value calculated by the permutation test.
padj Adjusted p-value controlling for the FDR (Benjamini-Hochberg).
call Essentiality call for the gene. Depends on FDR corrected thresholds. Essential or Non-

Essential.

Run-time

The Tn5Gaps method takes on the order of 10 minutes. Other notes: Tn5Gaps can be run on multiple replicates;
replicate datasets will be automatically merged.

2.5.3 HMM

The HMM method can be used to determine the essentiality of the entire genome, as opposed to gene-level analysis
of the other methods. It is capable of identifying regions that have unusually high or unusually low read counts (i.e.
growth advantage or growth defect regions), in addition to the more common categories of essential and non-essential.

Note: Intended only for Himar1 datasets.

How does it work?

For a formal description of how this method works, see our paper [DeJesus2013HMM]:

DeJesus, M.A., Ioerger, T.R. A Hidden Markov Model for identifying essential and growth-defect regions in
bacterial genomes from transposon insertion sequencing data. BMC Bioinformatics. 2013. 14:303

32 Chapter 2. Mailing List

http://www.ncbi.nlm.nih.gov/pubmed/24103077
http://www.ncbi.nlm.nih.gov/pubmed/24103077

transit Documentation, Release v2.1.2

Parameters

The HMM method automatically estimates the necessary statistical parameters from the datasets. You can change how
the method handles replicate datasets:

• Replicates: Determines how the HMM deals with replicate datasets by either averaging the read-counts or
summing read counts across datasets. For regular datasets (i.e. mean-read count > 100) the recommended
setting is to average read-counts together. For sparse datasets, it summing read-counts may produce more
accurate results.

Output and Diagnostics

The HMM method outputs two files. The first file provides the most likely assignment of states for all the TA sites in
the genome. Sites can belong to one of the following states: “E” (Essential), “GD” (Growth-Defect), “NE”
(Non-Essential), or “GA” (Growth-Advantage). In addition, the output includes the probability of the particular site
belonging to the given state. The columns of this file are defined as follows:

Column # Column Definition
1 Coordinate of TA site
2 Observed Read Counts
3 Probability for ES state
4 Probability for GD state
5 Probability for NE state
6 Probability for GA state
7 State Classification (ES = Essential, GD = Growth Defect, NE = Non-Essential, GA = Growth-Defect)
8 Gene(s) that share(s) the TA site.

The second file provides a gene-level classification for all the genes in the genome. Genes are classified as “E”
(Essential), “GD” (Growth-Defect), “NE” (Non-Essential), or “GA” (Growth-Advantage) depending on the
number of sites within the gene that belong to those states.

2.5. Analysis Methods 33

transit Documentation, Release v2.1.2

Column
Header

Column Definition

Orf Gene ID
Name Gene Name
Desc Gene Description
N Number of TA sites
n0 Number of sites labeled ES (Essential)
n1 Number of sites labeled GD (Growth-Defect)
n2 Number of sites labeled NE (Non-Essential)
n3 Number of sites labeled GA (Growth-Advantage)
Avg. Insertions Mean insertion rate within the gene
Avg. Reads Mean read count within the gene
State Call State Classification (ES = Essential, GD = Growth Defect, NE = Non-Essential, GA = Growth-

Defect)

Note: Libraries that are too sparse (e.g. < 30%) or which contain very low read-counts may be problematic for
the HMM method, causing it to label too many Growth-Defect genes.

Run-time

The HMM method takes less than 10 minutes to complete. The parameters of the method should not affect the
running-time.

2.5.4 Re-sampling

The re-sampling method is a comparative analysis the allows that can be used to determine conditional essentiality
of genes. It is based on a permutation test, and is capable of determining read-counts that are significantly different
across conditions.

Note: Can be used for both Himar1 and Tn5 datasets

34 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

How does it work?

This technique has yet to be formally published in the context of differential essentiality analysis. Briefly, the read-
counts at each genes are determined for each replicate of each condition. The total read-counts in condition A is
subtracted from the total read counts at condition B, to obtain an observed difference in read counts. The TA sites are
then permuted for a given number of “samples”. For each one of these permutations, the difference is read-counts is
determined. This forms a null distribution, from which a p-value is calculated for the original, observed difference in
read-counts.

Parameters

The resampling method is non-parametric, and therefore does not require any parameters governing the distributions
or the model. The following parameters are available for the method:

• Samples: The number of samples (permutations) to perform. The larger the number of samples, the more
resolution the p-values calculated will have, at the expense of longer computation time. The re-sampling method
runs on 10,000 samples by default.

• Output Histograms:Determines whether to output .png images of the histograms obtained from resampling the
difference in read-counts.

• Adaptive Resampling: An optional “adaptive” version of resampling which accelerates the calculation by
terminating early for genes which are likely not significant. This dramatically speeds up the computation at the
cost of less accurate estimates for those genes that terminate early (i.e. deemed not significant). This option is
OFF by default.

• Include Zeros: By default resampling will ignore sites that are zero across all the datasets (i.e. completely
empty), which is useful for decreasing running time (specially for large datasets like Tn5). This option allows
the user to include these empty rows.

• Normalization Method: Determines which normalization method to use when comparing datasets. Proper
normalization is important as it ensures that other sources of variability are not mistakenly treated as real differ-
ences. See the Normalization section for a description of normalization method available in TRANSIT.

Output and Diagnostics

The re-sampling method outputs a tab-delimited file with results for each gene in the genome. P-values are adjusted
for multiple comparisons using the Benjamini-Hochberg procedure (called “q-values” or “p-adj.”). A typical threshold
for conditional essentiality on is q-value < 0.05.

2.5. Analysis Methods 35

transit Documentation, Release v2.1.2

Column Header Column Definition
Orf Gene ID.
Name Name of the gene.
Description Gene description.
N Number of TA sites in the gene.
TAs Hit Number of TA sites with at least one insertion.
Sum Rd 1 Sum of read counts in condition 1.
Sum Rd 2 Sum of read counts in condition 2.
Delta Rd Difference in the sum of read counts.
p-value P-value calculated by the permutation test.
p-adj. Adjusted p-value controlling for the FDR (Benjamini-Hochberg)

Run-time

A typical run of the re-sampling method with 10,000 samples will take around 45 minutes (with the histogram option
ON). Using the adaptive resampling option, the run-time is reduced to around 10 minutes.

2.5.5 Normalization

Proper normalization is important as it ensures that other sources of variability are not mistakenly treated as real
differences in datasets. TRANSIT provides various normalization methods, which are briefly described below:

• TTR: Trimmed Total Reads (TTR), normalized by the total read-counts (like totreads), but trims top and bottom
5% of read-counts. This is the recommended normalization method for most cases as it has the beneffit
of normalizing for difference in saturation in the context of resampling.

• nzmean: Normalizes datasets to have the same mean over the non-zero sites.

• totreads: Normalizes datasets by total read-counts, and scales them to have the same mean over all counts.

• zinfnb: Fits a zero-inflated negative binomial model, and then divides read-counts by the mean. The zero-
inflated negative binomial model will treat some empty sites as belonging to the “true” negative binomial
distribution responsible for read-counts while treating the others as “essential” (and thus not influencing
its parameters).

• quantile: Normalizes datasets using the quantile normalization method described by Bolstad et al. (2003). In
this normalization procedure, datasets are sorted, an empirical distribution is estimated as the mean across
the sorted datasets at each site, and then the original (unsorted) datasets are assigned values from the
empirical distribution based on their quantiles.

• betageom: Normalizes the datasets to fit an “ideal” Geometric distribution with a variable probability parameter
p. Specially useful for datasets that contain a large skew.

• nonorm: No normalization is performed.

36 Chapter 2. Mailing List

http://www.ncbi.nlm.nih.gov/pubmed/12538238

transit Documentation, Release v2.1.2

2.6 Console Mode Cheat-Sheet

TRANSIT has the capability of running in Console mode, without depending on libraries for GUI elements. More
hands-on users can utilize transit in this manner to quickly run multiple jobs in parallel. Below is brief

2.6.1 Analysis Methods

TRANSIT has the capacity of determining essentiality within a single condition, or between conditions to determine
conditional essentiality.

Single Condition Essentiality

Analysis methods in a single condition require at least 4 positional arguments followed by optional flags.

python transit.py <method> <wig-files> <annotation> <output>

Positional Arguments Definition
<method> Short name of the desired analysis method e.g. gumbel, resampling, hmm
<wig-files> Comma-separated list of paths read-count datasets in .wig format
<annotation> Path to the annotation in .prot_table or .GFF3 format.
<output> Desired path and name of the output file

Example

python transit.py gumbel glycerol_H37Rv_rep1.wig,glycerol_H37Rv_rep2.wig H37Rv.prot_
→˓table glycerol_TTR.txt -r Sum -s 10000

Conditional Essentiality

Analysis methods between two conditions require at least 5 positional arguments followed by optional flags.

Positional Argu-
ments

Definition

<method> Short name of the desired analysis method e.g. gumbel, resampling, hmm
<control-files> Comma-separated list of paths read-count files in .wig format for the control datasets
<experimental-files> Comma-separated list of paths read-count files in .wif format for the experimental

datasets
<annotation> Path to the annotation in .prot_table or .GFF3 format.
<output> Desired path and name of the output file

2.6. Console Mode Cheat-Sheet 37

transit Documentation, Release v2.1.2

Example

python transit.py resampling glycerol_H37Rv_rep1.wig,glycerol_H37Rv_rep2.wig
→˓cholesterol_H37Rv_rep1.wig,cholesterol_H37Rv_rep2.wig H37Rv.prot_table glycerol_TTR.
→˓txt -n TTR -s 10000

2.6.2 Normalizing datasets

TRANSIT also allows users to normalize datasets and export them afterwards. To normalize datasets, 3 positional
arguments followed by optional flags.

Positional Arguments Definition
<wig-files> Comma-separated list of paths read-count datasets in .wig format
<annotation> Path to the annotation in .prot_table or .GFF3 format.
<output> Desired path and name of the output file

Argument Definition
-n <String> Short name of the normalization method, e.g. -n TTR

python transit.py norm glycerol_H37Rv_rep1.wig,glycerol_H37Rv_rep2.wig H37Rv.prot_
→˓table glycerol_TTR.txt -n TTR

2.7 Tutorial: Essentiality Analysis in a Single Condition

To illustrate how TRANSIT works, we are going to go through a tutorial where we analyze datasets of H37Rv M.
tuberculosis grown on glycerol and cholesterol.

2.7.1 Run TRANSIT

Navigate to the directory containing the TRANSIT files, and run TRANSIT:

python PATH/src/transit.py

2.7.2 Adding the annotation file

Before we can analyze datasets, we need to add an annotation file for the organism corresponding to the desired
datasets. Click on the file dialog button, on the top of the TRANSIT window (see image below), and browse and select
the appropriate annotation file. Note: Annotation files must be in “.prot_table” format, described above.

38 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

2.7.3 Adding the control datasets

We want to analyze datasets grown in glycerol to those grown in cholesterol. We are choosing the datasets grown in
glycerol as the “Control” datasets. To add these, we click on the control sample file dialog (see image below), and
select the desired datasets (one by one). In this example, we have two replicates:

2.7. Tutorial: Essentiality Analysis in a Single Condition 39

transit Documentation, Release v2.1.2

As we add the datasets they will appear in the table in the Control samples section. This table will provide the
following statistics about the datasets that have been loaded so far: Total Number of Reads, Density, Mean Read
Count and Maximum Count. These statistics can be used as general diagnostics of the datasets.

2.7.4 Visualizing read counts

TRANSIT allows us to visualize the read-counts of the datasets we have already loaded. To do this, we must select the
desired datasets (“Control+Click”) and then click on “View -> Track View” in the menu bar at the top of the TRANSIT
window. Only those selected datasets will be displayed:

40 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

This will open a window that allows that shows a visual representation of the read counts at the TA sites throughout
the genome. The scale of the read counts can be set by changing the value of the “Max Read” textbox on the right. We
can browse around the genome by clicking on the left and right arrowm, or search for a specific gene with the search
text box.

This window also allows us to save a .png image of the canvas for future reference if desired (i.e. Save Img button).

2.7.5 Scatter plot

We can also view a scatter plot of read counts of two selected datasets. To achieve this we select two datasets (using
“Control + Clicck”) and then clicking on “View -> Scatter Plot” in the menu bar at the top of the TRANSIT window.

2.7. Tutorial: Essentiality Analysis in a Single Condition 41

transit Documentation, Release v2.1.2

A new window will pop-up, show a scatter plot of both of the selected datasets. This window contains controls to
zoom in and out (magnifying glass), allowing us to focus in on a specific area. This is particularly useful when large
outliers may throw off the scale of the scatter plot.

2.7.6 Essentiality analysis with the Gumbel method

Before comparing both conditions against each other, we may want to determine which genes are essential in a specific
condition to get an idea of the genes which are required. To do this we can use the Gumbel or the HMM methods,
which determine essentiality within one condition. First we chose the Gumbel method from the list of (Himar1)
analysis methods in the menu on top:

42 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

For this particular case we leave the parameters at their default settings as these work with a wide variety of datasets
(See above for an explanation of their function). We then click on the “Run Gumbel” button and wait until the analysis
finished running. The progress bar will give us information about how much of the analysis is still left. Once the
program finishes, the results file is automatically created (with the name chosen at run-time) and it is automatically
added to the Results File section at the bottom of TRANSIT. We can visualize the results by selecting this file from
the list, and clicking on the “Display Table” button. This will open a new window with a table of resuls:

From this window we can view results, and sort on a specific column (described above) by clicking on a column
header. In addition, the top of this window contains a breakdown of the number of essential and non-essential genes
found by the Gumbel method. We can see that 675 genes are found to be essential by the Gumbel method (16%),
roughly matching expectations that 15% of the genomes is necessary for growth in bacterial organisms. Clicking on
the “Zbar” column we can sort the data on the posterior probability of essentiality. If we sort in descending order, we
get those genes which are most likely to be essential on the top. Among these are genes like GyrA (DNA gyrase A)
and RpoB (DNA-directed polymerase), which are both well-known essential genes, and which are obtain a posterior
probability of essentiality of 1.0 (Essential).

2.8 Tutorial: Essentiality Analysis of the Entire Genome

To illustrate how TRANSIT works, we are going to go through a tutorial where we analyze datasets of H37Rv M.
tuberculosis grown on glycerol and cholesterol.

2.8. Tutorial: Essentiality Analysis of the Entire Genome 43

transit Documentation, Release v2.1.2

2.8.1 Run TRANSIT

Navigate to the directory containing the TRANSIT files, and run TRANSIT:

python PATH/src/transit.py

2.8.2 Adding the annotation file

Before we can analyze datasets, we need to add an annotation file for the organism corresponding to the desired
datasets. Click on the file dialog button, on the top of the TRANSIT window (see image below), and browse and select
the appropriate annotation file. Note: Annotation files must be in “.prot_table” format, described above.

2.8.3 Adding the control datasets

We want to analyze datasets grown in glycerol to those grown in cholesterol. We are choosing the datasets grown in
glycerol as the “Control” datasets. To add these, we click on the control sample file dialog (see image below), and
select the desired datasets (one by one). In this example, we have two replicates:

44 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

As we add the datasets they will appear in the table in the Control samples section. This table will provide the
following statistics about the datasets that have been loaded so far: Total Number of Reads, Density, Mean Read
Count and Maximum Count. These statistics can be used as general diagnostics of the datasets.

2.8.4 Visualizing read counts

TRANSIT allows us to visualize the read-counts of the datasets we have already loaded. To do this, we must select the
desired datasets (“Control+Click”) and then click on “View -> Track View” in the menu bar at the top of the TRANSIT
window. Only those selected datasets will be displayed:

2.8. Tutorial: Essentiality Analysis of the Entire Genome 45

transit Documentation, Release v2.1.2

This will open a window that allows that shows a visual representation of the read counts at the TA sites throughout
the genome. The scale of the read counts can be set by changing the value of the “Max Read” textbox on the right. We
can browse around the genome by clicking on the left and right arrowm, or search for a specific gene with the search
text box.

This window also allows us to save a .png image of the canvas for future reference if desired (i.e. Save Img button).

2.8.5 Scatter plot

We can also view a scatter plot of read counts of two selected datasets. To achieve this we select two datasets (using
“Control + Clicck”) and then clicking on “View -> Scatter Plot” in the menu bar at the top of the TRANSIT window.

46 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

A new window will pop-up, show a scatter plot of both of the selected datasets. This window contains controls to
zoom in and out (magnifying glass), allowing us to focus in on a specific area. This is particularly useful when large
outliers may throw off the scale of the scatter plot.

2.8.6 Essentiality analysis with the HMM method

An alternative method for determining essentiality is the HMM method. This method differs from the Gumbel method
in that is capable of assessing the essentiality of the entire genome, and is not limited to a gene-level analysis (See
above for discussions of the pros and cons of each method). To run the HMM method we select it from the list of
(Himar1) methods on the Analysis at the top. This automatically displays the available options for the HMM methid.
Because the HMM method estimates parameters by examining the datasets, there is no need to set parameters for the
model. One important option provided is how to deal with replicate datasets. Because the glycerol replicates had
a mean read-count between 53-85, we decide to sum read-counts together by selecting “Sum” from the drop-down
option.

2.8. Tutorial: Essentiality Analysis of the Entire Genome 47

transit Documentation, Release v2.1.2

Finally we click on the “Run HMM” button, and wait for the method to finish. Once the analysis finishes, two new
files will be created and automatically added to the list of files in the Results Files section. One file contains the output
of states for each TA site in the genome. The other file contains the analysis for each gene. We can display each
of the files be selecting them (individually) and clicking on the “Display Table” button (one at a time). Like for the
Gumbel method, a break down of the states is provided at the top of the table. In the case of glycerol, the HMM
analysis classifies 16.3% of the genome as belonging to the “Essential” state, 5.4% belonging to the Growth-Defect
state, 77.1% to the Non-Essential state, and 1.2% to the Growth Advantage state. This break down can be used as a
diagnostic, to see if the results match our expectations. For example, in datasets with very low read-counts, or very
low density, the percentage of Growth-Defect states may be higher (e.g. > 10%), which could indicate a problem.

The HMM sites file contains the state assignments for all the TA sites in the genome. This file is particularly useful to
browse for browsing the different types of regions in the genome. We can use this file to see how regions have different
impacts on the growth-advantage (or disadvantage) of the organism. For example, the PDIM locus, which is required
for virulance in vivo, results in a Growth-Advantage for the organism when disrupted. We can see this in the HMM
Sites file by scrolling down to this region (Rv2930-Rv2939) and noticing the large read-counts at these sites, and the
how they are labeled “GA”.

2.9 Tutorial: Comparative Analysis - Glycerol vs Cholesterol

To illustrate how TRANSIT works, we are going to go through a tutorial where we analyze datasets of H37Rv M.
tuberculosis grown on glycerol and cholesterol.

48 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

2.9.1 Run TRANSIT

Navigate to the directory containing the TRANSIT files, and run TRANSIT:

python PATH/src/transit.py

2.9.2 Adding the annotation file

Before we can analyze datasets, we need to add an annotation file for the organism corresponding to the desired
datasets. Click on the file dialog button, on the top of the TRANSIT window (see image below), and browse and select
the appropriate annotation file. Note: Annotation files must be in “.prot_table” format, described above.

2.9.3 Adding the control datasets

We want to analyze datasets grown in glycerol to those grown in cholesterol. We are choosing the datasets grown in
glycerol as the “Control” datasets. To add these, we click on the control sample file dialog (see image below), and
select the desired datasets (one by one). In this example, we have two replicates:

2.9. Tutorial: Comparative Analysis - Glycerol vs Cholesterol 49

transit Documentation, Release v2.1.2

As we add the datasets they will appear in the table in the Control samples section. This table will provide the
following statistics about the datasets that have been loaded so far: Total Number of Reads, Density, Mean Read
Count and Maximum Count. These statistics can be used as general diagnostics of the datasets.

2.9.4 Visualizing read counts

TRANSIT allows us to visualize the read-counts of the datasets we have already loaded. To do this, we must select the
desired datasets (“Control+Click”) and then click on “View -> Track View” in the menu bar at the top of the TRANSIT
window. Only those selected datasets will be displayed:

50 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

This will open a window that allows that shows a visual representation of the read counts at the TA sites throughout
the genome. The scale of the read counts can be set by changing the value of the “Max Read” textbox on the right. We
can browse around the genome by clicking on the left and right arrowm, or search for a specific gene with the search
text box.

This window also allows us to save a .png image of the canvas for future reference if desired (i.e. Save Img button).

2.9.5 Scatter plot

We can also view a scatter plot of read counts of two selected datasets. To achieve this we select two datasets (using
“Control + Clicck”) and then clicking on “View -> Scatter Plot” in the menu bar at the top of the TRANSIT window.

2.9. Tutorial: Comparative Analysis - Glycerol vs Cholesterol 51

transit Documentation, Release v2.1.2

A new window will pop-up, show a scatter plot of both of the selected datasets. This window contains controls to
zoom in and out (magnifying glass), allowing us to focus in on a specific area. This is particularly useful when large
outliers may throw off the scale of the scatter plot.

Adding the experimental datasets

We now repeat the process we did for control samples, for the experimental datasets that were grown on cholesterol.
To add these, we click on the experimental sample file dialog (see image below), and select the desired datasets (one
by one). In this example, we have three replicates:

52 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

Comparative analysis using Re-sampling

To compare the growth conditions and assess conditional essentiality, we select “Resampling” from the list of methods
in the drop-down menu on the right side of the TRANSIT window:

2.9. Tutorial: Comparative Analysis - Glycerol vs Cholesterol 53

transit Documentation, Release v2.1.2

This will populate the right side with options specific to the Resampling method. In this case, we choose to proceed
with the default settings. However, we could have set a different number of samples for the resampling method or
chosen the “Adaptive Resampling” option if we were interested in quicker results. See the description of the method
above for more information.

We click on the “Run Resampling” button to start the analysis. This will take several minutes to finish. The progress
bar will give us an idea of how much time is left.

Viewing resampling results

Once TRANSIT finishes running, the results file will automatically be added to the Results Files section at the bottom
of the window/

This window allows us to track the results files that have been created in this session. From here, we can display
a volcano plot of the resampling results by selecting the file from the list and selecting the volcano option on the
dropdown menu. This will open a new window containing the figure:

54 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

To view the actual results, we can open the file in a new window by selecting it from the list and clicking on the
“Display Table” button.

The newly opened window will display a table of the results. We can sort the results by clicking on the column header.
For example, to focus on the genes that are most likely to be conditionally essential between glycerol and cholesterol,
we can click on the column header labeled “q-value”, which represents p-values that have been adjusted for multiple
comparisons. Sorting q-values in ascending order, we can see those genes which are most likely to be conditionally
essential on the top. A typical threshold for significance is < 0.05. We can use “Delta Sum” column to see which
conditions had the most read counts in a particular gene. The sign of this value (+/-) lets us know on which condition
the gene is essential and which condition it is non-essential. The magnitude lets us know how large the difference is.
For example, glycerol kinase (GlpK) is necessary for growth on glycerol but it is not expected to be necessary when
grown on another carbon source like cholesterol. We confirm our expectations by noticing that the sum of read counts
in glycerol is only 22 reads (normalized), while there are a total of 2119 reads in cholesterol. The difference (2096)
is positive, which means it is necessary for growth in glycerol but not cholesterol. Because we ran the resampling
method with the “Histograms” options, we also have the ability to view the histograms of permutation differences for
each of the genes by selecting a gene and right clicking:

From this menu we can display the histogram, or view the read-counts for that specific gene in Track View:

2.9. Tutorial: Comparative Analysis - Glycerol vs Cholesterol 55

transit Documentation, Release v2.1.2

2.10 Tutorial: Normalize datasets

TRANSIT has the capability to normalize datasets with different methods, and export them to IGV from the Broad
Institute or a CombinedWig format. This tutorial shows a quick overview of how to normalize datasets save them
using the GUI mode of transit or through the Console mode.

2.10.1 Adding the annotation file

Before we can normalize .wig datasets, we need to add an annotation file for the organism. Click on the file dialog
button, on the top of the TRANSIT window (see image below), and browse and select the appropriate annotation file.
Note: Annotation files must be in “.prot_table” or GFF3 format, described above:

56 Chapter 2. Mailing List

https://www.broadinstitute.org/igv/
https://www.broadinstitute.org/igv/

transit Documentation, Release v2.1.2

2.10.2 Add .wig datasets

Next we must choose to add .wig formatted datasets what we wish to normalize to CombinedWig format. To add
these, we click on the control sample file dialog (see image below), and select the desired datasets (one by one). In
this example, we have two replicates:

2.10. Tutorial: Normalize datasets 57

transit Documentation, Release v2.1.2

As we add the datasets they will appear in the table below. Select the datasets you wish to normalize.

2.10.3 Normalize and Save

After you have selected the desired datasets in the list of datasets added, click on “Export -> Selected Datasets” in the
menu bar at the top of the TRANSIT window, and select the format you desire (e.g. “to IGV” or “to CombinedWig”).
You will be prompted to pick a normalization method, and a filename. Note: Only selected datasets (“Control+Click”)
will be normalized and saved.

58 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

_images/transit_tutorial_norm_options.png

2.10.4 Normalization

Proper normalization is important as it ensures that other sources of variability are not mistakenly treated as real
differences in datasets. TRANSIT provides various normalization methods, which are briefly described below:

• TTR: Trimmed Total Reads (TTR), normalized by the total read-counts (like totreads), but trims top and bottom
5% of read-counts. This is the recommended normalization method for most cases as it has the beneffit
of normalizing for difference in saturation in the context of resampling.

• nzmean: Normalizes datasets to have the same mean over the non-zero sites.

• totreads: Normalizes datasets by total read-counts, and scales them to have the same mean over all counts.

2.10. Tutorial: Normalize datasets 59

transit Documentation, Release v2.1.2

• zinfnb: Fits a zero-inflated negative binomial model, and then divides read-counts by the mean. The zero-
inflated negative binomial model will treat some empty sites as belonging to the “true” negative binomial
distribution responsible for read-counts while treating the others as “essential” (and thus not influencing
its parameters).

• quantile: Normalizes datasets using the quantile normalization method described by Bolstad et al. (2003). In
this normalization procedure, datasets are sorted, an empirical distribution is estimated as the mean across
the sorted datasets at each site, and then the original (unsorted) datasets are assigned values from the
empirical distribution based on their quantiles.

• betageom: Normalizes the datasets to fit an “ideal” Geometric distribution with a variable probability parameter
p. Specially useful for datasets that contain a large skew.

• nonorm: No normalization is performed.

2.11 Tutorial: Export datasets

TRANSIT has the capability to export .wig files into different formats. This tutorial shows a quick overview of how
to export to the IGV format. This can be useful to be able to import read-count data into IGV from the Broad Institute
and use its visualization capabilities.

2.11.1 Adding the annotation file

Before we can export .wig datasets to IGV format, we need to add an annotation file for the organism. Click on
the file dialog button, on the top of the TRANSIT window (see image below), and browse and select the appropriate
annotation file. Note: Annotation files must be in “.prot_table” or GFF3 format, described above:

60 Chapter 2. Mailing List

http://www.ncbi.nlm.nih.gov/pubmed/12538238
https://www.broadinstitute.org/igv/

transit Documentation, Release v2.1.2

2.11.2 Add .wig datasets

Next we must choose to add .wig formatted datasets what we wish to export to IGV format. To add these, we click
on the control sample file dialog (see image below), and select the desired datasets (one by one). In this example, we
have two replicates:

2.11. Tutorial: Export datasets 61

transit Documentation, Release v2.1.2

As we add the datasets they will appear in the table below.

2.11.3 Export to IGV

Finally, to export the datasets we click on “Export” in the menu bar at the top of the TRANSIT window, and select
the option that matches which datasets we wish to export. Note: Only selected datasets (“Control+Click”) will be
exported.

62 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

2.12 Overview

TPP is a software tool for processing raw reads (e.g. .fastq files, untrimmed) from an Tn-Seq experiment, extracting
counts of transposon insertions at individual TA dinucleotides sites in a genome (“read counts”, or more specifically
“template counts”, see below), and writing this information out in .wig format suitable for input to TRANSIT. In
addition, TPP calculates some useful statistics and diagnostics on the dataset.

There are many way to do pre-processing of Tn-Seq datasets, and it can depend on the the protocol used for Tn-Seq, the
conventions used by the sequencing center, etc. However, TPP is written to accommodate the most common situation
among our collaborating labs. In particular, it is oriented toward the Tn-Seq protocol developed in the Sassetti lab and
described in (Long et al, 2015), which uses a barcoding system to uniquely identifying reads from distinct transposon-
junction DNA fragments. This allows raw read counts to be reduced to unique template counts, eliminating effects
of PCR bias. The sequencing must be done in paired-end (PE) mode (with a minimum read-length of around 50 bp).
The transposon terminus appears in the prefix of read1 reads, and barcodes are embedded in read2 reads.

The suffixes of read1 and read2 contain nucleotides from the genomic region adjacent to the transpsoson insertion.
These subsequences must be mapped into the genome. TPP uses BWA (Burroughs-Wheeler Aligner) to do this
mapping. It is a widely-used tool, but you will have to install it on your system. Mapping large datasets takes time, on
the order of 15 minutes (depending on many factors), so you will have to be patient.

Subsequent to the BWA mapping step, TPP does a bunch of post-processing steps. Primarily, it tabulates raw read
counts at each TA site in the reference genome, reduces them to template counts, and writes this out in .wig format
(as input for TRANSIT). It also calculates and reports some statistics on the dataset which a useful for diagnostic
purposes. These are saved in local file caled “.tn_stats”. The GUI automatically reads all the .tn_stats files from

2.12. Overview 63

http://genome.ucsc.edu/goldenpath/help/wiggle.html
index.html
http://www.springer.com/biomed/human+genetics/book/978-1-4939-2397-7
http://bio-bwa.sourceforge.net/

transit Documentation, Release v2.1.2

previously processed datasets in a directory and displays them in a table.

The GUI interface is set-up basically as a graphical front-end that allows you to specify input files and parameters to
get a job started. Once you press START, the graphical window goes away, and the pre-processing begins, printing out
status messages in the original terminal window. You can also run TPP directly from the command-line with the GUI,
by providing all the inputs via command-line arguments.

TPP has a few optional parameters in the interface. We intend to add other options in the future, so if you have
suggestions, let us know. In particular, if you have some datasets that requires special processing (such as if different
primer sequences were used for PCR amplification, or a different barcoding system, or different contaminant sequences
to search for, etc.), we might be able to add some options to deal with this.

2.13 Installation

TPP should work equivalently on Macs, PCs running Windows, or Unix machines. TPP is fundamentally a python
script that has a graphical user interface (GUI) written in wxPython. Its major dependency is that it calls BWA to
map reads. TPP has the following requirements. If these are not already on your system, you will have to install them
manually.

Requirements:

• python version 2.7

• wxPython 3.0.1 (the ‘cocoa’ version)

• BWA version 0.7.12 (can put this directory anywhere; be sure to run ‘make’ to build bwa executable

– pre-compiled version for 64-bit Windows)

Since TPP is a python script, there is nothing to compile or ‘make’.

2.14 Running TPP

TPP may be run from the command line (e.g. of a terminal window or shell) by typing:

python PATH/src/tpp.py

where PATH is the path to the TRANSIT installation directory. This should pop up the GUI window, looking like
this. . .

64 Chapter 2. Mailing List

http://www.python.org/
http://www.wxpython.org/
http://bio-bwa.sourceforge.net/
http://saclab.tamu.edu/essentiality/transit/bwa-0.7.12_windows.zip

transit Documentation, Release v2.1.2

Note, TPP can process paired-end reads, as well as single-end datasets. (just leave the filename for read2 blank)

The main fields to fill out in the GUI are. . .

• bwa executable - you’ll have to find the path to where the executable is installed

• reference genome - this is the sequence in Fasta format against which the reads will be mapped

• reads1 file - this should be the raw reads file (untrimmed) for read1 in FASTQ or FASTA format, e.g.
DATASET_NAME_R1.fastq

– Note: you can also supply gzipped files for reads, e.g. *.fastq.gz

• reads2 file - this should be the raw reads file (untrimmed) for read2 in FASTQ or FASTA format, e.g.
DATASET_NAME_R2.fastq

– Note: if you leave read2 blank, it will process the dataset as single-ended. Since there are no barcodes,
each read will be counted as a unique template.

• prefix to use for output filename (for the multiple intermediate files that will get generated in the process; when
you pick datasets, a temp file name will automatically be suggested for you, but you can change it to whatever
you want)

• transposon used - Himar1 is assumed by default, but you can set it to Tn5 to process libraries of that type.
The main consequences of this setting are: 1) the selected transposon determines the nucleotide prefix to be
recognized in read 1, and 2) for Himar1, reads are counted only at TA sites, whereas for Tn5, reads are counted

2.14. Running TPP 65

http://en.wikipedia.org/wiki/FASTQ_format
http://en.wikipedia.org/wiki/FASTA

transit Documentation, Release v2.1.2

at ALL sites in the genome (since it does not have significant sequence specificity) and written out in the .counts
and .wig files.

• primer sequence - This represents the end of the transposon that appears as a constant prefix in read 1 (possibly
shifted by a few random bases), resulting from amplifying transposon:genomic junctions. TPP searches for this
prefix and strips it off, to map the suffixes of reads into the genome. TPP has default sequences defined for
both Himar1 and Tn5 data, based on the most commonly used protocols (Long et al. (2015); Langridge et al.
(2009)). However, if you amplify junctions with a different primer, this field gives you the opportunity to change
the sequence TPP searches for in each read. Note that you should not entirer the ENTIRE primer sequence, but
rather just the part of the primer sequence that will show up at the beginning of every read.

• max reads - Normally, leave this blank by default, and TPP will process all reads. However, if you want to do a
quick run on a subset of the data, you can select a smaller number. This is mainly for testing purposes.

• mismatches - this is for searching for the sequence patterns in reads corresponding to the transposon prefix in
R1 and the constant adapter sequences surrounding the barcode in R2; we suggest using a default value of 1
mismatch

Once you have filled all these fields out, you can press START (or QUIT). At this point the GUI window will disappear,
and the data processing commences in the original terminal/shell windows. It prints out a lot of information to let you
know what it is doing (and error messages, if anything goes wrong). Many intermediate files get generated. It takes
awhile (like on the order of 15 minutes), most of which is taken up by the mapping-reads step by BWA.

Subsequent to the BWA mapping step, TPP does a bunch of post-processing steps. Primarily, it tabulates raw read
counts at each TA site in the reference genome, reduces them to template counts, and writes this out in .wig format (as
input for essentiality analysis in TRANSIT). It also calculates and reports some statistics on the dataset which a useful
for diagnostic purposes. These are saved in local file caled “.tn_stats”. The GUI automatically reads all the .tn_stats
files from previously processed datasets in a directory and displays them in a table.

TPP uses a local config file called “tpp.cfg” to rememeber parameter settings from run to run. This makes it convenient
so that you don’t have to type in things like the path to the BWA executable or reference genome over and over again.
You just have to do it once, and TPP will remember.

Command-line mode: TPP may be run on a dataset directly from the command-line without invoking the user
interface (GUI) by providing it filenames and parameters as command-line arguments.

For a list of possible command line arguments, type: python tpp.py -help
usage: python TRANSIT_PATH/src/tpp.py -bwa PATH_TO_EXECUTABLE -ref REF_SEQ -reads1
→˓PATH_TO_FASTQ_OR_FASTA_FILE [-reads2 PATH_TO_FASTQ_OR_FASTA_FILE] -output OUTPUT_
→˓BASE_FILENAME [-maxreads N] [-tn5|-himar1] [-primer <seq>]

The input arguments and file types are as follows:

66 Chapter 2. Mailing List

http://www.springer.com/biomed/human+genetics/book/978-1-4939-2397-7
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2792183/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2792183/

transit Documentation, Release v2.1.2

Flag Value Comments
-bwa path executable
-ref reference genome sequence FASTA file
-reads1 file of read 1 of paired reads FASTA or FASTQ format (or gzipped)
-reads2 file of read 2 of paired reads (optional for single-end

reads
FASTA or FASTQ format (or gzipped)

-
output†

base filename to use for output files

-maxreads subset of reads to process (optional); if blank, use
-mismatches how many to allow when searching reads for sequence

patterns
-tn5 process reads as a Tn5 library (Himar1 is assumed by

default
Reads mapping to any site will be con-
sidered.

-himar1 process reads as a Himar1 library (assumed by default) Considers reads that map to TA sites
only.

-primer nucleotide sequence Constant prefix of reads that TPP
searches for.

† In earlier versions of Transit, this flag used to be ‘-prefix’, but we changed it to ‘-output’

(Note: if you have already run TPP once, the you can leave out the specification of the path for BWA, and it will
automatically take the path stored in the config file, tpp.cfg. Same for ref, if you always use the same reference
sequence.)

2.15 Overview of Data Processing Procedure

Here is a brief summary of the steps performed in converting raw reads (.fastq files) into template counts:

1. Convert .fastq files to .fasta format (.reads).

2. Identify reads with the transposon prefix in R1 . The sequence searched for is ACTTATCAGCCAACCTGTTA
(or TAAGAGACAG for Tn5), which must start between cycles 5 and 10 (inclusive). (Note that this ends in
the canonical terminus of the Himar1 transposon, TGTTA.) The “staggered” position of this sequence is due to
insertion a few nucleotides of variable length in the primers used in the Tn-Seq sample prep protocol (e.g. 4
variants of Sol_AP1_57, etc.). The number of mimatches allowed in searching reads for the transposon sequence
pattern can be adjusted as an option in the interface; the default is 1.

3. Extract genomic part of read 1. This is the suffix following the transposon sequence pattern above. However,
for reads coming from fragments shorter than the read length, the adapter might appear at the other end of R1,
TACCACGACCA. If so, the adapter suffix is stripped off. (These are referred to as “truncated” reads, but they
can still be mapped into the genome just fine by BWA.) The length of the genomic part must be at least 20 bp.

4. Extract barcodes from read 2. Read 2 is searched for GATGGCCGGTGGATTTGTGnnnnnnnnnnTGGTCGTG-
GTAT”. The length of the barcode is typically 10 bp, but can be varaible, and must be between 5-15 bp.

5. Extract genomic portions of read 2. This is the part following TGGTCGTGGTAT. . . . It is often the whole
suffix of the read. However, if the read comes from a short DNA fragment that is shorter than the read length,
the adapter on the other end might appear, in which case it is stripped off and the nucleotides in the middle
representing the genomic insert, TGGTCGTGGTATxxxxxxxTAACAGGTTGGCTGATAAG. The insert must
be at least 20 bp long (inserts shorter than this are discarded, as they might map to spurious locations in the
genome).

6. Map genomic parts of R1 and R2 into the genome using BWA. Mismatches are allowed, but indels are ignored.
No trimming is performed. BWA is run in ‘sampe’ mode (treating reads as pairs). Both reads of a pair must
map (on opposite strands) to be counted.

2.15. Overview of Data Processing Procedure 67

transit Documentation, Release v2.1.2

7. Count the reads mapping to each TA site in the reference genome (or all sites for Tn5).

8. Reduce raw read counts to unique template counts. Group reads by barcode AND mapping location of read 2
(aka fragment “endpoints”).

9. Output template counts at each TA site in a .wig file.

10. Calculate statistics like insertion_density and NZ_mean. Look for the site with the max template count. Look
for reads matching the primer or vector sequences.

2.16 Statistics

Here is an explanation of the statistics that are saved in the .tn_stats file and displayed in the table in the GUI. For
convenience, all the statistics are written out on one line with tab-separation at the of the .tn_stats file, to make it easy
to add it as a row in a spreadsheet, as some people like to do to track multiple datasets.

Statistic Description
total_reads total number of reads in the original .fastq/.fasta
trun-
cated_reads

reads representing DNA fragments shorter than the read length; adapter appears at end of read 1
and is stripped for mapping

TGTTA_reads number of reads with a proper transposon prefix (ending in TGTTA in read1)
reads1_mapped number of R1 mappped into genome (independent of R2)
reads2_mapped number of R2 mappped into genome (independent of R1)
mapped_reads number of reads which mapped into the genome (requiring both read1 and read2 to map)
read_count total reads mapping to TA sites (mapped reads excluding those mapping to non-TA sites)
tem-
plate_count

reduction of mapped reads to unique templates using barcodes

tem-
plate_ratio

read_count / template_count

TA_sites total number of TA dinucleotides in the genome
TAs_hit number of TA sites with at least 1 insertion
inser-
tion_density

TAs_hit / TA_sites

max_count the maximum number of templates observed at any TA site
max_site the coordinate of the site where the max count occurs
NZ_mean mean template count over non-zero TA sites
FR_corr correlation between template counts on Fwd strand versus Rev strand
BC_corr correlation between read counts and template counts over non-zero sites
primer_matches how many reads match the Himar1 primer sequence (primer-dimer problem in sample prep)
vec-
tor_matches

how many reads match the phiMycoMarT7 sequence (transposon vector) used in Tn mutant li-
brary construction

adapter how many reads match the Illumina adapter (primer-dimers, no inserts).
misprimed how many reads match the Himar1 primer but lack the TGTTA, meaning they primed at random

sites (non-Tn junctions)

Here is an example of a .tn_stats file:

title: Tn-Seq Pre-Processor
date: 08/03/2016 13:01:47
command: python ../../src/tpp.py -bwa /pacific/home/ioerger/bwa-0.7.12/bwa -ref
→˓H37Rv.fna -reads1 TnSeq_H37Rv_CB_1M_R1.fastq -reads2 TnSeq_H37Rv_CB_1M_R2.fastq -
→˓output TnSeq_H37Rv_CB
transposon type: Himar1

(continues on next page)

68 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

(continued from previous page)

read1: TnSeq_H37Rv_CB_1M_R1.fastq
read2: TnSeq_H37Rv_CB_1M_R2.fastq
ref_genome: H37Rv.fna
total_reads 1000000 (or read pairs)
TGTTA_reads 977626 (reads with valid Tn prefix, and insert size>20bp)
reads1_mapped 943233
reads2_mapped 892527
mapped_reads 885796 (both R1 and R2 map into genome)
read_count 879663 (TA sites only, for Himar1)
template_count 605660
template_ratio 1.45 (reads per template)
TA_sites 74605
TAs_hit 50382
density 0.675
max_count 356 (among templates)
max_site 2631639 (coordinate)
NZ_mean 12.0 (among templates)
FR_corr 0.821 (Fwd templates vs. Rev templates)
BC_corr 0.990 (reads vs. templates, summed over both strands)
primer_matches: 10190 reads (1.0%) contain CTAGAGGGCCCAATTCGCCCTATAGTGAGT (Himar1)
vector_matches: 5608 reads (0.6%) contain CTAGACCGTCCAGTCTGGCAGGCCGGAAAC
→˓(phiMycoMarT7)
adapter_matches: 0 reads (0.0%) contain GATCGGAAGAGCACACGTCTGAACTCCAGTCAC (Illumina/
→˓TruSeq index)
misprimed_reads: 6390 reads (0.6%) contain Himar1 prefix but don't end in TGTTA
read_length: 125 bp
mean_R1_genomic_length: 92.9 bp
mean_R2_genomic_length: 79.1 bp
TnSeq_H37Rv_CB_1M_R1.fastq TnSeq_H37Rv_CB_1M_R2.fastq 1000000 977626 943233
→˓892527 885796 879663 605660 1.45240398904 74605 50382 356 0.675316667784
→˓2631639 12.0213568338 0.8209081083 0.989912222642 10190 5608 0 6390

Interpretation: To assess the quality of a dataset, I would recommend starting by looking at 3 primary statistics:

1. mapped reads: should be on the order of several million mapped_reads; if there is a significant reduction from
total_reads, look at reads1_mapped and reads2_mapped and truncated_reads to figure what might have gone
wrong; you might try allowing 2 mismatches

2. primer/vector_matches: check whether a lot of the reads might be matching the primer or vector sequences;
if they match the vector, it suggests your library still has phage contamination from the original infection; if
there are a lot of primer reads, these probably represent “primer-dimers”, which could be reduced by inproving
fragment size selection during sample prep.

3. insertion density: good libraries should have insertions at ~35% of TA sites for statistical analysis

4. NZ_mean: good datasets should have a mean of around 50 templates per site for sufficient dynamic range

If something doesn’t look right, the other statistics might be helpful in figuring out what went wrong. If you see a
significant reduction in reads, it could be due to some poor sequencing cycles, or using the wrong reference genome, or
a contaminant of some type. Some attrition is to be expected (loss of maybe 10-40% of the reads). The last 2 statistics
indicate 2 common cases: how many reads match the primer or vector sequences. Hopefully these counts will be low,
but if they represent a large fraction of your reads, it could mean you have a problem with your sample prep protocol
or Tn mutant library, respectively.

Comments or Questions?

TPP was developed by Thomas R. Ioerger at Texas A&M University. If you have any comments or questions, please
feel free to send me an email at: ioerger@cs.tamu.edu

2.16. Statistics 69

http://faculty.cse.tamu.edu/ioerger/

transit Documentation, Release v2.1.2

2.17 transit package

2.17.1 Submodules

2.17.2 pytransit.norm_tools module

class pytransit.norm_tools.AdaptiveBGCNorm
Bases: pytransit.norm_tools.NormMethod

cleaninfgeom(rho)
Returns a ‘clean’ output from the geometric distribution.

ecdf(x)
Calculates an empirical CDF of the given data.

name = 'aBGC'

static normalize(wigList=[], annotationPath=”, doTotReads=True, bgsamples=200000)
Returns the normalized data using the aBGC method.

Parameters

• data (numpy array) – (K,N) numpy array defining read-counts at N sites for K
datasets.

• doTotReads (bool) – Boolean specifying whether to do TTR normalization as well.

• bgsamples (int) – Integeer specifying how many samples to take.

Returns Array with the normalized data.

Return type numpy array

Example

>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_
→˓H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[0., 0., 0., ..., 0., 0., 0.],

[0., 0., 0., ..., 0., 0., 0.]])
>>> normdata = norm_tools.aBGC_norm(data)
>>> print normdata
array([[0., 0., 0., ..., 0., 0., 0.],

[0., 0., 0., ..., 0., 0., 0.]])

See also:

normalize_data

class pytransit.norm_tools.BetaGeomNorm
Bases: pytransit.norm_tools.NormMethod

cleaninfgeom(rho)
Returns a ‘clean’ output from the geometric distribution.

ecdf(x)
Calculates an empirical CDF of the given data.

70 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

name = 'betageom'

static normalize(wigList=[], annotationPath=”, doTTR=True, bgsamples=200000)
Returns normalized data according to the BGC method.

Parameters

• data (numpy array) – (K,N) numpy array defining read-counts at N sites for K
datasets.

• doTTR (bool) – Boolean specifying whether to do TTR norm as well.

• bgsamples (int) – Integer specifying how many samples to take.

Returns Array with the data normalized using the betageom method.

Return type numpy array

Example

>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_
→˓H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[0., 0., 0., ..., 0., 0., 0.],

[0., 0., 0., ..., 0., 0., 0.]])
>>> normdata = norm_tools.betageom_norm(data)
>>> print normdata
[[0. 0. 0. ..., 0. 0. 0.]
[0. 0. 0. ..., 0. 0. 0.]]

See also:

normalize_data

class pytransit.norm_tools.EmpHistNorm
Bases: pytransit.norm_tools.NormMethod

static Fzinfnb(args)
Objective function for the zero-inflated NB method.

name = 'emphist'

static normalize(wigList=[], annotationPath=”)
Returns the normalized data, using the empirical hist method.

Parameters

• wigList (list) – List of paths to wig formatted datasets.

• annotationPath (str) – Path to annotation in .prot_table or GFF3 format.

Returns Array with the normalization factors for the emphist method.

Return type numpy array

Example

>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_
→˓H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data

(continues on next page)

2.17. transit package 71

transit Documentation, Release v2.1.2

(continued from previous page)

array([[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.]])

>>> factors = norm_tools.emphist_factors(["transit/data/glycerol_
→˓H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"],
→˓"transit/genomes/H37Rv.prot_table")
>>> print factors
array([[1.],

[0.63464722]])

See also:

normalize_data

pytransit.norm_tools.Fzinfnb(params, args)
Objective function for the zero-inflated NB method.

class pytransit.norm_tools.NZMeanNorm
Bases: pytransit.norm_tools.NormMethod

name = 'nzmean'

static normalize(wigList=[], annotationPath=”)
Returns the normalization factors for the data, using the NZMean method.

Parameters data (numpy array) – (K,N) numpy array defining read-counts at N sites for
K datasets.

Returns Array with the normalization factors for the nzmean method.

Return type numpy array

Example

>>> import pytransit._tools.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_
→˓H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[0., 0., 0., ..., 0., 0., 0.],

[0., 0., 0., ..., 0., 0., 0.]])
>>> factors = norm_tools.nzmean_factors(data)
>>> print factors
array([[1.14836149],

[0.88558737]])

See also:

normalize_data

class pytransit.norm_tools.NoNorm
Bases: pytransit.norm_tools.NormMethod

name = 'nonorm'

static normalize(wigList=[], annotationPath=”)

class pytransit.norm_tools.NormMethod

name = 'undefined'

static normalize()

72 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

class pytransit.norm_tools.QuantileNorm
Bases: pytransit.norm_tools.NormMethod

name = 'quantile'

static normalize(wigList=[], annotationPath=”)
Performs Quantile Normalization as described by Bolstad et al. 2003

Parameters data (numpy array) – (K,N) numpy array defining read-counts at N sites for
K datasets.

Returns Array with the data normalized by the quantile normalization method.

Return type numpy array

Example

>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_
→˓H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[0., 0., 0., ..., 0., 0., 0.],

[0., 0., 0., ..., 0., 0., 0.]])
>>> normdata = norm_tools.quantile_norm(data)
>>> print normdata

See also:

normalize_data

class pytransit.norm_tools.TTRNorm
Bases: pytransit.norm_tools.NormMethod

empirical_theta()
Calculates the observed density of the data.

This is used as an estimate insertion density by some normalization methods. May be improved by more
sophisticated ways later on.

Parameters data (numpy array) –

14. numpy array defining read-counts at N sites.

Returns Density of the given dataset.

Return type float

Example

>>> import pytransit.tnseq_tools as tnseq_tools
>>> import pytransit.norm_tools as norm_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_
→˓H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[0., 0., 0., ..., 0., 0., 0.],

[0., 0., 0., ..., 0., 0., 0.]])
>>> theta = norm_tools.empirical_theta(data)
>>> print theta
0.467133570136

See also:

TTR_factors

2.17. transit package 73

transit Documentation, Release v2.1.2

name = 'emphist'

static normalize(wigList=[], annotationPath=”, thetaEst=<function empirical_theta>,
muEst=<function trimmed_empirical_mu>, target=100.0)

Returns the normalization factors for the data, using the TTR method.

Parameters

• data (numpy array) – (K,N) numpy array defining read-counts at N sites for K
datasets.

• thetaEst (function) – Function used to estimate density. Should take a list of counts
as input.

• muEst (function) – Function used to estimate mean count. Should take a list of counts
as input.

Returns Array with the normalization factors for the TTR method.

Return type numpy array

Example

>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_
→˓H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[0., 0., 0., ..., 0., 0., 0.],

[0., 0., 0., ..., 0., 0., 0.]])
>>> factors = norm_tools.TTR_factors(data)
>>> print factors
array([[1.],

[0.62862886]])

See also:

normalize_data

trimmed_empirical_mu(t=0.05)
Estimates the trimmed mean of the data.

This is used as an estimate of mean count by some normalization methods. May be improved by more
sophisticated ways later on.

Parameters

• data (numpy array) –

14. numpy array defining read-counts at N sites.

• t (float) – Float specifying fraction of start and end to trim.

Returns (Trimmed) Mean of the given dataset.

Return type float

Example

>>> import pytransit.tnseq_tools as tnseq_tools
>>> import pytransit.norm_tools as norm_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_
→˓H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data

(continues on next page)

74 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

(continued from previous page)

array([[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.]])

>>> mu = norm_tools.trimmed_empirical_mu(data)
>>> print mu
120.73077107

See also:

TTR_factors

class pytransit.norm_tools.TotReadsNorm
Bases: pytransit.norm_tools.NormMethod

name = 'totreads'

static normalize(wigList=[], annotationPath=”)
Returns the normalization factors for the data, using the total reads method.

Parameters data (numpy array) – (K,N) numpy array defining read-counts at N sites for
K datasets.

Returns Array with the normalization factors for the totreads method.

Return type numpy array

Example

>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_
→˓H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[0., 0., 0., ..., 0., 0., 0.],

[0., 0., 0., ..., 0., 0., 0.]])
>>> factors = norm_tools.totreads_factors(data)
>>> print factors
array([[1.2988762],

[0.8129396]])

See also:

normalize_data

class pytransit.norm_tools.ZeroInflatedNBNorm
Bases: pytransit.norm_tools.NormMethod

name = 'zinfb'

static normalize(wigList=[], annotationPath=”)
Returns the normalization factors for the data using the zero-inflated negative binomial method.

Parameters data (numpy array) – (K,N) numpy array defining read-counts at N sites for
K datasets.

Returns Array with the normalization factors for the zinfnb method.

Return type numpy array

Example

2.17. transit package 75

transit Documentation, Release v2.1.2

>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_
→˓H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[0., 0., 0., ..., 0., 0., 0.],

[0., 0., 0., ..., 0., 0., 0.]])
>>> factors = norm_tools.zinfnb_factors(data)
>>> print factors
[[0.0121883]
[0.00747111]]

See also:

normalize_data

pytransit.norm_tools.cleaninfgeom(x, rho)
Returns a ‘clean’ output from the geometric distribution.

pytransit.norm_tools.ecdf(S, x)
Calculates an empirical CDF of the given data.

pytransit.norm_tools.empirical_theta(X)
Calculates the observed density of the data.

This is used as an estimate insertion density by some normalization methods. May be improved by more
sophisticated ways later on.

Parameters data (numpy array) –

14. numpy array defining read-counts at N sites.

Returns Density of the given dataset.

Return type float

Example

>>> import pytransit.tnseq_tools as tnseq_tools
>>> import pytransit.norm_tools as norm_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_
→˓H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[0., 0., 0., ..., 0., 0., 0.],

[0., 0., 0., ..., 0., 0., 0.]])
>>> theta = norm_tools.empirical_theta(data)
>>> print theta
0.467133570136

See also:

TTR_factors

pytransit.norm_tools.norm_to_target(data, target)
Returns factors to normalize the data to the given target value.

Parameters

• data (numpy array) – (K,N) numpy array defining read-counts at N sites for K datasets.

• target (float) – Floating point specifying the target for the mean of the data/

Returns Array with the factors necessary to normalize mean to target.

76 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

Return type numpy array

Example

>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_
→˓H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[0., 0., 0., ..., 0., 0., 0.],

[0., 0., 0., ..., 0., 0., 0.]])
>>> factors = norm_tools.norm_to_target(data, 100)
>>> print factors
[[1.8548104]
[1.16088726]]

See also:

normalize_data

pytransit.norm_tools.normalize_data(data, method=’nonorm’, wigList=[], annotation-
Path=”)

Normalizes the numpy array by the given normalization method.

Parameters

• data (numpy array) – (K,N) numpy array defining read-counts at N sites for K datasets.

• method (str) – Name of the desired normalization method.

• wigList (list) – List of paths for the desired wig-formatted datasets.

• annotationPath (str) – Path to the prot_table annotation file.

Returns Array with the normalized data. list: List containing the normalization factors. Empty if
not used.

Return type numpy array

Example

>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_
→˓H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[0., 0., 0., ..., 0., 0., 0.],

[0., 0., 0., ..., 0., 0., 0.]])
(normdata, normfactors) = norm_tools.normalize_data(data, "TTR") #
→˓Some methods require annotation and path to wig files.
>>> print normfactors
array([[1.],

[0.62862886]])
>> print normdata
array([[0., 0., 0., ..., 0., 0., 0.],

[0., 0., 0., ..., 0., 0., 0.]])

Note: Some normalization methods require the wigList and annotationPath arguments.

pytransit.norm_tools.trimmed_empirical_mu(X, t=0.05)
Estimates the trimmed mean of the data.

2.17. transit package 77

transit Documentation, Release v2.1.2

This is used as an estimate of mean count by some normalization methods. May be improved by more sophisti-
cated ways later on.

Parameters

• data (numpy array) –

14. numpy array defining read-counts at N sites.

• t (float) – Float specifying fraction of start and end to trim.

Returns (Trimmed) Mean of the given dataset.

Return type float

Example

>>> import pytransit.tnseq_tools as tnseq_tools
>>> import pytransit.norm_tools as norm_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_
→˓H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[0., 0., 0., ..., 0., 0., 0.],

[0., 0., 0., ..., 0., 0., 0.]])
>>> mu = norm_tools.trimmed_empirical_mu(data)
>>> print mu
120.73077107

See also:

TTR_factors

pytransit.norm_tools.zinfnb_factors(data)
Returns the normalization factors for the data using the zero-inflated negative binomial method.

Parameters data (numpy array) – (K,N) numpy array defining read-counts at N sites for K
datasets.

Returns Array with the normalization factors for the zinfnb method.

Return type numpy array

Example

>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_
→˓H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[0., 0., 0., ..., 0., 0., 0.],

[0., 0., 0., ..., 0., 0., 0.]])
>>> factors = norm_tools.zinfnb_factors(data)
>>> print factors
[[0.0121883]
[0.00747111]]

See also:

normalize_data

78 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

2.17.3 pytransit.stat_tools module

pytransit.stat_tools.BH_fdr_correction(X)
Adjusts p-values using the Benjamini Hochberg procedure

pytransit.stat_tools.F_mean_diff_flat(A, B)

pytransit.stat_tools.F_shuffle_flat(X)

pytransit.stat_tools.F_sum_diff_flat(A, B)

pytransit.stat_tools.bayesian_ess_thresholds(Z_raw, ALPHA=0.05)
Returns Essentiality Thresholds using a BH-like procedure

pytransit.stat_tools.binom(k, n, p)
Binomial distribution. Uses Normal approximation for large ‘n’

pytransit.stat_tools.binom_cdf(k, n, p)
CDF of the binomial distribution

pytransit.stat_tools.binom_test(k, n, p, type=’two-sided’)
Does a binomial test given success, trials and probability.

pytransit.stat_tools.boxcoxTable(X, minlambda, maxlambda, dellambda)
Returns a table of (loglik function, lambda) pairs for the data.

pytransit.stat_tools.boxcoxtransform(x, lambdax)
Performs a box-cox transformation to data vector X. WARNING: elements of X should be all positive! Fixed:
‘>’ has changed to ‘<’

pytransit.stat_tools.comb(n, k)

pytransit.stat_tools.comb1(n, k)

pytransit.stat_tools.cumulative_average(new_x, n, prev_avg)

pytransit.stat_tools.dberndiff(d, peq, p01, p10)

pytransit.stat_tools.dbinomdiff(d, n, P)

pytransit.stat_tools.fact(n)

pytransit.stat_tools.isEven(x)

pytransit.stat_tools.loess(X, Y, h=10000)

pytransit.stat_tools.loess_correction(X, Y, h=10000, window=100)

pytransit.stat_tools.log_fac(n)

pytransit.stat_tools.loglik(X, lambdax)
Computes the log-likelihood function for a transformed vector Xtransform.

pytransit.stat_tools.multinomial(K, P)

pytransit.stat_tools.my_perm(d, n)

pytransit.stat_tools.norm(x, mu, sigma)
Normal distribution

pytransit.stat_tools.phi_coefficient(X, Y)
Calculates the phi-coefficient for two bool arrays

pytransit.stat_tools.qberndiff(d, peq, p01, p10)

pytransit.stat_tools.qbinomdiff(d, n, peq, p01, p10)

2.17. transit package 79

transit Documentation, Release v2.1.2

pytransit.stat_tools.regress(X, Y)
Performs linear regression given two vectors, X, Y.

pytransit.stat_tools.resampling(data1, data2, S=10000, testFunc=<function
F_mean_diff_flat>, permFunc=<function F_shuffle_flat>,
adaptive=False)

Does a permutation test on two sets of data.

Performs the resampling / permutation test given two sets of data using a function defining the test statistic and
a function defining how to permute the data.

Parameters

• data1 – List or numpy array with the first set of observations.

• data2 – List or numpy array with the second set of observations.

• S – Number of permutation tests (or samples) to obtain.

• testFunc – Function defining the desired test statistic. Should accept two lists as argu-
ments. Default is difference in means between the observations.

• permFunc – Function defining the way to permute the data. Should accept one argument,
the combined set of data. Default is random shuffle.

• adaptive – Cuts-off resampling early depending on significance.

Returns

Tuple with described values

• test_obs – Test statistic of observation.

• mean1 – Arithmetic mean of first set of data.

• mean2 – Arithmetic mean of second set of data.

• log2FC – Normalized log2FC the means.

• pval_ltail – Lower tail p-value.

• pval_utail – Upper tail p-value.

• pval_2tail – Two-tailed p-value.

• test_sample – List of samples of the test statistic.

Example

>>> import pytransit.stat_tools as stat_tools
>>> import numpy
>>> X = numpy.random.random(100)
>>> Y = numpy.random.random(100)
>>> (test_obs, mean1, mean2, log2fc, pval_ltail, pval_utail, pval_
→˓2tail, test_sample) = stat_tools.resampling(X,Y)
>>> pval_2tail
0.2167
>>> test_sample[:3]
[0.076213992904990535, -0.0052513291091412784, -0.0038425140184765172]

pytransit.stat_tools.transformToRange(X, new_min, new_max, old_min=None,
old_max=None)

pytransit.stat_tools.tricoeff(N, S)

pytransit.stat_tools.tricube(X)

80 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

2.17.4 pytransit.tnseq_tools module

pytransit.tnseq_tools.ExpectedRuns(n, pnon)
Expected value of the run of non=insertions (Schilling, 1990):

ER_n = log(1/p)(nq) + gamma/ln(1/p) -1/2 + r1(n) + E1(n)

Parameters

• n (int) – Integer representing the number of sites.

• pins (float) – Floating point number representing the probability of non-insertion.

Returns Size of the expected maximum run.

Return type float

class pytransit.tnseq_tools.Gene(orf, name, desc, reads, position, start=0, end=0, strand=”)
Class defining a gene with useful attributes for TnSeq analysis.

This class helps define a “gene” with attributes that facilitate TnSeq analysis. Here “gene” can be defined to be
any genomic region. The Genes class (with an s) can be used to define list of Gene objects with more useful
operations on the “genome” level.

orf
A string defining the ID of the gene.

name
A string with the human readable name of the gene.

desc
A string with the description of the gene.

reads
List of lists of read-counts in possible site replicate dataset.

position
List of coordinates of the possible sites.

start
An integer defining the start coordinate for the gene.

end
An integer defining the end coordinate for the gene.

strand
A string defining the strand of the gene.

Example

>>> import pytransit.tnseq_tools as tnseq_tools
>>> G = tnseq_tools.Gene("Rv0001", "dnaA", "DNA Replication A", [[0,0,
→˓0,0,1,3,0,1]], [1,21,32,37,45,58,66,130], strand="+")
>>> print G
Rv0001 (dnaA) k=3 n=8 r=4 theta=0.37500
>>> print G.phi()
0.625
>>> print G.tosses
array([0., 0., 0., 0., 1., 1., 0., 1.])

2.17. transit package 81

transit Documentation, Release v2.1.2

See also:

Genes

__eq__(other)
Compares against other gene object.

Returns True if the gene objects have same orf id.

Return type bool

__ge__(other)
x.__ge__(y) <==> x>=y

__getitem__(i)
Return read-counts at position i.

Parameters i (int) – integer of the index of the desired site.

Returns Reads at position i.

Return type list

__gt__(other)
x.__gt__(y) <==> x>y

__le__(other)
x.__le__(y) <==> x<=y

__lt__(other)
Compares against other gene object.

Returns True if the gene object id is less than the other.

Return type bool

__str__()
Return a string representation of the object.

Returns Human readable string with some of the attributes.

Return type str

get_gap_span()
Returns the span of the maxrun of the gene (i.e. number of nucleotides).

Returns Number of nucleotides spanned by the max run.

Return type int

get_gene_span()
Returns the number of nucleotides spanned by the gene.

Returns Number of nucleotides spanned by the gene’s sites.

Return type int

phi()
Return the non-insertion density (“phi”) for the gene.

Returns Non-insertion density (i.e. 1 - theta)

Return type float

theta()
Return the insertion density (“theta”) for the gene.

82 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

Returns Density of the gene (i.e. k/n)

Return type float

total_reads()
Return the total reads for the gene.

Returns Total sum of read-counts.

Return type float

class pytransit.tnseq_tools.Genes(wigList, annotation, norm=’nonorm’, reps=’All’, min-
read=1, ignoreCodon=True, nterm=0.0, cterm=0.0, in-
clude_nc=False, data=[], position=[], genome=”, transpo-
son=’himar1’)

Class defining a list of Gene objects with useful attributes for TnSeq analysis.

This class helps define a list of Gene objects with attributes that facilitate TnSeq analysis. Includes methods that
calculate useful statistics and even rudamentary analysis of essentiality.

wigList
List of paths to datasets in .wig format.

protTable
String with path to annotation in .prot_table format.

norm
String with the normalization used/

reps
String with information on how replicates were handled.

minread
Integer with the minimum magnitude of read-count considered.

ignoreCodon
Boolean defining whether to ignore the start/stop codon.

nterm
Float number of the fraction of the N-terminus to ignore.

cterm
Float number of the fraction of the C-terminus to ignore.

include_nc
Boolean determining whether to include non-coding areas.

orf2index
Dictionary of orf id to index in the genes list.

genes
List of the Gene objects.

Example

>>> import pytransit.tnseq_tools as tnseq_tools
>>> G = tnseq_tools.Genes(["transit/data/glycerol_H37Rv_rep1.wig",
→˓"transit/data/glycerol_H37Rv_rep2.wig"], "transit/genomes/H37Rv.
→˓prot_table", norm="TTR")
>>> print G
Genes Object (N=3990)
>>> print G.global_theta()
0.40853707222816626

(continues on next page)

2.17. transit package 83

transit Documentation, Release v2.1.2

(continued from previous page)

>>> print G["Rv0001"] # Lookup like dictionary
Rv0001 (dnaA) k=0 n=31 r=31 theta=0.00000
>>> print G[2] # Lookup like list
Rv0003 (recF) k=5 n=35 r=14 theta=0.14286
>>> print G[2].reads
[[62. 0. 0. 0. 0.
→˓ 0.
0. 0. 0. 0. 0.
→˓ 0.
0. 0. 63. 0. 0.
→˓13.
46. 0. 1. 0. 0.
→˓ 0.
0. 0. 0. 0. 0.
→˓ 0.
0. 0. 0. 0. 0.]
[3.14314432 67.26328843 0. 0. 0.
→˓ 0.
0. 0. 0. 35.20321637 0.
→˓ 0.
0. 0. 30.80281433 0. 101.20924707
0. 23.25926796 0. 16.97297932 8.17217523
0. 0. 2.51451546 3.77177318 0.62862886
0. 0. 69.14917502 0. 0.
→˓ 0.
0. 0.]]

See also:

Gene

__contains__(item)
Defines __contains__ to check if gene exists in the list.

Parameters item (str) – String with the id of the gene.

Returns Boolean with True if item is in the list.

Return type bool

__getitem__(i)
Defines __getitem__ method so that it works as dictionary and list.

Parameters i (int) – Integer or string defining index or orf ID desired.

Returns A gene with the index or ID equal to i.

Return type Gene

__len__()
Defines __len__ returning number of genes.

Returns Number of genes in the list.

Return type int

__str__()
Defines __str__ to print a generic str with the size of the list.

Returns Human readable string with number of genes in object.

Return type str

84 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

global_insertion()
Returns total number of insertions, i.e. sum of ‘k’ over all genes.

Returns Total sum of reads across all genes.

Return type float

global_phi()
Returns global non-insertion frequency, of the library.

Returns Complement of global theta i.e. 1.0-theta

Return type float

global_reads()
Returns the reads among the library.

Returns List of all the data.

Return type list

global_run()
Returns the run assuming all genes were concatenated together.

Returns Max run across all genes.

Return type int

global_sites()
Returns total number of sites, i.e. sum of ‘n’ over all genes.

Returns Total number of sites across all genes.

Return type int

global_theta()
Returns global insertion frequency, of the library.

Returns Total sites with insertions divided by total sites.

Return type float

local_gap_span()
Returns numpy array with the span of nucleotides of the largest gap, ‘s’, for each gene.

Returns Numpy array with the span of gap for all genes.

Return type narray

local_gene_span()
Returns numpy array with the span of nucleotides of the gene, ‘t’, for each gene.

Returns Numpy array with the span of gene for all genes.

Return type narray

local_insertions()
Returns numpy array with the number of insertions, ‘k’, for each gene.

Returns Numpy array with the number of insertions for all genes.

Return type narray

local_phis()
Returns numpy array of non-insertion frequency, ‘phi’, for each gene.

Returns Numpy array with the complement of density for all genes.

2.17. transit package 85

transit Documentation, Release v2.1.2

Return type narray

local_reads()
Returns numpy array of lists containing the read counts for each gene.

Returns Numpy array with the list of reads for all genes.

Return type narray

local_runs()
Returns numpy array with maximum run of non-insertions, ‘r’, for each gene.

Returns Numpy array with the max run of non-insertions for all genes.

Return type narray

local_sites()
Returns numpy array with total number of TA sites, ‘n’, for each gene.

Returns Numpy array with the number of sites for all genes.

Return type narray

local_thetas()
Returns numpy array of insertion frequencies, ‘theta’, for each gene.

Returns Numpy array with the density for all genes.

Return type narray

tosses()
Returns list of bernoulli trials, ‘tosses’, representing insertions in the gene.

Returns Sites represented as bernoulli trials with insertions as true.

Return type list

total_reads()
Returns total reads among the library.

Returns Total sum of read-counts accross all genes.

Return type float

pytransit.tnseq_tools.GumbelCDF(x, u, B)
CDF of the Gumbel distribution:

e^(-e^((u-x)/B))

Parameters

• x (int) – Length of the max run.

• u (float) – Location parameter of the Gumbel dist.

• B (float) – Scale parameter of the Gumbel dist.

Returns Cumulative probability o the Gumbel distribution.

Return type float

pytransit.tnseq_tools.VarR(n, pnon)
Variance of the expected run of non-insertons (Schilling, 1990):

Parameters

• n (int) – Integer representing the number of sites.

86 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

• pnon (float) – Floating point number representing the probability of non-insertion.

Returns Variance of the length of the maximum run.

Return type float

pytransit.tnseq_tools.check_wig_includes_zeros(wig_list)
Returns boolean list showing whether the given files include empty sites (zero) or not.

Parameters wig_list (list) – List of paths to wig files.

Returns List of boolean values.

Return type list

pytransit.tnseq_tools.combine_replicates(data, method=’Sum’)
Returns list of data merged together.

Parameters

• data (list) – List of numeric (replicate) data to be merged.

• method (str) – How to combine the replicate dataset.

Returns List of numeric dataset now merged together.

Return type list

pytransit.tnseq_tools.getE1(n)
Small Correction term. Defaults to 0.01 for now

pytransit.tnseq_tools.getE2(n)
Small Correction term. Defaults to 0.01 for now

pytransit.tnseq_tools.getGamma()
Euler-Mascheroni constant ~ 0.577215664901

pytransit.tnseq_tools.getR1(n)
Small Correction term. Defaults to 0.000016 for now

pytransit.tnseq_tools.getR2(n)
Small Correction term. Defaults to 0.00006 for now

pytransit.tnseq_tools.get_coordinate_map(galign_path, reverse=False)
Attempts to get mapping of coordinates from galign file.

Parameters

• path (str) – Path to .galign file.

• reverse (bool) – Boolean specifying whether to do A to B or B to A.

Returns Dictionary of coordinate in one file to another file.

Return type dict

pytransit.tnseq_tools.get_data(wig_list)

Returns a tuple of (data, position) containing a matrix of raw read-counts , and list of coordinates.

Parameters wig_list (list) – List of paths to wig files.

Returns Two lists containing data and positions of the wig files given.

Return type tuple

Example

2.17. transit package 87

transit Documentation, Release v2.1.2

>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["data/glycerol_H37Rv_
→˓rep1.wig", "data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[0., 0., 0., ..., 0., 0., 0.],

[0., 0., 0., ..., 0., 0., 0.]])

See also:

get_file_types combine_replicates get_data_zero_fill pytransit.norm_tools.
normalize_data

pytransit.tnseq_tools.get_data_stats(reads)

pytransit.tnseq_tools.get_data_w_genome(wig_list, genome)

pytransit.tnseq_tools.get_data_zero_fill(wig_list)

Returns a tuple of (data, position) containing a matrix of raw read counts, and list of coordinates. Posi-
tions that are missing are filled in as zero.

Parameters wig_list (list) – List of paths to wig files.

Returns Two lists containing data and positions of the wig files given.

Return type tuple

pytransit.tnseq_tools.get_extended_pos_hash_gff(path, N=None)

pytransit.tnseq_tools.get_extended_pos_hash_pt(path, N=None)

pytransit.tnseq_tools.get_file_types(wig_list)
Returns the transposon type (himar1/tn5) of the list of wig files.

Parameters wig_list (list) – List of paths to wig files.

Returns List of transposon type (“himar1” or “tn5”).

Return type list

pytransit.tnseq_tools.get_gene_info(path)
Returns a dictionary that maps gene id to gene information.

Parameters path (str) – Path to annotation in .prot_table or GFF3 format.

Returns

Dictionary of gene id to tuple of information:

• name

• description

• start coordinate

• end coordinate

• strand

Return type dict

pytransit.tnseq_tools.get_gene_info_gff(path)
Returns a dictionary that maps gene id to gene information.

Parameters path (str) – Path to annotation in GFF3 format.

88 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

Returns

Dictionary of gene id to tuple of information:

• name

• description

• start coordinate

• end coordinate

• strand

Return type dict

pytransit.tnseq_tools.get_gene_info_pt(path)
Returns a dictionary that maps gene id to gene information.

Parameters path (str) – Path to annotation in .prot_table format.

Returns

Dictionary of gene id to tuple of information:

• name

• description

• start coordinate

• end coordinate

• strand

Return type dict

pytransit.tnseq_tools.get_genes_in_range(pos_hash, start, end)
Returns list of genes that occur in a given range of coordinates.

Parameters

• pos_hash (dict) – Dictionary of position to list of genes.

• start (int) – Start coordinate of the desired range.

• end (int) – End coordinate of the desired range.

Returns List of genes that fall within range.

Return type list

pytransit.tnseq_tools.get_pos_hash(path)
Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.

Parameters path (str) – Path to annotation in .prot_table or GFF3 format.

Returns Dictionary of position to list of genes that share that position.

Return type dict

pytransit.tnseq_tools.get_pos_hash_gff(path)
Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.

Parameters path (str) – Path to annotation in GFF3 format.

Returns Dictionary of position to list of genes that share that position.

Return type dict

2.17. transit package 89

transit Documentation, Release v2.1.2

pytransit.tnseq_tools.get_pos_hash_pt(path)
Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.

Parameters path (str) – Path to annotation in .prot_table format.

Returns Dictionary of position to list of genes that share that position.

Return type dict

pytransit.tnseq_tools.get_unknown_file_types(wig_list, transposons)

pytransit.tnseq_tools.get_wig_stats(path)
Returns statistics for the given wig file with read-counts.

Parameters path (str) – String with the path to the wig file of interest.

Returns

Tuple with the following statistical measures:

• density

• mean read

• non-zero mean

• non-zero median

• max read

• total reads

• skew

• kurtosis

Return type tuple

pytransit.tnseq_tools.griffin_analysis(genes_obj, pins)
Implements the basic Gumbel analysis of runs of non-insertion, described in Griffin et al. 2011.

This analysis method calculates a p-value of observing the maximun run of TA sites without insertions in a row
(i.e. a “run”, r). Unusually long runs are indicative of an essential gene or protein domain. Assumes that there
is a constant, global probability of observing an insertion (tantamount to a Bernoulli probability of success).

Parameters

• genes_obj (Genes) – An object of the Genes class defining the genes.

• pins (float) – The probability of insertion.

Returns

List of lists with results and information for the genes. The elements of the list are as follows:

• ORF ID.

• Gene Name.

• Gene Description.

• Number of TA sites with insertions.

• Number of TA sites.

• Length of largest run of non-insertion.

• Expected run for a gene this size.

90 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

• p-value of the observed run.

Return type list

pytransit.tnseq_tools.maxrun(lst, item=0)
Returns the length of the maximum run an item in a given list.

Parameters

• lst (list) – List of numeric items.

• item (float) – Number to look for consecutive runs of.

Returns Length of the maximum run of consecutive instances of item.

Return type int

pytransit.tnseq_tools.read_genome(path)
Reads in FASTA formatted genome file.

Parameters path (str) – Path to .galign file.

Returns String with the genomic sequence.

Return type string

pytransit.tnseq_tools.runindex(runs)
Returns a list of the indexes of the start of the runs; complements runs().

Parameters runs (list) – List of numeric data.

Returns List of the index of the runs of non-insertions. Non-zero sites are treated as runs of zero.

Return type list

pytransit.tnseq_tools.runs(data)
Return list of all the runs of consecutive non-insertions.

Parameters data (list) – List of numeric data.

Returns List of the length of the runs of non-insertions. Non-zero sites are treated as runs of zero.

Return type list

pytransit.tnseq_tools.runs_w_info(data)
Return list of all the runs of consecutive non-insertions with the start and end locations.

Parameters data (list) – List of numeric data to check for runs.

Returns List of dictionary from run to length and position information of the tun.

Return type list

pytransit.tnseq_tools.tossify(data)
Reduces the data into Bernoulli trials (or ‘tosses’) based on whether counts were observed or not.

Parameters data (list) – List of numeric data.

Returns Data represented as bernoulli trials with >0 as true.

Return type list

2.17.5 pytransit.transit_tools module

pytransit.transit_tools.ShowAskWarning(MSG=”)

pytransit.transit_tools.ShowError(MSG=”)

2.17. transit package 91

transit Documentation, Release v2.1.2

pytransit.transit_tools.ShowMessage(MSG=”)

pytransit.transit_tools.aton(aa)

pytransit.transit_tools.basename(filepath)

pytransit.transit_tools.cleanargs(rawargs)

pytransit.transit_tools.convertToCombinedWig(dataset_list, annotationPath, outputPath,
normchoice=’nonorm’)

Normalizes the input datasets and outputs the result in CombinedWig format.

Parameters

• dataset_list (list) – List of paths to datasets in .wig format

• annotationPath (str) – Path to annotation in .prot_table or GFF3 format.

• outputPath (str) – Desired output path.

• normchoice (str) – Choice for normalization method.

pytransit.transit_tools.dirname(filepath)

pytransit.transit_tools.fetch_name(filepath)

pytransit.transit_tools.getTabTableData(path, colnames)

pytransit.transit_tools.get_extended_pos_hash(path)
Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.

Parameters path (str) – Path to annotation in .prot_table or GFF3 format.

Returns Dictionary of position to list of genes that share that position.

Return type dict

pytransit.transit_tools.get_gene_info(path)
Returns a dictionary that maps gene id to gene information.

Parameters path (str) – Path to annotation in .prot_table or GFF3 format.

Returns

Dictionary of gene id to tuple of information:

• name

• description

• start coordinate

• end coordinate

• strand

Return type dict

pytransit.transit_tools.get_pos_hash(path)
Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.

Parameters path (str) – Path to annotation in .prot_table or GFF3 format.

Returns Dictionary of position to list of genes that share that position.

Return type dict

pytransit.transit_tools.get_validated_data(wig_list, wxobj=None)

Returns a tuple of (data, position) containing a matrix of raw read-counts , and list of coordinates.

92 Chapter 2. Mailing List

transit Documentation, Release v2.1.2

Parameters

• wig_list (list) – List of paths to wig files.

• wxobj (object) – wxPython GUI object for warnings

Returns Two lists containing data and positions of the wig files given.

Return type tuple

Example

>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_validated_data(["data/glycerol_
→˓H37Rv_rep1.wig", "data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[0., 0., 0., ..., 0., 0., 0.],

[0., 0., 0., ..., 0., 0., 0.]])

See also:

get_file_types combine_replicates get_data_zero_fill pytransit.norm_tools.
normalize_data

pytransit.transit_tools.parseCoords(strand, aa_start, aa_end, start, end)

pytransit.transit_tools.transit_error(text)

pytransit.transit_tools.transit_message(msg=”, prefix=”)

pytransit.transit_tools.validate_annotation(annotation)

pytransit.transit_tools.validate_both_datasets(ctrldata, expdata)

pytransit.transit_tools.validate_control_datasets(ctrldata)

pytransit.transit_tools.validate_filetypes(datasets, transposons, justWarn=True)

pytransit.transit_tools.validate_transposons_used(datasets, transposons, just-
Warn=True)

pytransit.transit_tools.validate_wig_format(wig_list, wxobj=None)

2.17.6 Module contents

• genindex

• modindex

• search

2.17. transit package 93

transit Documentation, Release v2.1.2

94 Chapter 2. Mailing List

Bibliography

[DeJesus2015TRANSIT] DeJesus, M.A., Ambadipudi, C., Baker, R., Sassetti, C., and Ioerger, T.R. (2015). TRANSIT
- a Software Tool for Himar1 TnSeq Analysis. PLOS Computational Biology, 11(10):e1004401

[DeJesus2013] DeJesus, M.A., Zhang, Y.J., Sassettti, C.M., Rubin, E.J., Sacchettini, J.C., and Ioerger, T.R. (2013).
Bayesian analysis of gene essentiality based on sequencing of transposon insertion libraries. Bioinformatics,
29(6):695-703.

[DeJesus2013HMM] DeJesus, M.A., Ioerger, T.R. A Hidden Markov Model for identifying essential and growth-
defect regions in bacterial genomes from transposon insertion sequencing data. BMC Bioinformatics. 2013.
14:303

[DeJesus2014] DeJesus, M.A. and Ioerger, T.R. (2014). Capturing uncertainty by modeling local transposon inser-
tion frequencies improves discrimination of essential genes. IEEE Transactions on Computational Biology and
Bioinformatics, 12(1):92-102.

[DeJesus2016] DeJesus, M.A. and Ioerger, T.R. (2016). Normalization of transposon-mutant library sequencing
datasets to improve identification of conditionally essential genes. Journal of Bioinformatics and Computational
Biology, 14(3):1642004

95

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004401
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004401
http://www.ncbi.nlm.nih.gov/pubmed/23361328
http://www.ncbi.nlm.nih.gov/pubmed/23361328
http://www.ncbi.nlm.nih.gov/pubmed/23361328
http://www.ncbi.nlm.nih.gov/pubmed/24103077
http://www.ncbi.nlm.nih.gov/pubmed/24103077
http://www.ncbi.nlm.nih.gov/pubmed/24103077
http://www.ncbi.nlm.nih.gov/pubmed/26357081
http://www.ncbi.nlm.nih.gov/pubmed/26357081
http://www.ncbi.nlm.nih.gov/pubmed/26357081
http://www.ncbi.nlm.nih.gov/pubmed/26932272
http://www.ncbi.nlm.nih.gov/pubmed/26932272
http://www.ncbi.nlm.nih.gov/pubmed/26932272

transit Documentation, Release v2.1.2

96 Bibliography

Python Module Index

p
pytransit, 93
pytransit.norm_tools, 70
pytransit.stat_tools, 79
pytransit.tnseq_tools, 81
pytransit.transit_tools, 91

97

transit Documentation, Release v2.1.2

98 Python Module Index

Index

Symbols
__contains__() (pytransit.tnseq_tools.Genes method), 84
__eq__() (pytransit.tnseq_tools.Gene method), 82
__ge__() (pytransit.tnseq_tools.Gene method), 82
__getitem__() (pytransit.tnseq_tools.Gene method), 82
__getitem__() (pytransit.tnseq_tools.Genes method), 84
__gt__() (pytransit.tnseq_tools.Gene method), 82
__le__() (pytransit.tnseq_tools.Gene method), 82
__len__() (pytransit.tnseq_tools.Genes method), 84
__lt__() (pytransit.tnseq_tools.Gene method), 82
__str__() (pytransit.tnseq_tools.Gene method), 82
__str__() (pytransit.tnseq_tools.Genes method), 84

A
AdaptiveBGCNorm (class in pytransit.norm_tools), 70
aton() (in module pytransit.transit_tools), 92

B
basename() (in module pytransit.transit_tools), 92
bayesian_ess_thresholds() (in module pytran-

sit.stat_tools), 79
BetaGeomNorm (class in pytransit.norm_tools), 70
BH_fdr_correction() (in module pytransit.stat_tools), 79
binom() (in module pytransit.stat_tools), 79
binom_cdf() (in module pytransit.stat_tools), 79
binom_test() (in module pytransit.stat_tools), 79
boxcoxTable() (in module pytransit.stat_tools), 79
boxcoxtransform() (in module pytransit.stat_tools), 79

C
check_wig_includes_zeros() (in module pytran-

sit.tnseq_tools), 87
cleanargs() (in module pytransit.transit_tools), 92
cleaninfgeom() (in module pytransit.norm_tools), 76
cleaninfgeom() (pytran-

sit.norm_tools.AdaptiveBGCNorm method),
70

cleaninfgeom() (pytransit.norm_tools.BetaGeomNorm
method), 70

comb() (in module pytransit.stat_tools), 79
comb1() (in module pytransit.stat_tools), 79
combine_replicates() (in module pytransit.tnseq_tools),

87
convertToCombinedWig() (in module pytran-

sit.transit_tools), 92
cterm (pytransit.tnseq_tools.Genes attribute), 83
cumulative_average() (in module pytransit.stat_tools), 79

D
dberndiff() (in module pytransit.stat_tools), 79
dbinomdiff() (in module pytransit.stat_tools), 79
desc (pytransit.tnseq_tools.Gene attribute), 81
dirname() (in module pytransit.transit_tools), 92

E
ecdf() (in module pytransit.norm_tools), 76
ecdf() (pytransit.norm_tools.AdaptiveBGCNorm

method), 70
ecdf() (pytransit.norm_tools.BetaGeomNorm method),

70
EmpHistNorm (class in pytransit.norm_tools), 71
empirical_theta() (in module pytransit.norm_tools), 76
empirical_theta() (pytransit.norm_tools.TTRNorm

method), 73
end (pytransit.tnseq_tools.Gene attribute), 81
ExpectedRuns() (in module pytransit.tnseq_tools), 81

F
F_mean_diff_flat() (in module pytransit.stat_tools), 79
F_shuffle_flat() (in module pytransit.stat_tools), 79
F_sum_diff_flat() (in module pytransit.stat_tools), 79
fact() (in module pytransit.stat_tools), 79
fetch_name() (in module pytransit.transit_tools), 92
Fzinfnb() (in module pytransit.norm_tools), 72
Fzinfnb() (pytransit.norm_tools.EmpHistNorm static

method), 71

G
Gene (class in pytransit.tnseq_tools), 81

99

transit Documentation, Release v2.1.2

Genes (class in pytransit.tnseq_tools), 83
genes (pytransit.tnseq_tools.Genes attribute), 83
get_coordinate_map() (in module pytransit.tnseq_tools),

87
get_data() (in module pytransit.tnseq_tools), 87
get_data_stats() (in module pytransit.tnseq_tools), 88
get_data_w_genome() (in module pytransit.tnseq_tools),

88
get_data_zero_fill() (in module pytransit.tnseq_tools), 88
get_extended_pos_hash() (in module pytran-

sit.transit_tools), 92
get_extended_pos_hash_gff() (in module pytran-

sit.tnseq_tools), 88
get_extended_pos_hash_pt() (in module pytran-

sit.tnseq_tools), 88
get_file_types() (in module pytransit.tnseq_tools), 88
get_gap_span() (pytransit.tnseq_tools.Gene method), 82
get_gene_info() (in module pytransit.tnseq_tools), 88
get_gene_info() (in module pytransit.transit_tools), 92
get_gene_info_gff() (in module pytransit.tnseq_tools), 88
get_gene_info_pt() (in module pytransit.tnseq_tools), 89
get_gene_span() (pytransit.tnseq_tools.Gene method), 82
get_genes_in_range() (in module pytransit.tnseq_tools),

89
get_pos_hash() (in module pytransit.tnseq_tools), 89
get_pos_hash() (in module pytransit.transit_tools), 92
get_pos_hash_gff() (in module pytransit.tnseq_tools), 89
get_pos_hash_pt() (in module pytransit.tnseq_tools), 89
get_unknown_file_types() (in module pytran-

sit.tnseq_tools), 90
get_validated_data() (in module pytransit.transit_tools),

92
get_wig_stats() (in module pytransit.tnseq_tools), 90
getE1() (in module pytransit.tnseq_tools), 87
getE2() (in module pytransit.tnseq_tools), 87
getGamma() (in module pytransit.tnseq_tools), 87
getR1() (in module pytransit.tnseq_tools), 87
getR2() (in module pytransit.tnseq_tools), 87
getTabTableData() (in module pytransit.transit_tools), 92
global_insertion() (pytransit.tnseq_tools.Genes method),

84
global_phi() (pytransit.tnseq_tools.Genes method), 85
global_reads() (pytransit.tnseq_tools.Genes method), 85
global_run() (pytransit.tnseq_tools.Genes method), 85
global_sites() (pytransit.tnseq_tools.Genes method), 85
global_theta() (pytransit.tnseq_tools.Genes method), 85
griffin_analysis() (in module pytransit.tnseq_tools), 90
GumbelCDF() (in module pytransit.tnseq_tools), 86

I
ignoreCodon (pytransit.tnseq_tools.Genes attribute), 83
include_nc (pytransit.tnseq_tools.Genes attribute), 83
isEven() (in module pytransit.stat_tools), 79

L
local_gap_span() (pytransit.tnseq_tools.Genes method),

85
local_gene_span() (pytransit.tnseq_tools.Genes method),

85
local_insertions() (pytransit.tnseq_tools.Genes method),

85
local_phis() (pytransit.tnseq_tools.Genes method), 85
local_reads() (pytransit.tnseq_tools.Genes method), 86
local_runs() (pytransit.tnseq_tools.Genes method), 86
local_sites() (pytransit.tnseq_tools.Genes method), 86
local_thetas() (pytransit.tnseq_tools.Genes method), 86
loess() (in module pytransit.stat_tools), 79
loess_correction() (in module pytransit.stat_tools), 79
log_fac() (in module pytransit.stat_tools), 79
loglik() (in module pytransit.stat_tools), 79

M
maxrun() (in module pytransit.tnseq_tools), 91
minread (pytransit.tnseq_tools.Genes attribute), 83
multinomial() (in module pytransit.stat_tools), 79
my_perm() (in module pytransit.stat_tools), 79

N
name (pytransit.norm_tools.AdaptiveBGCNorm at-

tribute), 70
name (pytransit.norm_tools.BetaGeomNorm attribute),

71
name (pytransit.norm_tools.EmpHistNorm attribute), 71
name (pytransit.norm_tools.NoNorm attribute), 72
name (pytransit.norm_tools.NormMethod attribute), 72
name (pytransit.norm_tools.NZMeanNorm attribute), 72
name (pytransit.norm_tools.QuantileNorm attribute), 73
name (pytransit.norm_tools.TotReadsNorm attribute), 75
name (pytransit.norm_tools.TTRNorm attribute), 73
name (pytransit.norm_tools.ZeroInflatedNBNorm at-

tribute), 75
name (pytransit.tnseq_tools.Gene attribute), 81
NoNorm (class in pytransit.norm_tools), 72
norm (pytransit.tnseq_tools.Genes attribute), 83
norm() (in module pytransit.stat_tools), 79
norm_to_target() (in module pytransit.norm_tools), 76
normalize() (pytransit.norm_tools.AdaptiveBGCNorm

static method), 70
normalize() (pytransit.norm_tools.BetaGeomNorm static

method), 71
normalize() (pytransit.norm_tools.EmpHistNorm static

method), 71
normalize() (pytransit.norm_tools.NoNorm static

method), 72
normalize() (pytransit.norm_tools.NormMethod static

method), 72
normalize() (pytransit.norm_tools.NZMeanNorm static

method), 72

100 Index

transit Documentation, Release v2.1.2

normalize() (pytransit.norm_tools.QuantileNorm static
method), 73

normalize() (pytransit.norm_tools.TotReadsNorm static
method), 75

normalize() (pytransit.norm_tools.TTRNorm static
method), 74

normalize() (pytransit.norm_tools.ZeroInflatedNBNorm
static method), 75

normalize_data() (in module pytransit.norm_tools), 77
NormMethod (class in pytransit.norm_tools), 72
nterm (pytransit.tnseq_tools.Genes attribute), 83
NZMeanNorm (class in pytransit.norm_tools), 72

O
orf (pytransit.tnseq_tools.Gene attribute), 81
orf2index (pytransit.tnseq_tools.Genes attribute), 83

P
parseCoords() (in module pytransit.transit_tools), 93
phi() (pytransit.tnseq_tools.Gene method), 82
phi_coefficient() (in module pytransit.stat_tools), 79
position (pytransit.tnseq_tools.Gene attribute), 81
protTable (pytransit.tnseq_tools.Genes attribute), 83
pytransit (module), 93
pytransit.norm_tools (module), 70
pytransit.stat_tools (module), 79
pytransit.tnseq_tools (module), 81
pytransit.transit_tools (module), 91

Q
qberndiff() (in module pytransit.stat_tools), 79
qbinomdiff() (in module pytransit.stat_tools), 79
QuantileNorm (class in pytransit.norm_tools), 72

R
read_genome() (in module pytransit.tnseq_tools), 91
reads (pytransit.tnseq_tools.Gene attribute), 81
regress() (in module pytransit.stat_tools), 79
reps (pytransit.tnseq_tools.Genes attribute), 83
resampling() (in module pytransit.stat_tools), 80
runindex() (in module pytransit.tnseq_tools), 91
runs() (in module pytransit.tnseq_tools), 91
runs_w_info() (in module pytransit.tnseq_tools), 91

S
ShowAskWarning() (in module pytransit.transit_tools),

91
ShowError() (in module pytransit.transit_tools), 91
ShowMessage() (in module pytransit.transit_tools), 91
start (pytransit.tnseq_tools.Gene attribute), 81
strand (pytransit.tnseq_tools.Gene attribute), 81

T
theta() (pytransit.tnseq_tools.Gene method), 82

tosses() (pytransit.tnseq_tools.Genes method), 86
tossify() (in module pytransit.tnseq_tools), 91
total_reads() (pytransit.tnseq_tools.Gene method), 83
total_reads() (pytransit.tnseq_tools.Genes method), 86
TotReadsNorm (class in pytransit.norm_tools), 75
transformToRange() (in module pytransit.stat_tools), 80
transit_error() (in module pytransit.transit_tools), 93
transit_message() (in module pytransit.transit_tools), 93
tricoeff() (in module pytransit.stat_tools), 80
tricube() (in module pytransit.stat_tools), 80
trimmed_empirical_mu() (in module pytran-

sit.norm_tools), 77
trimmed_empirical_mu() (pytran-

sit.norm_tools.TTRNorm method), 74
TTRNorm (class in pytransit.norm_tools), 73

V
validate_annotation() (in module pytransit.transit_tools),

93
validate_both_datasets() (in module pytran-

sit.transit_tools), 93
validate_control_datasets() (in module pytran-

sit.transit_tools), 93
validate_filetypes() (in module pytransit.transit_tools), 93
validate_transposons_used() (in module pytran-

sit.transit_tools), 93
validate_wig_format() (in module pytransit.transit_tools),

93
VarR() (in module pytransit.tnseq_tools), 86

W
wigList (pytransit.tnseq_tools.Genes attribute), 83

Z
ZeroInflatedNBNorm (class in pytransit.norm_tools), 75
zinfnb_factors() (in module pytransit.norm_tools), 78

Index 101

	Quick Links
	Mailing List
	Overview
	Installation
	Running TRANSIT
	Features
	Analysis Methods
	Console Mode Cheat-Sheet
	Tutorial: Essentiality Analysis in a Single Condition
	Tutorial: Essentiality Analysis of the Entire Genome
	Tutorial: Comparative Analysis - Glycerol vs Cholesterol
	Tutorial: Normalize datasets
	Tutorial: Export datasets
	Overview
	Installation
	Running TPP
	Overview of Data Processing Procedure
	Statistics
	transit package

	Bibliography
	Python Module Index

