

    
      
          
            
  
Welcome to TRANSIT’s documentation!

The main documentation for the site is organized into the following sections:


	TRANSIT Manual


	TRANSIT Tutorials


	TPP Manual


	Code Documentation





Quick Links


	Installation


	Console Mode Cheat-Sheet







Mailing List

You can join our mailing list to get announcements of new versions, discuss any bugs, or request features! Just head over to the following site and enter your email address:



	https://groups.google.com/forum/#!forum/tnseq-transit/join
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Overview


	This is a software that can be used to analyze Tn-Seq datasets. It includes various statistical calculations of essentiality of genes or genomic regions (including conditional essentiality between 2 conditions). These methods were developed and tested as a collaboration between the Sassetti lab (UMass) and the Ioerger lab (Texas A&M) [DeJesus2015TRANSIT].




[image: _images/transit_interface.png]







	TRANSIT is capable of analyzing TnSeq libraries constructed with Himar1 or Tn5 datasets.


	TRANSIT assumes you have already done pre-processing of raw sequencing files (.fastq) and extracted read counts into a .wig formatted file [http://genome.ucsc.edu/goldenpath/help/wiggle.html]. The .wig file should contain the counts at all sites where an insertion could take place (including sites with no reads). For Himar1 datasets this is all TA sites in the genome. For Tn5 datasets this would be all nucleotides in the genome.


	Note that while refer to “read-counts” throughout the documentation, the current Himar1 protocol [http://www.springer.com/biomed/human+genetics/book/978-1-4939-2397-7] utilizes internal barcodes that can be used to reduce raw read counts to unique template counts, and this this is the intended input to TRANSIT from Himar1 datasets.











	There are various methods available for pre-processing (converting .fastq files to .wig files). You might have your own scripts (if so, massage the data into .wig format), or you might get the scripts used in the Sassetti lab. For convenience, we are including a separate tool called TPP [http://saclab.tamu.edu/tom/TPP.html] (Tn-Seq Pre-Processor) with this distribution that encodes the way we process .fastq files in the Ioerger lab. It’s a complicated process with many steps (removing transposon prefixes of reads, mapping into genome, identifying barcodes and reducing read counts to template counts).











	Most of the analysis methods in TRANSIT require an annotation to know the gene coordinates and names. This is the top file input in the GUI window. The annotation has to be in a somewhat non-standard format called a “.prot_table”. If you know what you are doing, it is easy to convert annotations for other organisms into .prot_table format. But for convenience, we are distributing the prot_tables for 3 common versions of the H37Rv genome: H37Rv.prot_table (NC_000962.2, from Stewart Cole), H37RvMA2.prot_table (sequenced version from the Sassetti lab), and H37RvBD.prot_table (sequenced by the Broad Institute). All of these are slightly different, and it is critical that you use the same annotation file as the reference genome sequence used for mapping the reads (during pre-processing).











	There are 2 main types of essentiality analyses: individual, comparative. In individual analysis, the goal is to distinguish essential vs. non-essential in a single growth condition, and to assess the statistical significance of these calls. Two methods for this are the Gumbel method and the HMM. They are computationally distinct. The Gumbel method is looking for significant stretches of TA sites lacking insertions, whereas the HMM looks for regions where the mean read count is locally suppressed or increased. The HMM can detect ‘growth-advantaged’ and ‘growth-defect’ regions. The HMM is also a bit more robust on low-density datasets (insertion density 20-30%). But both methods have their merits and are complementary. For comparative analysis, TRANSIT uses ‘re-sampling’, which is analogous to a permutation test, to determine if the sum of read counts differs significantly between two conditions. Hence this can be used to identify conditionally essential regions and quantify the statistical significance.











	TRANSIT has been designed to handle multiple replicates. If you have two or more replicate dataset of the same library selected in the same condition, you can provide them, and more of the computational methods will do something reasonable with them.











	For those methods that generate p-values, we often also calculate adjusted p-value (or ‘q-values’) which are corrected for multiple tests typically the Benjamini-Hochberg procedure. A typical threshold for significance would be q<0.05 (not p<0.05).


	It is important to understand the GUI model that TRANSIT uses It allows you to load up datasets (.wig files), select them, choose an analysis method, set parameters, and start the computation. It will generate output files in your local directory with the results. These files can then be loaded into the interface and browser with custom displays and graphs. The interface has 3 main windows or sections: ‘Control Samples’, ‘Experimental Samples’, ‘Results Files.’ The first two are for loading input files (‘Control Samples’ would be like replicate datasets from a reference condition, like in vitro, rich media, etc.; ‘Experimental Samples’ would be where you would load replicates for a comparative conditions, like in vivo, or minimal media, or low-iron, etc.) The ‘Results Files’ section is initially empty, but after a computation finishes, it will automatically be populated with the corresponding output file. See the ‘Tutorial’ section below in this documentation for an illustration of the overall process for a typical work-flow.











	TRANSIT incorporates many interesting ways of looking at your data.












	Track view shows you a visual representation of the read counts at each site at a locus of interest (for selected datasets) somewhat like IGV.
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	Scatter plots can show the correlation of counts between 2 datasets.







[image: _images/transit_dataset_scatter_graph.png]

+ Volcano plots can be used to visualize the results of resampling and assess the distribution between over- and under-represented genes in condition B vs. condition A. In addition you can look at histogram of the re-sample distributions for each gene.
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	Most of the methods take a few minutes to run. (it depends on parameters, CPU clock speed, etc., but the point is, a) these calculations are complex and not instaneous, but b) we have tried to implement it so that they don’t take hours)


	Note: in this version of TRANSIT, most of the methods are oriented toward gene-level analysis. There are methods for analyzing essentiality of arbitrary genomic regions (e.g. sliding windows, HMMs…). We plan to incorporate some of these in future versions.





Tn5 Datasets

Transit can now process and analyze Tn5 datasets  This is a different transposon than Himar1.
The major difference is Tn5 can insert at any site in the genome, and is not restricted
to TA dinucleotides (and saturation is typically much lower).  This affects
the statistical analyses (which were originally designed for Himar1 and can’t directly
be applied to Tn5). Therefore, Resampling was extended to handle Tn5 for comparative analysis, and
Tn5Gaps is a new statistical model for identifying essential genes in single Tn5 datasets.
Amplification of Tn5 libraries
uses different primers, and this affects the pre-processing by TPP.  But TPP has
be modified to recognize the primer sequence for the most widely
used protocol for Tn5.  Furthermore, TPP now has an option for users to define their
own primer sequences, if they use a different sample prep protocol.




Developers
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Installation

TRANSIT can be downloaded from the public GitHub server,
http://github.com/mad-lab/transit. It is released under a GPL
License. It can be downloaded with git as follows:

git clone https://github.com/mad-lab/transit/





TRANSIT is python-based You must have python installed (installed by
default on most systems). In addition, TRANSIT relies on some python
packages/libraries/modules that you might need to install (see Requirements).

If you encounter problems, please contact us or head to the Troubleshooting section.








Requirements

The following libraries/modules are required to run TRANSIT:


	Python 2.7 [http://www.python.org]


	Numpy [http://www.numpy.org/] (tested on 1.13.0)


	Scipy [http://www.scipy.org/] (tested on 0.19.1)


	matplotlib [http://matplotlib.org/users/installing.html] (tested on 2.0.2)


	wxpython 2.8.0+ [http://www.wxpython.org/] (for Mac OSX, use the cocoa version of wxPython; If using El Capitan, please see OSX El Capitan notice for special instructions)


	PIL (Python Imaging Library) [http://www.pythonware.com/products/pil/] or Pillow.




Generally, these requirements are install using the appropriate
methods for your operating system, i.e. apt-get or yum for unix
machines, pip or easy_install for OSX, or binary installers on
Windows. Below more detailed instructions are provided.










Use as a Python Package

TRANSIT can be (optionally) installed as a python package. This can simplify the installation process as it will automatically install most of the requirements. In addition, it will allow users to use some of transit functions in their own scripts if they desire. Below is a brief example of importing transit functions into python. See the documentation of the package for further examples:



	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> factors = norm_tools.TTR_factors(data)
>>> print factors
array([[ 1.        ],
       [ 0.62862886]])










See also

transit









Detailed Instructions: Linux


Method 1: Install as a Python Package

Most of the requirements are available in default package sources in
most Linux distributions. The following commands will install python, pip, wxPython, and several other dependencies needed by the python modules:

#Ubuntu:
sudo apt-get install python python-dev python-pip pkg-config python-wxgtk3.0 libpng-dev libjpeg8-dev libfreetype6-dev

#Fedora:
sudo yum install python python-dev python-pip pkg-config python-wxgtk3.0 libpng-dev libjpeg8-dev libfreetype6-dev





Finally you can use pip to install the TRANSIT package:

sudo pip install tnseq-transit





This will automatically download and install TRANSIT as a package, and all remaining required python packages. Once TRANSIT is installed as a package, it can be executed as


Note

If you will be using the pre-processor, TPP, you will also need to install install BWA.












Method 2: Install Source Locally

Most of the requirements are available in default package sources in
most Linux distributions. The following commands will install python,
numpy, scipy, matplotlib on the Ubuntu or Fedora Linux distributions:

#Ubuntu:
sudo apt-get install python python-numpy python-scipy python-matplotlib python-wxgtk3.0

#Fedora:
sudo yum install python numpy scipy python-matplotlib python-wxgtk3.0





The final requirement left to install is Pillow. First you need
install pip which simplifies the process of installing certain python
modules like Pillow:

#Ubuntu:
sudo apt-get install pip

#Fedora:
sudo yum install pip





Next, using pip you must have a clean installation of Pillow, and the
desired libraries. You can achieve this through the following
commands:

#Ubuntu:
pip uninstall pillow
pip uninstall Pillow
sudo apt-get install libjpeg-dev zlib1g-dev
pip install -I Pillow

#Fedora:
pip uninstall pillow
pip uninstall Pillow
sudo yum install install libjpeg-dev zlib1g-dev
pip install -I Pillow






Note

If you will be using the pre-processor, TPP, you will also need to install install BWA.














Detailed Instructions: OSX


Method 1: Install as a Python Package

First, download and install the latest Python 2.7.x installation file from the official python website:



	http://www.python.org/downloads/







Next make sure you have pip installed. Pip can be installed through easy_install, which should come with OSX:

sudo easy_install pip





Download and install the OSX binary of wxpython (cocoa version) for python 2.7:



	http://downloads.sourceforge.net/wxpython/wxPython3.0-osx-3.0.2.0-cocoa-py2.7.dmg








Note

If you are running OSX El Capitan or later, you will need to use a repackaged version of the
wxpython installer. You can download a repackaged version from our servers [http://orca1.tamu.edu/essentiality/transit/wxPython3.0-osx-cocoa-py2.7_mad_elcapitan.pkg] or you can follow these detailed instructions to repackage the installer [http://davixx.fr/blog/2016/01/25/wxpython-on-os-x-el-capitan/] if you prefer.



Finally you can use pip to install the TRANSIT package:

sudo pip install tnseq-transit





This will automatically download and install TRANSIT and all remaining requirements.








Note

If you will be using the pre-processor, TPP, you will also need to install install BWA.












Method 2: Install Source Locally

First, download and install the latest Python 2.7.x installation file from the official python website:



	http://www.python.org/downloads/







Next make sure you have pip installed. Pip can be installed through easy_install, which should come with OSX:

sudo easy_install pip





Next install numpy, scipy, and matplotlib and pillow using pip:

sudo pip install numpy
sudo pip install scipy
sudo pip install matplotlib
sudo pip install pillow





Download and install the OSX binary of wxpython (cocoa version) for python 2.7:



	http://downloads.sourceforge.net/wxpython/wxPython3.0-osx-3.0.2.0-cocoa-py2.7.dmg








Note

If you are running OSX El Capitan or later, you will need to use a repackaged version of the
wxpython installer. You can download a repackaged version from our servers [http://orca1.tamu.edu/essentiality/transit/wxPython3.0-osx-cocoa-py2.7_mad_elcapitan.pkg] or you can follow these detailed instructions to repackage the installer [http://davixx.fr/blog/2016/01/25/wxpython-on-os-x-el-capitan/] if you prefer.




Note

If you will be using the pre-processor, TPP, you will also need to install install BWA.














Detailed Instructions: Windows


Method 1: Install as a Python Package

First, download and install the latest Python 2.7.x installation file
from the official python website:



	http://www.python.org/downloads/







Next, you will need to install pip. If you are using python 2.7.9+
then pip will come pre-installed and included in the default script
directory (i.e. C:Python27Scripts ). If you are using python 2.7.8
or older, you will need to manually install pip by downloading and
running the get-pip.py [https://bootstrap.pypa.io/get-pip.py] script:

python.exe get-pip.py





Make sure that “wheel” is installed. This is necessary to allow you to
install .whl (wheel) files:

pip.exe install wheel





Next install the transit package using pip:

pip.exe install tnseq-transit





To use transit in GUI mode you will need to install wxPython versions 3.0 or earlier. We have provided .whl files which you can download and install below. (Note: Make sure to
choose the files that match your Windows version i.e. 32/64 bit)



	wxPython-3.0.2.0-cp27-none-win_amd64.whl [http://saclab.tamu.edu/essentiality/transit/wxPython-3.0.2.0-cp27-none-win_amd64.whl] or [32 bit] [http://saclab.tamu.edu/essentiality/transit/wxPython-3.0.2.0-cp27-none-win32.whl]


	wxPython_common-3.0.2.0-py2-none-any.whl [http://saclab.tamu.edu/essentiality/transit/wxPython_common-3.0.2.0-py2-none-any.whl] or [32 bit] [http://saclab.tamu.edu/essentiality/transit/wxPython_common-3.0.2.0-py2-none-any.whl]







Finally, install the files using pip:

pip.exe install wxPython-3.0.2.0-cp27-none-win_amd64.whl
pip.exe install wxPython_common-3.0.2.0-py2-none-any.whl





making sure to replace the name with the file you downloaded (i.e. 32bit vs 64 bit)


Note

If you will be using the pre-processor, TPP, you will also need to install install BWA.






Method 2: Install Source Locally

First, download and install the latest Python 2.7.x installation file
from the official python website:



	http://www.python.org/downloads/







Next, you will need to install pip. If you are using python 2.7.9+
then pip will come pre-installed and included in the default script
directory (i.e. C:Python27Scripts ). If you are using python 2.7.8
or older, you will need to manually install pip by downloading and
running the get-pip.py [https://bootstrap.pypa.io/get-pip.py] script:

python.exe get-pip.py





Make sure that “wheel” is installed. This is necessary to allow you to
install .whl (wheel) files:

pip.exe install wheel





Download the .whl files for all the requirements (Note: Make sure to
choose the files that match your Windows version i.e. 32/64 bit)



	numpy-1.9.2+mkl-cp27-none-win_amd64.whl [http://saclab.tamu.edu/essentiality/transit/numpy-1.9.2+mkl-cp27-none-win_amd64.whl] or [32 bit] [http://saclab.tamu.edu/essentiality/transit/numpy-1.9.2+mkl-cp27-none-win32.whl]


	scipy-0.15.1-cp27-none-win_amd64.whl [http://saclab.tamu.edu/essentiality/transit/scipy-0.15.1-cp27-none-win_amd64.whl] or [32 bit] [http://saclab.tamu.edu/essentiality/transit/scipy-0.15.1-cp27-none-win32.whl]


	matplotlib-1.4.3-cp27-none-win_amd64.whl [http://saclab.tamu.edu/essentiality/transit/matplotlib-1.4.3-cp27-none-win_amd64.whl] or [32 bit] [http://saclab.tamu.edu/essentiality/transit/matplotlib-1.4.3-cp27-none-win32.whl]


	Pillow-2.8.2-cp27-none-win_amd64.whl [http://saclab.tamu.edu/essentiality/transit/Pillow-2.8.2-cp27-none-win_amd64.whl] or [32 bit] [http://saclab.tamu.edu/essentiality/transit/Pillow-2.8.2-cp27-none-win32.whl]


	wxPython-3.0.2.0-cp27-none-win_amd64.whl [http://saclab.tamu.edu/essentiality/transit/wxPython-3.0.2.0-cp27-none-win_amd64.whl] or [32 bit] [http://saclab.tamu.edu/essentiality/transit/wxPython-3.0.2.0-cp27-none-win32.whl]


	wxPython_common-3.0.2.0-py2-none-any.whl [http://saclab.tamu.edu/essentiality/transit/wxPython_common-3.0.2.0-py2-none-any.whl] or [32 bit] [http://saclab.tamu.edu/essentiality/transit/wxPython_common-3.0.2.0-py2-none-any.whl]







Source: These files were obtained from the Unofficial Windows Binaries for Python Extension Packages by Christoph Gohlke, Laboratory for Fluorescence Dynamics, University of California, Irvine. [http://www.lfd.uci.edu/~gohlke/pythonlibs/]

Finally, install the files using pip:

pip.exe install numpy-1.9.2+mkl-cp27-none-win_amd64.whl
pip.exe install scipy-0.15.1-cp27-none-win_amd64.whl
pip.exe install matplotlib-1.4.3-cp27-none-win_amd64.whl
pip.exe install Pillow-2.8.1-cp27-none-win_amd64.whl
pip.exe install wxPython-3.0.2.0-cp27-none-win_amd64.whl
pip.exe install wxPython_common-3.0.2.0-py2-none-any.whl






Note

If you will be using the pre-processor, TPP, you will also need to install install BWA.














Optional: Install BWA to use with TPP pre-processor

If you will be using the pre-processor, TPP, you will also need to install BWA [http://bio-bwa.sourceforge.net/].


Linux & OSX Instructions

Download the source files:



	http://sourceforge.net/projects/bio-bwa/files/







Extract the files:

tar -xvjf bwa-0.7.12.tar.bz2





Go to the directory with the extracted source-code, and run make to create the executable files:

cd bwa-0.7.12
make








Windows Instructions

For Windows, we provide a windows executable (.exe) for Windows 64 bit:



	bwa-0.7.12_windows.zip [http://saclab.tamu.edu/essentiality/transit/bwa-0.7.12_windows.zip]







The 32-bit version of Windows is not recommended as it is limited in the amount of system memory that can be used.
































Troubleshooting








1. Gtk-ERROR **: GTK+ 2.x symbols detected

This error can occur if you have GTK2 already installed and then install wxPython version 3.0+. To fix this, please try installing version 2.8 of wxPython or install a new version of GTK3. More information on this error to come.










2. wxPython & OSX: “The Installer could not install the software because there was no software found to install.”

If you are running OSX El Capitan or later, you will need to use a repackaged
version of the wxpython installer as OSX El Capitan has removed support for older packaging methods still used by wxPython. You can download a repackaged version of wxPython
from our servers [http://orca1.tamu.edu/essentiality/transit/wxPython3.0-osx-cocoa-py2.7_mad_elcapitan.pkg] or you can follow these detailed instructions to repackage the installer [http://davixx.fr/blog/2016/01/25/wxpython-on-os-x-el-capitan/] if you prefer.










3. No window appears when running in GUI mode.

This problem is likely due to running an unsupported version of matplotlib.
Please download and install the version 2.0.2. You can download  and manually
install the source from the following location:



	matplotlib-1.4.3 [https://sourceforge.net/projects/matplotlib/files/matplotlib/]







Or, if you have pip installed, you can install using pip and specify the desired version:

pip install 'matplotlib' --force-reinstall














4. Unable to locate package python-wxgtk3.0

Your version of Linux might not have the repository address that includes python-wxgtk3.0. You can attempt to install version 2.8 instead:

sudo apt-get install python-wxgtk2.8





or you can add the repository that includes version 3.0 and install it:

# Add repo for 14.04
sudo add-apt-repository "deb http://archive.ubuntu.com/ubuntu utopic main restricted universe"

#Update repo information
sudo apt-get update

#Install wxPython 3.0
sudo apt-get install python-wxgtk3.0

#Remove repo to prevent version conflicts
sudo add-apt-repository --remove "deb http://archive.ubuntu.com/ubuntu utopic main restricted universe"














5. pip: SystemError: Cannot compile ‘Python.h’.

This occurs when you do not have the development libraries for python. You can fix this by installing the python-dev packages:

sudo apt-get install python-dev














6. pip: “The following required packages can not be built: freetype,png,” etc.

This occurs when you do not have some dependencies that are necessary to build some of the python modules TRANSIT requires (usually matplotlib). Installing the following linux dependencies should fix this:

sudo apt-get install libpng-dev libjpeg8-dev libfreetype6-dev














7. pip: “No lapack/blas resources found”

This occurs when you do not have some dependencies that are necessary to build some of the python modules TRANSIT requires (usually numpy/scipy). Installing the following linux dependencies should fix this:

sudo apt-get install libblas-dev liblapack-dev libatlas-base-dev gfortran














8. “resources.ContextualVersionConflict (six 1.5.2)…”

This occurs some of the python modules are out of date. You can use pip to upgrade them as follows:

sudo pip install six --upgrade













          

      

      

    

  

    
      
          
            
  
Running TRANSIT








GUI Mode

To run TRANSIT in GUI mode (should be the same on Linux, Windows and MacOS), from the command line run:

python PATH/src/transit.py





where PATH is the path to the TRANSIT installation directory. You might be able to double-click on icon for transit.py, if your OS associates .py files with python and automatically runs them. Note, because TRANSIT has a graphical user interface, if you are trying to run TRANSIT across a network, for example, running on a unix server but displaying on a desktop machine, you will probably need to use ‘ssh -Y’ and a local X11 client (like Xming or Cygwin/X on PCs).










Command line Mode

TRANSIT can also be run from the command line, without the GUI interface. This is convenient if you want to run many analyses in batch, as you can write a script that automatically runs that automatically runs TRANSIT from the command line. TRANSIT expects the user to specify which analysis method they wish to run. The user can choose from “gumbel”, “hmm”, or “resampling”. By choosing a method, and adding the “-h” flag, you will get a list of all the necessary parameters and optional flags for the chosen method:

python PATH/src/transit.py gumbel -h












Gumbel

To run the Gumbel analysis from the command line, type “python PATH/src/transit.py gumbel” followed by the following arguments:










	Argument

	Type

	Description

	Default

	Example





	annotation

	Required

	Path to
annotation
file in
.prot_table
format

	
	genomes/H37Rv.
prot_table



	control_files

	Required

	Comma-separate
d
list of paths
to the *.wig
replicate
datasets

	
	data/glycerol_reads_rep1.w
ig,data/glycer
ol_reads_rep
2.wig



	output_file

	Required

	Name of the
output file
with the
results.

	
	results/gumbel
_glycerol.dat



	-s SAMPLES

	Optional

	Number of
samples to
take.

	10000

	-s 20000



	-m MINREAD

	Optional

	Smallest
read-count
considered to
be an
insertion.

	1

	-m 2



	-b BURNIN

	Optional

	Burn in
period, Skips
this number of
samples before
getting
estimates. See
documentation.

	500

	-b 100



	-t TRIM

	Optional

	Number of
samples to
trim. See
documentation.

	1

	-t 2



	-r REP

	Optional

	How to handle
replicates
read-counts:
‘Sum’ or
‘Mean’.

	Sum

	-r Mean



	-iN IGNOREN

	Optional

	Ignore TAs
occuring at X%
of the N
terminus.

	5

	-iN 0



	-iC IGNOREC

	Optional

	Ignore TAs
occuring at X%
of the C
terminus.

	5

	-iC 10






python PATH/src/transit.py gumbel genomes/H37Rv.prot_table data/glycerol_reads_rep1.wig,data/glycerol_reads_rep2.wig test_console_gumbel.dat -s 20000 -b 1000














Tn5 Gaps

To run the Tn5 Gaps analysis from the command line, type “python
PATH/src/transit.py tn5gaps” followed by the following arguments:

Argument Type Description Default Example annotation Required Path to
annotation file in .prot_table format genomes/Salmonella-
Ty2.prot_table control_files Required Comma-separated list of paths to
the *.wig replicate datasets
data/salmonella_2122_rep1.wig,data/salmonella_2122_rep2.wig
output_file Required Name of the output file with the results.
results/test_console_tn5gaps.dat -m MINREAD Optional Smallest read-
count considered to be an insertion. 1 -m 2 -r REP Optional How to
handle replicates read-counts: ‘Sum’ or ‘Mean’. Sum -r Sum

Example Tn5 Gaps command:

python PATH/src/transit.py tn5gaps genomes/Salmonella-Ty2.prot_table data/salmonella_2122_rep1.wig,data/salmonella_2122_rep2.wig results/test_console_tn5gaps.dat -m 2 -r Sum





Example HMM command:

python PATH/src/transit.py hmm genomes/H37Rv.prot_table data/glycerol_reads_rep1.wig,data/glycerol_reads_rep2.wig test_console_hmm.dat -r Sum














Resampling

To run the Resampling analysis from the command line, type “python
PATH/src/transit.py resampling” followed by the following arguments:










	Argument

	Type

	Description

	Default

	Example





	annotation

	Required

	Path to
annotation
file in
.prot_table
format

	
	genomes/H37Rv.
prot_table



	control_files

	Required

	Comma-separate
d
list of paths
to the *.wig
replicate
datasets for
the control
condition

	
	data/glycerol_reads_rep1.w
ig,data/glycer
ol_reads_rep
2.wig



	exp_files

	Required

	Comma-separate
d
list of paths
to the *.wig
replicate
datasets for
the
experimental
condition

	
	data/cholester
ol_reads_rep
1.wig,data/cho
lesterol_read
s_rep2.wig



	output_file

	Required

	Name of the
output file
with the
results.

	
	results/gumbel
_glycerol.dat



	-s SAMPLES

	Optional

	Number of
permutations
performed.

	10000

	-s 5000



	-H

	Optional

	Creates
histograms of
the
permutations
for all genes.

	Not set

	-H



	-a

	Optional

	Performs
adaptive
appoximation
to resampling.

	Not set

	-a



	-N

	Optional

	Select which
normalizing
procedure to
use. Can
choose between
‘TTR’,
‘nzmean’,
‘totreads’,
‘zinfnb’,
‘betageom’,
and ‘nonorm’.
See the
parameters
section for
the
Re-sampling
method [http://saclab.tamu.edu/essentiality/transit/transit.html#resampling]
for a
description of
these
normalization
options.

	nzmean

	-N nzmean



	-iN IGNOREN

	Optional

	Ignore TAs
occuring at X%
of the N
terminus.

	5

	-iN 0



	-iC IGNOREC

	Optional

	Ignore TAs
occuring at X%
of the C
terminus.

	5

	-iC 10






Example Resampling command:

python PATH/src/transit.py resampling genomes/H37Rv.prot_table data/glycerol_reads_rep1.wig,data/glycerol_reads_rep2.wig data/cholesterol_reads_rep1.wig,data/cholesterol_reads_rep2.wig,data/cholesterol_reads_rep3.wig test_console_resampling.dat -H -s 10000 -N nzmean













          

      

      

    

  

    
      
          
            
  
Features

TRANSIT has several useful features to help inspect the quality of datasets as
and export them to different formats.








Quality Control

As you add datasets to the control or experimental sections, TRANSIT
automatically provides some metrics like density, average, read-counts and
max read-count to give you an idea of how the quality of the dataset.

However, TRANSIT provides more in-depth statistics in the Quality Control
window. To use this feature, add the annotation file for your organism
(in .prot_table or GFF3 format). Next, add and highlight/select the desired
read-count datasets in .wig format. Finally, click on View -> Quality Control.
This will open up a new window containing a table of metrics for the datasets
as well as figures corresponding to whatever dataset is currently highlighted.

[image: _images/transit_quality_control_window.png]

QC Metrics Table

The Quality Control window contains a table of the datasets and metrics, similar
to the one in the main TRANSIT interface. This table has an extended set of
metrics to provide a better picture of the quality of the datasets:








	Column Header

	Column Definition

	Comments





	File

	Name of dataset file.

	


	Density

	Fraction of sites with insertions.

	“Well saturated” Himar1 datasets have >30% saturation. Beneath this, statistical methods may have trouble.



	Mean Read

	Average read-count, including empty sites.

	


	NZMean Read

	Average read-count, excluding empty sites.

	A value between 30-200 is usually good for Himar1 datasets. Too high or too low can indicate problems.



	NZMedian Read

	Median read-count, excluding empty sites.

	As read-counts can often have spikes, median serves as a good robust estimate.



	Max Read

	Largest read-count in the dataset.

	Useful to determine whether there are outliers/spikes, which may indicate sequencing issues.



	Total Reads

	Sum of total read-counts in the dataset.

	Indicates how much sequencing material was obtained. Typically >1M reads is desired for Himar1 datasets.



	Skew

	Skew of read-counts in the dataset.

	Large skew may indicate issues with a dataset. Typically a skew < 50 is desired. May be higher when
library is under strong selection



	Kurtosis

	Kurtosis of the read-counts in the dataset.

	








QC Figures

The Quality Control window also contains several plots that are helpful to
visualize the quality of the datasets. These plots are unique to the dataset
selected in the Metrics Table (below the figures). They will update depending
on which row in the Metrics Table is selected:


Figure 1: Histogram of Reads

[image: _images/transit_quality_control_histogram.png]
The first plot in the Quality Control window is a histogram of the non-zero read-counts in the selected dataset. While read-counts are not truly geometrically distributed, “well-behaved” datasets often look “Geometric-like”, i.e. low counts are more frequent than very large counts. Datasets which where this is not the case may reflect a problem.




Figure 2: QQ Plot of Reads vs Geometric Distribution

[image: _images/transit_quality_control_qqplot.png]
The second plot in the Quality Control window is a quantile-quantile plot (“QQ plot”) of the non-zero read-counts in the selected dataset, versus a theoretical geometric distribution fit on these read-counts. While read-counts are not truly geometrically distributed, the geometric distribution (a special case of the Negative Binomial distribution), can serve as a quick comparison to see how well-behaved the datasets are.

As the read-counts are not truly geometric, some curvature in the QQplot is expected. However, if the plot curves strongly from the identity line (y=x) then the read-counts may be highly skewed. In this case, using the “betageom” normalization option when doing statistical analyses may be a good idea as it is helpful in correcting the skew.




Figure 3: Ranked plot of Read-Counts

[image: _images/transit_quality_control_ranked.png]
The second plot in the Quality Control window is a plot of the read-counts in sorted order. This may be helpful in indentifying outliers that may exist in the dataset. Typically, some large counts are expected and some normalization methods, like TTR, are robust to such outliers. However, too many outliers, or one single outlier that is overhwelmingly different than the rest may indicate an issue like PCR amplification (especially in libraries constructed older protocols).











          

      

      

    

  

    
      
          
            
  
Analysis Methods

TRANSIT has analysis methods capable of analyzing Himar1 and Tn5 datasets.
Below is a description of some of the methods.








Gumbel

The Gumbel can be used to determine which genes are essential in a
single condition. It does a gene-by-gene analysis of the insertions at
TA sites with each gene, makes a call based on the longest consecutive
sequence of TA sites without insertion in the genes, calculates the
probability of this using a Bayesian model.


Note

Intended only for Himar1 datasets.










How does it work?


For a formal description of how this method works, see our paper [DeJesus2013]:











DeJesus, M.A., Zhang, Y.J., Sassettti, C.M., Rubin, E.J.,
Sacchettini, J.C., and Ioerger, T.R. (2013).



Bayesian analysis of gene essentiality based on sequencing of transposon insertion libraries. [http://www.ncbi.nlm.nih.gov/pubmed/23361328] Bioinformatics, 29(6):695-703.












Parameters


	Samples: Gumbel uses Metropolis-Hastings (MH) to generate samples
of posterior distributions. The default setting is to run the
simulation for 10,000 iterations. This is usually enough to assure
convergence of the sampler and to provide accurate estimates of
posterior probabilities. Less iterations may work, but at the risk of
lower accuracy.


	Burn-In: Because the MH sampler many not have stabilized in the
first few iterations, a “burn-in” period is defined. Samples obtained
in this “burn-in” period are discarded, and do not count towards
estimates.


	Trim: The MH sampler produces Markov samples that are correlated.
This parameter dictates how many samples must be attempted for every
sampled obtained. Increasing this parameter will decrease the
auto-correlation, at the cost of dramatically increasing the
run-time. For most situations, this parameter should be left at the
default of “1”.


	Minimum Read: The minimum read count that is considered a true
read. Because the Gumbel method depends on determining gaps of TA
sites lacking insertions, it may be susceptible to spurious reads
(e.g. errors). The default value of 1 will consider all reads as true
reads. A value of 2, for example, will ignore read counts of 1.


	Replicates: Determines how to deal with replicates by averaging
the read-counts or summing read counts across datasets. This should
not have an affect for the Gumbel method, aside from potentially
affecting spurious reads.













Outputs and diagnostics

The Gumbel method generates a tab-separated output file at the location
chosen by the user. This file will automatically be loaded into the
Results Files section of the GUI, allowing you to display it as a table.
Alternatively, the file can be opened in a spreadsheet software like
Excel as a tab-separated file. The columns of the output file are
defined as follows:






Note: Technically, Bayesian models are used to calculate posterior
probabilities, not p-values (which is a concept associated with the
frequentist framework). However, we have implemented a method for
computing the approximate false-discovery rate (FDR) that serves a
similar purpose. This determines a threshold for significance on the
posterior probabilities that is corrected for multiple tests. The
actual thresholds used are reported in the headers of the output file
(and are near 1 for essentials and near 0 for non-essentials). There
can be many genes that score between the two thresholds (t1 < zbar <
t2). This reflects intrinsic uncertainty associated with either low
read counts, sparse insertion density, or small genes. If the
insertion_density is too low (< ~30%), the method may not work as
well, and might indicate an unusually large number of Uncertain or
Essential genes.














Run-time

The Gumbel method takes on the order of 10 minutes for 10,000 samples.
Run-time is linearly proportional to the ‘samples’ parameter, or length
of MH sampling trajectory. Other notes: Gumbel can be run on multiple
replicates; replicate datasets will be automatically merged.












Tn5Gaps

The Tn5Gaps method can be used to determine which genes are essential
in a single condition for Tn5 datasets. It does an analysis of the
insertions at each site within the genome, makes a call for a given
gene based on the length of the most heavily overlapping run of sites
without insertions (gaps), calculates the probability of this using a
the Gumbel distribution.


Note

Intended only for Tn5 datasets.










How does it work?

This method is loosely is based on the original gumbel analysis
method described in this paper:

Griffin, J.E., Gawronski, J.D., DeJesus, M.A., Ioerger, T.R., Akerley, B.J., Sassetti, C.M. (2011).
High-resolution phenotypic profiling defines genes essential for mycobacterial survival and cholesterol catabolism. [http://www.ncbi.nlm.nih.gov/pubmed/21980284]  PLoS Pathogens, 7(9):e1002251.

The Tn5Gaps method modifies the original method in order to work on
Tn5 datasets, which have significantly lower saturation of insertion sites
than Himar1 datasets. The main difference comes from the fact that
the runs of non-insertion (or “gaps”) are analyzed throughout the whole
genome, including non-coding regions, instead of within single genes.
In doing so, the expected maximum run length is calculated and a
p-value can be derived for every run. A gene is then classified by
using the p-value of the run with the largest number of nucleotides
overlapping with the gene.

This method was tested on a salmonella Tn5 dataset presented in this
paper:

Langridge GC1, Phan MD, Turner DJ, Perkins TT, Parts L, Haase J,
Charles I, Maskell DJ, Peters SE, Dougan G, Wain J, Parkhill J, Turner
AK. (2009). Simultaneous assay of every Salmonella Typhi gene using one million
transposon mutants. [http://www.ncbi.nlm.nih.gov/pubmed/19826075] Genome Res. , 19(12):2308-16.

This data was downloaded from SRA (located herei [http://trace.ncbi.nlm.nih.gov/Traces/sra/?study=ERP000051]) , and used to make
wig files (base [http://orca1.tamu.edu/essentiality/transit/data/salmonella_base.wig] and bile [http://orca1.tamu.edu/essentiality/transit/data/salmonella_bile.wig]) and the following 4 baseline datasets
were merged to make a wig file: (IL2_2122_1,3,6,8). Our analysis
produced 415 genes with adjusted p-values less than 0.05, indicating
essentiality, and the analysis from the above paper produced 356
essential genes. Of these 356 essential genes, 344 overlap with the
output of our analysis.










Parameters


	Minimum Read: The minimum read count that is considered a true read. Because the Gumbel method depends on determining gaps of TA sites lacking insertions, it may be suceptible to spurious reads (e.g. errors). The default value of 1 will consider all reads as true reads. A value of 2, for example, will ignore read counts of 1.


	Replicates: Determines how to deal with replicates by averaging the read-counts or suming read counts accross datasets. This should not have an affect for the Gumbel method, aside from potentially affecting spurious reads.













Outputs and diagnostics

The Tn5Gaps method generates a tab-separated output file at the
location chosen by the user. This file will automatically be loaded
into the Results Files section of the GUI, allowing you to display it
as a table. Alternatively, the file can be opened in a spreadsheet
software like Excel as a tab-separated file. The columns of the output
file are defined as follows:







	Column Header

	Column Definition





	ORF

	Gene ID.



	Name

	Name of the gene.



	Desc

	Gene description.



	k

	Number of Transposon Insertions Observed within the ORF.



	n

	Total Number of TA dinucleotides within the ORF.



	r

	Length of the Maximum Run of Non-Insertions observed.



	ovr

	The number of nucleotides in the overlap with the longest run partially covering the gene.



	lenovr

	The length of the above run with the largest overlap with the gene.



	pval

	P-value calculated by the permutation test.



	padj

	Adjusted p-value controlling for the FDR (Benjamini-Hochberg).



	call

	Essentiality call for the gene. Depends on FDR corrected thresholds. Essential or Non-Essential.















Run-time

The Tn5Gaps method takes on the order of 10 minutes.
Other notes: Tn5Gaps can be run on multiple replicates; replicate
datasets will be automatically merged.












HMM

The HMM method can be used to determine the essentiality of the entire genome, as opposed to gene-level analysis of the other methods. It is capable of identifying regions that have unusually high or unusually low read counts (i.e. growth advantage or growth defect regions), in addition to the more common categories of essential and non-essential.


Note

Intended only for Himar1 datasets.










How does it work?


For a formal description of how this method works, see our paper [DeJesus2013HMM]:





DeJesus, M.A., Ioerger, T.R. A Hidden Markov Model for identifying essential and growth-defect regions in bacterial genomes from transposon insertion sequencing data. [http://www.ncbi.nlm.nih.gov/pubmed/24103077] BMC Bioinformatics. 2013. 14:303














Parameters

The HMM method automatically estimates the necessary statistical
parameters from the datasets. You can change how the method handles
replicate datasets:


	Replicates: Determines how the HMM deals with replicate datasets
by either averaging the read-counts or summing read counts across
datasets. For regular datasets (i.e. mean-read count > 100) the
recommended setting is to average read-counts together. For sparse
datasets, it summing read-counts may produce more accurate results.













Output and Diagnostics


The HMM method outputs two files. The first file provides the most
likely assignment of states for all the TA sites in the genome. Sites
can belong to one of the following states: “E” (Essential), “GD”
(Growth-Defect), “NE” (Non-Essential), or “GA” (Growth-Advantage). In
addition, the output includes the probability of the particular site
belonging to the given state. The columns of this file are defined as
follows:









	Column #

	Column Definition





	1

	Coordinate of TA site



	2

	Observed Read Counts



	3

	Probability for ES state



	4

	Probability for GD state



	5

	Probability for NE state



	6

	Probability for GA state



	7

	State Classification (ES = Essential, GD = Growth Defect, NE = Non-Essential, GA = Growth-Defect)



	8

	Gene(s) that share(s) the TA site.











The second file provides a gene-level classification for all the
genes in the genome. Genes are classified as “E” (Essential), “GD”
(Growth-Defect), “NE” (Non-Essential), or “GA” (Growth-Advantage)
depending on the number of sites within the gene that belong to those
states.











	Column Header

	Column Definition





	Orf

	Gene ID



	Name

	Gene Name



	Desc

	Gene Description



	N

	Number of TA sites



	n0

	Number of sites labeled ES (Essential)



	n1

	Number of sites labeled GD (Growth-Defect)



	n2

	Number of sites labeled NE (Non-Essential)



	n3

	Number of sites labeled GA (Growth-Advantage)



	Avg. Insertions

	Mean insertion rate within the gene



	Avg. Reads

	Mean read count within the gene



	State Call

	State Classification (ES = Essential, GD = Growth Defect, NE = Non-Essential, GA = Growth-Defect)











Note: Libraries that are too sparse (e.g. < 30%) or which contain
very low read-counts may be problematic for the HMM method, causing it
to label too many Growth-Defect genes.














Run-time


The HMM method takes less than 10 minutes to complete. The parameters
of the method should not affect the running-time.
















Re-sampling

The re-sampling method is a comparative analysis the allows that can be
used to determine conditional essentiality of genes. It is based on a
permutation test, and is capable of determining read-counts that are
significantly different across conditions.


Note

Can be used for both Himar1 and Tn5 datasets










How does it work?

This technique has yet to be formally published in the context of
differential essentiality analysis. Briefly, the read-counts at each
genes are determined for each replicate of each condition. The total
read-counts in condition A is subtracted from the total read counts at
condition B, to obtain an observed difference in read counts. The TA
sites are then permuted for a given number of “samples”. For each one of
these permutations, the difference is read-counts is determined. This
forms a null distribution, from which a p-value is calculated for the
original, observed difference in read-counts.










Parameters

The resampling method is non-parametric, and therefore does not require
any parameters governing the distributions or the model. The following
parameters are available for the method:


	Samples: The number of samples (permutations) to perform. The
larger the number of samples, the more resolution the p-values
calculated will have, at the expense of longer computation time. The
re-sampling method runs on 10,000 samples by default.


	Output Histograms:Determines whether to output .png images of
the histograms obtained from resampling the difference in
read-counts.


	Adaptive Resampling: An optional “adaptive” version of resampling
which accelerates the calculation by terminating early for genes
which are likely not significant. This dramatically speeds up the
computation at the cost of less accurate estimates for those genes
that terminate early (i.e. deemed not significant). This option is
OFF by default.


	Include Zeros: By default resampling will ignore sites that are zero
across all the datasets (i.e. completely empty), which is useful for
decreasing running time (specially for large datasets like Tn5). This
option allows the user to include these empty rows.


	Normalization Method: Determines which normalization method to
use when comparing datasets. Proper normalization is important as it
ensures that other sources of variability are not mistakenly treated
as real differences. See the Normalization section for a description
of normalization method available in TRANSIT.













Output and Diagnostics

The re-sampling method outputs a tab-delimited file with results for each
gene in the genome. P-values are adjusted for multiple comparisons using
the Benjamini-Hochberg procedure (called “q-values” or “p-adj.”). A
typical threshold for conditional essentiality on is q-value < 0.05.







	Column Header

	Column Definition





	Orf

	Gene ID.



	Name

	Name of the gene.



	Description

	Gene description.



	N

	Number of TA sites in the gene.



	TAs Hit

	Number of TA sites with at least one insertion.



	Sum Rd 1

	Sum of read counts in condition 1.



	Sum Rd 2

	Sum of read counts in condition 2.



	Delta Rd

	Difference in the sum of read counts.



	p-value

	P-value calculated by the permutation test.



	p-adj.

	Adjusted p-value controlling for the FDR (Benjamini-Hochberg)















Run-time

A typical run of the re-sampling method with 10,000 samples will take
around 45 minutes (with the histogram option ON). Using the adaptive
resampling option, the run-time is reduced to around 10 minutes.














Normalization

Proper normalization is important as it ensures that other sources of variability are not mistakenly treated
as real differences in datasets. TRANSIT provides various normalization methods, which are briefly described below:


	
	TTR:

	Trimmed Total Reads (TTR), normalized by the total
read-counts (like totreads), but trims top and bottom 5% of
read-counts. This is the recommended normalization method for most cases
as it has the beneffit of normalizing for difference in
saturation in the context of resampling.







	
	nzmean:

	Normalizes datasets to have the same mean over the
non-zero sites.







	
	totreads:

	Normalizes datasets by total read-counts, and scales
them to have the same mean over all counts.







	
	zinfnb:

	Fits a zero-inflated negative binomial model, and then
divides read-counts by the mean. The zero-inflated negative
binomial model will treat some empty sites as belonging to the
“true” negative binomial distribution responsible for read-counts
while treating the others as “essential” (and thus not influencing
its parameters).







	
	quantile:

	Normalizes datasets using the quantile normalization
method described by Bolstad et al.
(2003) [http://www.ncbi.nlm.nih.gov/pubmed/12538238]. In this
normalization procedure, datasets are sorted, an empirical
distribution is estimated as the mean across the sorted datasets
at each site, and then the original (unsorted) datasets are
assigned values from the empirical distribution based on their
quantiles.







	
	betageom:

	Normalizes the datasets to fit an “ideal” Geometric
distribution with a variable probability parameter p. Specially
useful for datasets that contain a large skew.







	
	nonorm:

	No normalization is performed.















          

      

      

    

  

    
      
          
            
  
Console Mode Cheat-Sheet

TRANSIT has the capability of running in Console mode, without
depending on libraries for GUI elements. More hands-on users
can utilize transit in this manner to quickly run multiple
jobs in parallel. Below is brief








Analysis Methods

TRANSIT has the capacity of determining essentiality within a
single condition, or between conditions to determine
conditional essentiality.


Single Condition Essentiality

Analysis methods in a single condition require at least 4
positional arguments followed by optional flags.

python transit.py <method> <wig-files> <annotation> <output>











	Positional Arguments

	Definition





	<method>

	Short name of the desired analysis method  e.g. gumbel, resampling, hmm



	<wig-files>

	Comma-separated list of paths read-count datasets in .wig format



	<annotation>

	Path to the annotation in .prot_table or .GFF3 format.



	<output>

	Desired path and name of the output file







Example

python transit.py gumbel glycerol_H37Rv_rep1.wig,glycerol_H37Rv_rep2.wig H37Rv.prot_table glycerol_TTR.txt -r Sum -s 10000










Conditional Essentiality

Analysis methods between two conditions require at least 5
positional arguments followed by optional flags.







	Positional Arguments

	Definition





	<method>

	Short name of the desired analysis method  e.g. gumbel, resampling, hmm



	<control-files>

	Comma-separated list of paths read-count files in .wig format for the control datasets



	<experimental-files>

	Comma-separated list of paths read-count files in .wif format for the experimental datasets



	<annotation>

	Path to the annotation in .prot_table or .GFF3 format.



	<output>

	Desired path and name of the output file













Example

python transit.py resampling glycerol_H37Rv_rep1.wig,glycerol_H37Rv_rep2.wig cholesterol_H37Rv_rep1.wig,cholesterol_H37Rv_rep2.wig H37Rv.prot_table glycerol_TTR.txt -n TTR -s 10000












Normalizing datasets

TRANSIT also allows users to normalize datasets and export them
afterwards. To normalize datasets, 3 positional arguments followed
by optional flags.







	Positional Arguments

	Definition





	<wig-files>

	Comma-separated list of paths read-count datasets in .wig format



	<annotation>

	Path to the annotation in .prot_table or .GFF3 format.



	<output>

	Desired path and name of the output file












	Argument

	Definition





	-n <String>

	Short name of the normalization method, e.g. -n TTR






python transit.py norm glycerol_H37Rv_rep1.wig,glycerol_H37Rv_rep2.wig H37Rv.prot_table glycerol_TTR.txt -n TTR











          

      

      

    

  

    
      
          
            
  
Tutorial: Essentiality Analysis in a Single Condition

To illustrate how TRANSIT works, we are going to go through a tutorial
where we analyze datasets of H37Rv M. tuberculosis grown on glycerol
and cholesterol.








Run TRANSIT

Navigate to the directory containing the TRANSIT files, and run
TRANSIT:

python PATH/src/transit.py








Adding the annotation file

Before we can analyze datasets, we need to add an annotation file for
the organism corresponding to the desired datasets. Click on the file
dialog button, on the top of the TRANSIT window (see image below), and
browse and select the appropriate annotation file. Note: Annotation
files must be in “.prot_table” format, described above.

[image: _images/transit_tutorial_annotation.png]



Adding the control datasets

We want to analyze datasets grown in glycerol to those grown in
cholesterol. We are choosing the datasets grown in glycerol as the
“Control” datasets. To add these, we click on the control sample file
dialog (see image below), and select the desired datasets (one by
one). In this example, we have two replicates:

[image: _images/transit_tutorial_control_datasets.png]
As we add the datasets they will appear in the table in the Control
samples section. This table will provide the following statistics
about the datasets that have been loaded so far: Total Number of
Reads, Density, Mean Read Count and Maximum Count. These statistics
can be used as general diagnostics of the datasets.




Visualizing read counts

TRANSIT allows us to visualize the read-counts of the datasets we have
already loaded. To do this, we must select the desired datasets
(“Control+Click”) and then click on “View -> Track View” in the menu
bar at the top of the TRANSIT window. Only those selected datasets
will be displayed:

[image: _images/transit_dataset_track_view.png]
This will open a window that allows that shows a visual representation
of the read counts at the TA sites throughout the genome. The scale of
the read counts can be set by changing the value of the “Max Read”
textbox on the right. We can browse around the genome by clicking on
the left and right arrowm, or search for a specific gene with the
search text box.

This window also allows us to save a .png image of the canvas for
future reference if desired (i.e. Save Img button).




Scatter plot

We can also view a scatter plot of read counts of two selected
datasets. To achieve this we select two datasets (using “Control +
Clicck”) and then clicking on “View -> Scatter Plot” in the menu bar
at the top of the TRANSIT window.

[image: _images/transit_dataset_scatter_graph.png]
A new window will pop-up, show a scatter plot of both of the selected
datasets. This window contains controls to zoom in and out (magnifying
glass), allowing us to focus in on a specific area. This is
particularly useful when large outliers may throw off the scale of the
scatter plot.




Essentiality analysis with the Gumbel method

Before comparing both conditions against each other, we may want to
determine which genes are essential in a specific condition to get an
idea of the genes which are required. To do this we can use the Gumbel
or the HMM methods, which determine essentiality within one condition.
First we chose the Gumbel method from the list of (Himar1) analysis methods
in the menu on top:

[image: _images/transit_gumbel_options.png]
For this particular case we leave the parameters at their default
settings as these work with a wide variety of datasets (See above for
an explanation of their function). We then click on the “Run Gumbel”
button and wait until the analysis finished running. The progress bar
will give us information about how much of the analysis is still left.
Once the program finishes, the results file is automatically created
(with the name chosen at run-time) and it is automatically added to
the Results File section at the bottom of TRANSIT. We can visualize
the results by selecting this file from the list, and clicking on the
“Display Table” button. This will open a new window with a table of
resuls:

From this window we can view results, and sort on a specific column
(described above) by clicking on a column header. In addition, the top
of this window contains a breakdown of the number of essential and
non-essential genes found by the Gumbel method. We can see that 675
genes are found to be essential by the Gumbel method (16%), roughly
matching expectations that 15% of the genomes is necessary for growth
in bacterial organisms. Clicking on the “Zbar” column we can sort the
data on the posterior probability of essentiality. If we sort in
descending order, we get those genes which are most likely to be
essential on the top. Among these are genes like GyrA (DNA gyrase A)
and RpoB (DNA-directed polymerase), which are both well-known
essential genes, and which are obtain a posterior probability of
essentiality of 1.0 (Essential).







          

      

      

    

  

    
      
          
            
  
Tutorial: Essentiality Analysis of the Entire Genome

To illustrate how TRANSIT works, we are going to go through a tutorial
where we analyze datasets of H37Rv M. tuberculosis grown on glycerol
and cholesterol.








Run TRANSIT

Navigate to the directory containing the TRANSIT files, and run
TRANSIT:

python PATH/src/transit.py








Adding the annotation file

Before we can analyze datasets, we need to add an annotation file for
the organism corresponding to the desired datasets. Click on the file
dialog button, on the top of the TRANSIT window (see image below), and
browse and select the appropriate annotation file. Note: Annotation
files must be in “.prot_table” format, described above.

[image: _images/transit_tutorial_annotation.png]



Adding the control datasets

We want to analyze datasets grown in glycerol to those grown in
cholesterol. We are choosing the datasets grown in glycerol as the
“Control” datasets. To add these, we click on the control sample file
dialog (see image below), and select the desired datasets (one by
one). In this example, we have two replicates:

[image: _images/transit_tutorial_control_datasets.png]
As we add the datasets they will appear in the table in the Control
samples section. This table will provide the following statistics
about the datasets that have been loaded so far: Total Number of
Reads, Density, Mean Read Count and Maximum Count. These statistics
can be used as general diagnostics of the datasets.




Visualizing read counts

TRANSIT allows us to visualize the read-counts of the datasets we have
already loaded. To do this, we must select the desired datasets
(“Control+Click”) and then click on “View -> Track View” in the menu
bar at the top of the TRANSIT window. Only those selected datasets
will be displayed:

[image: _images/transit_dataset_track_view.png]
This will open a window that allows that shows a visual representation
of the read counts at the TA sites throughout the genome. The scale of
the read counts can be set by changing the value of the “Max Read”
textbox on the right. We can browse around the genome by clicking on
the left and right arrowm, or search for a specific gene with the
search text box.

This window also allows us to save a .png image of the canvas for
future reference if desired (i.e. Save Img button).




Scatter plot

We can also view a scatter plot of read counts of two selected
datasets. To achieve this we select two datasets (using “Control +
Clicck”) and then clicking on “View -> Scatter Plot” in the menu bar
at the top of the TRANSIT window.

[image: _images/transit_dataset_scatter_graph.png]
A new window will pop-up, show a scatter plot of both of the selected
datasets. This window contains controls to zoom in and out (magnifying
glass), allowing us to focus in on a specific area. This is
particularly useful when large outliers may throw off the scale of the
scatter plot.




Essentiality analysis with the HMM method

An alternative method for determining essentiality is the HMM method.
This method differs from the Gumbel method in that is capable of
assessing the essentiality of the entire genome, and is not limited to
a gene-level analysis (See above for discussions of the pros and cons
of each method). To run the HMM method we select it from the list of
(Himar1) methods on the Analysis at the top. This automatically displays
the available options for the HMM methid. Because the HMM method estimates
parameters by examining the datasets, there is no need to set parameters
for the model. One important option provided is how to deal with replicate
datasets. Because the glycerol replicates had a mean read-count
between 53-85, we decide to sum read-counts together by selecting
“Sum” from the drop-down option.

[image: _images/transit_hmm_options.png]
Finally we click on the “Run HMM” button, and wait for the method to
finish. Once the analysis finishes, two new files will be created and
automatically added to the list of files in the Results Files section.
One file contains the output of states for each TA site in the genome.
The other file contains the analysis for each gene. We can display
each of the files be selecting them (individually) and clicking on the
“Display Table” button (one at a time).
Like for the Gumbel method, a break down of the states is provided at
the top of the table. In the case of glycerol, the HMM analysis
classifies 16.3% of the genome as belonging to the “Essential” state,
5.4% belonging to the Growth-Defect state, 77.1% to the Non-Essential
state, and 1.2% to the Growth Advantage state. This break down can be
used as a diagnostic, to see if the results match our expectations.
For example, in datasets with very low read-counts, or very low
density, the percentage of Growth-Defect states may be higher (e.g. >
10% ), which could indicate a problem.

The HMM sites file contains the state assignments for all the TA sites
in the genome. This file is particularly useful to browse for browsing
the different types of regions in the genome. We can use this file to
see how regions have different impacts on the growth-advantage (or
disadvantage) of the organism. For example, the PDIM locus, which is
required for virulance in vivo, results in a Growth-Advantage for the
organism when disrupted. We can see this in the HMM Sites file by
scrolling down to this region (Rv2930-Rv2939) and noticing the large
read-counts at these sites, and the how they are labeled “GA”.







          

      

      

    

  

    
      
          
            
  
Tutorial: Comparative Analysis - Glycerol vs Cholesterol

To illustrate how TRANSIT works, we are going to go through a tutorial
where we analyze datasets of H37Rv M. tuberculosis grown on glycerol
and cholesterol.








Run TRANSIT

Navigate to the directory containing the TRANSIT files, and run
TRANSIT:

python PATH/src/transit.py








Adding the annotation file

Before we can analyze datasets, we need to add an annotation file for
the organism corresponding to the desired datasets. Click on the file
dialog button, on the top of the TRANSIT window (see image below), and
browse and select the appropriate annotation file. Note: Annotation
files must be in “.prot_table” format, described above.

[image: _images/transit_tutorial_annotation.png]



Adding the control datasets

We want to analyze datasets grown in glycerol to those grown in
cholesterol. We are choosing the datasets grown in glycerol as the
“Control” datasets. To add these, we click on the control sample file
dialog (see image below), and select the desired datasets (one by
one). In this example, we have two replicates:

[image: _images/transit_tutorial_control_datasets.png]
As we add the datasets they will appear in the table in the Control
samples section. This table will provide the following statistics
about the datasets that have been loaded so far: Total Number of
Reads, Density, Mean Read Count and Maximum Count. These statistics
can be used as general diagnostics of the datasets.




Visualizing read counts

TRANSIT allows us to visualize the read-counts of the datasets we have
already loaded. To do this, we must select the desired datasets
(“Control+Click”) and then click on “View -> Track View” in the menu
bar at the top of the TRANSIT window. Only those selected datasets
will be displayed:

[image: _images/transit_dataset_track_view.png]
This will open a window that allows that shows a visual representation
of the read counts at the TA sites throughout the genome. The scale of
the read counts can be set by changing the value of the “Max Read”
textbox on the right. We can browse around the genome by clicking on
the left and right arrowm, or search for a specific gene with the
search text box.

This window also allows us to save a .png image of the canvas for
future reference if desired (i.e. Save Img button).




Scatter plot

We can also view a scatter plot of read counts of two selected
datasets. To achieve this we select two datasets (using “Control +
Clicck”) and then clicking on “View -> Scatter Plot” in the menu bar
at the top of the TRANSIT window.

[image: _images/transit_dataset_scatter_graph.png]
A new window will pop-up, show a scatter plot of both of the selected
datasets. This window contains controls to zoom in and out (magnifying
glass), allowing us to focus in on a specific area. This is
particularly useful when large outliers may throw off the scale of the
scatter plot.


Adding the experimental datasets

We now repeat the process we did for control samples, for the
experimental datasets that were grown on cholesterol. To add these, we
click on the experimental sample file dialog (see image below), and
select the desired datasets (one by one). In this example, we have
three replicates:

[image: _images/transit_tutorial_experimental_datasets.png]



Comparative analysis using Re-sampling

To compare the growth conditions and assess conditional essentiality,
we select “Resampling” from the list of methods in the drop-down menu
on the right side of the TRANSIT window:

[image: _images/transit_resampling_options.png]
This will populate the right side with options specific to the
Resampling method. In this case, we choose to proceed with the default
settings. However, we could have set a different number of samples for
the resampling method or chosen the “Adaptive Resampling” option if we
were interested in quicker results. See the description of the method
above for more information.

We click on the “Run Resampling” button to start the analysis. This
will take several minutes to finish. The progress bar will give us an
idea of how much time is left.




Viewing resampling results

Once TRANSIT finishes running, the results file will automatically be
added to the Results Files section at the bottom of the window/

This window allows us to track the results files that have been
created in this session. From here, we can display a volcano plot of
the resampling results by selecting the file from the list and
selecting the volcano option on the dropdown menu. This will
open a new window containing the figure:

[image: _images/transit_result_volcano_graph.png]
To view the actual results, we can open the file in a new window by
selecting it from the list and clicking on the “Display Table” button.

The newly opened window will display a table of the results. We can
sort the results by clicking on the column header. For example, to
focus on the genes that are most likely to be conditionally essential
between glycerol and cholesterol, we can click on the column header
labeled “q-value”, which represents p-values that have been adjusted
for multiple comparisons.
Sorting q-values in ascending order, we can see those genes which are
most likely to be conditionally essential on the top. A typical
threshold for significance is < 0.05. We can use “Delta Sum” column to
see which conditions had the most read counts in a particular gene.
The sign of this value (+/-) lets us know on which condition the gene
is essential and which condition it is non-essential. The magnitude
lets us know how large the difference is. For example, glycerol kinase
(GlpK) is necessary for growth on glycerol but it is not expected to
be necessary when grown on another carbon source like cholesterol. We
confirm our expectations by noticing that the sum of read counts in
glycerol is only 22 reads (normalized), while there are a total of
2119 reads in cholesterol. The difference (2096) is positive, which
means it is necessary for growth in glycerol but not cholesterol.
Because we ran the resampling method with the “Histograms” options, we
also have the ability to view the histograms of permutation
differences for each of the genes by selecting a gene and right
clicking:

From this menu we can display the histogram, or view the read-counts
for that specific gene in Track View:

[image: _images/transit_resampling_results.png]








          

      

      

    

  

    
      
          
            
  
Tutorial: Normalize datasets

TRANSIT has the capability to normalize datasets with different methods,
and export them to IGV from the Broad Institute [https://www.broadinstitute.org/igv/]
or a CombinedWig format. This tutorial shows a quick overview of how
to normalize datasets save them using the GUI mode of transit or through
the Console mode.








Adding the annotation file

Before we can normalize .wig datasets, we need to add an
annotation file for the organism. Click on the file dialog button, on
the top of the TRANSIT window (see image below), and browse and select
the appropriate annotation file. Note: Annotation files must be in
“.prot_table” or GFF3 format, described above:

[image: _images/transit_tutorial_annotation.png]



Add .wig datasets

Next we must choose to add .wig formatted datasets what we wish to
normalize to CombinedWig format. To add these, we click on the control sample
file dialog (see image below), and select the desired datasets (one by
one). In this example, we have two replicates:

[image: _images/transit_tutorial_control_datasets.png]
As we add the datasets they will appear in the table below. Select the datasets
you wish to normalize.




Normalize and Save

After you have selected the desired datasets in the list of datasets added,
click on “Export -> Selected Datasets” in the menu bar at the top of the TRANSIT
window, and select the format you desire (e.g. “to IGV” or “to CombinedWig”).
You will be prompted to pick a normalization method, and a filename.
Note: Only selected datasets (“Control+Click”) will be normalized and
saved.

[image: _images/transit_tutorial_norm_options.png]









Normalization

Proper normalization is important as it ensures that other sources of variability are not mistakenly treated
as real differences in datasets. TRANSIT provides various normalization methods, which are briefly described below:


	
	TTR:

	Trimmed Total Reads (TTR), normalized by the total
read-counts (like totreads), but trims top and bottom 5% of
read-counts. This is the recommended normalization method for most cases
as it has the beneffit of normalizing for difference in
saturation in the context of resampling.







	
	nzmean:

	Normalizes datasets to have the same mean over the
non-zero sites.







	
	totreads:

	Normalizes datasets by total read-counts, and scales
them to have the same mean over all counts.







	
	zinfnb:

	Fits a zero-inflated negative binomial model, and then
divides read-counts by the mean. The zero-inflated negative
binomial model will treat some empty sites as belonging to the
“true” negative binomial distribution responsible for read-counts
while treating the others as “essential” (and thus not influencing
its parameters).







	
	quantile:

	Normalizes datasets using the quantile normalization
method described by Bolstad et al.
(2003) [http://www.ncbi.nlm.nih.gov/pubmed/12538238]. In this
normalization procedure, datasets are sorted, an empirical
distribution is estimated as the mean across the sorted datasets
at each site, and then the original (unsorted) datasets are
assigned values from the empirical distribution based on their
quantiles.







	
	betageom:

	Normalizes the datasets to fit an “ideal” Geometric
distribution with a variable probability parameter p. Specially
useful for datasets that contain a large skew.







	
	nonorm:

	No normalization is performed.















          

      

      

    

  

    
      
          
            
  
Tutorial: Export datasets

TRANSIT has the capability to export .wig files into different formats.
This tutorial shows a quick overview of how to export to the IGV format.
This can be useful to be able to import read-count data into
IGV from the Broad Institute [https://www.broadinstitute.org/igv/] and use
its visualization capabilities.








Adding the annotation file

Before we can export .wig datasets to IGV format, we need to add an
annotation file for the organism. Click on the file dialog button, on
the top of the TRANSIT window (see image below), and browse and select
the appropriate annotation file. Note: Annotation files must be in
“.prot_table” or GFF3 format, described above:

[image: _images/transit_tutorial_annotation.png]



Add .wig datasets

Next we must choose to add .wig formatted datasets what we wish to
export to IGV format. To add these, we click on the control sample
file dialog (see image below), and select the desired datasets (one by
one). In this example, we have two replicates:

[image: _images/transit_tutorial_control_datasets.png]
As we add the datasets they will appear in the table below.




Export to IGV

Finally, to export the datasets we click on “Export” in the menu bar
at the top of the TRANSIT window, and select the option that matches
which datasets we wish to export. Note: Only selected datasets
(“Control+Click”) will be exported.

[image: _images/transit_export_options.png]






          

      

      

    

  

    
      
          
            
  
Overview

TPP is a software tool for processing raw reads (e.g. .fastq files,
untrimmed) from an Tn-Seq experiment, extracting counts of transposon
insertions at individual TA dinucleotides sites in a genome (“read
counts”, or more specifically “template counts”, see below), and writing
this information out in
.wig [http://genome.ucsc.edu/goldenpath/help/wiggle.html] format
suitable for input to TRANSIT. In addition, TPP
calculates some useful statistics and diagnostics on the dataset.

There are many way to do pre-processing of Tn-Seq datasets, and it can
depend on the the protocol used for Tn-Seq, the conventions used by the
sequencing center, etc. However, TPP is written to accommodate the most
common situation among our collaborating labs. In particular, it is
oriented toward the Tn-Seq protocol developed in the Sassetti lab and
described in (Long et al,
2015) [http://www.springer.com/biomed/human+genetics/book/978-1-4939-2397-7],
which uses a barcoding system to uniquely identifying reads from
distinct transposon-junction DNA fragments. This allows raw read counts
to be reduced to unique template counts, eliminating effects of PCR
bias. The sequencing must be done in paired-end (PE) mode (with a
minimum read-length of around 50 bp). The transposon terminus appears in
the prefix of read1 reads, and barcodes are embedded in read2 reads.

The suffixes of read1 and read2 contain nucleotides from the genomic
region adjacent to the transpsoson insertion. These subsequences must be
mapped into the genome. TPP uses
BWA [http://bio-bwa.sourceforge.net/] (Burroughs-Wheeler Aligner) to
do this mapping. It is a widely-used tool, but you will have to install
it on your system. Mapping large datasets takes time, on the order of 15
minutes (depending on many factors), so you will have to be patient.

Subsequent to the BWA mapping step, TPP does a bunch of post-processing
steps. Primarily, it tabulates raw read counts at each TA site in the
reference genome, reduces them to template counts, and writes this out
in .wig format (as input for TRANSIT). It also calculates and reports
some statistics on the dataset which a useful for diagnostic purposes.
These are saved in local file caled “.tn_stats”. The GUI automatically
reads all the .tn_stats files from previously processed datasets in a
directory and displays them in a table.

The GUI interface is set-up basically as a graphical front-end that
allows you to specify input files and parameters to get a job started.
Once you press START, the graphical window goes away, and the
pre-processing begins, printing out status messages in the original
terminal window. You can also run TPP directly from the command-line
with the GUI, by providing all the inputs via command-line arguments.

TPP has a few optional parameters in the interface. We intend to add
other options in the future, so if you have suggestions, let us know. In
particular, if you have some datasets that requires special processing
(such as if different primer sequences were used for PCR amplification,
or a different barcoding system, or different contaminant sequences to
search for, etc.), we might be able to add some options to deal with
this.




Installation

TPP should work equivalently on Macs, PCs running Windows, or Unix
machines. TPP is fundamentally a python script that has a graphical user
interface (GUI) written in wxPython. Its major dependency is that it
calls BWA to map reads. TPP has the following requirements. If these are
not already on your system, you will have to install them manually.

Requirements:


	python version 2.7 [http://www.python.org/]


	wxPython 3.0.1 [http://www.wxpython.org/] (the ‘cocoa’ version)


	BWA version 0.7.12 [http://bio-bwa.sourceforge.net/] (can put
this directory anywhere; be sure to run ‘make’ to build bwa
executable


	pre-compiled version for 64-bit
Windows [http://saclab.tamu.edu/essentiality/transit/bwa-0.7.12_windows.zip])








Since TPP is a python script, there is nothing to compile or ‘make’.




Running TPP

TPP may be run from the command line (e.g. of a terminal window or
shell) by typing:

python PATH/src/tpp.py





where PATH is the path to the TRANSIT installation directory. This
should pop up the GUI window, looking like this…

[image: _images/TPP-screenshot.png]
Note, TPP can process paired-end reads, as well as single-end datasets.
(just leave the filename for read2 blank)

The main fields to fill out in the GUI are…


	bwa executable - you’ll have to find the path to where the executable
is installed


	reference genome - this is the sequence in Fasta format against which
the reads will be mapped


	reads1 file - this should be the raw reads file (untrimmed) for
read1 in FASTQ [http://en.wikipedia.org/wiki/FASTQ_format] or
FASTA [http://en.wikipedia.org/wiki/FASTA] format, e.g.
DATASET_NAME_R1.fastq


	Note: you can also supply gzipped files for reads, e.g.
*.fastq.gz






	reads2 file - this should be the raw reads file (untrimmed) for
read2 in FASTQ or FASTA format, e.g. DATASET_NAME_R2.fastq


	Note: if you leave read2 blank, it will process the dataset as
single-ended. Since there are no barcodes, each read will be
counted as a unique template.






	prefix to use for output filename (for the multiple intermediate files that
will get generated in the process; when you pick datasets, a temp
file name will automatically be suggested for you, but you can change
it to whatever you want)


	transposon used - Himar1 is assumed by default, but you can set it to
Tn5 to process libraries of that type. The main consequences of this
setting are: 1) the selected transposon determines the nucleotide
prefix to be recognized in read 1, and 2) for Himar1, reads are
counted only at TA sites, whereas for Tn5, reads are counted at ALL
sites in the genome (since it does not have significant sequence
specificity) and written out in the .counts and .wig files.


	primer sequence - This represents the end of the transposon that
appears as a constant prefix in read 1 (possibly shifted by a few
random bases), resulting from amplifying transposon:genomic junctions.
TPP searches for this prefix and strips it off, to
map the suffixes of reads into the genome.  TPP has default sequences
defined for both Himar1 and Tn5 data, based on the most commonly
used protocols (Long et al. (2015) [http://www.springer.com/biomed/human+genetics/book/978-1-4939-2397-7]; Langridge et al. (2009) [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2792183/]).  However, if you amplify junctions with a different
primer, this field gives you the opportunity to change the sequence
TPP searches for in each read.  Note that you should not
entirer the ENTIRE primer sequence, but rather just
the part of the primer sequence that will show up at the beginning
of every read.


	max reads - Normally, leave this blank by default, and TPP will
process all reads. However, if you want to do a quick run on a subset
of the data, you can select a smaller number. This is mainly for
testing purposes.


	mismatches - this is for searching for the sequence patterns in reads
corresponding to the transposon prefix in R1 and the constant adapter
sequences surrounding the barcode in R2; we suggest using a default
value of 1 mismatch




Once you have filled all these fields out, you can press START (or
QUIT). At this point the GUI window will disappear, and the data
processing commences in the original terminal/shell windows. It prints
out a lot of information to let you know what it is doing (and error
messages, if anything goes wrong). Many intermediate files get
generated. It takes awhile (like on the order of 15 minutes), most of
which is taken up by the mapping-reads step by BWA.

Subsequent to the BWA mapping step, TPP does a bunch of post-processing
steps. Primarily, it tabulates raw read counts at each TA site in the
reference genome, reduces them to template counts, and writes this out
in .wig format (as input for essentiality analysis in TRANSIT). It also
calculates and reports some statistics on the dataset which a useful for
diagnostic purposes. These are saved in local file caled
“.tn_stats”. The GUI automatically reads all the .tn_stats files
from previously processed datasets in a directory and displays them in a
table.

TPP uses a local config file called “tpp.cfg” to rememeber parameter
settings from run to run. This makes it convenient so that you don’t
have to type in things like the path to the BWA executable or reference
genome over and over again. You just have to do it once, and TPP will
remember.

Command-line mode: TPP may be run on a dataset directly from the
command-line without invoking the user interface (GUI) by providing it
filenames and parameters as command-line arguments.

For a list of possible command line arguments, type: python tpp.py -help
usage: python TRANSIT_PATH/src/tpp.py -bwa PATH_TO_EXECUTABLE -ref REF_SEQ -reads1 PATH_TO_FASTQ_OR_FASTA_FILE [-reads2 PATH_TO_FASTQ_OR_FASTA_FILE] -output OUTPUT_BASE_FILENAME [-maxreads N] [-tn5|-himar1] [-primer <seq>]





The input arguments and file types are as follows:








	Flag

	Value

	Comments





	-bwa

	path executable

	


	-ref

	reference genome sequence

	FASTA file



	-reads1

	file of read 1 of paired reads

	FASTA or FASTQ format (or gzipped)



	-reads2

	file of read 2 of paired reads (optional for single-end reads

	FASTA or FASTQ format (or gzipped)



	-output&dagger;

	base filename to use for output files

	


	-maxreads

	subset of reads to process (optional); if blank, use

	


	-mismatches

	how many to allow when searching reads for sequence patterns

	


	-tn5

	process reads as a Tn5 library (Himar1 is assumed by default

	Reads mapping to any site will be considered.



	-himar1

	process reads as a Himar1 library (assumed by default)

	Considers reads that map to TA sites only.



	-primer

	nucleotide sequence

	Constant prefix of reads that TPP searches for.






&dagger; In earlier versions of Transit, this flag used to be ‘-prefix’, but we changed it to ‘-output’

(Note: if you have already run TPP once, the you can leave out the
specification of the path for BWA, and it will automatically take the
path stored in the config file, tpp.cfg. Same for ref, if you always use
the same reference sequence.)




Overview of Data Processing Procedure

Here is a brief summary of the steps performed in converting raw reads
(.fastq files) into template counts:


	Convert .fastq files to .fasta format (.reads).


	Identify reads with the transposon prefix in R1 . The sequence
searched for is ACTTATCAGCCAACCTGTTA (or TAAGAGACAG for Tn5), which must start between cycles
5 and 10 (inclusive). (Note that this ends in the canonical terminus
of the Himar1 transposon, TGTTA.) The “staggered” position of this
sequence is due to insertion a few nucleotides of variable length in
the primers used in the Tn-Seq sample prep protocol (e.g. 4 variants
of Sol_AP1_57, etc.). The number of mimatches allowed in searching
reads for the transposon sequence pattern can be adjusted as an
option in the interface; the default is 1.


	Extract genomic part of read 1. This is the suffix following the
transposon sequence pattern above. However, for reads coming from
fragments shorter than the read length, the adapter might appear at
the other end of R1, TACCACGACCA. If so, the adapter suffix is
stripped off. (These are referred to as “truncated” reads, but they
can still be mapped into the genome just fine by BWA.) The length of
the genomic part must be at least 20 bp.


	Extract barcodes from read 2. Read 2 is searched for
GATGGCCGGTGGATTTGTGnnnnnnnnnnTGGTCGTGGTAT”. The length of the barcode
is typically 10 bp, but can be varaible, and must be between 5-15 bp.


	Extract genomic portions of read 2. This is the part following
TGGTCGTGGTAT…. It is often the whole suffix of the read. However,
if the read comes from a short DNA fragment that is shorter than the
read length, the adapter on the other end might appear, in which case
it is stripped off and the nucleotides in the middle representing the
genomic insert, TGGTCGTGGTATxxxxxxxTAACAGGTTGGCTGATAAG. The insert
must be at least 20 bp long (inserts shorter than this are discarded,
as they might map to spurious locations in the genome).


	Map genomic parts of R1 and R2 into the genome using BWA. Mismatches
are allowed, but indels are ignored. No trimming is performed. BWA is
run in ‘sampe’ mode (treating reads as pairs). Both reads of a pair
must map (on opposite strands) to be counted.


	Count the reads mapping to each TA site in the reference genome (or all sites for Tn5).


	Reduce raw read counts to unique template counts. Group reads by
barcode AND mapping location of read 2 (aka fragment “endpoints”).


	Output template counts at each TA site in a .wig file.


	Calculate statistics like insertion_density and NZ_mean. Look for
the site with the max template count. Look for reads matching the
primer or vector sequences.







Statistics

Here is an explanation of the statistics that are saved in the
.tn_stats file and displayed in the table in the GUI. For convenience,
all the statistics are written out on one line with tab-separation at
the of the .tn_stats file, to make it easy to add it as a row in a
spreadsheet, as some people like to do to track multiple datasets.







	Statistic

	Description





	total_reads

	total number of reads in the original .fastq/.fasta



	truncated_reads

	reads representing DNA fragments shorter than the read length; adapter appears at end of read 1 and is stripped for mapping



	TGTTA_reads

	number of reads with a proper transposon prefix (ending in TGTTA in read1)



	reads1_mapped

	number of R1 mappped into genome (independent of R2)



	reads2_mapped

	number of R2 mappped into genome (independent of R1)



	mapped_reads

	number of reads which mapped into the genome (requiring both read1 and read2 to map)



	read_count

	total reads mapping to TA sites (mapped reads excluding those mapping to non-TA sites)



	template_count

	reduction of mapped reads to unique templates using barcodes



	template_ratio

	read_count / template_count



	TA_sites

	total number of TA dinucleotides in the genome



	TAs_hit

	number of TA sites with at least 1 insertion



	insertion_density

	TAs_hit / TA_sites



	max_count

	the maximum number of templates observed at any TA site



	max_site

	the coordinate of the site where the max count occurs



	NZ_mean

	mean template count over non-zero TA sites



	FR_corr

	correlation between template counts on Fwd strand versus Rev strand



	BC_corr

	correlation between read counts and template counts over non-zero sites



	primer_matches

	how many reads match the Himar1 primer sequence (primer-dimer problem in sample prep)



	vector_matches

	how many reads match the phiMycoMarT7 sequence (transposon vector) used in Tn mutant library construction



	adapter

	how many reads match the Illumina adapter (primer-dimers, no inserts).



	misprimed

	how many reads match the Himar1 primer but lack the TGTTA, meaning they primed at random sites (non-Tn junctions)






Here is an example of a .tn_stats file:

# title: Tn-Seq Pre-Processor
# date: 08/03/2016 13:01:47
# command: python ../../src/tpp.py -bwa /pacific/home/ioerger/bwa-0.7.12/bwa -ref H37Rv.fna -reads1 TnSeq_H37Rv_CB_1M_R1.fastq -reads2 TnSeq_H37Rv_CB_1M_R2.fastq -output TnSeq_H37Rv_CB
# transposon type: Himar1
# read1: TnSeq_H37Rv_CB_1M_R1.fastq
# read2: TnSeq_H37Rv_CB_1M_R2.fastq
# ref_genome: H37Rv.fna
# total_reads 1000000 (or read pairs)
# TGTTA_reads 977626 (reads with valid Tn prefix, and insert size>20bp)
# reads1_mapped 943233
# reads2_mapped 892527
# mapped_reads 885796 (both R1 and R2 map into genome)
# read_count 879663 (TA sites only, for Himar1)
# template_count 605660
# template_ratio 1.45 (reads per template)
# TA_sites 74605
# TAs_hit 50382
# density 0.675
# max_count 356 (among templates)
# max_site 2631639 (coordinate)
# NZ_mean 12.0 (among templates)
# FR_corr 0.821 (Fwd templates vs. Rev templates)
# BC_corr 0.990 (reads vs. templates, summed over both strands)
# primer_matches: 10190 reads (1.0%) contain CTAGAGGGCCCAATTCGCCCTATAGTGAGT (Himar1)
# vector_matches: 5608 reads (0.6%) contain CTAGACCGTCCAGTCTGGCAGGCCGGAAAC (phiMycoMarT7)
# adapter_matches: 0 reads (0.0%) contain GATCGGAAGAGCACACGTCTGAACTCCAGTCAC (Illumina/TruSeq index)
# misprimed_reads: 6390 reads (0.6%) contain Himar1 prefix but don't end in TGTTA
# read_length: 125 bp
# mean_R1_genomic_length: 92.9 bp
# mean_R2_genomic_length: 79.1 bp
TnSeq_H37Rv_CB_1M_R1.fastq  TnSeq_H37Rv_CB_1M_R2.fastq  1000000 977626  943233  892527  885796  879663  605660  1.45240398904   74605   50382   356 0.675316667784  2631639 12.0213568338   0.8209081083    0.989912222642  10190   5608    0   6390





Interpretation: To assess the quality of a dataset, I would
recommend starting by looking at 3 primary statistics:


	mapped reads: should be on the order of several million
mapped_reads; if there is a significant reduction from total_reads,
look at reads1_mapped and reads2_mapped and truncated_reads to
figure what might have gone wrong; you might try allowing 2
mismatches


	primer/vector_matches: check whether a lot of the reads might be
matching the primer or vector sequences; if they match the vector, it
suggests your library still has phage contamination from the original
infection; if there are a lot of primer reads, these probably
represent “primer-dimers”, which could be reduced by inproving
fragment size selection during sample prep.


	insertion density: good libraries should have insertions at ≥
~35% of TA sites for statistical analysis


	NZ_mean: good datasets should have a mean of around 50 templates
per site for sufficient dynamic range




If something doesn’t look right, the other statistics might be helpful
in figuring out what went wrong. If you see a significant reduction in
reads, it could be due to some poor sequencing cycles, or using the
wrong reference genome, or a contaminant of some type. Some attrition is
to be expected (loss of maybe 10-40% of the reads). The last 2
statistics indicate 2 common cases: how many reads match the primer or
vector sequences. Hopefully these counts will be low, but if they
represent a large fraction of your reads, it could mean you have a
problem with your sample prep protocol or Tn mutant library,
respectively.

Comments or Questions?

TPP was developed by Thomas R.
Ioerger [http://faculty.cse.tamu.edu/ioerger/] at Texas A&M
University. If you have any comments or questions, please feel free to
send me an email at: ioerger@cs.tamu.edu
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Submodules




pytransit.norm_tools module


	
class pytransit.norm_tools.AdaptiveBGCNorm

	Bases: pytransit.norm_tools.NormMethod


	
cleaninfgeom(rho)

	Returns a ‘clean’ output from the geometric distribution.






	
ecdf(x)

	Calculates an empirical CDF of the given data.






	
name = 'aBGC'

	




	
static normalize(wigList=[], annotationPath='', doTotReads=True, bgsamples=200000)

	Returns the normalized data using the aBGC method.


	Parameters

	
	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.


	doTotReads (bool) – Boolean specifying whether to do TTR normalization as well.


	bgsamples (int) – Integeer specifying how many samples to take.






	Returns

	Array with the normalized data.



	Return type

	numpy array



	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> normdata = norm_tools.aBGC_norm(data)
>>> print normdata
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])










See also

normalize_data












	
class pytransit.norm_tools.BetaGeomNorm

	Bases: pytransit.norm_tools.NormMethod


	
cleaninfgeom(rho)

	Returns a ‘clean’ output from the geometric distribution.






	
ecdf(x)

	Calculates an empirical CDF of the given data.






	
name = 'betageom'

	




	
static normalize(wigList=[], annotationPath='', doTTR=True, bgsamples=200000)

	Returns normalized data according to the BGC method.


	Parameters

	
	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.


	doTTR (bool) – Boolean specifying whether to do TTR norm as well.


	bgsamples (int) – Integer specifying how many samples to take.






	Returns

	Array with the data normalized using the betageom method.



	Return type

	numpy array



	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> normdata = norm_tools.betageom_norm(data)
>>> print normdata
[[ 0.  0.  0. ...,  0.  0.  0.]
 [ 0.  0.  0. ...,  0.  0.  0.]]










See also

normalize_data












	
class pytransit.norm_tools.EmpHistNorm

	Bases: pytransit.norm_tools.NormMethod


	
static Fzinfnb(args)

	Objective function for the zero-inflated NB method.






	
name = 'emphist'

	




	
static normalize(wigList=[], annotationPath='')

	Returns the normalized data, using the empirical hist method.


	Parameters

	
	wigList (list) – List of paths to wig formatted datasets.


	annotationPath (str) – Path to annotation in .prot_table or GFF3 format.






	Returns

	Array with the normalization factors for the emphist method.



	Return type

	numpy array



	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> factors = norm_tools.emphist_factors(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"], "transit/genomes/H37Rv.prot_table")
>>> print factors
array([[ 1.        ],
       [ 0.63464722]])










See also

normalize_data












	
pytransit.norm_tools.Fzinfnb(params, args)

	Objective function for the zero-inflated NB method.






	
class pytransit.norm_tools.NZMeanNorm

	Bases: pytransit.norm_tools.NormMethod


	
name = 'nzmean'

	




	
static normalize(wigList=[], annotationPath='')

	Returns the normalization factors for the data, using the NZMean method.


	Parameters

	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.



	Returns

	Array with the normalization factors for the nzmean method.



	Return type

	numpy array



	Example

	>>> import pytransit._tools.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> factors = norm_tools.nzmean_factors(data)
>>> print factors
array([[ 1.14836149],
       [ 0.88558737]])










See also

normalize_data












	
class pytransit.norm_tools.NoNorm

	Bases: pytransit.norm_tools.NormMethod


	
name = 'nonorm'

	




	
static normalize(wigList=[], annotationPath='')

	








	
class pytransit.norm_tools.NormMethod

	
	
name = 'undefined'

	




	
static normalize()

	








	
class pytransit.norm_tools.QuantileNorm

	Bases: pytransit.norm_tools.NormMethod


	
name = 'quantile'

	




	
static normalize(wigList=[], annotationPath='')

	Performs Quantile Normalization as described by Bolstad et al. 2003


	Parameters

	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.



	Returns

	Array with the data normalized by the quantile normalization method.



	Return type

	numpy array



	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> normdata = norm_tools.quantile_norm(data)
>>> print normdata










See also

normalize_data












	
class pytransit.norm_tools.TTRNorm

	Bases: pytransit.norm_tools.NormMethod


	
empirical_theta()

	Calculates the observed density of the data.

This is used as an estimate insertion density by some normalization methods.
May be improved by more sophisticated ways later on.


	Parameters

	data (numpy array) – 
	numpy array defining read-counts at N sites.








	Returns

	Density of the given dataset.



	Return type

	float



	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> import pytransit.norm_tools as norm_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> theta = norm_tools.empirical_theta(data)
>>> print theta
0.467133570136










See also

TTR_factors








	
name = 'emphist'

	




	
static normalize(wigList=[], annotationPath='', thetaEst=<function empirical_theta>, muEst=<function trimmed_empirical_mu>, target=100.0)

	Returns the normalization factors for the data, using the TTR method.


	Parameters

	
	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.


	thetaEst (function) – Function used to estimate density. Should take a list
of counts as input.


	muEst (function) – Function used to estimate mean count. Should take a list
of counts as input.






	Returns

	Array with the normalization factors for the TTR method.



	Return type

	numpy array



	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> factors = norm_tools.TTR_factors(data)
>>> print factors
array([[ 1.        ],
       [ 0.62862886]])










See also

normalize_data








	
trimmed_empirical_mu(t=0.05)

	Estimates the trimmed mean of the data.

This is used as an estimate of mean count by some normalization methods.
May be improved by more sophisticated ways later on.


	Parameters

	
	data (numpy array) – 
	numpy array defining read-counts at N sites.







	t (float) – Float specifying fraction of start and end to trim.






	Returns

	(Trimmed) Mean of the given dataset.



	Return type

	float



	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> import pytransit.norm_tools as norm_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> mu = norm_tools.trimmed_empirical_mu(data)
>>> print mu
120.73077107










See also

TTR_factors












	
class pytransit.norm_tools.TotReadsNorm

	Bases: pytransit.norm_tools.NormMethod


	
name = 'totreads'

	




	
static normalize(wigList=[], annotationPath='')

	Returns the normalization factors for the data, using the total reads
method.


	Parameters

	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.



	Returns

	Array with the normalization factors for the totreads method.



	Return type

	numpy array



	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> factors = norm_tools.totreads_factors(data)
>>> print factors
array([[ 1.2988762],
       [ 0.8129396]])










See also

normalize_data












	
class pytransit.norm_tools.ZeroInflatedNBNorm

	Bases: pytransit.norm_tools.NormMethod


	
name = 'zinfb'

	




	
static normalize(wigList=[], annotationPath='')

	Returns the normalization factors for the data using the zero-inflated
negative binomial method.


	Parameters

	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.



	Returns

	Array with the normalization factors for the zinfnb method.



	Return type

	numpy array



	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> factors = norm_tools.zinfnb_factors(data)
>>> print factors
[[ 0.0121883 ]
 [ 0.00747111]]










See also

normalize_data












	
pytransit.norm_tools.cleaninfgeom(x, rho)

	Returns a ‘clean’ output from the geometric distribution.






	
pytransit.norm_tools.ecdf(S, x)

	Calculates an empirical CDF of the given data.






	
pytransit.norm_tools.empirical_theta(X)

	Calculates the observed density of the data.

This is used as an estimate insertion density by some normalization methods.
May be improved by more sophisticated ways later on.


	Parameters

	data (numpy array) – 
	numpy array defining read-counts at N sites.








	Returns

	Density of the given dataset.



	Return type

	float



	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> import pytransit.norm_tools as norm_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> theta = norm_tools.empirical_theta(data)
>>> print theta
0.467133570136










See also

TTR_factors








	
pytransit.norm_tools.norm_to_target(data, target)

	Returns factors to normalize the data to the given target value.


	Parameters

	
	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.


	target (float) – Floating point specifying the target for the mean of the data/






	Returns

	Array with the factors necessary to normalize mean to target.



	Return type

	numpy array



	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> factors = norm_tools.norm_to_target(data, 100)
>>> print factors
[[ 1.8548104 ]
 [ 1.16088726]]










See also

normalize_data








	
pytransit.norm_tools.normalize_data(data, method='nonorm', wigList=[], annotationPath='')

	Normalizes the numpy array by the given normalization method.


	Parameters

	
	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.


	method (str) – Name of the desired normalization method.


	wigList (list) – List of paths for the desired wig-formatted datasets.


	annotationPath (str) – Path to the prot_table annotation file.






	Returns

	Array with the normalized data.
list: List containing the normalization factors. Empty if not used.



	Return type

	numpy array



	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
(normdata, normfactors) = norm_tools.normalize_data(data, "TTR")   # Some methods require annotation and path to wig files.
>>> print normfactors
array([[ 1.        ],
       [ 0.62862886]])
>> print normdata
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])










Note

Some normalization methods require the wigList and annotationPath arguments.








	
pytransit.norm_tools.trimmed_empirical_mu(X, t=0.05)

	Estimates the trimmed mean of the data.

This is used as an estimate of mean count by some normalization methods.
May be improved by more sophisticated ways later on.


	Parameters

	
	data (numpy array) – 
	numpy array defining read-counts at N sites.







	t (float) – Float specifying fraction of start and end to trim.






	Returns

	(Trimmed) Mean of the given dataset.



	Return type

	float



	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> import pytransit.norm_tools as norm_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> mu = norm_tools.trimmed_empirical_mu(data)
>>> print mu
120.73077107










See also

TTR_factors








	
pytransit.norm_tools.zinfnb_factors(data)

	Returns the normalization factors for the data using the zero-inflated
negative binomial method.


	Parameters

	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.



	Returns

	Array with the normalization factors for the zinfnb method.



	Return type

	numpy array



	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> factors = norm_tools.zinfnb_factors(data)
>>> print factors
[[ 0.0121883 ]
 [ 0.00747111]]










See also

normalize_data










pytransit.stat_tools module


	
pytransit.stat_tools.BH_fdr_correction(X)

	Adjusts p-values using the Benjamini Hochberg procedure






	
pytransit.stat_tools.F_mean_diff_flat(A, B)

	




	
pytransit.stat_tools.F_shuffle_flat(X)

	




	
pytransit.stat_tools.F_sum_diff_flat(A, B)

	




	
pytransit.stat_tools.bayesian_ess_thresholds(Z_raw, ALPHA=0.05)

	Returns Essentiality Thresholds using a BH-like procedure






	
pytransit.stat_tools.binom(k, n, p)

	Binomial distribution. Uses Normal approximation for large ‘n’






	
pytransit.stat_tools.binom_cdf(k, n, p)

	CDF of the binomial distribution






	
pytransit.stat_tools.binom_test(k, n, p, type='two-sided')

	Does a binomial test given success, trials and probability.






	
pytransit.stat_tools.boxcoxTable(X, minlambda, maxlambda, dellambda)

	Returns a table of (loglik function, lambda) pairs
for the data.






	
pytransit.stat_tools.boxcoxtransform(x, lambdax)

	Performs a box-cox transformation to data vector X.
WARNING: elements of X should be all positive!
Fixed: ‘>’ has changed to ‘<’






	
pytransit.stat_tools.comb(n, k)

	




	
pytransit.stat_tools.comb1(n, k)

	




	
pytransit.stat_tools.cumulative_average(new_x, n, prev_avg)

	




	
pytransit.stat_tools.dberndiff(d, peq, p01, p10)

	




	
pytransit.stat_tools.dbinomdiff(d, n, P)

	




	
pytransit.stat_tools.fact(n)

	




	
pytransit.stat_tools.isEven(x)

	




	
pytransit.stat_tools.loess(X, Y, h=10000)

	




	
pytransit.stat_tools.loess_correction(X, Y, h=10000, window=100)

	




	
pytransit.stat_tools.log_fac(n)

	




	
pytransit.stat_tools.loglik(X, lambdax)

	Computes the log-likelihood function for a transformed vector Xtransform.






	
pytransit.stat_tools.multinomial(K, P)

	




	
pytransit.stat_tools.my_perm(d, n)

	




	
pytransit.stat_tools.norm(x, mu, sigma)

	Normal distribution






	
pytransit.stat_tools.phi_coefficient(X, Y)

	Calculates the phi-coefficient for two bool arrays






	
pytransit.stat_tools.qberndiff(d, peq, p01, p10)

	




	
pytransit.stat_tools.qbinomdiff(d, n, peq, p01, p10)

	




	
pytransit.stat_tools.regress(X, Y)

	Performs linear regression given two vectors, X, Y.






	
pytransit.stat_tools.resampling(data1, data2, S=10000, testFunc=<function F_mean_diff_flat>, permFunc=<function F_shuffle_flat>, adaptive=False)

	Does a permutation test on two sets of data.

Performs the resampling / permutation test given two sets of data using a
function defining the test statistic and a function defining how to permute
the data.


	Parameters

	
	data1 – List or numpy array with the first set of observations.


	data2 – List or numpy array with the second set of observations.


	S – Number of permutation tests (or samples) to obtain.


	testFunc – Function defining the desired test statistic. Should accept
two lists as arguments. Default is difference in means between
the observations.


	permFunc – Function defining the way to permute the data. Should accept
one argument, the combined set of data. Default is random
shuffle.


	adaptive – Cuts-off resampling early depending on significance.






	Returns

	
	Tuple with described values

	
	test_obs – Test statistic of observation.


	mean1 – Arithmetic mean of first set of data.


	mean2 – Arithmetic mean of second set of data.


	log2FC – Normalized log2FC the means.


	pval_ltail – Lower tail p-value.


	pval_utail – Upper tail p-value.


	pval_2tail – Two-tailed p-value.


	test_sample – List of samples of the test statistic.












	Example

	>>> import pytransit.stat_tools as stat_tools
>>> import numpy
>>> X = numpy.random.random(100)
>>> Y = numpy.random.random(100)
>>> (test_obs, mean1, mean2, log2fc, pval_ltail, pval_utail, pval_2tail, test_sample) = stat_tools.resampling(X,Y)
>>> pval_2tail
0.2167
>>> test_sample[:3]
[0.076213992904990535, -0.0052513291091412784, -0.0038425140184765172]














	
pytransit.stat_tools.transformToRange(X, new_min, new_max, old_min=None, old_max=None)

	




	
pytransit.stat_tools.tricoeff(N, S)

	




	
pytransit.stat_tools.tricube(X)

	






pytransit.tnseq_tools module


	
pytransit.tnseq_tools.ExpectedRuns(n, pnon)

	Expected value of the run of non=insertions (Schilling, 1990):


ER_n =  log(1/p)(nq) + gamma/ln(1/p) -1/2 + r1(n) + E1(n)





	Parameters

	
	n (int) – Integer representing the number of sites.


	pins (float) – Floating point number representing the probability of non-insertion.






	Returns

	Size of the expected maximum run.



	Return type

	float










	
class pytransit.tnseq_tools.Gene(orf, name, desc, reads, position, start=0, end=0, strand='')

	Class defining a gene with useful attributes for TnSeq analysis.

This class helps define a “gene” with attributes that facilitate TnSeq
analysis. Here “gene” can be defined to be any genomic region. The Genes
class (with an s) can be used to define list of Gene objects with more
useful operations on the “genome” level.


	
orf

	A string defining the ID of the gene.






	
name

	A string with the human readable name of the gene.






	
desc

	A string with the description of the gene.






	
reads

	List of lists of read-counts in possible site replicate dataset.






	
position

	List of coordinates of the possible sites.






	
start

	An integer defining the start coordinate for the gene.






	
end

	An integer defining the end coordinate for the gene.






	
strand

	A string defining the strand of the gene.






	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> G = tnseq_tools.Gene("Rv0001", "dnaA", "DNA Replication A", [[0,0,0,0,1,3,0,1]],  [1,21,32,37,45,58,66,130], strand="+" )
>>> print G
Rv0001  (dnaA)  k=3 n=8 r=4 theta=0.37500
>>> print G.phi()
0.625
>>> print G.tosses
array([ 0.,  0.,  0.,  0.,  1.,  1.,  0.,  1.])






See also

Genes








	
__eq__(other)

	Compares against other gene object.


	Returns

	True if the gene objects have same orf id.



	Return type

	bool










	
__ge__(other)

	x.__ge__(y) <==> x>=y






	
__getitem__(i)

	Return read-counts at position i.


	Parameters

	i (int) – integer of the index of the desired site.



	Returns

	Reads at position i.



	Return type

	list










	
__gt__(other)

	x.__gt__(y) <==> x>y






	
__le__(other)

	x.__le__(y) <==> x<=y






	
__lt__(other)

	Compares against other gene object.


	Returns

	True if the gene object id is less than the other.



	Return type

	bool










	
__str__()

	Return a string representation of the object.


	Returns

	Human readable string with some of the attributes.



	Return type

	str










	
get_gap_span()

	Returns the span of the maxrun of the gene (i.e. number of nucleotides).


	Returns

	Number of nucleotides spanned by the max run.



	Return type

	int










	
get_gene_span()

	Returns the number of nucleotides spanned by the gene.


	Returns

	Number of nucleotides spanned by the gene’s sites.



	Return type

	int










	
phi()

	Return the non-insertion density (“phi”) for the gene.


	Returns

	Non-insertion density  (i.e. 1 - theta)



	Return type

	float










	
theta()

	Return the insertion density (“theta”) for the gene.


	Returns

	Density of the gene (i.e. k/n )



	Return type

	float










	
total_reads()

	Return the total reads for the gene.


	Returns

	Total sum of read-counts.



	Return type

	float














	
class pytransit.tnseq_tools.Genes(wigList, annotation, norm='nonorm', reps='All', minread=1, ignoreCodon=True, nterm=0.0, cterm=0.0, include_nc=False, data=[], position=[], genome='', transposon='himar1')

	Class defining a list of Gene objects with useful attributes for TnSeq
analysis.

This class helps define a list of Gene objects with attributes that
facilitate TnSeq analysis. Includes methods that calculate useful statistics
and even rudamentary analysis of essentiality.


	
wigList

	List of paths to datasets in .wig format.






	
protTable

	String with path to annotation in .prot_table format.






	
norm

	String with the normalization used/






	
reps

	String with information on how replicates were handled.






	
minread

	Integer with the minimum magnitude of read-count considered.






	
ignoreCodon

	Boolean defining whether to ignore the start/stop codon.






	
nterm

	Float number of the fraction of the N-terminus to ignore.






	
cterm

	Float number of the fraction of the C-terminus to ignore.






	
include_nc

	Boolean determining whether to include non-coding areas.






	
orf2index

	Dictionary of orf id to index in the genes list.






	
genes

	List of the Gene objects.






	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> G = tnseq_tools.Genes(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"], "transit/genomes/H37Rv.prot_table", norm="TTR")
>>> print G
Genes Object (N=3990)
>>> print G.global_theta()
0.40853707222816626
>>> print G["Rv0001"]   # Lookup like dictionary
Rv0001  (dnaA)  k=0 n=31    r=31    theta=0.00000
>>> print G[2]          # Lookup like list
Rv0003  (recF)  k=5 n=35    r=14    theta=0.14286
>>> print G[2].reads
[[  62.            0.            0.            0.            0.            0.
 0.            0.            0.            0.            0.            0.
 0.            0.           63.            0.            0.           13.
46.            0.            1.            0.            0.            0.
 0.            0.            0.            0.            0.            0.
 0.            0.            0.            0.            0.        ]
 [   3.14314432   67.26328843    0.            0.            0.            0.
 0.            0.            0.           35.20321637    0.            0.
 0.            0.           30.80281433    0.          101.20924707
 0.           23.25926796    0.           16.97297932    8.17217523
 0.            0.            2.51451546    3.77177318    0.62862886
 0.            0.           69.14917502    0.            0.            0.
 0.            0.        ]]






See also

Gene








	
__contains__(item)

	Defines __contains__ to check if gene exists in the list.


	Parameters

	item (str) – String with the id of the gene.



	Returns

	Boolean with True if item is in the list.



	Return type

	bool










	
__getitem__(i)

	Defines __getitem__ method so that it works as dictionary and list.


	Parameters

	i (int) – Integer or string defining index or orf ID desired.



	Returns

	A gene with the index or ID equal to i.



	Return type

	Gene










	
__len__()

	Defines __len__ returning number of genes.


	Returns

	Number of genes in the list.



	Return type

	int










	
__str__()

	Defines __str__ to print a generic str with the size of the list.


	Returns

	Human readable string with number of genes in object.



	Return type

	str










	
global_insertion()

	Returns total number of insertions, i.e. sum of ‘k’ over all genes.


	Returns

	Total sum of reads across all genes.



	Return type

	float










	
global_phi()

	Returns global non-insertion frequency, of the library.


	Returns

	Complement of global theta i.e. 1.0-theta



	Return type

	float










	
global_reads()

	Returns the reads among the library.


	Returns

	List of all the data.



	Return type

	list










	
global_run()

	Returns the run assuming all genes were concatenated together.


	Returns

	Max run across all genes.



	Return type

	int










	
global_sites()

	Returns total number of sites, i.e. sum of ‘n’ over all genes.


	Returns

	Total number of sites across all genes.



	Return type

	int










	
global_theta()

	Returns global insertion frequency, of the library.


	Returns

	Total sites with insertions divided by total sites.



	Return type

	float










	
local_gap_span()

	Returns numpy array with the span of nucleotides of the largest gap,
‘s’, for each gene.


	Returns

	Numpy array with the span of gap for all genes.



	Return type

	narray










	
local_gene_span()

	Returns numpy array with the span of nucleotides of the gene,
‘t’, for each gene.


	Returns

	Numpy array with the span of gene for all genes.



	Return type

	narray










	
local_insertions()

	Returns numpy array with the number of insertions, ‘k’, for each gene.


	Returns

	Numpy array with the number of insertions for all genes.



	Return type

	narray










	
local_phis()

	Returns numpy array of non-insertion frequency, ‘phi’, for each gene.


	Returns

	Numpy array with the complement of density for all genes.



	Return type

	narray










	
local_reads()

	Returns numpy array of lists containing the read counts for each gene.


	Returns

	Numpy array with the list of reads for all genes.



	Return type

	narray










	
local_runs()

	Returns numpy array with maximum run of non-insertions, ‘r’, for each gene.


	Returns

	Numpy array with the max run of non-insertions for all genes.



	Return type

	narray










	
local_sites()

	Returns numpy array with total number of TA sites, ‘n’, for each gene.


	Returns

	Numpy array with the number of sites for all genes.



	Return type

	narray










	
local_thetas()

	Returns numpy array of insertion frequencies, ‘theta’, for each gene.


	Returns

	Numpy array with the density for all genes.



	Return type

	narray










	
tosses()

	Returns list of bernoulli trials, ‘tosses’, representing insertions in the gene.


	Returns

	Sites represented as bernoulli trials with insertions as true.



	Return type

	list










	
total_reads()

	Returns total reads among the library.


	Returns

	Total sum of read-counts accross all genes.



	Return type

	float














	
pytransit.tnseq_tools.GumbelCDF(x, u, B)

	CDF of the Gumbel distribution:


e^(-e^( (u-x)/B))





	Parameters

	
	x (int) – Length of the max run.


	u (float) – Location parameter of the Gumbel dist.


	B (float) – Scale parameter of the Gumbel dist.






	Returns

	Cumulative probability o the Gumbel distribution.



	Return type

	float










	
pytransit.tnseq_tools.VarR(n, pnon)

	Variance of the expected run of non-insertons (Schilling, 1990):


	Parameters

	
	n (int) – Integer representing the number of sites.


	pnon (float) – Floating point number representing the probability of non-insertion.






	Returns

	Variance of the length of the maximum run.



	Return type

	float










	
pytransit.tnseq_tools.check_wig_includes_zeros(wig_list)

	Returns boolean list showing whether the given files include empty sites
(zero) or not.


	Parameters

	wig_list (list) – List of paths to wig files.



	Returns

	List of boolean values.



	Return type

	list










	
pytransit.tnseq_tools.combine_replicates(data, method='Sum')

	Returns list of data merged together.


	Parameters

	
	data (list) – List of numeric (replicate) data to be merged.


	method (str) – How to combine the replicate dataset.






	Returns

	List of numeric dataset now merged together.



	Return type

	list










	
pytransit.tnseq_tools.getE1(n)

	Small Correction term. Defaults to 0.01 for now






	
pytransit.tnseq_tools.getE2(n)

	Small Correction term. Defaults to 0.01 for now






	
pytransit.tnseq_tools.getGamma()

	Euler-Mascheroni constant ~ 0.577215664901






	
pytransit.tnseq_tools.getR1(n)

	Small Correction term. Defaults to 0.000016 for now






	
pytransit.tnseq_tools.getR2(n)

	Small Correction term. Defaults to 0.00006 for now






	
pytransit.tnseq_tools.get_coordinate_map(galign_path, reverse=False)

	Attempts to get mapping of coordinates from galign file.


	Parameters

	
	path (str) – Path to .galign file.


	reverse (bool) – Boolean specifying whether to do A to B or B to A.






	Returns

	Dictionary of coordinate in one file to another file.



	Return type

	dict










	
pytransit.tnseq_tools.get_data(wig_list)

	
	Returns a tuple of (data, position) containing a matrix of raw read-counts

	, and list of coordinates.






	Parameters

	wig_list (list) – List of paths to wig files.



	Returns

	Two lists containing data and positions of the wig files given.



	Return type

	tuple



	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["data/glycerol_H37Rv_rep1.wig", "data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])










See also

get_file_types combine_replicates get_data_zero_fill pytransit.norm_tools.normalize_data








	
pytransit.tnseq_tools.get_data_stats(reads)

	




	
pytransit.tnseq_tools.get_data_w_genome(wig_list, genome)

	




	
pytransit.tnseq_tools.get_data_zero_fill(wig_list)

	
	Returns a tuple of (data, position) containing a matrix of raw read counts,

	and list of coordinates. Positions that are missing are filled in as zero.






	Parameters

	wig_list (list) – List of paths to wig files.



	Returns

	Two lists containing data and positions of the wig files given.



	Return type

	tuple










	
pytransit.tnseq_tools.get_extended_pos_hash_gff(path, N=None)

	




	
pytransit.tnseq_tools.get_extended_pos_hash_pt(path, N=None)

	




	
pytransit.tnseq_tools.get_file_types(wig_list)

	Returns the transposon type (himar1/tn5) of the list of wig files.


	Parameters

	wig_list (list) – List of paths to wig files.



	Returns

	List of transposon type (“himar1” or “tn5”).



	Return type

	list










	
pytransit.tnseq_tools.get_gene_info(path)

	Returns a dictionary that maps gene id to gene information.


	Parameters

	path (str) – Path to annotation in .prot_table or GFF3 format.



	Returns

	
	Dictionary of gene id to tuple of information:

	
	name


	description


	start coordinate


	end coordinate


	strand












	Return type

	dict










	
pytransit.tnseq_tools.get_gene_info_gff(path)

	Returns a dictionary that maps gene id to gene information.


	Parameters

	path (str) – Path to annotation in GFF3 format.



	Returns

	
	Dictionary of gene id to tuple of information:

	
	name


	description


	start coordinate


	end coordinate


	strand












	Return type

	dict










	
pytransit.tnseq_tools.get_gene_info_pt(path)

	Returns a dictionary that maps gene id to gene information.


	Parameters

	path (str) – Path to annotation in .prot_table format.



	Returns

	
	Dictionary of gene id to tuple of information:

	
	name


	description


	start coordinate


	end coordinate


	strand












	Return type

	dict










	
pytransit.tnseq_tools.get_genes_in_range(pos_hash, start, end)

	Returns list of genes that occur in a given range of coordinates.


	Parameters

	
	pos_hash (dict) – Dictionary of position to list of genes.


	start (int) – Start coordinate of the desired range.


	end (int) – End coordinate of the desired range.






	Returns

	List of genes that fall within range.



	Return type

	list










	
pytransit.tnseq_tools.get_pos_hash(path)

	Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.


	Parameters

	path (str) – Path to annotation in .prot_table or GFF3 format.



	Returns

	Dictionary of position to list of genes that share that position.



	Return type

	dict










	
pytransit.tnseq_tools.get_pos_hash_gff(path)

	Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.


	Parameters

	path (str) – Path to annotation in GFF3 format.



	Returns

	Dictionary of position to list of genes that share that position.



	Return type

	dict










	
pytransit.tnseq_tools.get_pos_hash_pt(path)

	Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.


	Parameters

	path (str) – Path to annotation in .prot_table format.



	Returns

	Dictionary of position to list of genes that share that position.



	Return type

	dict










	
pytransit.tnseq_tools.get_unknown_file_types(wig_list, transposons)

	




	
pytransit.tnseq_tools.get_wig_stats(path)

	Returns statistics for the given wig file with read-counts.


	Parameters

	path (str) – String with the path to the wig file of interest.



	Returns

	
	Tuple with the following statistical measures:

	
	density


	mean read


	non-zero mean


	non-zero median


	max read


	total reads


	skew


	kurtosis












	Return type

	tuple










	
pytransit.tnseq_tools.griffin_analysis(genes_obj, pins)

	Implements the basic Gumbel analysis of runs of non-insertion, described in Griffin et al. 2011.

This analysis method calculates a p-value of observing the maximun run of
TA sites without insertions in a row (i.e. a “run”, r). Unusually long
runs are indicative of an essential gene or protein domain. Assumes that
there is a constant, global probability of observing an insertion
(tantamount to a Bernoulli probability of success).


	Parameters

	
	genes_obj (Genes) – An object of the Genes class defining the genes.


	pins (float) – The probability of insertion.






	Returns

	
	List of lists with results and information for the genes. The elements of the list are as follows:

	
	ORF ID.


	Gene Name.


	Gene Description.


	Number of TA sites with insertions.


	Number of TA sites.


	Length of largest run of non-insertion.


	Expected run for a gene this size.


	p-value of the observed run.












	Return type

	list










	
pytransit.tnseq_tools.maxrun(lst, item=0)

	Returns the length of the maximum run an item in a given list.


	Parameters

	
	lst (list) – List of numeric items.


	item (float) – Number to look for consecutive runs of.






	Returns

	Length of the maximum run of consecutive instances of item.



	Return type

	int










	
pytransit.tnseq_tools.read_genome(path)

	Reads in FASTA formatted genome file.


	Parameters

	path (str) – Path to .galign file.



	Returns

	String with the genomic sequence.



	Return type

	string










	
pytransit.tnseq_tools.runindex(runs)

	Returns a list of the indexes of the start of the runs; complements runs().


	Parameters

	runs (list) – List of numeric data.



	Returns

	List of the index of the runs of non-insertions. Non-zero sites are treated as runs of zero.



	Return type

	list










	
pytransit.tnseq_tools.runs(data)

	Return list of all the runs of consecutive non-insertions.


	Parameters

	data (list) – List of numeric data.



	Returns

	List of the length of the runs of non-insertions. Non-zero sites are treated as runs of zero.



	Return type

	list










	
pytransit.tnseq_tools.runs_w_info(data)

	Return list of all the runs of consecutive non-insertions with the start and end locations.


	Parameters

	data (list) – List of numeric data to check for runs.



	Returns

	List of dictionary from run to length and position information of the tun.



	Return type

	list










	
pytransit.tnseq_tools.tossify(data)

	Reduces the data into Bernoulli trials (or ‘tosses’) based on whether counts were observed or not.


	Parameters

	data (list) – List of numeric data.



	Returns

	Data represented as bernoulli trials with >0 as true.



	Return type

	list












pytransit.transit_tools module


	
pytransit.transit_tools.ShowAskWarning(MSG='')

	




	
pytransit.transit_tools.ShowError(MSG='')

	




	
pytransit.transit_tools.ShowMessage(MSG='')

	




	
pytransit.transit_tools.aton(aa)

	




	
pytransit.transit_tools.basename(filepath)

	




	
pytransit.transit_tools.cleanargs(rawargs)

	




	
pytransit.transit_tools.convertToCombinedWig(dataset_list, annotationPath, outputPath, normchoice='nonorm')

	Normalizes the input datasets and outputs the result in CombinedWig format.


	Parameters

	
	dataset_list (list) – List of paths to datasets in .wig format


	annotationPath (str) – Path to annotation in .prot_table or GFF3 format.


	outputPath (str) – Desired output path.


	normchoice (str) – Choice for normalization method.













	
pytransit.transit_tools.dirname(filepath)

	




	
pytransit.transit_tools.fetch_name(filepath)

	




	
pytransit.transit_tools.getTabTableData(path, colnames)

	




	
pytransit.transit_tools.get_extended_pos_hash(path)

	Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.


	Parameters

	path (str) – Path to annotation in .prot_table or GFF3 format.



	Returns

	Dictionary of position to list of genes that share that position.



	Return type

	dict










	
pytransit.transit_tools.get_gene_info(path)

	Returns a dictionary that maps gene id to gene information.


	Parameters

	path (str) – Path to annotation in .prot_table or GFF3 format.



	Returns

	
	Dictionary of gene id to tuple of information:

	
	name


	description


	start coordinate


	end coordinate


	strand












	Return type

	dict










	
pytransit.transit_tools.get_pos_hash(path)

	Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.


	Parameters

	path (str) – Path to annotation in .prot_table or GFF3 format.



	Returns

	Dictionary of position to list of genes that share that position.



	Return type

	dict










	
pytransit.transit_tools.get_validated_data(wig_list, wxobj=None)

	
	Returns a tuple of (data, position) containing a matrix of raw read-counts

	, and list of coordinates.






	Parameters

	
	wig_list (list) – List of paths to wig files.


	wxobj (object) – wxPython GUI object for warnings






	Returns

	Two lists containing data and positions of the wig files given.



	Return type

	tuple



	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_validated_data(["data/glycerol_H37Rv_rep1.wig", "data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])










See also

get_file_types combine_replicates get_data_zero_fill pytransit.norm_tools.normalize_data








	
pytransit.transit_tools.parseCoords(strand, aa_start, aa_end, start, end)

	




	
pytransit.transit_tools.transit_error(text)

	




	
pytransit.transit_tools.transit_message(msg='', prefix='')

	




	
pytransit.transit_tools.validate_annotation(annotation)

	




	
pytransit.transit_tools.validate_both_datasets(ctrldata, expdata)

	




	
pytransit.transit_tools.validate_control_datasets(ctrldata)

	




	
pytransit.transit_tools.validate_filetypes(datasets, transposons, justWarn=True)

	




	
pytransit.transit_tools.validate_transposons_used(datasets, transposons, justWarn=True)

	




	
pytransit.transit_tools.validate_wig_format(wig_list, wxobj=None)
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      	VarR() (in module pytransit.tnseq_tools), [1]


      	viterbi() (pytransit.analysis.hmm.HMMMethod method)


  





W


  	
      	wigList (pytransit.tnseq_tools.Genes attribute), [1]
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pytransit.analysis package


Submodules




pytransit.analysis.base module


	
class pytransit.analysis.base.AnalysisGUI

	
	
Enable()

	




	
Hide()

	




	
Show()

	




	
defineCheckBox(panel, labelText='', widgetCheck=False, tooltipText='', widgetSize=None)

	




	
defineChoiceBox(panel, labelText='', widgetChoice=[''], tooltipText='', labSize=None, widgetSize=None)

	




	
definePanel(wxobj)

	




	
defineTextBox(panel, labelText='', widgetText='', tooltipText='', labSize=None, widgetSize=None)

	








	
class pytransit.analysis.base.AnalysisMethod(short_name, long_name, description, output, annotation_path, wxobj=None)

	Basic class for analysis methods. Inherited by SingleMethod and ComparisonMethod.


	
Run()

	




	
add_file(path=None, filetype=None)

	




	
console_message(text)

	




	
console_message_inplace(text)

	




	
finish()

	




	
classmethod fromGUI(wxobj)

	




	
classmethod fromargs(rawargs)

	




	
classmethod fromconsole()

	




	
print_members()

	




	
progress_range(count)

	




	
progress_update(text, count)

	




	
status_message(text, time=-1)

	




	
transit_error(text)

	




	
transit_message(text)

	




	
transit_message_inplace(text)

	




	
transit_warning(text)

	




	
classmethod usage_string()

	








	
class pytransit.analysis.base.DualConditionMethod(short_name, long_name, description, ctrldata, expdata, annotation_path, output, normalization, replicates='Sum', LOESS=False, ignoreCodon=True, NTerminus=0.0, CTerminus=0.0, wxobj=None)

	Bases: pytransit.analysis.base.AnalysisMethod

Class to be inherited by analysis methods that determine changes in essentiality between two conditions (e.g. Resampling, DEHMM).






	
exception pytransit.analysis.base.InvalidArgumentException(message)

	Bases: exceptions.Exception






	
class pytransit.analysis.base.SingleConditionMethod(short_name, long_name, description, ctrldata, annotation_path, output, replicates='Sum', normalization=None, LOESS=False, ignoreCodon=True, NTerminus=0.0, CTerminus=0.0, wxobj=None)

	Bases: pytransit.analysis.base.AnalysisMethod

Class to be inherited by analysis methods that determine essentiality in a single condition (e.g. Gumbel, Binomial, HMM).






	
class pytransit.analysis.base.TransitAnalysis(sn, ln, desc, tn, method_class=<class pytransit.analysis.base.AnalysisMethod>, gui_class=<class pytransit.analysis.base.AnalysisGUI>, filetypes=[<class pytransit.analysis.base.TransitFile>])

	
	
fullname()

	




	
getDescriptionText()

	




	
getInstructionsText()

	




	
getTransposonsText()

	








	
class pytransit.analysis.base.TransitFile(identifier='#Unknown', colnames=[])

	Bases: pytransit.analysis.base.TransitGUIBase


	
displayInTrackView(displayFrame, event)

	




	
getData(path, colnames)

	




	
getHeader(path)

	




	
getMenus()

	








	
class pytransit.analysis.base.TransitGUIBase

	
	
console_message(text)

	




	
console_message_inplace(text)

	




	
status_message(text, time=-1)

	




	
transit_error(text)

	




	
transit_message(text)

	




	
transit_message_inplace(text)

	




	
transit_warning(text)

	










pytransit.analysis.binomial module


	
class pytransit.analysis.binomial.BinomialAnalysis

	Bases: pytransit.analysis.base.TransitAnalysis






	
class pytransit.analysis.binomial.BinomialFile

	Bases: pytransit.analysis.base.TransitFile


	
getHeader(path)

	








	
class pytransit.analysis.binomial.BinomialGUI

	Bases: pytransit.analysis.base.AnalysisGUI


	
definePanel(wxobj)

	








	
class pytransit.analysis.binomial.BinomialMethod(ctrldata, annotation_path, output_file, samples=10000, burnin=500, replicates='Sum', normalization=None, LOESS=False, ignoreCodon=True, NTerminus=0.0, CTerminus=0.0, pi0=0.5, pi1=0.5, M0=1.0, M1=1.0, a0=10.0, a1=10.0, b0=1.0, b1=1.0, alpha_w=0.5, beta_w=0.5, wxobj=None)

	Bases: pytransit.analysis.base.SingleConditionMethod

binomial


	
Run()

	




	
classmethod fromGUI(wxobj)

	




	
classmethod fromargs(rawargs)

	




	
classmethod usage_string()

	










pytransit.analysis.example module


	
class pytransit.analysis.example.ExampleAnalysis

	Bases: pytransit.analysis.base.TransitAnalysis






	
class pytransit.analysis.example.ExampleFile

	Bases: pytransit.analysis.base.TransitFile


	
getHeader(path)

	








	
class pytransit.analysis.example.ExampleGUI

	Bases: pytransit.analysis.base.AnalysisGUI






	
class pytransit.analysis.example.ExampleMethod(ctrldata, annotation_path, output_file, replicates='Sum', normalization=None, LOESS=False, ignoreCodon=True, NTerminus=0.0, CTerminus=0.0, wxobj=None)

	Bases: pytransit.analysis.base.SingleConditionMethod

Example


	
Run()

	




	
classmethod fromGUI(wxobj)

	




	
classmethod fromargs(rawargs)

	




	
classmethod usage_string()

	










pytransit.analysis.griffin module


	
class pytransit.analysis.griffin.GriffinAnalysis

	Bases: pytransit.analysis.base.TransitAnalysis






	
class pytransit.analysis.griffin.GriffinFile

	Bases: pytransit.analysis.base.TransitFile


	
getHeader(path)

	








	
class pytransit.analysis.griffin.GriffinGUI

	Bases: pytransit.analysis.base.AnalysisGUI


	
definePanel(wxobj)

	








	
class pytransit.analysis.griffin.GriffinMethod(ctrldata, annotation_path, output_file, minread=1, replicates='Sum', normalization=None, LOESS=False, ignoreCodon=True, NTerminus=0.0, CTerminus=0.0, wxobj=None)

	Bases: pytransit.analysis.base.SingleConditionMethod

griffin


	
Run()

	




	
classmethod fromGUI(wxobj)

	




	
classmethod fromargs(rawargs)

	




	
classmethod usage_string()

	










pytransit.analysis.gumbel module


	
class pytransit.analysis.gumbel.GumbelAnalysis

	Bases: pytransit.analysis.base.TransitAnalysis






	
class pytransit.analysis.gumbel.GumbelFile

	Bases: pytransit.analysis.base.TransitFile


	
getHeader(path)

	








	
class pytransit.analysis.gumbel.GumbelGUI

	Bases: pytransit.analysis.base.AnalysisGUI


	
definePanel(wxobj)

	








	
class pytransit.analysis.gumbel.GumbelMethod(ctrldata, annotation_path, output_file, samples=10000, burnin=500, trim=1, minread=1, replicates='Sum', normalization=None, LOESS=False, ignoreCodon=True, NTerminus=0.0, CTerminus=0.0, wxobj=None)

	Bases: pytransit.analysis.base.SingleConditionMethod

Gumbel


	
F_non(p, N, R)

	




	
Run()

	




	
classify(n, r, p)

	




	
classmethod fromGUI(wxobj)

	




	
classmethod fromargs(rawargs)

	




	
good_orf(gene)

	




	
sample_Z(p, w1, N, R, S, T, mu_s, sigma_s, SIG)

	




	
sigmoid(d, n)

	




	
classmethod usage_string()

	










pytransit.analysis.hmm module


	
class pytransit.analysis.hmm.HMMAnalysis

	Bases: pytransit.analysis.base.TransitAnalysis






	
class pytransit.analysis.hmm.HMMGUI

	Bases: pytransit.analysis.base.AnalysisGUI


	
definePanel(wxobj)

	








	
class pytransit.analysis.hmm.HMMGenesFile

	Bases: pytransit.analysis.base.TransitFile


	
getHeader(path)

	








	
class pytransit.analysis.hmm.HMMMethod(ctrldata, annotation_path, output_file, replicates='Mean', normalization=None, LOESS=False, ignoreCodon=True, NTerminus=0.0, CTerminus=0.0, wxobj=None)

	Bases: pytransit.analysis.base.SingleConditionMethod

HMM


	
Run()

	




	
backward_procedure(A, B, PI, O, C=array([], dtype=float64))

	




	
calculate_pins(reads)

	




	
forward_procedure(A, B, PI, O)

	




	
classmethod fromGUI(wxobj)

	




	
classmethod fromargs(rawargs)

	




	
post_process_genes(data, position, states, output_path)

	




	
classmethod usage_string()

	




	
viterbi(A, B, PI, O)

	








	
class pytransit.analysis.hmm.HMMSitesFile

	Bases: pytransit.analysis.base.TransitFile


	
getHeader(path)

	










pytransit.analysis.rankproduct module


	
class pytransit.analysis.rankproduct.RankProductAnalysis

	Bases: pytransit.analysis.base.TransitAnalysis






	
class pytransit.analysis.rankproduct.RankProductFile

	Bases: pytransit.analysis.base.TransitFile






	
class pytransit.analysis.rankproduct.RankProductGUI

	Bases: pytransit.analysis.base.AnalysisGUI


	
definePanel(wxobj)

	








	
class pytransit.analysis.rankproduct.RankProductMethod(ctrldata, expdata, annotation_path, output_file, normalization='TTR', samples=10000, adaptive=False, doHistogram=False, replicates='Sum', LOESS=False, ignoreCodon=True, NTerminus=0.0, CTerminus=0.0, wxobj=None)

	Bases: pytransit.analysis.base.DualConditionMethod

rankproduct


	
Run()

	




	
classmethod fromGUI(wxobj)

	




	
classmethod fromargs(rawargs)

	




	
classmethod usage_string()

	










pytransit.analysis.resampling module


	
class pytransit.analysis.resampling.ResamplingAnalysis

	Bases: pytransit.analysis.base.TransitAnalysis






	
class pytransit.analysis.resampling.ResamplingFile

	Bases: pytransit.analysis.base.TransitFile


	
displayHistogram(displayFrame, event)

	




	
getHeader(path)

	




	
getMenus()

	








	
class pytransit.analysis.resampling.ResamplingGUI

	Bases: pytransit.analysis.base.AnalysisGUI


	
definePanel(wxobj)

	








	
class pytransit.analysis.resampling.ResamplingMethod(ctrldata, expdata, annotation_path, output_file, normalization='TTR', samples=10000, adaptive=False, doHistogram=False, includeZeros=False, pseudocount=0.0, replicates='Sum', LOESS=False, ignoreCodon=True, NTerminus=0.0, CTerminus=0.0, wxobj=None)

	Bases: pytransit.analysis.base.DualConditionMethod

resampling


	
Run()

	




	
classmethod fromGUI(wxobj)

	




	
classmethod fromargs(rawargs)

	




	
classmethod usage_string()

	










pytransit.analysis.tn5gaps module


	
class pytransit.analysis.tn5gaps.Tn5GapsAnalysis

	Bases: pytransit.analysis.base.TransitAnalysis






	
class pytransit.analysis.tn5gaps.Tn5GapsFile

	Bases: pytransit.analysis.base.TransitFile


	
getHeader(path)

	








	
class pytransit.analysis.tn5gaps.Tn5GapsGUI

	Bases: pytransit.analysis.base.AnalysisGUI


	
definePanel(wxobj)

	








	
class pytransit.analysis.tn5gaps.Tn5GapsMethod(ctrldata, annotation_path, output_file, replicates='Sum', normalization=None, LOESS=False, ignoreCodon=True, minread=1, NTerminus=0.0, CTerminus=0.0, wxobj=None)

	Bases: pytransit.analysis.base.SingleConditionMethod

Example


	
Run()

	




	
calc_overlap(run_interv, gene_interv)

	




	
classmethod fromGUI(wxobj)

	




	
classmethod fromargs(rawargs)

	




	
intersect_size(intv1, intv2)

	




	
classmethod usage_string()
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Submodules




pytransit.draw_trash module




pytransit.fileDisplay module




pytransit.images module




pytransit.norm_tools module


	
class pytransit.norm_tools.AdaptiveBGCNorm

	Bases: pytransit.norm_tools.NormMethod


	
cleaninfgeom(rho)

	Returns a ‘clean’ output from the geometric distribution.






	
ecdf(x)

	Calculates an empirical CDF of the given data.






	
name = 'aBGC'

	




	
static normalize(wigList=[], annotationPath='', doTotReads=True, bgsamples=200000)

	Returns the normalized data using the aBGC method.


	Parameters

	
	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.


	doTotReads (bool) – Boolean specifying whether to do TTR normalization as well.


	bgsamples (int) – Integeer specifying how many samples to take.






	Returns

	Array with the normalized data.



	Return type

	numpy array



	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> normdata = norm_tools.aBGC_norm(data)
>>> print normdata
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])










See also

normalize_data












	
class pytransit.norm_tools.BetaGeomNorm

	Bases: pytransit.norm_tools.NormMethod


	
cleaninfgeom(rho)

	Returns a ‘clean’ output from the geometric distribution.






	
ecdf(x)

	Calculates an empirical CDF of the given data.






	
name = 'betageom'

	




	
static normalize(wigList=[], annotationPath='', doTTR=True, bgsamples=200000)

	Returns normalized data according to the BGC method.


	Parameters

	
	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.


	doTTR (bool) – Boolean specifying whether to do TTR norm as well.


	bgsamples (int) – Integer specifying how many samples to take.






	Returns

	Array with the data normalized using the betageom method.



	Return type

	numpy array



	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> normdata = norm_tools.betageom_norm(data)
>>> print normdata
[[ 0.  0.  0. ...,  0.  0.  0.]
 [ 0.  0.  0. ...,  0.  0.  0.]]










See also

normalize_data












	
class pytransit.norm_tools.EmpHistNorm

	Bases: pytransit.norm_tools.NormMethod


	
static Fzinfnb(args)

	Objective function for the zero-inflated NB method.






	
name = 'emphist'

	




	
static normalize(wigList=[], annotationPath='')

	Returns the normalized data, using the empirical hist method.


	Parameters

	
	wigList (list) – List of paths to wig formatted datasets.


	annotationPath (str) – Path to annotation in .prot_table or GFF3 format.






	Returns

	Array with the normalization factors for the emphist method.



	Return type

	numpy array



	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> factors = norm_tools.emphist_factors(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"], "transit/genomes/H37Rv.prot_table")
>>> print factors
array([[ 1.        ],
       [ 0.63464722]])










See also

normalize_data












	
pytransit.norm_tools.Fzinfnb(params, args)

	Objective function for the zero-inflated NB method.






	
class pytransit.norm_tools.NZMeanNorm

	Bases: pytransit.norm_tools.NormMethod


	
name = 'nzmean'

	




	
static normalize(wigList=[], annotationPath='')

	Returns the normalization factors for the data, using the NZMean method.


	Parameters

	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.



	Returns

	Array with the normalization factors for the nzmean method.



	Return type

	numpy array



	Example

	>>> import pytransit._tools.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> factors = norm_tools.nzmean_factors(data)
>>> print factors
array([[ 1.14836149],
       [ 0.88558737]])










See also

normalize_data












	
class pytransit.norm_tools.NoNorm

	Bases: pytransit.norm_tools.NormMethod


	
name = 'nonorm'

	




	
static normalize(wigList=[], annotationPath='')

	








	
class pytransit.norm_tools.NormMethod

	
	
name = 'undefined'

	




	
static normalize()

	








	
class pytransit.norm_tools.QuantileNorm

	Bases: pytransit.norm_tools.NormMethod


	
name = 'quantile'

	




	
static normalize(wigList=[], annotationPath='')

	Performs Quantile Normalization as described by Bolstad et al. 2003


	Parameters

	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.



	Returns

	Array with the data normalized by the quantile normalization method.



	Return type

	numpy array



	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> normdata = norm_tools.quantile_norm(data)
>>> print normdata










See also

normalize_data












	
class pytransit.norm_tools.TTRNorm

	Bases: pytransit.norm_tools.NormMethod


	
empirical_theta()

	Calculates the observed density of the data.

This is used as an estimate insertion density by some normalization methods.
May be improved by more sophisticated ways later on.


	Parameters

	data (numpy array) – 
	numpy array defining read-counts at N sites.








	Returns

	Density of the given dataset.



	Return type

	float



	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> import pytransit.norm_tools as norm_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> theta = norm_tools.empirical_theta(data)
>>> print theta
0.467133570136










See also

TTR_factors








	
name = 'emphist'

	




	
static normalize(wigList=[], annotationPath='', thetaEst=<function empirical_theta>, muEst=<function trimmed_empirical_mu>, target=100.0)

	Returns the normalization factors for the data, using the TTR method.


	Parameters

	
	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.


	thetaEst (function) – Function used to estimate density. Should take a list
of counts as input.


	muEst (function) – Function used to estimate mean count. Should take a list
of counts as input.






	Returns

	Array with the normalization factors for the TTR method.



	Return type

	numpy array



	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> factors = norm_tools.TTR_factors(data)
>>> print factors
array([[ 1.        ],
       [ 0.62862886]])










See also

normalize_data








	
trimmed_empirical_mu(t=0.05)

	Estimates the trimmed mean of the data.

This is used as an estimate of mean count by some normalization methods.
May be improved by more sophisticated ways later on.


	Parameters

	
	data (numpy array) – 
	numpy array defining read-counts at N sites.







	t (float) – Float specifying fraction of start and end to trim.






	Returns

	(Trimmed) Mean of the given dataset.



	Return type

	float



	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> import pytransit.norm_tools as norm_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> mu = norm_tools.trimmed_empirical_mu(data)
>>> print mu
120.73077107










See also

TTR_factors












	
class pytransit.norm_tools.TotReadsNorm

	Bases: pytransit.norm_tools.NormMethod


	
name = 'totreads'

	




	
static normalize(wigList=[], annotationPath='')

	Returns the normalization factors for the data, using the total reads
method.


	Parameters

	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.



	Returns

	Array with the normalization factors for the totreads method.



	Return type

	numpy array



	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> factors = norm_tools.totreads_factors(data)
>>> print factors
array([[ 1.2988762],
       [ 0.8129396]])










See also

normalize_data












	
class pytransit.norm_tools.ZeroInflatedNBNorm

	Bases: pytransit.norm_tools.NormMethod


	
name = 'zinfb'

	




	
static normalize(wigList=[], annotationPath='')

	Returns the normalization factors for the data using the zero-inflated
negative binomial method.


	Parameters

	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.



	Returns

	Array with the normalization factors for the zinfnb method.



	Return type

	numpy array



	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> factors = norm_tools.zinfnb_factors(data)
>>> print factors
[[ 0.0121883 ]
 [ 0.00747111]]










See also

normalize_data












	
pytransit.norm_tools.cleaninfgeom(x, rho)

	Returns a ‘clean’ output from the geometric distribution.






	
pytransit.norm_tools.ecdf(S, x)

	Calculates an empirical CDF of the given data.






	
pytransit.norm_tools.empirical_theta(X)

	Calculates the observed density of the data.

This is used as an estimate insertion density by some normalization methods.
May be improved by more sophisticated ways later on.


	Parameters

	data (numpy array) – 
	numpy array defining read-counts at N sites.








	Returns

	Density of the given dataset.



	Return type

	float



	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> import pytransit.norm_tools as norm_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> theta = norm_tools.empirical_theta(data)
>>> print theta
0.467133570136










See also

TTR_factors








	
pytransit.norm_tools.norm_to_target(data, target)

	Returns factors to normalize the data to the given target value.


	Parameters

	
	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.


	target (float) – Floating point specifying the target for the mean of the data/






	Returns

	Array with the factors necessary to normalize mean to target.



	Return type

	numpy array



	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> factors = norm_tools.norm_to_target(data, 100)
>>> print factors
[[ 1.8548104 ]
 [ 1.16088726]]










See also

normalize_data








	
pytransit.norm_tools.normalize_data(data, method='nonorm', wigList=[], annotationPath='')

	Normalizes the numpy array by the given normalization method.


	Parameters

	
	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.


	method (str) – Name of the desired normalization method.


	wigList (list) – List of paths for the desired wig-formatted datasets.


	annotationPath (str) – Path to the prot_table annotation file.






	Returns

	Array with the normalized data.
list: List containing the normalization factors. Empty if not used.



	Return type

	numpy array



	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
(normdata, normfactors) = norm_tools.normalize_data(data, "TTR")   # Some methods require annotation and path to wig files.
>>> print normfactors
array([[ 1.        ],
       [ 0.62862886]])
>> print normdata
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])










Note

Some normalization methods require the wigList and annotationPath arguments.








	
pytransit.norm_tools.trimmed_empirical_mu(X, t=0.05)

	Estimates the trimmed mean of the data.

This is used as an estimate of mean count by some normalization methods.
May be improved by more sophisticated ways later on.


	Parameters

	
	data (numpy array) – 
	numpy array defining read-counts at N sites.







	t (float) – Float specifying fraction of start and end to trim.






	Returns

	(Trimmed) Mean of the given dataset.



	Return type

	float



	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> import pytransit.norm_tools as norm_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> mu = norm_tools.trimmed_empirical_mu(data)
>>> print mu
120.73077107










See also

TTR_factors








	
pytransit.norm_tools.zinfnb_factors(data)

	Returns the normalization factors for the data using the zero-inflated
negative binomial method.


	Parameters

	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.



	Returns

	Array with the normalization factors for the zinfnb method.



	Return type

	numpy array



	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])
>>> factors = norm_tools.zinfnb_factors(data)
>>> print factors
[[ 0.0121883 ]
 [ 0.00747111]]










See also

normalize_data










pytransit.qcDisplay module




pytransit.stat_tools module


	
pytransit.stat_tools.BH_fdr_correction(X)

	Adjusts p-values using the Benjamini Hochberg procedure






	
pytransit.stat_tools.F_mean_diff_flat(A, B)

	




	
pytransit.stat_tools.F_shuffle_flat(X)

	




	
pytransit.stat_tools.F_sum_diff_flat(A, B)

	




	
pytransit.stat_tools.bayesian_ess_thresholds(Z_raw, ALPHA=0.05)

	Returns Essentiality Thresholds using a BH-like procedure






	
pytransit.stat_tools.binom(k, n, p)

	Binomial distribution. Uses Normal approximation for large ‘n’






	
pytransit.stat_tools.binom_cdf(k, n, p)

	CDF of the binomial distribution






	
pytransit.stat_tools.binom_test(k, n, p, type='two-sided')

	Does a binomial test given success, trials and probability.






	
pytransit.stat_tools.boxcoxTable(X, minlambda, maxlambda, dellambda)

	Returns a table of (loglik function, lambda) pairs
for the data.






	
pytransit.stat_tools.boxcoxtransform(x, lambdax)

	Performs a box-cox transformation to data vector X.
WARNING: elements of X should be all positive!
Fixed: ‘>’ has changed to ‘<’






	
pytransit.stat_tools.comb(n, k)

	




	
pytransit.stat_tools.comb1(n, k)

	




	
pytransit.stat_tools.cumulative_average(new_x, n, prev_avg)

	




	
pytransit.stat_tools.dberndiff(d, peq, p01, p10)

	




	
pytransit.stat_tools.dbinomdiff(d, n, P)

	




	
pytransit.stat_tools.fact(n)

	




	
pytransit.stat_tools.isEven(x)

	




	
pytransit.stat_tools.loess(X, Y, h=10000)

	




	
pytransit.stat_tools.loess_correction(X, Y, h=10000, window=100)

	




	
pytransit.stat_tools.log_fac(n)

	




	
pytransit.stat_tools.loglik(X, lambdax)

	Computes the log-likelihood function for a transformed vector Xtransform.






	
pytransit.stat_tools.multinomial(K, P)

	




	
pytransit.stat_tools.my_perm(d, n)

	




	
pytransit.stat_tools.norm(x, mu, sigma)

	Normal distribution






	
pytransit.stat_tools.phi_coefficient(X, Y)

	Calculates the phi-coefficient for two bool arrays






	
pytransit.stat_tools.qberndiff(d, peq, p01, p10)

	




	
pytransit.stat_tools.qbinomdiff(d, n, peq, p01, p10)

	




	
pytransit.stat_tools.regress(X, Y)

	Performs linear regression given two vectors, X, Y.






	
pytransit.stat_tools.resampling(data1, data2, S=10000, testFunc=<function F_mean_diff_flat>, permFunc=<function F_shuffle_flat>, adaptive=False)

	Does a permutation test on two sets of data.

Performs the resampling / permutation test given two sets of data using a
function defining the test statistic and a function defining how to permute
the data.


	Parameters

	
	data1 – List or numpy array with the first set of observations.


	data2 – List or numpy array with the second set of observations.


	S – Number of permutation tests (or samples) to obtain.


	testFunc – Function defining the desired test statistic. Should accept
two lists as arguments. Default is difference in means between
the observations.


	permFunc – Function defining the way to permute the data. Should accept
one argument, the combined set of data. Default is random
shuffle.


	adaptive – Cuts-off resampling early depending on significance.






	Returns

	
	Tuple with described values

	
	test_obs – Test statistic of observation.


	mean1 – Arithmetic mean of first set of data.


	mean2 – Arithmetic mean of second set of data.


	log2FC – Normalized log2FC the means.


	pval_ltail – Lower tail p-value.


	pval_utail – Upper tail p-value.


	pval_2tail – Two-tailed p-value.


	test_sample – List of samples of the test statistic.












	Example

	>>> import pytransit.stat_tools as stat_tools
>>> import numpy
>>> X = numpy.random.random(100)
>>> Y = numpy.random.random(100)
>>> (test_obs, mean1, mean2, log2fc, pval_ltail, pval_utail, pval_2tail, test_sample) = stat_tools.resampling(X,Y)
>>> pval_2tail
0.2167
>>> test_sample[:3]
[0.076213992904990535, -0.0052513291091412784, -0.0038425140184765172]














	
pytransit.stat_tools.transformToRange(X, new_min, new_max, old_min=None, old_max=None)

	




	
pytransit.stat_tools.tricoeff(N, S)

	




	
pytransit.stat_tools.tricube(X)

	






pytransit.tnseq_tools module


	
pytransit.tnseq_tools.ExpectedRuns(n, pnon)

	Expected value of the run of non=insertions (Schilling, 1990):


ER_n =  log(1/p)(nq) + gamma/ln(1/p) -1/2 + r1(n) + E1(n)





	Parameters

	
	n (int) – Integer representing the number of sites.


	pins (float) – Floating point number representing the probability of non-insertion.






	Returns

	Size of the expected maximum run.



	Return type

	float










	
class pytransit.tnseq_tools.Gene(orf, name, desc, reads, position, start=0, end=0, strand='')

	Class defining a gene with useful attributes for TnSeq analysis.

This class helps define a “gene” with attributes that facilitate TnSeq
analysis. Here “gene” can be defined to be any genomic region. The Genes
class (with an s) can be used to define list of Gene objects with more
useful operations on the “genome” level.


	
orf

	A string defining the ID of the gene.






	
name

	A string with the human readable name of the gene.






	
desc

	A string with the description of the gene.






	
reads

	List of lists of read-counts in possible site replicate dataset.






	
position

	List of coordinates of the possible sites.






	
start

	An integer defining the start coordinate for the gene.






	
end

	An integer defining the end coordinate for the gene.






	
strand

	A string defining the strand of the gene.






	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> G = tnseq_tools.Gene("Rv0001", "dnaA", "DNA Replication A", [[0,0,0,0,1,3,0,1]],  [1,21,32,37,45,58,66,130], strand="+" )
>>> print G
Rv0001  (dnaA)  k=3 n=8 r=4 theta=0.37500
>>> print G.phi()
0.625
>>> print G.tosses
array([ 0.,  0.,  0.,  0.,  1.,  1.,  0.,  1.])






See also

Genes








	
__eq__(other)

	Compares against other gene object.


	Returns

	True if the gene objects have same orf id.



	Return type

	bool










	
__ge__(other)

	x.__ge__(y) <==> x>=y






	
__getitem__(i)

	Return read-counts at position i.


	Parameters

	i (int) – integer of the index of the desired site.



	Returns

	Reads at position i.



	Return type

	list










	
__gt__(other)

	x.__gt__(y) <==> x>y






	
__le__(other)

	x.__le__(y) <==> x<=y






	
__lt__(other)

	Compares against other gene object.


	Returns

	True if the gene object id is less than the other.



	Return type

	bool










	
__str__()

	Return a string representation of the object.


	Returns

	Human readable string with some of the attributes.



	Return type

	str










	
get_gap_span()

	Returns the span of the maxrun of the gene (i.e. number of nucleotides).


	Returns

	Number of nucleotides spanned by the max run.



	Return type

	int










	
get_gene_span()

	Returns the number of nucleotides spanned by the gene.


	Returns

	Number of nucleotides spanned by the gene’s sites.



	Return type

	int










	
phi()

	Return the non-insertion density (“phi”) for the gene.


	Returns

	Non-insertion density  (i.e. 1 - theta)



	Return type

	float










	
theta()

	Return the insertion density (“theta”) for the gene.


	Returns

	Density of the gene (i.e. k/n )



	Return type

	float










	
total_reads()

	Return the total reads for the gene.


	Returns

	Total sum of read-counts.



	Return type

	float














	
class pytransit.tnseq_tools.Genes(wigList, annotation, norm='nonorm', reps='All', minread=1, ignoreCodon=True, nterm=0.0, cterm=0.0, include_nc=False, data=[], position=[], genome='', transposon='himar1')

	Class defining a list of Gene objects with useful attributes for TnSeq
analysis.

This class helps define a list of Gene objects with attributes that
facilitate TnSeq analysis. Includes methods that calculate useful statistics
and even rudamentary analysis of essentiality.


	
wigList

	List of paths to datasets in .wig format.






	
protTable

	String with path to annotation in .prot_table format.






	
norm

	String with the normalization used/






	
reps

	String with information on how replicates were handled.






	
minread

	Integer with the minimum magnitude of read-count considered.






	
ignoreCodon

	Boolean defining whether to ignore the start/stop codon.






	
nterm

	Float number of the fraction of the N-terminus to ignore.






	
cterm

	Float number of the fraction of the C-terminus to ignore.






	
include_nc

	Boolean determining whether to include non-coding areas.






	
orf2index

	Dictionary of orf id to index in the genes list.






	
genes

	List of the Gene objects.






	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> G = tnseq_tools.Genes(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"], "transit/genomes/H37Rv.prot_table", norm="TTR")
>>> print G
Genes Object (N=3990)
>>> print G.global_theta()
0.40853707222816626
>>> print G["Rv0001"]   # Lookup like dictionary
Rv0001  (dnaA)  k=0 n=31    r=31    theta=0.00000
>>> print G[2]          # Lookup like list
Rv0003  (recF)  k=5 n=35    r=14    theta=0.14286
>>> print G[2].reads
[[  62.            0.            0.            0.            0.            0.
 0.            0.            0.            0.            0.            0.
 0.            0.           63.            0.            0.           13.
46.            0.            1.            0.            0.            0.
 0.            0.            0.            0.            0.            0.
 0.            0.            0.            0.            0.        ]
 [   3.14314432   67.26328843    0.            0.            0.            0.
 0.            0.            0.           35.20321637    0.            0.
 0.            0.           30.80281433    0.          101.20924707
 0.           23.25926796    0.           16.97297932    8.17217523
 0.            0.            2.51451546    3.77177318    0.62862886
 0.            0.           69.14917502    0.            0.            0.
 0.            0.        ]]






See also

Gene








	
__contains__(item)

	Defines __contains__ to check if gene exists in the list.


	Parameters

	item (str) – String with the id of the gene.



	Returns

	Boolean with True if item is in the list.



	Return type

	bool










	
__getitem__(i)

	Defines __getitem__ method so that it works as dictionary and list.


	Parameters

	i (int) – Integer or string defining index or orf ID desired.



	Returns

	A gene with the index or ID equal to i.



	Return type

	Gene










	
__len__()

	Defines __len__ returning number of genes.


	Returns

	Number of genes in the list.



	Return type

	int










	
__str__()

	Defines __str__ to print a generic str with the size of the list.


	Returns

	Human readable string with number of genes in object.



	Return type

	str










	
global_insertion()

	Returns total number of insertions, i.e. sum of ‘k’ over all genes.


	Returns

	Total sum of reads across all genes.



	Return type

	float










	
global_phi()

	Returns global non-insertion frequency, of the library.


	Returns

	Complement of global theta i.e. 1.0-theta



	Return type

	float










	
global_reads()

	Returns the reads among the library.


	Returns

	List of all the data.



	Return type

	list










	
global_run()

	Returns the run assuming all genes were concatenated together.


	Returns

	Max run across all genes.



	Return type

	int










	
global_sites()

	Returns total number of sites, i.e. sum of ‘n’ over all genes.


	Returns

	Total number of sites across all genes.



	Return type

	int










	
global_theta()

	Returns global insertion frequency, of the library.


	Returns

	Total sites with insertions divided by total sites.



	Return type

	float










	
local_gap_span()

	Returns numpy array with the span of nucleotides of the largest gap,
‘s’, for each gene.


	Returns

	Numpy array with the span of gap for all genes.



	Return type

	narray










	
local_gene_span()

	Returns numpy array with the span of nucleotides of the gene,
‘t’, for each gene.


	Returns

	Numpy array with the span of gene for all genes.



	Return type

	narray










	
local_insertions()

	Returns numpy array with the number of insertions, ‘k’, for each gene.


	Returns

	Numpy array with the number of insertions for all genes.



	Return type

	narray










	
local_phis()

	Returns numpy array of non-insertion frequency, ‘phi’, for each gene.


	Returns

	Numpy array with the complement of density for all genes.



	Return type

	narray










	
local_reads()

	Returns numpy array of lists containing the read counts for each gene.


	Returns

	Numpy array with the list of reads for all genes.



	Return type

	narray










	
local_runs()

	Returns numpy array with maximum run of non-insertions, ‘r’, for each gene.


	Returns

	Numpy array with the max run of non-insertions for all genes.



	Return type

	narray










	
local_sites()

	Returns numpy array with total number of TA sites, ‘n’, for each gene.


	Returns

	Numpy array with the number of sites for all genes.



	Return type

	narray










	
local_thetas()

	Returns numpy array of insertion frequencies, ‘theta’, for each gene.


	Returns

	Numpy array with the density for all genes.



	Return type

	narray










	
tosses()

	Returns list of bernoulli trials, ‘tosses’, representing insertions in the gene.


	Returns

	Sites represented as bernoulli trials with insertions as true.



	Return type

	list










	
total_reads()

	Returns total reads among the library.


	Returns

	Total sum of read-counts accross all genes.



	Return type

	float














	
pytransit.tnseq_tools.GumbelCDF(x, u, B)

	CDF of the Gumbel distribution:


e^(-e^( (u-x)/B))





	Parameters

	
	x (int) – Length of the max run.


	u (float) – Location parameter of the Gumbel dist.


	B (float) – Scale parameter of the Gumbel dist.






	Returns

	Cumulative probability o the Gumbel distribution.



	Return type

	float










	
pytransit.tnseq_tools.VarR(n, pnon)

	Variance of the expected run of non-insertons (Schilling, 1990):


	Parameters

	
	n (int) – Integer representing the number of sites.


	pnon (float) – Floating point number representing the probability of non-insertion.






	Returns

	Variance of the length of the maximum run.



	Return type

	float










	
pytransit.tnseq_tools.check_wig_includes_zeros(wig_list)

	Returns boolean list showing whether the given files include empty sites
(zero) or not.


	Parameters

	wig_list (list) – List of paths to wig files.



	Returns

	List of boolean values.



	Return type

	list










	
pytransit.tnseq_tools.combine_replicates(data, method='Sum')

	Returns list of data merged together.


	Parameters

	
	data (list) – List of numeric (replicate) data to be merged.


	method (str) – How to combine the replicate dataset.






	Returns

	List of numeric dataset now merged together.



	Return type

	list










	
pytransit.tnseq_tools.getE1(n)

	Small Correction term. Defaults to 0.01 for now






	
pytransit.tnseq_tools.getE2(n)

	Small Correction term. Defaults to 0.01 for now






	
pytransit.tnseq_tools.getGamma()

	Euler-Mascheroni constant ~ 0.577215664901






	
pytransit.tnseq_tools.getR1(n)

	Small Correction term. Defaults to 0.000016 for now






	
pytransit.tnseq_tools.getR2(n)

	Small Correction term. Defaults to 0.00006 for now






	
pytransit.tnseq_tools.get_coordinate_map(galign_path, reverse=False)

	Attempts to get mapping of coordinates from galign file.


	Parameters

	
	path (str) – Path to .galign file.


	reverse (bool) – Boolean specifying whether to do A to B or B to A.






	Returns

	Dictionary of coordinate in one file to another file.



	Return type

	dict










	
pytransit.tnseq_tools.get_data(wig_list)

	
	Returns a tuple of (data, position) containing a matrix of raw read-counts

	, and list of coordinates.






	Parameters

	wig_list (list) – List of paths to wig files.



	Returns

	Two lists containing data and positions of the wig files given.



	Return type

	tuple



	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["data/glycerol_H37Rv_rep1.wig", "data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])










See also

get_file_types combine_replicates get_data_zero_fill pytransit.norm_tools.normalize_data








	
pytransit.tnseq_tools.get_data_stats(reads)

	




	
pytransit.tnseq_tools.get_data_w_genome(wig_list, genome)

	




	
pytransit.tnseq_tools.get_data_zero_fill(wig_list)

	
	Returns a tuple of (data, position) containing a matrix of raw read counts,

	and list of coordinates. Positions that are missing are filled in as zero.






	Parameters

	wig_list (list) – List of paths to wig files.



	Returns

	Two lists containing data and positions of the wig files given.



	Return type

	tuple










	
pytransit.tnseq_tools.get_extended_pos_hash_gff(path, N=None)

	




	
pytransit.tnseq_tools.get_extended_pos_hash_pt(path, N=None)

	




	
pytransit.tnseq_tools.get_file_types(wig_list)

	Returns the transposon type (himar1/tn5) of the list of wig files.


	Parameters

	wig_list (list) – List of paths to wig files.



	Returns

	List of transposon type (“himar1” or “tn5”).



	Return type

	list










	
pytransit.tnseq_tools.get_gene_info(path)

	Returns a dictionary that maps gene id to gene information.


	Parameters

	path (str) – Path to annotation in .prot_table or GFF3 format.



	Returns

	
	Dictionary of gene id to tuple of information:

	
	name


	description


	start coordinate


	end coordinate


	strand












	Return type

	dict










	
pytransit.tnseq_tools.get_gene_info_gff(path)

	Returns a dictionary that maps gene id to gene information.


	Parameters

	path (str) – Path to annotation in GFF3 format.



	Returns

	
	Dictionary of gene id to tuple of information:

	
	name


	description


	start coordinate


	end coordinate


	strand












	Return type

	dict










	
pytransit.tnseq_tools.get_gene_info_pt(path)

	Returns a dictionary that maps gene id to gene information.


	Parameters

	path (str) – Path to annotation in .prot_table format.



	Returns

	
	Dictionary of gene id to tuple of information:

	
	name


	description


	start coordinate


	end coordinate


	strand












	Return type

	dict










	
pytransit.tnseq_tools.get_genes_in_range(pos_hash, start, end)

	Returns list of genes that occur in a given range of coordinates.


	Parameters

	
	pos_hash (dict) – Dictionary of position to list of genes.


	start (int) – Start coordinate of the desired range.


	end (int) – End coordinate of the desired range.






	Returns

	List of genes that fall within range.



	Return type

	list










	
pytransit.tnseq_tools.get_pos_hash(path)

	Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.


	Parameters

	path (str) – Path to annotation in .prot_table or GFF3 format.



	Returns

	Dictionary of position to list of genes that share that position.



	Return type

	dict










	
pytransit.tnseq_tools.get_pos_hash_gff(path)

	Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.


	Parameters

	path (str) – Path to annotation in GFF3 format.



	Returns

	Dictionary of position to list of genes that share that position.



	Return type

	dict










	
pytransit.tnseq_tools.get_pos_hash_pt(path)

	Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.


	Parameters

	path (str) – Path to annotation in .prot_table format.



	Returns

	Dictionary of position to list of genes that share that position.



	Return type

	dict










	
pytransit.tnseq_tools.get_unknown_file_types(wig_list, transposons)

	




	
pytransit.tnseq_tools.get_wig_stats(path)

	Returns statistics for the given wig file with read-counts.


	Parameters

	path (str) – String with the path to the wig file of interest.



	Returns

	
	Tuple with the following statistical measures:

	
	density


	mean read


	non-zero mean


	non-zero median


	max read


	total reads


	skew


	kurtosis












	Return type

	tuple










	
pytransit.tnseq_tools.griffin_analysis(genes_obj, pins)

	Implements the basic Gumbel analysis of runs of non-insertion, described in Griffin et al. 2011.

This analysis method calculates a p-value of observing the maximun run of
TA sites without insertions in a row (i.e. a “run”, r). Unusually long
runs are indicative of an essential gene or protein domain. Assumes that
there is a constant, global probability of observing an insertion
(tantamount to a Bernoulli probability of success).


	Parameters

	
	genes_obj (Genes) – An object of the Genes class defining the genes.


	pins (float) – The probability of insertion.






	Returns

	
	List of lists with results and information for the genes. The elements of the list are as follows:

	
	ORF ID.


	Gene Name.


	Gene Description.


	Number of TA sites with insertions.


	Number of TA sites.


	Length of largest run of non-insertion.


	Expected run for a gene this size.


	p-value of the observed run.












	Return type

	list










	
pytransit.tnseq_tools.maxrun(lst, item=0)

	Returns the length of the maximum run an item in a given list.


	Parameters

	
	lst (list) – List of numeric items.


	item (float) – Number to look for consecutive runs of.






	Returns

	Length of the maximum run of consecutive instances of item.



	Return type

	int










	
pytransit.tnseq_tools.read_genome(path)

	Reads in FASTA formatted genome file.


	Parameters

	path (str) – Path to .galign file.



	Returns

	String with the genomic sequence.



	Return type

	string










	
pytransit.tnseq_tools.runindex(runs)

	Returns a list of the indexes of the start of the runs; complements runs().


	Parameters

	runs (list) – List of numeric data.



	Returns

	List of the index of the runs of non-insertions. Non-zero sites are treated as runs of zero.



	Return type

	list










	
pytransit.tnseq_tools.runs(data)

	Return list of all the runs of consecutive non-insertions.


	Parameters

	data (list) – List of numeric data.



	Returns

	List of the length of the runs of non-insertions. Non-zero sites are treated as runs of zero.



	Return type

	list










	
pytransit.tnseq_tools.runs_w_info(data)

	Return list of all the runs of consecutive non-insertions with the start and end locations.


	Parameters

	data (list) – List of numeric data to check for runs.



	Returns

	List of dictionary from run to length and position information of the tun.



	Return type

	list










	
pytransit.tnseq_tools.tossify(data)

	Reduces the data into Bernoulli trials (or ‘tosses’) based on whether counts were observed or not.


	Parameters

	data (list) – List of numeric data.



	Returns

	Data represented as bernoulli trials with >0 as true.



	Return type

	list












pytransit.transit_gui module




pytransit.transit_tools module


	
pytransit.transit_tools.ShowAskWarning(MSG='')

	




	
pytransit.transit_tools.ShowError(MSG='')

	




	
pytransit.transit_tools.ShowMessage(MSG='')

	




	
pytransit.transit_tools.aton(aa)

	




	
pytransit.transit_tools.basename(filepath)

	




	
pytransit.transit_tools.cleanargs(rawargs)

	




	
pytransit.transit_tools.convertToCombinedWig(dataset_list, annotationPath, outputPath, normchoice='nonorm')

	Normalizes the input datasets and outputs the result in CombinedWig format.


	Parameters

	
	dataset_list (list) – List of paths to datasets in .wig format


	annotationPath (str) – Path to annotation in .prot_table or GFF3 format.


	outputPath (str) – Desired output path.


	normchoice (str) – Choice for normalization method.













	
pytransit.transit_tools.dirname(filepath)

	




	
pytransit.transit_tools.fetch_name(filepath)

	




	
pytransit.transit_tools.getTabTableData(path, colnames)

	




	
pytransit.transit_tools.get_extended_pos_hash(path)

	Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.


	Parameters

	path (str) – Path to annotation in .prot_table or GFF3 format.



	Returns

	Dictionary of position to list of genes that share that position.



	Return type

	dict










	
pytransit.transit_tools.get_gene_info(path)

	Returns a dictionary that maps gene id to gene information.


	Parameters

	path (str) – Path to annotation in .prot_table or GFF3 format.



	Returns

	
	Dictionary of gene id to tuple of information:

	
	name


	description


	start coordinate


	end coordinate


	strand












	Return type

	dict










	
pytransit.transit_tools.get_pos_hash(path)

	Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.


	Parameters

	path (str) – Path to annotation in .prot_table or GFF3 format.



	Returns

	Dictionary of position to list of genes that share that position.



	Return type

	dict










	
pytransit.transit_tools.get_validated_data(wig_list, wxobj=None)

	
	Returns a tuple of (data, position) containing a matrix of raw read-counts

	, and list of coordinates.






	Parameters

	
	wig_list (list) – List of paths to wig files.


	wxobj (object) – wxPython GUI object for warnings






	Returns

	Two lists containing data and positions of the wig files given.



	Return type

	tuple



	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_validated_data(["data/glycerol_H37Rv_rep1.wig", "data/glycerol_H37Rv_rep2.wig"])
>>> print data
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.]])










See also

get_file_types combine_replicates get_data_zero_fill pytransit.norm_tools.normalize_data








	
pytransit.transit_tools.parseCoords(strand, aa_start, aa_end, start, end)

	




	
pytransit.transit_tools.transit_error(text)

	




	
pytransit.transit_tools.transit_message(msg='', prefix='')

	




	
pytransit.transit_tools.validate_annotation(annotation)

	




	
pytransit.transit_tools.validate_both_datasets(ctrldata, expdata)

	




	
pytransit.transit_tools.validate_control_datasets(ctrldata)

	




	
pytransit.transit_tools.validate_filetypes(datasets, transposons, justWarn=True)

	




	
pytransit.transit_tools.validate_transposons_used(datasets, transposons, justWarn=True)

	




	
pytransit.transit_tools.validate_wig_format(wig_list, wxobj=None)

	






pytransit.trash module




pytransit.view_trash module




Module contents
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