

    
      
          
            
  
transactions

transactions is a small python library to easily create and push transactions
to the bitcoin network.


Installation

$ pip install transactions










Contents



	Examples
	Alice sends 10000 satoshi to Bob

	Bob sends 600 satoshi to Carol with a custom op_return

	Get transactions of Alice

	Get details of a transaction between Alice and Bob





	Code
	transactions module

	service module





	Theory
	Computer Science of Bitcoin

	References





	Practice
	Running a bitcoin node in regtest mode





	Under the Hood
	Bitcoin Network

	Bitcoin Addresses

	Bitcoin Transactions

	Libraries used by transactions

	References





	Contributing

	Background

	License








Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    

  

    
      
          
            
  
Examples

Let’s assume the following cast of characters:


	Alice with the bitcoin address 'mhyCaF2HFk7CVwKmyQ8TahgVdjnHSr1pTv'

	Bob with the bitcoin address 'mqXz83H4LCxjf2ie8hYNsTRByvtfV43Pa7'

	Carol with the bitcoin address 'mtWg6ccLiZWw2Et7E5UqmHsYgrAi5wqiov'



Also consider that one bitcoin is made up of satoshi [https://en.bitcoin.it/wiki/Satoshi_%28unit%29], such that hundred
million satoshi is one bitcoin.


Note

With transactions all amounts are in satoshi and we currently only
support BIP32 [https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki] wallets (hierarchical deterministic wallets, aka
“HD Wallets”).




Alice sends 10000 satoshi to Bob

from transactions import Transactions

transactions = Transactions(testnet=True)
tx = transactions.simple_transaction(
    'mhyCaF2HFk7CVwKmyQ8TahgVdjnHSr1pTv',
    ('mqXz83H4LCxjf2ie8hYNsTRByvtfV43Pa7', 10000),
)
tx_signed = transactions.sign_transaction(tx, 'master secret')
txid = transactions.push(tx_signed)
print txid








Bob sends 600 satoshi to Carol with a custom op_return

from transactions import Transactions

transactions = Transactions(testnet=True)
tx = transactions.simple_transaction(
    'mqXz83H4LCxjf2ie8hYNsTRByvtfV43Pa7',
    ('mtWg6ccLiZWw2Et7E5UqmHsYgrAi5wqiov', 600),
    op_return='HELLOFROMASCRIBE',
)
tx_signed = transactions.sign_transaction(tx, 'master secret')
txid = transactions.push(tx_signed)
print txid





Check it out fbbd6407b8fc73169918b2fce7f07aff6a486a241c253f0f8eeb942937fbb970 [https://www.blocktrail.com/tBTC/tx/fbbd6407b8fc73169918b2fce7f07aff6a486a241c253f0f8eeb942937fbb970]




Get transactions of Alice

from transactions import Transactions

transactions = Transactions(testnet=True)

transactions.get('mhyCaF2HFk7CVwKmyQ8TahgVdjnHSr1pTv')

{'transactions': [{'amount': -20000,
   'confirmations': 5,
   'time': 1431333905,
   'txid': u'7f4902599ac9e5c9db347228b489c25fe5095f812c979dd84cc4e88f6812db9e'},
  {'amount': -40000,
   'confirmations': 11,
   'time': 1431329129,
   'txid': u'382639448115e859b0dc4092892bc0921edc8851a2b7adbd7b5ab39ccefb73ee'},
 ...
 'unspents': [{'amount': 809760000,
   'confirmations': 5,
   'txid': u'7f4902599ac9e5c9db347228b489c25fe5095f812c979dd84cc4e88f6812db9e',
   'vout': 1}]}








Get details of a transaction between Alice and Bob

from transactions import Transactions

transactions = Transactions(testnet=True)

transactions.get('382639448115e859b0dc4092892bc0921edc8851a2b7adbd7b5ab39ccefb73ee')

{u'block': 395966,
 u'confirmations': 11,
 u'days_destroyed': u'0.00',
 u'extras': None,
 u'fee': u'0.00010000',
 u'is_coinbased': 0,
 u'is_unconfirmed': False,
 u'time_utc': u'2015-05-11T09:25:29Z',
 u'trade': {u'vins': [{u'address': u'mhyCaF2HFk7CVwKmyQ8TahgVdjnHSr1pTv',
    u'amount': -0.0004,
    u'is_nonstandard': False,
    u'n': 3,
    u'type': 0,
    u'vout_tx': u'dece4f3d0de255bb53c20e89271d1236929d72e426e6e7860d97564c6b9e26ab'}],
  u'vouts': [{u'address': u'mqXz83H4LCxjf2ie8hYNsTRByvtfV43Pa7',
    u'amount': 0.0001,
    u'is_nonstandard': False,
    u'is_spent': 0,
    u'n': 0,
    u'type': 1},
...
u'type': 1}]}











          

      

      

    

  

    
      
          
            
  
Code


transactions module


	
class transactions.Transactions(service=u'blockr', testnet=False, username=u'', password=u'', host=u'', port=u'')

	Transactions: Bitcoin for Humans

All amounts are in satoshi


	
__init__(service=u'blockr', testnet=False, username=u'', password=u'', host=u'', port=u'')

	



	Parameters:	
	service (str [https://docs.python.org/2/library/functions.html#str]) – currently supports _blockr_ for blockr.io and and _daemon_ for bitcoin daemon. Defaults to _blockr_

	testnet (bool [https://docs.python.org/2/library/functions.html#bool]) – use True if you want to use tesnet. Defaults to False

	username (str [https://docs.python.org/2/library/functions.html#str]) – username to connect to the bitcoin daemon

	password (str [https://docs.python.org/2/library/functions.html#str]) – password to connect to the bitcoin daemon

	hosti (str [https://docs.python.org/2/library/functions.html#str]) – host of the bitcoin daemon

	port (str [https://docs.python.org/2/library/functions.html#str]) – port of the bitcoin daemon














	
build_transaction(inputs, outputs)

	Thin wrapper around bitcoin.mktx(inputs, outputs)





	Parameters:	
	inputs (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – inputs in the form of
{'output': 'txid:vout', 'value': amount in satoshi}

	outputs (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – outputs in the form of
{'address': to_address, 'value': amount in satoshi}






	Returns:	transaction












	
get(hash, account=u'*', max_transactions=100, min_confirmations=6, raw=False)

	



	Parameters:	
	hash – can be a bitcoin address or a transaction id. If it’s a
bitcoin address it will return a list of transactions up to
max_transactions a list of unspents with confirmed
transactions greater or equal to min_confirmantions

	account (Optional[str [https://docs.python.org/2/library/functions.html#str]]) – used when using the bitcoind. bitcoind
does not provide an easy way to retrieve transactions for a
single address. By using account we can retrieve transactions
for addresses in a  specific account






	Returns:	transaction












	
push(tx)

	



	Parameters:	tx – hex of signed transaction


	Returns:	pushed transaction










	
sign_transaction(tx, master_password, path=u'')

	



	Parameters:	
	tx – hex transaction to sign

	master_password – master password for BIP32 wallets. Can be either a
master_secret or a wif

	path (Optional[str [https://docs.python.org/2/library/functions.html#str]]) – optional path to the leaf address of the
BIP32 wallet. This allows us to retrieve private key for the
leaf address if one was used to construct the transaction.






	Returns:	signed transaction








Note

Only BIP32 hierarchical deterministic wallets are currently
supported.








	
simple_transaction(from_address, to, op_return=None, min_confirmations=6)

	



	Parameters:	
	from_address (str [https://docs.python.org/2/library/functions.html#str]) – bitcoin address originating the transaction

	to – tuple of (to_address, amount) or list of tuples [(to_addr1, amount1), (to_addr2, amount2)]. Amounts are in satoshi

	op_return (str [https://docs.python.org/2/library/functions.html#str]) – ability to set custom op_return

	min_confirmations (int [https://docs.python.org/2/library/functions.html#int]) – minimal number of required confirmations






	Returns:	transaction


















service module

Defines the main BitcoinService class which other services should subclass.


	
class transactions.services.service.BitcoinService(testnet=False)

	
	
_min_dust

	int – Minimum tx accepted by
blockr.io [https://blockr.io/]. Defaults to``3000``.






	
maxTransactionFee

	int – Maximum transaction fee. Defaults to
50000.






	
_min_transaction_fee

	int – Minimum mining fee. Defaults to 30000.






Todo

Give a bit more explanations about each attribute.




	
__init__(testnet=False)

	



	Parameters:	testnet (bool [https://docs.python.org/2/library/functions.html#bool]) – Set to True to use the
testnet [https://bitcoin.org/en/glossary/testnet]. Defaults
to False, meaning that the
mainnet [https://bitcoin.org/en/glossary/mainnet] will be
used.



















          

      

      

    

  

    
      
          
            
  
Theory

The intent here is to provide some kind of fundamental knowledge with respect
to bitcoin.

As a starting point the material here is currently heavily inspired by the
draft version of the book Bitcoin and Cryptocurrency Technologies [https://d28rh4a8wq0iu5.cloudfront.net/bitcointech/readings/princeton_bitcoin_book.pdf] by



	Arvind Narayanan [http://randomwalker.info/], Princeton University

	Joseph Bonneau [http://jbonneau.com/], Princeton University

	Edward Felten [https://www.cs.princeton.edu/~felten/], Princeton University

	Andrew Miller [https://cs.umd.edu/~amiller/], University of Maryland

	Steven Goldfeder [https://www.cs.princeton.edu/~stevenag/], Princeton University

	Jeremy Clark [http://users.encs.concordia.ca/~clark/], Concordia University






The long term intention is to extend the material as much as it makes sense
meanwhile weaving a connection to the engineering side of bitcoin.


Computer Science of Bitcoin

The goal of this section is to dwell on the fundamentals of bitcoin from the
point of view of data structures and algorithms.

Some of the key concepts are:



	secure hash functions

	hash pointers and pointer-based acyclic data structures

	digital signatures

	cryptocurrencies







Cryptographic Hash Functions

Very briefly, a basic hash function has three main characteristics:


	input value is a string of any size

	output value is of fixed size (i.e.: 256 bits)

	for a string of n bits, the hash function has a running time of O(n)



This is more or less good enough to implement a hash table.

In order to make the basic hash function cryptographically secure, three
additional characteristics are required:


	collision‐resistance

	hiding

	puzzle‐friendliness



A hash collition means that for two different input strings the hash function
returns the same hash.

Hash functions have collisions since the number of possible inputs is infinite
whereas the number of possible outputs is finite.


	collision‐resistance

	A hash function is collision-resistant if it is computationally hard [https://en.wikipedia.org/wiki/Security_of_cryptographic_hash_functions#The_meaning_of_.22hard.22] to
find its collisions.

	hiding

	Reverse engineering a hash function is computationally hard [https://en.wikipedia.org/wiki/Security_of_cryptographic_hash_functions#The_meaning_of_.22hard.22]. That is,
given the output of a hash function, the input string cannot be found.

	puzzle‐friendliness

	Very roughly this means that one can pick a puzzle id, k, and bind it to a
target result y, such that it is difficult to find a value x, which when fed
to the hash function in combination with k, will yield y. By difficult, is
meant that there are no better approaches than random trials, and that
finding x requires substantial time, more than 2^n for if y has n bits.




Hash function in use in Bitcoin

Several cryptocurrencies like Bitcoin use a hash function named SHA-256 for
verifying transactions and calculating proof-of-work or proof-of-stake. [1]

For a more in-depth study of the SHA-256 hash function one may consult
Descriptions of SHA-256, SHA-384, and SHA-512 [https://web.archive.org/web/20130526224224/http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf] by NIST.






Hash Pointer -based Data Structures

A hash pointer points to a location where data is stored along with the hash
of that data at a given point in time.

Using a hash pointer one can retrieve the data, and verify that the data hasn’t
changed.

Using hash pointers, one can build various pointer-based acyclic data
structures such as linked lists, trees, and more generally directed acyclic
graphs.

The bitcoin blockchain can be viewed as a linked list of binary trees, relying
on hash pointers. The hash pointer -based linked list is more precisely called
a hash chain, whereas the hash pointer -based binary tree is called a hash
tree, or Merkle tree [https://en.wikipedia.org/wiki/Merkle_tree], named after its inventor Ralph Merkle [https://en.wikipedia.org/wiki/Ralph_Merkle].

Transactions are assembled into a hash tree to form a “block.” Those blocks are
then linked to form a hash chain (block chain).


Note

Binary hash trees make it relatively efficient to show the chain of
transactions a transaction is linked to within a tree. For a tree with n
transactions, only about log(n) transactions are necessary.






Digital Signatures

A digital signature requires three steps:


	private / public key pair generation

	signature

	verification



Expressed in code:

private_key, public_key = generate_key_pair(key_size, passphrase=None)

signature = sign(private_key, message)

is_valid = verify(public_key, message, signature)





There are two important requirements, one somewhat obvious, and the other more
complex.


	Valid signatures must verify. That is:



verify(public_key, message, sign(private_key, message)) is True






	Reverse engineering the digital signature scheme, aka forging signatures
is computationally impossible. That is, for any given message for which the
the signature, and public key are known, it is not possible to find the
private key, or to figure out how to create new valid signatures for
different messages.




ECDSA: digital signature used in Bitcoin

For its digital signatures Bitcoin uses the Elliptic Curve Digital Signature
Algorithm (ECDSA [https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm]) [3] with a specific curve that is fine-tuned
via the domain parameters known as secp256k1 [https://en.bitcoin.it/wiki/Secp256k1].

Sizes of keys, message, and signature when using ECDSA [2]



	Private key:  256 bits

	Public key, uncompressed:  512 bits

	Public key, compressed:  257 bits

	Message to be signed:  256 bits

	Signature:  512 bits









Public Keys as Identities & Bitcoin Addresses

Using a digital signature scheme, public keys can be used as identities. In
Bitcoin, public keys are used to identify the sender and receiver in a
transaction. Bitcoin refers to these public keys as “addresses”. The sender
can sign the transaction with their private key, meanwhile the receiver can
verify the signature of the transaction using the public key of the sender.






Two Simple Cryptocurrency Models

To make it easier to understand how bitcoin works, Narayanan et al.
[2] present two simplified cryptocurrency models, which they
call “GoofyCoin”, and “ScroogeCoin”. The first model (GoofyCoin) is somewhat
naive, especially with respect to double-spending attacks, and is therefore
insecure. The second model (ScroogeCoin) resolves the double-spending attack
problem, but depends on the honesty of Scrooge, and is therefore centralized.
This section briefly reviews these two models, which are somewhat useful to
build upon to understand how bitcoin works.


Note

Double-spending attacks

“Double-spending is the result of successfully spending some money more than
once. Bitcoin protects against double spending by verifying each
transaction added to the block chain to ensure that the inputs for the
transaction had not previously already been spent.” [4]




GoofyCoin: a ledger-less cryptocurrency

The GoofyCoin cryptocurrency model is based on two main principles:


	One authority (Goofy) can create coins at will, and assign these newly
created coins to themself.

	The owner of a coin can transfer their coin to whomever they wish.






Coin Creation

The creation of a goofycoin works like so:

coin_id = generate_unique_coin_id()
coin_creation_msg = 'create_coin [coin_id]'
coin_creation_signature = sign(goofy_private_key, coin_creation_msg)





The coin_creation_msg and coin_creation_signature, taken together, form
a coin. For this example, let’s say that a coin is a tuple:

goofycoin = (coin_creation_msg, coin_creation_signature)





In a more explicit manner:

goofycoin = (
    'create_coin [coin_id]',
    sign(goofy_private_key,  'create_coin [coin_id]'),
)





Using the public key of Goofy, anyone can verify whether a goofycoin is
valid:

is_valid = verify(goofy_public_key, goofy_coin[0], goofy_coin[1])





or more explicitly:

is_valid = verify(
    goofy_public_key,
    'create_coin [coin_id]',
    coin_creation_signature,
)





Lastly, in order to be able to refrence the coin, in future transactions, we
can hash the information of the coin, such that referencing the coin will be
done via the hash. So let’s assume the following dictionary, for the coin
creation transaction:

transaction = {
    coin_hash: 'a9f268dbfda',
    coin : (
        'create_coin [coin_id]',
        sign(goofy_private_key,  'create_coin [coin_id]'),
    )
}








Coin Transfer

To transfer the above coin (a9f268dbfda) to Alice, Goofy would create the
following transaction:

transaction = {
    coin_hash: 'b3a364d1a1z',
    coin : (
        'pay_to alice_pubkey: a9f268dbfda',
        sign(goofy_private_key, 'pay_to alice_pubkey: a9f268dbfda'),
    )
}





If Alice wanted to transfer her new coin (b3a364d1a1z) to Bob, she would
then create the following transaction:

transaction = {
    coin_hash: '86b9dd63864',
    coin : (
        'pay_to bob_pubkey: b3a364d1a1z',
        sign(alice_private_key, 'pay_to bob_pubkey: b3a364d1a1z'),
    )
}






Double-spending

The GoofyCoin model does not prevent Alice from transferring the same coin to
multiple recipients. Hence, in addition to the previous transfer she made to
Bob, Alice could transfer the same coin to Carol:

transaction = {
    coin_hash: 'a1z2g5pw34',
    coin : (
        'pay_to carol_pubkey: b3a364d1a1z',
        sign(alice_private_key, 'pay_to carol_pubkey: b3a364d1a1z'),
    )
}





The two transactions (86b9dd63864, a1z2g5pw34) are conflicting, because
two people can’t own the same coin at the same time.

Next section will show how double-spending attacks can be prevented via a
centralized ledger, which keeps track of past transactions.






ScroogeCoin – a ledger-based cryptocurrency

The ScroogeCoin model relies on an append-only public ledger in which
transactions are permanently recorded.

The ledger is maintained by a trusted authority, Scrooge, who can also issue
new coins.

A rough sketch of the data structure of the ledger is as follwos;

{'prev': 0,
 'tx_id': 0,
 'tx': {...}},

{'prev': hash_function(tx_0),
 'tx_id': 1,
 'tx': {...}},

{'prev': hash_function(tx_1),
 'tx_id': 2,
 'tx': {...}},

...





The chain of transactions cannot be tempered with because of the use of hash
pointers. For example, if the content of transaction 1 was changed, the
pointer in transaction 2 would no longer point to transaction 1, and the
chain would be broken.

The final hash pointer of the chain is signed by the trusted authority,
Scrooge, who then publishes the chain. In this model, a transaction that is not
in the signed chain is ignored. Ii is the responsibility of the trusted
authority to verify that a transaction is not a double spend.

The ScroogeCoin model supports two types of transactions;


	create_coins

	Creates new coins, and is valid if signed by the trusted authority,
Scrooge.

	pay_coins

	Consumes coins, and produces new coins of the same value, that may belong
to new people. The transaction must be signed by each owner of the consumed
coins. Moreover, each input coin must not have been already spent.



A new transaction must be validated by the trusted authority, and once
validated will be signed and added to the chain of transactions, at which
point, and only then, the new transaction will be considered to have occurred.

This model works reasonably well, except for the dependence on a trusted
authority. In brief:


	The very existence of the chain relies on one central power.

	The central power can create unlimited amount of coins for itself.

	The central power can deny service to whomever it wishes by simply ignoring
transactions.

	The central power can require users of the system to pay fees in order for
their transactions to be considered.



The above problems seem sufficient to motivate efforts to decentralize the
ScroogeCoin model. This brings the next topic of study: how can such a system
be efficiently decentralized?








References




	[1]	https://en.wikipedia.org/wiki/SHA-2#Applications







	[2]	(1, 2) https://d28rh4a8wq0iu5.cloudfront.net/bitcointech/readings/princeton_bitcoin_book.pdf







	[3]	https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_Algorithm







	[4]	https://en.bitcoin.it/wiki/Double-spending










          

      

      

    

  

    
      
          
            
  
Practice


Running a bitcoin node in regtest mode

bitcoind -regtest






Bitcoin clients: bitcoin-cli & json rpc

json rpc ref: https://en.bitcoin.it/wiki/API_reference_%28JSON-RPC%29


	via curl

	via python with python-bitcoinrpc

	via python with requests

	via transactions




curl

$ curl --user user --data-binary  \
    '{"jsonrpc": "1.0", "id":"dummy", "method": "getinfo", "params": [] }'  \
    -H 'content-type: text/plain;' http://127.0.0.1:18332/










bitcoin json rpc revisited with docker

We can repeat the same as in the previous section, but this time with some
parts, and everything dockerized.

We add the twist that:


	the bitcoin server is running in a container, meanwhile client calls are
made from the docker host

	the bitcoin server and client are running in separate containers



For 1. and 2. we connect to the bitcoin node:


	via curl

	via python with python-bitcoinrpc

	via python with requests

	via transactions




host - container

Running bitcoind in container and making rpc calls to it from the host machine,
(sender_ip)

given the following bitcoin.conf:

dnsseed=0
rpcuser=a
rpcallowip=<sender_ip>





docker run --rm --name btc -v ~/.bitcoin-docker:/root/.bitcoin -p <sender_ip>:58332:18332 btc5 bitcoind -regtest -printtoconsole





curl --user a:b --data-binary '{"jsonrpc": "1.0", "id":"", "method": "getinfo", "params": [] }' -H 'content-type: text/plain;' http://<sender_ip>:58332








container-container

We can use docker-compose.

In one shell:

$ docker-compose run --rm bitcoin





In another shell:

$ docker ps

CONTAINER ID        IMAGE               COMMAND                  CREATED             STATUS              PORTS                            NAMES
94787e1325a3        sbellem/bitcoin     "bitcoind -regtest -p"   5 seconds ago       Up 5 seconds        8332-8333/tcp, 18332-18333/tcp   transactions_bitcoin_run_1





Using the CONTAINER ID or NAME:

$ docker exec -it transactions_bitcoin_run_1 bash
# bitcoin-cli -regtest getinfo





root@94787e1325a3:/# curl --user a:b --data-binary \
    '{"jsonrpc": "1.0", "id":"", "method": "getinfo", "params": [] }' \
    -H 'content-type: text/plain;' http://localhost:18332 \
    | python -m json.tool

% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
Dload  Upload   Total   Spent    Left  Speed
100   386  100   323  100    63  57483  11211 --:--:-- --:--:-- --:--:-- 64600
{
    "error": null,
    "id": "",
    "result": {
        "balance": 0.0,
        "blocks": 0,
        "connections": 0,
        "difficulty": 4.656542373906925e-10,
        "errors": "",
        "keypoololdest": 1459269071,
        "keypoolsize": 101,
        "paytxfee": 0.0,
        "protocolversion": 70012,
        "proxy": "",
        "relayfee": 1e-05,
        "testnet": false,
        "timeoffset": 0,
        "version": 120000,
        "walletversion": 60000
    }
}















          

      

      

    

  

    
      
          
            
  
Under the Hood

The intent of this section is to document what goes on under the hood of
transactions.

We’ll use three main “pillars” to organize and present the information:


	Bitcoin Network

	Bitcoin Addresses

	Bitcoin Transactions



One additional section will be used to present some key aspects of the
libraries that transactions rely on, especially the two bitcoin libraries:
pycoin and pybitcointools.


	Libraries used by transactions




Bitcoin Network

There are multiple ways that one may connect to the bitcoin network. For the
sake of simplicity, let’s say that they are two main ways:


	via a daemon

	that is communicating directly with a node located at a specific host and
port

	via a blockchain explorer

	that is communicating with the bitcoin network via the public API of the
blockchain explorer service such as blockr.io [https://blockr.io/documentation/api]




Different Modes of the Bitcoin Network

The bitcoin daemon and other bitcoin core programs can be run in three
different “network modes [https://bitcoin.org/en/developer-examples#testing-applications]”:


	mainnet [https://bitcoin.org/en/glossary/mainnet]

	The original and main network [https://bitcoin.org/en/developer-guide#term-network] for Bitcoin transactions, where
satoshis [https://bitcoin.org/en/glossary/denominations] have real economic value. [1]

	testnet [https://bitcoin.org/en/glossary/testnet]

	A global testing environment in which developers can obtain and spend
satoshis [https://bitcoin.org/en/glossary/denominations] that have no real-world value on a network [https://bitcoin.org/en/developer-guide#term-network] that is very
similar to the Bitcoin. [2]

	regtest [https://bitcoin.org/en/glossary/regression-test-mode]

	A local testing environment in which developers can almost instantly
generate blocks [https://bitcoin.org/en/glossary/block] on demand for testing events, and can create private
satoshis [https://bitcoin.org/en/glossary/denominations] with no real-world value. [3]






Running a bitcoin node in regtest mode


bitcoin json rpc

ref: https://en.bitcoin.it/wiki/API_reference_%28JSON-RPC%29


	via curl

	via python with python-bitcoinrpc

	via python with requests

	via transactions




curl

$ curl --user user --data-binary  \
    '{"jsonrpc": "1.0", "id":"dummy", "method": "getinfo", "params": [] }'  \
    -H 'content-type: text/plain;' http://127.0.0.1:18332/












docker


host - container

Runnign bitcoind in container and making rpc calls to it from the host machine,
(sender_ip)

given the following bitcoin.conf:

dnsseed=0
rpcuser=a
rpcallowip=<sender_ip>





docker run --rm --name btc -v ~/.bitcoin-docker:/root/.bitcoin -p <sender_ip>:58332:18332 btc5 bitcoind -regtest -printtoconsole





curl --user a:b --data-binary '{"jsonrpc": "1.0", "id":"", "method": "getinfo", "params": [] }' -H 'content-type: text/plain;' http://<sender_ip>:58332








container-container

Making rpc calls from a container to the bitcoind running in another container.






Connecting to the Bitcoin Network with transactions

When using transactions, one can interact with the bitcoin network
via a daemon or via a blockchain explorer. When connecting via a daemon it is
possible to connect to the three networks: mainnet, testnet, or regtest,
whereas when connecting via a blockchain explorer one may connect to the
mainnet or testnet.

The supported blockchain explorer is blockr.io [https://blockr.io/documentation/api]


Todo

show code examples








Bitcoin Addresses


Todo

Show how a bitcoin address is created.






Bitcoin Transactions


Todo

Show the different steps required to publish a transaction in the
bitcoin network.

Lifecycle of a transaction: creation, signing, publishing, confirmation


	Using create to fetch a transaction

	Using sign to fetch a transaction

	Using push to publish a transaction

	Using get to fetch a transaction



Elements of the payload of a transaction




Blocks

Transactions are assembled into blocks.

credits:



	https://gist.github.com/shirriff/c9fb5d98e6da79d9a772#file-merkle-py

	https://github.com/richardkiss/pycoin






Example:

$ curl https://blockexplorer.com/api/block/0000000000000000e067a478024addfecdc93628978aa52d91fabd4292982a50 | python -m json.tool





Or in python:

import json

import requests


BLOCKEXPLORER_API_URL = 'https://blockexplorer.com/api'
BLOCKHASH = '0000000000000000e067a478024addfecdc93628978aa52d91fabd4292982a50q'

url = '{}/block/{}'.format(BLOCKEXPLORER_API_URL, blockhash)
response = requests.get(url)
block = json.loads(response.content)

block
{u'bits': u'19015f53',
 u'chainwork': u'000000000000000000000000000000000000000000001a6eca45b2459ce9eed8',
 u'confirmations': 120187,
 u'difficulty': 3129573174.5222874,
 u'hash': u'0000000000000000e067a478024addfecdc93628978aa52d91fabd4292982a50',
 u'height': 286819,
 u'isMainChain': True,
 u'merkleroot': u'871714dcbae6c8193a2bb9b2a69fe1c0440399f38d94b3a0f1b447275a29978a',
 u'nextblockhash': u'0000000000000000b0f08ec6a3d1e84994498ecf993a9981f57982cfdb66c443',
 u'nonce': 856192328,
 u'poolInfo': {u'poolName': u'ghash.io', u'url': u'https://ghash.io/'},
 u'previousblockhash': u'000000000000000117c80378b8da0e33559b5997f2ad55e2f7d18ec1975b9717',
 u'reward': 25,
 u'size': 152509,
 u'time': 1392872245,
 u'tx': [u'00baf6626abc2df808da36a518c69f09b0d2ed0a79421ccfde4f559d2e42128b',
         u'91c5e9f288437262f218c60f986e8bc10fb35ab3b9f6de477ff0eb554da89dea',
         u'46685c94b82b84fa05b6a0f36de6ff46475520113d5cb8c6fb060e043a0dbc5c',
         u'ba7ed2544c78ad793ef5bb0ebe0b1c62e8eb9404691165ffcb08662d1733d7a8',
         u'b8dc1b7b7ed847c3595e7b02dbd7372aa221756b718c5f2943c75654faf48589',
         ...]
 u'version': 2}


'merkleroot': u'871714dcbae6c8193a2bb9b2a69fe1c0440399f38d94b3a0f1b447275a29978a',





The merkle root corresponds to the cummulative hashing of the transactions
hashes.

That is, each transaction is hashed. Each hash is a leaf of a binary tree.

A binary tree is built by pairing leaves, concatenating the pair, and computing
the hash of the concatenated pair. The same process is repeated for the parent,
recursively all the way to the root, resulting in the merkle root.

At each level of the tree, if the number of hashes is odd, then the last hash
is included twice.

Progammatically, this means:

def merkleroot(hashes);
    if len(hashes) == 1:
        return hashes[0]
    if len(hashes) % 2 == 1;
        hashes.append(hashes[-1])
    parent_hashes = []
    for i in range(0, len(hashes), 2);
        h = sec_hash_algo(hashes[i] + hashes[i+1])
        parent_hashes.append(h)
    return merkle_root(parent_hashes)






Todo

bitcoin data dir

https://en.bitcoin.it/wiki/Data_directory








Libraries used by transactions


Todo

Present libraries used; requests, pycoin, pybitcointools

Dive into the details of how pycoin and pybitcointools are used and work under the hood.






References




	[1]	https://bitcoin.org/en/glossary/mainnet







	[2]	https://bitcoin.org/en/glossary/testnet







	[3]	https://bitcoin.org/en/glossary/regression-test-mode










          

      

      

    

  

    
      
          
            
  
Contributing

Pull requests, feedback, and suggestions are welcome. The github repository is
at https://github.com/ascribe/transactions

You can also send inquiries directly to devel@ascribe.io





          

      

      

    

  

    
      
          
            
  
Background

This was developed by ascribe GmbH as part of the overall ascribe technology
stack. http://www.ascribe.io





          

      

      

    

  

    
      
          
            
  
License

Licensed under the Apache License, Version 2.0.





          

      

      

    

  

    
      
          
            

   Python Module Index


   
   t
   


   
     		 	

     		
       t	

     
       	[image: -]
       	
       transactions	
       

     
       	
       	   
       transactions.services.service	
       

   



          

      

      

    

  

    
      
          
            

Index



 _
 | B
 | G
 | M
 | P
 | S
 | T
 


_


  	
      	__init__() (transactions.services.service.BitcoinService method)

      
        	(transactions.Transactions method)


      


  

  	
      	_min_dust (transactions.services.service.BitcoinService attribute)


      	_min_transaction_fee (transactions.services.service.BitcoinService attribute)


  





B


  	
      	BitcoinService (class in transactions.services.service)


  

  	
      	build_transaction() (transactions.Transactions method)


  





G


  	
      	get() (transactions.Transactions method)


  





M


  	
      	maxTransactionFee (transactions.services.service.BitcoinService attribute)


  





P


  	
      	push() (transactions.Transactions method)


  





S


  	
      	sign_transaction() (transactions.Transactions method)


  

  	
      	simple_transaction() (transactions.Transactions method)


  





T


  	
      	Transactions (class in transactions)


  

  	
      	transactions (module)


      	transactions.services.service (module)


  







          

      

      

    

  _static/comment-close.png





_static/comment-bright.png





_static/comment.png





_static/minus.png





_static/file.png





_static/plus.png





_static/ajax-loader.gif





nav.xhtml

    
      Table of Contents


      
        		transactions


        		Examples
          
          		Alice sends 10000 satoshi to Bob


          		Bob sends 600 satoshi to Carol with a custom op_return


          		Get transactions of Alice


          		Get details of a transaction between Alice and Bob


          


        


        		Code
          
          		transactions module


          		service module


          


        


        		Theory
          
          		Computer Science of Bitcoin
            
            		Cryptographic Hash Functions


            		Hash Pointer -based Data Structures


            		Digital Signatures


            		Two Simple Cryptocurrency Models


            


          


          		References


          


        


        		Practice
          
          		Running a bitcoin node in regtest mode
            
            		Bitcoin clients: bitcoin-cli & json rpc


            		bitcoin json rpc revisited with docker


            


          


          


        


        		Under the Hood
          
          		Bitcoin Network
            
            		Different Modes of the Bitcoin Network


            		Running a bitcoin node in regtest mode


            		docker


            		Connecting to the Bitcoin Network with transactions


            


          


          		Bitcoin Addresses


          		Bitcoin Transactions
            
            		Blocks


            


          


          		Libraries used by transactions


          		References


          


        


        		Contributing


        		Background


        		License


      


    
  

_static/up.png





_static/up-pressed.png





_static/down-pressed.png





_static/down.png





