

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	toy_fci 0.1 documentation

toy_fci

Full Configuration Interaction (FCI) method for simple quantum systems.
Currently the uniform electron gas and a spinless lattice model are
implemented.

This is a particularly naive implementation in python: little attempt is made
to conserve memory or CPU time. Nevertheless, it is useful for small test
calculations, in particular for investigating ideas about the sign problem in
the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) method
discussed by Spencer, Blunt and Foulkes (J. Chem. Phys. 136, 054110 (2012);
arXiv:1110.5479).

Requires python 2.6 or later and numpy. All code is compatible with python 3.

	hamil

	lattice_fci

	ueg_fci

	lattice_propogation

	ueg_sign_problem

	License

Indices and tables

	Index

	Search Page

 Copyright 2012, James Spencer.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	toy_fci 0.1 documentation

hamil

Base classes and functions for generating and interacting with Hamiltonian
matrices.

	
class hamil.Hamiltonian(sys, basis, tau=0.1)

	Base Hamiltonian class.

The relevant subclass which provides the appropriate matrix elements should be
used.

	Parameters:	
	sys – object describing system to be studied; used only in the virtual
matrix element functions

	basis (iterable of iterables of single-particle basis functions) – set of many-particle basis functions

	tau (float) – timestep by which to propogate psip distributions in
imaginary time

Note

This is a base class; basis and sys must be appropriate to the actual subclass
used and are specific to the required system and underlying many-particle
basis set.

	
sys = None

	system to be studied

	
basis = None

	set of many-particle basis functions

	
nbasis = None

	number of many-particle basis functions (i.e. length basis)

	
hamil = None

	Hamiltonian matrix in the basis set of the many-particle basis functions

	
tau = None

	timestep by which to propogate psip distributions in imaginary time

	
pos_propogator = None

	positive propogator matrix, \(T^+\) where \(T = 1 - \tau H = T^+ - T^-\) and \(T^+\) elements are non-negative.

	
neg_propogator = None

	negative propogator matrix, \(T^-\) where \(T = 1 - \tau H = T^+ - T^-\) and \(T^-\) elements are non-negative.

	
mat_fn_diag(b)

	Calculate a diagonal Hamiltonian matrix element.

Warning

Virtual member. Must be appropriately implemented in a subclass.

	Parameters:	b (iterable of single-particle basis functions) – a many-particle basis function, \(|b\rangle\)

	Return type:	float

	Returns:	\(\langle b|H|b \rangle\).

	
mat_fn_offdiag(b1, b2)

	Calculate an off-diagonal Hamiltonian matrix element.

Warning

Virtual member. Must be appropriately implemented in a subclass.

	Parameters:	
	b1 (iterable of single-particle basis functions) – a many-particle basis function, \(|b_1\rangle\)

	b2 (iterable of single-particle basis functions) – a many-particle basis function, \(|b_2\rangle\)

	Return type:	float

	Returns:	\(\langle b_1|H|b_2 \rangle\).

	
eigh()

	

	Returns:	(eigenvalues, eigenvectors) of the Hamiltonian matrix.

	
eigvalsh()

	

	Returns:	eigenvalues of the Hamiltonian matrix.

	
negabs_off_diagonal_elements()

	Set off-diagonal elements of the Hamiltonian matrix to be negative.

This converts the Hamiltonian into the lesser sign-problem matrix discussed by
Spencer, Blunt and Foulkes.

	
negabs_diagonal_elements()

	Set diagonal elements of the Hamiltonian matrix to be negative.

This, when called after negabs_offdiagonal_elements, converts the Hamiltonian
into the greater sign-problem matrix discussed by Spencer, Blunt and Foulkes.

	
propogate(pos_psips, neg_psips)

	Propogates a psip (psi-particle) distribution for a single timestep.

	Parameters:	
	pos_psips (1D array or list (length nbasis)) – distribution of positive psips at time \(t = n\tau\) on the many-fermion basis set.

	neg_psips (1D array or list (length nbasis)) – distribution of negative psips at time \(t = n\tau\) on the many-fermion basis set.

	Returns:	(next_pos_psips, next_neg_psips) — positive and negative psip distributions at time \(t=(n+1)\tau\).

	
hamil.hartree_excitation(p1, p2)

	Find the excitation connecting two Hartree products.

	Parameters:	
	p1 (iterable of single-particle basis functions) – a Hartree product basis function

	p2 (iterable of single-particle basis functions) – a many-particle basis function

	Returns:	(from_1, to_1) where:

	from_1

	list of single-particle basis functions excited from p1

	to_2

	list of single-particle basis functions excited into p2

	
hamil.determinant_excitation(d1, d2)

	Find the excitation connecting two Slater determinants.

	Parameters:	
	p1 (iterable of single-particle basis functions) – a Slater determinant basis function

	p2 (iterable of single-particle basis functions) – a Slater determinant basis function

	Returns:	(from_1, to_1, nperm) where:

	from_1

	list of single-particle basis functions excited from d1

	to_2

	list of single-particle basis functions excited into d2

	nperm

	number of permutations required to align the two determinants such
that the orders of single-particle basis functions are in maximum
agreement. This, in general, is not the minimal possible number of
permutations but the parity of the permutations, which is all that is
required for calculating matrix elements, is correct.

	
hamil.permanent_excitation(p1, p2)

	Find the excitation connecting two permanents.

	Parameters:	
	p1 (iterable of single-particle basis functions) – a permanent basis function

	p2 (iterable of single-particle basis functions) – a permanent basis function

	Returns:	(from_1, to_1) where:

	from_1

	list of single-particle basis functions excited from p1

	to_2

	list of single-particle basis functions excited into p2

 Copyright 2012, James Spencer.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	toy_fci 0.1 documentation

lattice_fci

Implement the spinless fermion lattice model defined by the Hamiltonian

\[\begin{split}H = - \sum_{<ij>} t \left(c^\dagger_j c_i + c^\dagger_i c_j - u n_i n_j \right)\end{split}\]

in both Hartree product and Slater determinant bases on a square lattice of
dimension \(L \times L\).

This is a simple example of when the sign problem in FCIQMC is identical in
both first- and second-quantized bases.

This is an implementation of the model originally proposed by Michael
Kolodrubetz and Bryan Clark (Princeton).

	
class lattice_fci.LatticeSite(x, y, L)

	Basis function of a lattice site at location \((x,y)\) in a \(L \times L\) square lattice.

	Parameters:	
	x (integer) – x coordinate of lattice site.

	y (integer) – y coordinate of lattice site.

	L (integer) – dimension of lattice cell.

	
x = None

	x coordinate of lattice site.

	
y = None

	y coordinate of lattice site.

	
loc = None

	unique index of lattice site.

	
class lattice_fci.LatticeModel(nfermions, L, t=1, u=1)

	Representation of the lattice model system defined by the Hamiltonian:

\[\begin{split}H = - \sum_{<ij>} t \left(c^\dagger_j c_i + c^\dagger_i c_j - u n_i n_j \right)\end{split}\]

	Parameters:	
	nfermions (integer) – dimension of simulation cell

	L (integer) – number of spinless fermions in the simulation cell

	t (float) – hopping (kinetic) parameter in Hamiltonian operator

	u (float) – Coulomb parameter in Hamiltonian operator

	
nfermions = None

	number of spinless fermions in the simulation cell

	
L = None

	dimension of simulation cell

	
t = None

	Hopping parameter

	
u = None

	Coulomb parameter

	
hopping_int(site1, site2)

	Calculate the hopping integral between two fermions.

	Parameters:	
	site1 (LatticeSite) – lattice site, \(s_1\), occupied by a fermion

	site2 (LatticeSite) – lattice site, \(s_2\), occupied by a fermion

	Returns:	\(u \sum_{<ij>} \langle s_1 | u n_i n_j | s_2 \rangle\)

	
coulomb_int(site1, site2)

	Calculate the Coulomb integral between two fermions.

	Parameters:	
	site1 (LatticeSite) – lattice site, \(s_1\), occupied by a fermion

	site2 (LatticeSite) – lattice site, \(s_2\), occupied by a fermion

	Returns:	\(-t \sum_{<ij>} \langle s_1 | c^\dagger_j c_i + c^\dagger_i c_j | s_2 \rangle\)

	
lattice_fci.init_lattice_basis(nfermions, L)

	Construct many-fermion bases.

	Parameters:	
	nfermions (integer) – number of fermions in a simulation cell.

	L (integer) – dimension of 2D square simulation cell, where each lattice
site contains a single-partle basis function.

	Returns:	(hartree_producs, determinants) where:

	hartree_products

	tuple containing all Hartree products.

	determinants

	tuple containing all Slater determinants.

Determinants and Hartree products are represented as tuples of
LatticeSite objects.

	
class lattice_fci.HartreeLatticeHamiltonian(sys, basis, tau=0.1)

	Bases: hamil.Hamiltonian

Hamiltonian for the fermion lattice model in a Hartree product basis.

sys must be a LatticeModel object and the underlying single-particle
basis functions must be LatticeSite objects.

The Hartree product basis is the set of all possible permutations of fermions
in the single-particle basis set.

	
mat_fn_diag(b)

	Calculate a diagonal Hamiltonian matrix element.

	Parameters:	b (iterable of LatticeSite objects) – a Hartree product basis function, \(|b\rangle\)

	Return type:	float

	Returns:	\(\langle b|H|b \rangle\)

	
mat_fn_offdiag(bi, bj)

	Calculate an off-diagonal Hamiltonian matrix element.

	Parameters:	
	bi (iterable of LatticeSite objects) – a Hartree product basis function, \(|b_i\rangle\)

	bj (iterable of LatticeSite objects) – a Hartree product basis function, \(|b_j\rangle\)

	Return type:	float

	Returns:	\(\langle b_i|H|b_j \rangle\).

	
class lattice_fci.DeterminantLatticeHamiltonian(sys, basis, tau=0.1)

	Bases: hamil.Hamiltonian

Hamiltonian for the fermion lattice model in a Slater determinant basis.

sys must be a LatticeModel object and the underlying single-particle
basis functions must be LatticeSite objects.

The Slater determinant basis is the set of all possible combinations of
fermions in the single-particle basis set.

	
mat_fn_diag(b)

	Calculate a diagonal Hamiltonian matrix element.

	Parameters:	b (iterable of LatticeSite objects) – a Slater determinant basis function, \(|b\rangle\)

	Return type:	float

	Returns:	\(\langle b|H|b \rangle\)

	
mat_fn_offdiag(bi, bj)

	Calculate an off-diagonal Hamiltonian matrix element.

	Parameters:	
	bi (iterable of LatticeSite objects) – a Slater determinant basis function, \(|b_i\rangle\)

	bj (iterable of LatticeSite objects) – a Slater determinant basis function, \(|b_j\rangle\)

	Return type:	float

	Returns:	\(\langle b_i|H|b_j \rangle\).

	
lattice_fci.print_wfn(basis, pos, neg)

	Print out a stochastic wavefunction represented on a basis.

	Parameters:	
	basis (iterable of iterable of LatticeSite objects) – many-fermion basis

	pos (1D vector of length basis) – weight of positive psips on each basis function

	neg (1D vector of length basis) – weight of negative psips on each basis function

	
lattice_fci.print_two_fermion_wfn(basis, pos, neg, L)

	Print out a stochastic wavefunction represented on a basis.

Assumes there are two fermions in the simulation cell.

	Parameters:	
	basis (iterable of iterable of LatticeSite objects) – many-fermion basis

	pos (1D vector of length basis) – weight of positive psips on each basis function

	neg (1D vector of length basis) – weight of negative psips on each basis function

	L (integer) – dimension of lattice cell.

 Copyright 2012, James Spencer.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	toy_fci 0.1 documentation

ueg_fci

Full Configuration Interaction (FCI) method for the uniform electron gas.

This is a particularly simple implementation: little attempt is made to
conserve memory or CPU time. Nevertheless, it is useful for small test
calculations, in particular for investigating ideas about the sign problem
in the Full Configuration Interaction Quantum Monte Carlo method discussed by
Spencer, Blunt and Foulkes (J. Chem. Phys. 136, 054110 (2012); arXiv:1110.5479).

FCI calculations can be performed in a Slater determinant, permanent or Hartree
product basis.

Note that no attempt is made to tackle finite size effects.

Warning

The Hartree product basis set is much larger than the determinant/permanent
basis set, even for tiny systems. Thus the system sizes which can be
tackled using the Hartree product basis are far more limited.

	
class ueg_fci.BasisFn(i, j, k, L, spin)

	Basis function with wavevector \(2\pi(i,j,k)^{T}/L\) of the desired spin.

	Parameters:	
	i, j, k (integer) – integer labels (quantum numbers) of the wavevector

	L (float) – dimension of the cubic simulation cell of size \(L\times L \times L\)

	spin (integer) – spin of the basis function (-1 for a down electron, +1 for an up electron)

	
ueg_fci.total_momentum(basis_iterable)

	Calculate the total momentum of a many-particle basis function.

	Parameters:	basis_iterable (iterable of BasisFn objects) – many-particle basis function

	Returns:	the total momentum, in units of \(2\pi/L\), of the basis functions in basis_iterable

	
class ueg_fci.UEG(nel, nalpha, nbeta, rs)

	Create a representation of a 3D uniform electron gas.

	Parameters:	
	nel (integer) – number of electrons

	nalpha (integer) – number of alpha (spin-up) electrons

	nbeta (integer) – number of beta (spin-down) electrons

	rs (float) – electronic density

	
nel = None

	number of electrons

	
nalpha = None

	number of alpha (spin-up) electrons

	
nbeta = None

	number of beta (spin-down) electrons

	
rs = None

	electronic density

	
L = None

	length of the cubic simulation cell containing nel electrons
at the density of rs

	
Omega = None

	volume of the cubic simulation cell containing nel electrons at the density
of rs

	
coulomb_int(q)

	Calculate the Coulomb integral \(\langle k \; k' | k+q \; k'-q \rangle\).

The Coulomb integral:

\[\langle k \; k' | k+q \; k'-q \rangle = \frac{4\pi}{\Omega q^2}\]

where \(\Omega\) is the volume of the simulation cell, is independent of the
wavevectors \(k\) and \(k'\) and hence only the \(q\) vector is required.

	Parameters:	q (numpy.array) – momentum transfer vector (in absolute units)

	
ueg_fci.init_ueg_basis(sys, cutoff, sym)

	Create single-particle and the many-particle bases.

	Parameters:	
	sys (UEG) – UEG system to be studied.

	cutoff (float) – energy cutoff, in units of \((2\pi/L)^2\), defining the single-particle basis. Only single-particle basis functions with a kinetic energy equal to or less than the cutoff are considered.

	sym (numpy.array) – integer vector defining the wavevector, in units of \(2\pi/L\), representing the desired symmetry. Only Hartree products and determinants of this symmetry are returned.

	Returns:	(basis_fns, hartree_products, determinants) where:

	basis_fns

	tuple of relevant BasisFn objects, ie the single-particle basis set.

	hartree_products

	tuple containing all Hartree products formed from basis_fns.

	determinants

	tuple containing all Slater determinants formed from basis_fns.

Determinants and Hartree products are represented as tuples of BasisFn objects.

	
class ueg_fci.HartreeUEGHamiltonian(sys, basis, tau=0.1)

	Bases: hamil.Hamiltonian

Hamiltonian class for the UEG in a Hartree product basis.

sys must be a UEG object and the single-particle basis functions must
be BasisFn objects.

The Hartree product basis is the set of all possible permutations of electrons
in the single-particle basis set. It is sufficient (and cheaper) to consider
one spin and momentum block of the Hamiltonian at a time.

	
mat_fn_diag(p)

	Calculate a diagonal Hamiltonian matrix element.

	Parameters:	p (iterable of BasisFn objects) – a Hartree product basis function, \(|p_1\rangle\)

	Return type:	float

	Returns:	\(\langle p|H|p \rangle\)

	
mat_fn_offdiag(p1, p2)

	Calculate an off-diagonal matrix element.

	Parameters:	
	p1 (iterable of BasisFn objects) – a Hartree product basis function, \(|p_1\rangle\)

	p2 (iterable of BasisFn objects) – a Hartree product basis function, \(|p_2\rangle\)

	Return type:	float

	Returns:	\(\langle p_1|H|p_2 \rangle\)

	
class ueg_fci.DeterminantUEGHamiltonian(sys, basis, tau=0.1)

	Bases: hamil.Hamiltonian

Hamiltonian class for the UEG in a Slater determinant basis.

sys must be a UEG object and the single-particle basis functions must
be BasisFn objects.

The Slater determinant basis is the set of all possible combinations of
electrons in the single-particle basis set. It is sufficient (and cheaper) to
consider one spin and momentum block of the Hamiltonian at a time.

	
mat_fn_diag(d)

	Calculate a diagonal Hamiltonian matrix element.

	Parameters:	d (iterable of BasisFn objects) – a Slater determinant basis function, \(|d\rangle\)

	Return type:	float

	Returns:	\(\langle d|H|d \rangle\)

	
mat_fn_offdiag(d1, d2)

	Calculate an off-diagonal Hamiltonian matrix element.

	Parameters:	
	d1 (iterable of BasisFn objects) – a Slater determinant basis function, \(|d_1\rangle\)

	d2 (iterable of BasisFn objects) – a Slater determinant basis function, \(|d_2\rangle\)

	Return type:	float

	Returns:	\(\langle d_1|H|d_2 \rangle\).

	
class ueg_fci.PermanentUEGHamiltonian(sys, basis, tau=0.1)

	Bases: hamil.Hamiltonian

Hamiltonian class for the UEG in a permanent basis.

sys must be a UEG object and the single-particle basis functions must
be BasisFn objects.

The permanent basis is the set of all possible combinations of
electrons in the single-particle basis set, and hence is identical to the
Slater determinant basis. It is sufficient (and cheaper) to consider one spin
and momentum block of the Hamiltonian at a time.

	
mat_fn_diag(p)

	Calculate a diagonal Hamiltonian matrix element.

	Parameters:	p (iterable of BasisFn objects) – a permanent basis function, \(|p\rangle\)

	Return type:	float

	Returns:	\(\langle p|H|p \rangle\).

	
mat_fn_offdiag(p1, p2)

	Calculate an off-diagonal Hamiltonian matrix element.

	Parameters:	
	p1 (iterable of BasisFn objects) – a permanent basis function, \(|p1\rangle\)

	p2 (iterable of BasisFn objects) – a permanent basis function, \(|p2\rangle\)

	Return type:	float

	Returns:	\(\langle p_1|H|p_2 \rangle\).

 Copyright 2012, James Spencer.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	toy_fci 0.1 documentation

lattice_propogation

Script which uses the FCIQMC algorithm without annihilation to propogate
positive and negative psips using Hamiltonians defined in both Hartree product
and Slater determinant bases for two spinless fermions on a \(4\times4\) lattice
with periodic boundary conditions. The Hamiltonian operator is:

\[\begin{split}H = - \sum_{<ij>} t \left(c^\dagger_j c_i + c^\dagger_i c_j - u n_i n_j \right).\end{split}\]

This is an example where the evolution of an FCIQMC calculation is
step-by-step identical in both first- and second-quantized basis sets.

This is an independent implementation of work originally performed by Michael
Kolodrubetz and Bryan Clark (Princeton).

 Copyright 2012, James Spencer.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	toy_fci 0.1 documentation

ueg_sign_problem

Script to investigate the sign problem in a UEG system in various bases.

Execute to calculate and print out the lowest eigenvalues of Hamiltonian
matrices (and those related to the FCIQMC sign problem) for a small UEG
system using the ueg_fci module.

	
ueg_sign_problem.print_title(title, under='=')

	Print the underlined title.

	Parameters:	
	title (string) – section title to print out

	under (string) – single character used to underline the title

	
ueg_sign_problem.worker(label, sys, basis, Hamil, nprint)

	Helper function to construct and diagonalise matrices related to the sign problem.

	Parameters:	
	label (string) – label of the many-particle basis function used

	sys (ueg_fci.UEG) – desired UEG system; passed to Hamil

	basis (iterable of iterables of ueg_fci.BasisFn) – set of many-particle basis functions

	Hamil (ueg_fci.UEGHamiltonian subclass) – appropriate Hamiltonian for the basis provided

	nprint (integer) – number of eigenvalues to print out

 Copyright 2012, James Spencer.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	toy_fci 0.1 documentation

License

Copyright (c) 2012, James Spencer.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘’AS IS’’ AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Copyright 2012, James Spencer.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	toy_fci 0.1 documentation

 Python Module Index

 h |
 l |
 u

 			

 		
 h	

 	
 	
 hamil	

 			

 		
 l	

 	
 	
 lattice_fci	

 	
 	
 lattice_propogation	

 			

 		
 u	

 	
 	
 ueg_fci	

 	
 	
 ueg_sign_problem	

 Copyright 2012, James Spencer.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	toy_fci 0.1 documentation

Index

 B
 | C
 | D
 | E
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W
 | X
 | Y

B

 	

 	basis (hamil.Hamiltonian attribute)

 	

 	BasisFn (class in ueg_fci)

C

 	

 	coulomb_int() (lattice_fci.LatticeModel method)

 	

 	(ueg_fci.UEG method)

D

 	

 	determinant_excitation() (in module hamil)

 	DeterminantLatticeHamiltonian (class in lattice_fci)

 	

 	DeterminantUEGHamiltonian (class in ueg_fci)

E

 	

 	eigh() (hamil.Hamiltonian method)

 	

 	eigvalsh() (hamil.Hamiltonian method)

H

 	

 	hamil (hamil.Hamiltonian attribute)

 	

 	(module)

 	Hamiltonian (class in hamil)

 	hartree_excitation() (in module hamil)

 	

 	HartreeLatticeHamiltonian (class in lattice_fci)

 	HartreeUEGHamiltonian (class in ueg_fci)

 	hopping_int() (lattice_fci.LatticeModel method)

I

 	

 	init_lattice_basis() (in module lattice_fci)

 	

 	init_ueg_basis() (in module ueg_fci)

L

 	

 	L (lattice_fci.LatticeModel attribute)

 	

 	(ueg_fci.UEG attribute)

 	lattice_fci (module)

 	lattice_propogation (module)

 	

 	LatticeModel (class in lattice_fci)

 	LatticeSite (class in lattice_fci)

 	loc (lattice_fci.LatticeSite attribute)

M

 	

 	mat_fn_diag() (hamil.Hamiltonian method)

 	

 	(lattice_fci.DeterminantLatticeHamiltonian method)

 	(lattice_fci.HartreeLatticeHamiltonian method)

 	(ueg_fci.DeterminantUEGHamiltonian method)

 	(ueg_fci.HartreeUEGHamiltonian method)

 	(ueg_fci.PermanentUEGHamiltonian method)

 	

 	mat_fn_offdiag() (hamil.Hamiltonian method)

 	

 	(lattice_fci.DeterminantLatticeHamiltonian method)

 	(lattice_fci.HartreeLatticeHamiltonian method)

 	(ueg_fci.DeterminantUEGHamiltonian method)

 	(ueg_fci.HartreeUEGHamiltonian method)

 	(ueg_fci.PermanentUEGHamiltonian method)

N

 	

 	nalpha (ueg_fci.UEG attribute)

 	nbasis (hamil.Hamiltonian attribute)

 	nbeta (ueg_fci.UEG attribute)

 	neg_propogator (hamil.Hamiltonian attribute)

 	

 	negabs_diagonal_elements() (hamil.Hamiltonian method)

 	negabs_off_diagonal_elements() (hamil.Hamiltonian method)

 	nel (ueg_fci.UEG attribute)

 	nfermions (lattice_fci.LatticeModel attribute)

O

 	

 	Omega (ueg_fci.UEG attribute)

P

 	

 	permanent_excitation() (in module hamil)

 	PermanentUEGHamiltonian (class in ueg_fci)

 	pos_propogator (hamil.Hamiltonian attribute)

 	print_title() (in module ueg_sign_problem)

 	

 	print_two_fermion_wfn() (in module lattice_fci)

 	print_wfn() (in module lattice_fci)

 	propogate() (hamil.Hamiltonian method)

R

 	

 	rs (ueg_fci.UEG attribute)

S

 	

 	sys (hamil.Hamiltonian attribute)

T

 	

 	t (lattice_fci.LatticeModel attribute)

 	tau (hamil.Hamiltonian attribute)

 	

 	total_momentum() (in module ueg_fci)

U

 	

 	u (lattice_fci.LatticeModel attribute)

 	UEG (class in ueg_fci)

 	

 	ueg_fci (module)

 	ueg_sign_problem (module)

W

 	

 	worker() (in module ueg_sign_problem)

X

 	

 	x (lattice_fci.LatticeSite attribute)

Y

 	

 	y (lattice_fci.LatticeSite attribute)

 Copyright 2012, James Spencer.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

_static/down.png

search.html

 Navigation

 		
 index

 		
 modules |

 		toy_fci 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, James Spencer.
 Created using Sphinx 1.3.5.

_static/up.png

