

Tornado-JSON

Tornado-JSON is a small extension of Tornado [http://www.tornadoweb.org/en/stable/] with the intent providing
the tools necessary to get a JSON API up and running quickly. See
demos/helloworld/ [https://github.com/hfaran/Tornado-JSON/tree/master/demos/helloworld]
for a quick example and the accompanying
walkthrough [http://tornado-json.readthedocs.org/en/latest/using_tornado_json.html]
in the documentation.

Some of the key features the included modules provide:

	Input and output JSON Schema [http://json-schema.org/] validation
by decorating RequestHandlers with schema.validate

	Automated route generation with routes.get_routes(package)

	Automated Public API documentation using schemas and provided
descriptions

	Standardized output using the
JSend [http://labs.omniti.com/labs/jsend] specification

Contents:

	Installation

	Using Tornado-JSON
	A Simple Hello World JSON API

	Further Examples

	Request Handler Guidelines
	Schemas and Public API Documentation

	Assertions

	Documentation Generation
	Public API Usage Documentation

	Creating a REST API Using URL Annotations

	Changelog
	_

	tornado_json Package
	api_doc_gen Module

	application Module

	jsend Module

	requesthandlers Module

	routes Module

Indices and tables

	Index

	Module Index

	Search Page

Installation

Simply run:

pip install Tornado-JSON

Alternatively, clone the GitHub repository:

git clone https://github.com/hfaran/Tornado-JSON.git

Using Tornado-JSON

A Simple Hello World JSON API

I’ll be referencing the
helloworld [https://github.com/hfaran/Tornado-JSON/tree/master/demos/helloworld]
example in the demos for this.

We want to do a lot of the same things we’d usually do when creating a
Tornado app with a few differences.

helloworld.py

First, we’ll import the required packages:

import tornado.ioloop
from tornado_json.routes import get_routes
from tornado_json.application import Application

Next we’ll import the package containing our web app. This is the
package where all of your RequestHandlers live.

import helloworld

Next, we write a lot of the same Tornado “boilerplate” as you’d find in
the Tornado helloworld example, except, you don’t have to manually
specify routes because tornado_json gathers those for you and names
them based on your project structure and RequestHandler names. You’re
free to customize routes however you want, of course, after they’ve
been initially automatically generated.

def main():
 # Pass the web app's package the get_routes and it will generate
 # routes based on the submodule names and ending with lowercase
 # request handler name (with 'handler' removed from the end of the
 # name if it is the name).
 # [("/api/helloworld", helloworld.api.HelloWorldHandler)]
 routes = get_routes(helloworld)

 # Create the application by passing routes and any settings
 application = Application(routes=routes, settings={})

 # Start the application on port 8888
 application.listen(8888)
 tornado.ioloop.IOLoop.instance().start()

helloworld/api.py

Now comes the fun part where we develop the actual web app. We’ll import
APIHandler (this is the handler you should subclass for API routes),
and the schema.validate decorator which will validate input and output
schema for us.

from tornado_json.requesthandlers import APIHandler
from tornado_json import schema

class HelloWorldHandler(APIHandler):
 """Hello!"""
 @schema.validate(...)
 def get(...):
 ...

Next, we’ll start writing our get method, but before writing the body,
we’ll define an output schema for it and pass it as an argument to the
schema.validate decorator which will automatically validate the output
against the passed schema. In addition to the schema, the docstring
for each HTTP method will be used by Tornado-JSON to generate public API
documentation for that route which will be automatically
generated when you run the app (see the Documentation Generation section
for details). Input and output schemas are as per the JSON
Schema [http://json-schema.org/] standard.

@schema.validate(output_schema={"type": "string"})
def get(self):
 """Shouts hello to the world!"""
 ...

Finally we’ll write our get method body which will write “Hello world!”
back. Notice that rather than using self.write as we usually would,
we simply return the data we want to write back, which will then be
validated against the output schema and be written back according to the
JSend [http://labs.omniti.com/labs/jsend] specification. The
schema.validate decorator handles all of this so be sure to decorate any
HTTP methods with it.

@schema.validate(output_schema={"type": "string"})
def get(self):
 """Shouts hello to the world!"""
 return "Hello world!"

Running our Hello World app

Now, we can finally run the app python helloworld.py. You should be
able to send a GET request to localhost:8888/api/helloworld and get
a JSONic “Hello world!” back. Additionally, you’ll notice an
API_Documentation.md pop up in the directory, which contains the API
Documentation you can give to users about your new and fantastic API.

Further Examples

See helloworld [https://github.com/hfaran/Tornado-JSON/blob/master/demos/helloworld/helloworld/api.py]
for further RequestHandler examples with features including:

	Asynchronous methods in RequestHandlers (must use tornado_json.gen.coroutine rather than tornado.gen.coroutine)

	POSTing (or PUTing, PATCHing etc.) data; self.body

	How to generate routes with URL patterns for RequestHandler methods with arguments

	and possibly more!

Request Handler Guidelines

Schemas and Public API Documentation

Use the schema.validate decorator on methods which will automatically
validate the request body and output against the schemas provided. The schemas
must be valid JSON schemas;
readthedocs [https://python-jsonschema.readthedocs.org/en/latest/]
for an example.
Additionally, return the data from the
request handler, rather than writing it back (the decorator will take
care of that).

The docstring of the method, as well as the schemas will be used to generate
public API documentation.

class ExampleHandler(APIHandler):
 @schema.validate(input_schema=..., output_schema=...)
 def post(self):
 """I am the public API documentation of this route"""
 ...
 return data

Assertions

Use exceptions.api_assert to fail when some the client does not meet some
API pre-condition/requirement, e.g., an invalid or incomplete request is
made. When using an assertion is not suitable,
raise APIError(...); don’t use self.fail directly.

class ExampleHandler(APIHandler):
 @schema.validate()
 def post(self):
 ...
 api_assert(condition, status_code, log_message=log_message)

Documentation Generation

Public API Usage Documentation

API Usage documentation is generated by the tornado_json.api_doc_gen
module. The api_doc_gen method is run on startup so to generate
documentation, simply run your app and the documentation will written to
API_Documentation.md. in the current folder.

Creating a REST API Using URL Annotations

You may have noticed that the automatic URL generation
is meant to be quick and easy-to-use for simple cases (creating an
API in 15 minutes kind of thing).

It is more powerful though, however, as you can customize it
to get the URLs for RequestHandlers how you want without
having to make additions to output from routes.get_routes
yourself. This is done through the use of “URL annotations”.
APIHandler and ViewHandler have two “magic” attributes
(__urls__ and __url_names__) that allow you to define custom routes right in the handler
body. See relevant documentation in the
REST API [https://github.com/hfaran/Tornado-JSON/blob/master/demos/rest_api/cars/api/__init__.py]
example in the demos.

Changelog

_

1.3.4

	Fix regression in 1.3.3

	Pin versions for supported set of dependencies

1.3.3

	Support Tornado >= 5.0 and Python 3.6

1.3.2

	Recovery release for PyPI (1.3.1 had an incomplete module included accidentally)

1.3.1

	Minor updates with versioning

1.3.0

	Added use_defaults support for schema.validate

	Added support for custom validators

	Bugfix: Fixed api_doc_gen duplicated entries

	Bugfix: Remove pyclbr and use inspect instead for module introspection

1.2.2

	generate_docs parameter added to Application for optional API documentation generation

1.2.1

	arg_pattern now contains hyphen

	Handle case where server would crash when generating docs for methods with

no docstring
* Add support for tornado==3.x.x gen.coroutine
* Add format_checker kwarg to schema.validate

1.2.0

	
	Implement tornado_json.gen.coroutine

	
	As a fix for #59 [https://github.com/hfaran/Tornado-JSON/issues/59], a custom wrapper for the tornado.gen.coroutine wrapper has been implemented. This was necessary as we lose the original argspec through it because the wrapper simply has (*args, **kwargs) as its signature. Here, we annotate the original argspec as an attribute to the wrapper so it can be referenced later by Tornado-JSON when generating routes.

1.1.0

	Handle routes as URLSpec and >2-tuple in api_doc_gen

	Refactor api_doc_gen; now has public function get_api_doc for use

1.0.0

	Compatibility updates for tornado>=4.0.0

v0.41

	Fixed JSendMixin hanging if auto_finish was disabled

v0.40 - Replace apid with parameterized schema.validate

	The apid class-variable is no longer used

	Schemas are passed as arguments to schema.validate

	Method docstrings are used in public API documentation, in place of apid[method]["doc"]

v0.31 - On input schema of None, input is presumed to be None

	Rather than forcing an input schema of None with GET and DELETE methods, whether input is JSON-decoded or not, is dependent on whether the provided input schema is None or not. This means that get and delete methods can now have request bodies if desired.

v0.30 - URL Annotations

	Added __urls__ and __url_names__ attributes to allow flexible creation of custom URLs that make creating REST APIs etc. easy

	Added a REST API demo as an example for URL annotations

	Added URL annotations documentation

	Refactored and improved route generation in routes

v0.20 - Refactor of utils module

Functions that did not belong in utils were moved to more relevant modules. This change changes the interface for Tornado-JSON in quite a big way. The following changes were made (that are not backwards compatible).

	api_assert and APIError were moved to tornado_json.exceptions

	io_schema was renamed validate and moved to tornado_json.schema

v0.14 - Bugfixes thanks to 100% coverage

	Fixes related to error-writing in io_schema and APIHandler.write_error

v0.13 - Add asynchronous compatibility to io_schema

	Add asynchronous functionality to io_schema

v0.12 - Python3 support

	Python3.3, in addition to Python2.7, is now supported.

v0.11 - Duplicate route bugfix

	Fixed bug where duplicate routes would be created on existence of multiple HTTP methods.

v0.10 - Route generation with URL patterns

Route generation will now inspect method signatures in APIHandler and ViewHandler subclasses, and construct routes with URL patterns based on the signatures. URL patterns match [a-zA-Z0-9_]+.

Backwards Compatibility: body is no longer provided by io_schema as the sole argument to HTTP methods. Any existing code using body can now use self.body to get the same object.

v0.08 - Input and output example fields

	Add input_example and output_example fields

	status_code 400 on ValidationError

	Exclude delete from input validation

tornado_json Package

api_doc_gen Module

	
tornado_json.api_doc_gen.api_doc_gen(routes)

	Get and write API documentation for routes to file

	
tornado_json.api_doc_gen.get_api_docs(routes)

	Generates GitHub Markdown formatted API documentation using
provided schemas in RequestHandler methods and their docstrings.

	Parameters

	routes ([(url, RequestHandler), ..]) – List of routes (this is ideally all possible routes of the
app)

	Return type

	str

	Returns

	generated GFM-formatted documentation

application Module

	
class tornado_json.application.Application(routes, settings, db_conn=None, generate_docs=False)

	Bases: tornado.web.Application

Entry-point for the app

	Generate API documentation using provided routes

	Initialize the application

	Parameters

	
	routes ([(url, RequestHandler), ..]) – List of routes for the app

	settings (dict) – Settings for the app

	db_conn – Database connection

	generate_docs (bool) – If set, will generate API documentation for
provided routes. Documentation is written as API_Documentation.md
in the cwd.

jsend Module

	
class tornado_json.jsend.JSendMixin

	Bases: object

http://labs.omniti.com/labs/jsend

JSend is a specification that lays down some rules for how JSON
responses from web servers should be formatted.

JSend focuses on application-level (as opposed to protocol- or
transport-level) messaging which makes it ideal for use in
REST-style applications and APIs.

	
error(message, data=None, code=None)

	An error occurred in processing the request, i.e. an exception was
thrown.

	Parameters

	
	data (A JSON-serializable object) – A generic container for any other information about the
error, i.e. the conditions that caused the error,
stack traces, etc.

	message (A JSON-serializable object) – A meaningful, end-user-readable (or at the least
log-worthy) message, explaining what went wrong

	code (int) – A numeric code corresponding to the error, if applicable

	
fail(data)

	There was a problem with the data submitted, or some pre-condition
of the API call wasn’t satisfied.

	Parameters

	data (A JSON-serializable object) – Provides the wrapper for the details of why the request
failed. If the reasons for failure correspond to POST values,
the response object’s keys SHOULD correspond to those POST values.

	
success(data)

	When an API call is successful, the JSend object is used as a simple
envelope for the results, using the data key.

	Parameters

	data (A JSON-serializable object) – Acts as the wrapper for any data returned by the API
call. If the call returns no data, data should be set to null.

requesthandlers Module

	
class tornado_json.requesthandlers.APIHandler(application, request, **kwargs)

	Bases: tornado_json.requesthandlers.BaseHandler, tornado_json.jsend.JSendMixin

RequestHandler for API calls

	Sets header as application/json

	Provides custom write_error that writes error back as JSON rather than as the standard HTML template

	
initialize()

	
	Set Content-type for JSON

	
write_error(status_code, **kwargs)

	Override of RequestHandler.write_error

Calls error() or fail() from JSendMixin depending on which
exception was raised with provided reason and status code.

	Parameters

	status_code (int) – HTTP status code

	
class tornado_json.requesthandlers.BaseHandler(application, request, **kwargs)

	Bases: tornado.web.RequestHandler

BaseHandler for all other RequestHandlers

	
db_conn

	Returns database connection abstraction

If no database connection is available, raises an AttributeError

	
class tornado_json.requesthandlers.ViewHandler(application, request, **kwargs)

	Bases: tornado_json.requesthandlers.BaseHandler

Handler for views

	
initialize()

	
	Set Content-type for HTML

routes Module

	
tornado_json.routes.gen_submodule_names(package)

	Walk package and yield names of all submodules

	Parameters

	package (package) – The package to get submodule names of

	Returns

	Iterator that yields names of all submodules of package

	Return type

	Iterator that yields str

	
tornado_json.routes.get_module_routes(module_name, custom_routes=None, exclusions=None, arg_pattern='(?P<{}>[a-zA-Z0-9_\\-]+)')

	Create and return routes for module_name

Routes are (url, RequestHandler) tuples

	Returns

	list of routes for module_name with respect to exclusions
and custom_routes. Returned routes are with URLs formatted such
that they are forward-slash-separated by module/class level
and end with the lowercase name of the RequestHandler (it will also
remove ‘handler’ from the end of the name of the handler).
For example, a requesthandler with the name
helloworld.api.HelloWorldHandler would be assigned the url
/api/helloworld.
Additionally, if a method has extra arguments aside from self in
its signature, routes with URL patterns will be generated to
match r"(?P<{}>[a-zA-Z0-9_\-]+)".format(argname) for each
argument. The aforementioned regex will match ONLY values
with alphanumeric, hyphen and underscore characters. You can provide
your own pattern by setting a arg_pattern param.

	Return type

	[(url, RequestHandler), ..]

	Parameters

	
	module_name (str) – Name of the module to get routes for

	custom_routes ([(str, RequestHandler), ..]) – List of routes that have custom URLs and therefore
should be automagically generated

	exclusions ([str, str, ..]) – List of RequestHandler names that routes should not be
generated for

	arg_pattern (str) – Default pattern for extra arguments of any method

	
tornado_json.routes.get_routes(package)

	This will walk package and generates routes from any and all
APIHandler and ViewHandler subclasses it finds. If you need to
customize or remove any routes, you can do so to the list of
returned routes that this generates.

	Parameters

	package (package) – The package containing RequestHandlers to generate
routes from

	Returns

	List of routes for all submodules of package

	Return type

	[(url, RequestHandler), ..]

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 tornado_json	

 	
 	
 tornado_json.api_doc_gen	

 	
 	
 tornado_json.application	

 	
 	
 tornado_json.jsend	

 	
 	
 tornado_json.requesthandlers	

 	
 	
 tornado_json.routes	

Index

 A
 | B
 | D
 | E
 | F
 | G
 | I
 | J
 | S
 | T
 | V
 | W

A

 	
 	api_doc_gen() (in module tornado_json.api_doc_gen)

 	
 	APIHandler (class in tornado_json.requesthandlers)

 	Application (class in tornado_json.application)

B

 	
 	BaseHandler (class in tornado_json.requesthandlers)

D

 	
 	db_conn (tornado_json.requesthandlers.BaseHandler attribute)

E

 	
 	error() (tornado_json.jsend.JSendMixin method)

F

 	
 	fail() (tornado_json.jsend.JSendMixin method)

G

 	
 	gen_submodule_names() (in module tornado_json.routes)

 	get_api_docs() (in module tornado_json.api_doc_gen)

 	
 	get_module_routes() (in module tornado_json.routes)

 	get_routes() (in module tornado_json.routes)

I

 	
 	initialize() (tornado_json.requesthandlers.APIHandler method)

 	(tornado_json.requesthandlers.ViewHandler method)

J

 	
 	JSendMixin (class in tornado_json.jsend)

S

 	
 	success() (tornado_json.jsend.JSendMixin method)

T

 	
 	tornado_json.api_doc_gen (module)

 	tornado_json.application (module)

 	
 	tornado_json.jsend (module)

 	tornado_json.requesthandlers (module)

 	tornado_json.routes (module)

V

 	
 	ViewHandler (class in tornado_json.requesthandlers)

W

 	
 	write_error() (tornado_json.requesthandlers.APIHandler method)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Tornado-JSON

 		
 Installation

 		
 Using Tornado-JSON

 		
 A Simple Hello World JSON API

 		
 helloworld.py

 		
 helloworld/api.py

 		
 Running our Hello World app

 		
 Further Examples

 		
 Request Handler Guidelines

 		
 Schemas and Public API Documentation

 		
 Assertions

 		
 Documentation Generation

 		
 Public API Usage Documentation

 		
 Creating a REST API Using URL Annotations

 		
 Changelog

 		
 _

 		
 1.3.4

 		
 1.3.3

 		
 1.3.2

 		
 1.3.1

 		
 1.3.0

 		
 1.2.2

 		
 1.2.1

 		
 1.2.0

 		
 1.1.0

 		
 1.0.0

 		
 v0.41

 		
 v0.40 - Replace apid with parameterized schema.validate

 		
 v0.31 - On input schema of None, input is presumed to be None

 		
 v0.30 - URL Annotations

 		
 v0.20 - Refactor of utils module

 		
 v0.14 - Bugfixes thanks to 100% coverage

 		
 v0.13 - Add asynchronous compatibility to io_schema

 		
 v0.12 - Python3 support

 		
 v0.11 - Duplicate route bugfix

 		
 v0.10 - Route generation with URL patterns

 		
 v0.08 - Input and output example fields

 		
 tornado_json Package

 		
 api_doc_gen Module

 		
 application Module

 		
 jsend Module

 		
 requesthandlers Module

 		
 routes Module

_static/up.png

_static/up-pressed.png

