

tornado-dynamodb

tornado-dynamodb is an Asynchronous DynamoDB client Tornado

[image: Version] [http://badge.fury.io/py/tornado-dynamodb] [image: Downloads] [https://pypi.python.org/pypi/tornado-dynamodb] [image: Status] [https://travis-ci.org/gmr/tornado-dynamodb] [image: Coverage] [https://codecov.io/github/gmr/tornado-dynamodb?branch=master] [image: License] [https://tornado-dynamodb.readthedocs.org]

Contents:

	API

	Exceptions

	Examples

Issues

Please report any issues to the Github repo at https://github.com/gmr/tornado-dynamodb/issues

Source

tornado-dynamodb source is available on Github at https://github.com/gmr/tornado-dynamodb

Version History

See Version History

Indices and tables

	Index

	Module Index

	Search Page

API

DynamoDB Client

DynamoDB is an opinionated DynamoDB client for
Tornado [http://www.tornadoweb.org]. While it follows the DynamoDB API
fairly closely, it does try and make some of the more mundane tasks like
data marshalling and demarshalling for you.

	
class tornado_dynamodb.DynamoDB(profile=None, region=None, access_key=None, secret_key=None, endpoint=None, max_clients=100)

	An opinionated asynchronous DynamoDB client for Tornado

	Parameters:	
	profile (str [https://docs.python.org/2/library/functions.html#str]) – Specify the configuration profile name

	region (str [https://docs.python.org/2/library/functions.html#str]) – The AWS region to make requests to

	access_key (str [https://docs.python.org/2/library/functions.html#str]) – The access key

	secret_key (str [https://docs.python.org/2/library/functions.html#str]) – The secret access key

	endpoint (str [https://docs.python.org/2/library/functions.html#str]) – Override the base endpoint URL

	max_clients (int [https://docs.python.org/2/library/functions.html#int]) – Max simultaneous requests (Default: 100)

	Raises:	ConfigNotFound
ConfigParserError
NoCredentialsError
NoProfileError

	
create_table(name, attributes, key_schema, read_capacity_units=1, write_capacity_units=1, global_secondary_indexes=None, local_secondary_indexes=None, stream_enabled=False, stream_view_type=None)

	The CreateTable operation adds a new table to your account. In an
AWS account, table names must be unique within each region. That is,
you can have two tables with same name if you create the tables in
different regions.

CreateTable is an asynchronous operation. Upon receiving a
CreateTable request, DynamoDB immediately returns a response with a
TableStatus of CREATING. After the table is created, DynamoDB
sets the TableStatus to ACTIVE. You can perform read and write
operations only on an ACTIVE table.

You can optionally define secondary indexes on the new table, as part
of the CreateTable operation. If you want to create multiple tables
with secondary indexes on them, you must create the tables
sequentially. Only one table with secondary indexes can be in the
CREATING state at any given time.

For the proper format of attributes, key_schema,
local_secondary_indexes, and global_secondary_indexes please
visit the Amazon documentation for the CreateTable operation [http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_CreateTable.html].

You can use the describe_table() API
to check the table status.

	Parameters:	
	name (str [https://docs.python.org/2/library/functions.html#str]) – The table name

	attributes (list [https://docs.python.org/2/library/functions.html#list]) – A list of attribute definition key/value pairs
where the key is the name of the attribute and the value is one of
S, N, or B indicating the data type of the attribute.

	key_schema (list [https://docs.python.org/2/library/functions.html#list]) – A list of key definitions that specify the
attributes that make up the primary key for a table or an index.
Each key pair in the list consists of the attribute name as the key
and the index type as the value.

	read_capacity_units (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of strongly
consistent reads consumed per second before DynamoDB returns a
ThrottlingException

	write_capacity_units (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of writes consumed
per second before DynamoDB returns a
ThrottlingException

	global_secondary_indexes (list [https://docs.python.org/2/library/functions.html#list]) – One or more global secondary
indexes (the maximum is five) to be created on the table.

	local_secondary_indexes (list [https://docs.python.org/2/library/functions.html#list]) – One or more local secondary
indexes (the maximum is five) to be created on the table. Each
index is scoped to a given partition key value. There is a 10 GB
size limit per partition key value; otherwise, the size of a local
secondary index is unconstrained.

	stream_enabled (bool [https://docs.python.org/2/library/functions.html#bool]) – Indicates whether DynamoDB Streams is
enabled (True [https://docs.python.org/2/library/constants.html#True]) or disabled (False [https://docs.python.org/2/library/constants.html#False]) for the
table.

	stream_view_type (str [https://docs.python.org/2/library/functions.html#str]) – When an item in the table is modified,
stream_view_type determines what information is written to the
stream for this table.

	Returns:	Response format:

{
 "AttributeDefinitions": [{
 "AttributeName": "string",
 "AttributeType": "string"
 }],
 "CreationDateTime": number,
 "GlobalSecondaryIndexes": [{
 "Backfilling": boolean,
 "IndexArn": "string",
 "IndexName": "string",
 "IndexSizeBytes": number,
 "IndexStatus": "string",
 "ItemCount": number,
 "KeySchema": [{
 "AttributeName": "string",
 "KeyType": "string"
 }],
 "Projection": {
 "NonKeyAttributes": [
 "string"
],
 "ProjectionType": "string"
 },
 "ProvisionedThroughput": {
 "LastDecreaseDateTime": number,
 "LastIncreaseDateTime": number,
 "NumberOfDecreasesToday": number,
 "ReadCapacityUnits": number,
 "WriteCapacityUnits": number
 }
 }],
 "ItemCount": number,
 "KeySchema": [{
 "AttributeName": "string",
 "KeyType": "string"
 }],
 "LatestStreamArn": "string",
 "LatestStreamLabel": "string",
 "LocalSecondaryIndexes": [{
 "IndexArn": "string",
 "IndexName": "string",
 "IndexSizeBytes": number,
 "ItemCount": number,
 "KeySchema": [{
 "AttributeName": "string",
 "KeyType": "string"
 }],
 "Projection": {
 "NonKeyAttributes": [
 "string"
],
 "ProjectionType": "string"
 }
 }],
 "ProvisionedThroughput": {
 "LastDecreaseDateTime": number,
 "LastIncreaseDateTime": number,
 "NumberOfDecreasesToday": number,
 "ReadCapacityUnits": number,
 "WriteCapacityUnits": number
 },
 "StreamSpecification": {
 "StreamEnabled": boolean,
 "StreamViewType": "string"
 },
 "TableArn": "string",
 "TableName": "string",
 "TableSizeBytes": number,
 "TableStatus": "string"
}

	Raises:	InternalFailure
LimitExceeded
MissingParameter
OptInRequired
ResourceInUse
RequestExpired
ServiceUnavailable
ThrottlingException
ValidationException

	
delete_item(table_name, key, condition_expression=None, expression_attribute_names=None, expression_attribute_values=None, return_consumed_capacity=None, return_item_collection_metrics=False, return_values=False)

	Deletes a single item in a table by primary key. You can perform a
conditional delete operation that deletes the item if it exists, or if
it has an expected attribute value.

In addition to deleting an item, you can also return the item’s
attribute values in the same operation, using the return_values
parameter.

Unless you specify conditions, the DeleteItem is an idempotent
operation; running it multiple times on the same item or attribute does
not result in an error response.

Conditional deletes are useful for deleting items only if specific
conditions are met. If those conditions are met, DynamoDB performs the
delete. Otherwise, the item is not deleted.

	Parameters:	
	table_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the table from which to delete the
item.

	key (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – A map of attribute names to AttributeValue
objects, representing the primary key of the item to delete. For
the primary key, you must provide all of the attributes. For
example, with a simple primary key, you only need to provide a
value for the partition key. For a composite primary key, you must
provide values for both the partition key and the sort key.

	condition_expression (str [https://docs.python.org/2/library/functions.html#str]) – A condition that must be satisfied in
order for a conditional DeleteItem to succeed. See the AWS
documentation for ConditionExpression [http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html#DDB-DeleteItem-request-ConditionExpression] for more information.

	expression_attribute_names (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – One or more substitution tokens
for attribute names in an expression. See the AWS documentation
for ExpressionAttributeNames [http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html#DDB-DeleteItem-request-ExpressionAttributeNames] for more information.

	expression_attribute_values (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – One or more values that can be
substituted in an expression. See the AWS documentation
for ExpressionAttributeValues [http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html#DDB-DeleteItem-request-ExpressionAttributeValues] for more information.

	return_consumed_capacity (str [https://docs.python.org/2/library/functions.html#str]) – Determines the level of detail
about provisioned throughput consumption that is returned in the
response. See the AWS documentation
for ReturnConsumedCapacity [http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html#DDB-DeleteItem-request-ReturnConsumedCapacity] for more information.

	return_item_collection_metrics (bool [https://docs.python.org/2/library/functions.html#bool]) – Determines whether item
collection metrics are returned.

	return_values (bool [https://docs.python.org/2/library/functions.html#bool]) – Return the item attributes as they appeared
before they were deleted.

	Returns:	Response format:

{
 "Attributes": {
 "string": {
 "B": blob,
 "BOOL": boolean,
 "BS": [
 blob
],
 "L": [
 AttributeValue
],
 "M": {
 "string": AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 },
 "ConsumedCapacity": {
 "CapacityUnits": number,
 "GlobalSecondaryIndexes": {
 "string": {
 "CapacityUnits": number
 }
 },
 "LocalSecondaryIndexes": {
 "string": {
 "CapacityUnits": number
 }
 },
 "Table": {
 "CapacityUnits": number
 },
 "TableName": "string"
 },
 "ItemCollectionMetrics": {
 "ItemCollectionKey": {
 "string": {
 "B": blob,
 "BOOL": boolean,
 "BS": [
 blob
],
 "L": [
 AttributeValue
],
 "M": {
 "string": AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 },
 "SizeEstimateRangeGB": [
 number
]
 }
}

	Raises:	InternalFailure
MissingParameter
OptInRequired
RequestExpired
ServiceUnavailable
ThrottlingException
ValidationException
ResourceNotFound
ProvisionedThroughputExceeded
ItemCollectionSizeLimitExceeded

	
delete_table(name)

	The DeleteTable operation deletes a table and all of its items.
After a DeleteTable request, the specified table is in the DELETING
state until DynamoDB completes the deletion. If the table is in the
ACTIVE state, you can delete it. If a table is in CREATING or UPDATING
states, then DynamoDB returns a
ResourceInUse. If the specified
table does not exist, DynamoDB returns a
ResourceNotFound . If table is
already in the DELETING state, no error is returned.

	Parameters:	name (str [https://docs.python.org/2/library/functions.html#str]) – The table name

	Returns:	Response Format:{
 "AttributeDefinitions": [{
 "AttributeName": "string",
 "AttributeType": "string"
 }],
 "CreationDateTime": number,
 "GlobalSecondaryIndexes": [{
 "Backfilling": boolean,
 "IndexArn": "string",
 "IndexName": "string",
 "IndexSizeBytes": number,
 "IndexStatus": "string",
 "ItemCount": number,
 "KeySchema": [{
 "AttributeName": "string",
 "KeyType": "string"
 }],
 "Projection": {
 "NonKeyAttributes": [
 "string"
],
 "ProjectionType": "string"
 },
 "ProvisionedThroughput": {
 "LastDecreaseDateTime": number,
 "LastIncreaseDateTime": number,
 "NumberOfDecreasesToday": number,
 "ReadCapacityUnits": number,
 "WriteCapacityUnits": number
 }
 }],
 "ItemCount": number,
 "KeySchema": [{
 "AttributeName": "string",
 "KeyType": "string"
 }],
 "LatestStreamArn": "string",
 "LatestStreamLabel": "string",
 "LocalSecondaryIndexes": [{
 "IndexArn": "string",
 "IndexName": "string",
 "IndexSizeBytes": number,
 "ItemCount": number,
 "KeySchema": [{
 "AttributeName": "string",
 "KeyType": "string"
 }],
 "Projection": {
 "NonKeyAttributes": [
 "string"
],
 "ProjectionType": "string"
 }
 }],
 "ProvisionedThroughput": {
 "LastDecreaseDateTime": number,
 "LastIncreaseDateTime": number,
 "NumberOfDecreasesToday": number,
 "ReadCapacityUnits": number,
 "WriteCapacityUnits": number
 },
 "StreamSpecification": {
 "StreamEnabled": boolean,
 "StreamViewType": "string"
 },
 "TableArn": "string",
 "TableName": "string",
 "TableSizeBytes": number,
 "TableStatus": "string"
}

	Raises:	InternalFailure
MissingParameter
OptInRequired
RequestExpired
ServiceUnavailable
ThrottlingException
ValidationException
LimitExceeded
ResourceInUse
ResourceNotFound

	
describe_table(name)

	Returns information about the table, including the current status of
the table, when it was created, the primary key schema, and any indexes
on the table.

	Parameters:	name (str [https://docs.python.org/2/library/functions.html#str]) – The table name

	Returns:	Response Format:{
 "AttributeDefinitions": [{
 "AttributeName": "string",
 "AttributeType": "string"
 }],
 "CreationDateTime": number,
 "GlobalSecondaryIndexes": [{
 "Backfilling": boolean,
 "IndexArn": "string",
 "IndexName": "string",
 "IndexSizeBytes": number,
 "IndexStatus": "string",
 "ItemCount": number,
 "KeySchema": [{
 "AttributeName": "string",
 "KeyType": "string"
 }],
 "Projection": {
 "NonKeyAttributes": [
 "string"
],
 "ProjectionType": "string"
 },
 "ProvisionedThroughput": {
 "LastDecreaseDateTime": number,
 "LastIncreaseDateTime": number,
 "NumberOfDecreasesToday": number,
 "ReadCapacityUnits": number,
 "WriteCapacityUnits": number
 }
 }],
 "ItemCount": number,
 "KeySchema": [{
 "AttributeName": "string",
 "KeyType": "string"
 }],
 "LatestStreamArn": "string",
 "LatestStreamLabel": "string",
 "LocalSecondaryIndexes": [{
 "IndexArn": "string",
 "IndexName": "string",
 "IndexSizeBytes": number,
 "ItemCount": number,
 "KeySchema": [{
 "AttributeName": "string",
 "KeyType": "string"
 }],
 "Projection": {
 "NonKeyAttributes": [
 "string"
],
 "ProjectionType": "string"
 }
 }],
 "ProvisionedThroughput": {
 "LastDecreaseDateTime": number,
 "LastIncreaseDateTime": number,
 "NumberOfDecreasesToday": number,
 "ReadCapacityUnits": number,
 "WriteCapacityUnits": number
 },
 "StreamSpecification": {
 "StreamEnabled": boolean,
 "StreamViewType": "string"
 },
 "TableArn": "string",
 "TableName": "string",
 "TableSizeBytes": number,
 "TableStatus": "string"
}

	Raises:	InternalFailure
MissingParameter
OptInRequired
RequestExpired
ServiceUnavailable
ThrottlingException
ValidationException
ResourceNotFound

	
get_item(table_name, key, consistent_read=False, expression_attribute_names=None, projection_expression=None, return_consumed_capacity=None)

	The GetItem operation returns a set of attributes for the item
with the given primary key. If there is no matching item, GetItem
does not return any data.

GetItem provides an eventually consistent read by default. If your
application requires a strongly consistent read, set
consistent_read to true. Although a strongly consistent read might
take more time than an eventually consistent read, it always returns
the last updated value.

	Parameters:	
	table_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the table containing the requested
item.

	key (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – A map of attribute names to AttributeValue
objects, representing the primary key of the item to retrieve. For
the primary key, you must provide all of the attributes. For
example, with a simple primary key, you only need to provide a
value for the partition key. For a composite primary key, you must
provide values for both the partition key and the sort key.

	consistent_read (bool [https://docs.python.org/2/library/functions.html#bool]) – Determines the read consistency model: If
set to :py:data`True`, then the operation uses strongly consistent
reads; otherwise, the operation uses eventually consistent reads.

	expression_attribute_names (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – One or more substitution tokens
for attribute names in an expression.

	projection_expression (str [https://docs.python.org/2/library/functions.html#str]) – A string that identifies one or more
attributes to retrieve from the table. These attributes can include
scalars, sets, or elements of a JSON document. The attributes in
the expression must be separated by commas. If no attribute names
are specified, then all attributes will be returned. If any of the
requested attributes are not found, they will not appear in the
result.

	return_consumed_capacity (str [https://docs.python.org/2/library/functions.html#str]) – Determines the level of detail
about provisioned throughput consumption that is returned in the
response:

	INDEXES: The response includes the aggregate consumed
capacity for the operation, together with consumed capacity for
each table and secondary index that was accessed. Note that
some operations, such as GetItem and BatchGetItem, do not
access any indexes at all. In these cases, specifying
INDEXES will only return consumed capacity information for
table(s).

	TOTAL: The response includes only the aggregate consumed
capacity for the operation.

	NONE: No consumed capacity details are included in the
response.

	Returns:	Response Format:

{
 "ConsumedCapacity": {
 "CapacityUnits": number,
 "GlobalSecondaryIndexes": {
 "string": {
 "CapacityUnits": number
 }
 },
 "LocalSecondaryIndexes": {
 "string": {
 "CapacityUnits": number
 }
 },
 "Table": {
 "CapacityUnits": number
 },
 "TableName": "string"
 },
 "Item": {
 "string": {
 "B": blob,
 "BOOL": boolean,
 "BS": [
 blob
],
 "L": [
 AttributeValue
],
 "M": {
 "string": AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 }
}

	Raises:	InternalFailure
MissingParameter
OptInRequired
RequestExpired
ServiceUnavailable
ThrottlingException
ValidationException
ResourceNotFound
ProvisionedThroughputExceeded

	
list_tables(exclusive_start_table_name=None, limit=None)

	Returns an array of table names associated with the current account
and endpoint. The output from ListTables is paginated, with each page
returning a maximum of 100 table names.

	Parameters:	
	exclusive_start_table_name (str [https://docs.python.org/2/library/functions.html#str]) – The first table name that this
operation will evaluate. Use the value that was returned for
LastEvaluatedTableName in a previous operation, so that you can
obtain the next page of results.

	limit (int [https://docs.python.org/2/library/functions.html#int]) – A maximum number of table names to return. If this
parameter is not specified, the limit is 100.

	Returns:	Response Format:

{
 "LastEvaluatedTableName": "string",
 "TableNames": [
 "string"
]
}

	Raises:	InternalFailure
MissingParameter
OptInRequired
RequestExpired
ServiceUnavailable
ThrottlingException
ValidationException

	
put_item(table_name, item, return_values=False, condition_expression=None, expression_attribute_names=None, expression_attribute_values=None, return_consumed_capacity=None, return_item_collection_metrics=False)

	Creates a new item, or replaces an old item with a new item. If an
item that has the same primary key as the new item already exists in
the specified table, the new item completely replaces the existing
item. You can perform a conditional put operation (add a new item if
one with the specified primary key doesn’t exist), or replace an
existing item if it has certain attribute values.

In addition to putting an item, you can also return the item’s
attribute values in the same operation, using the return_values
parameter.

When you add an item, the primary key attribute(s) are the only
required attributes. Attribute values cannot be null. String and Binary
type attributes must have lengths greater than zero. Set type
attributes cannot be empty. Requests with empty values will be rejected
with a ValidationException.

You can request that PutItem return either a copy of the original item
(before the update) or a copy of the updated item (after the update).
For more information, see the ReturnValues description below.

Note

To prevent a new item from replacing an existing item, use a
conditional expression that contains the attribute_not_exists
function with the name of the attribute being used as the partition
key for the table. Since every record must contain that attribute,
the attribute_not_exists function will only succeed if no matching
item exists.

For more information about using this API, see Working with Items in
the Amazon DynamoDB Developer Guide.

	Parameters:	
	table_name (str [https://docs.python.org/2/library/functions.html#str]) – The table to put the item to

	item (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – A map of attribute name/value pairs, one for each
attribute. Only the primary key attributes are required; you can
optionally provide other attribute name-value pairs for the item.

You must provide all of the attributes for the primary key. For
example, with a simple primary key, you only need to provide a
value for the partition key. For a composite primary key, you must
provide both values for both the partition key and the sort key.

If you specify any attributes that are part of an index key, then
the data types for those attributes must match those of the schema
in the table’s attribute definition.

	return_values (bool [https://docs.python.org/2/library/functions.html#bool]) – Set to True if you want to get the item
attributes as they appeared before they were updated with the
PutItem request.

	condition_expression (str [https://docs.python.org/2/library/functions.html#str]) – A condition that must be satisfied in
order for a conditional PutItem operation to succeed. See the
AWS documentation for ConditionExpression [http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html#DDB-PutItem-request-ConditionExpression] for more information.

	expression_attribute_names (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – One or more substitution tokens
for attribute names in an expression. See the AWS documentation
for ExpressionAttributeNames [http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html#DDB-PutItem-request-ExpressionAttributeNames] for more information.

	expression_attribute_values (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – One or more values that can be
substituted in an expression. See the AWS documentation
for ExpressionAttributeValues [http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html#DDB-PutItem-request-ExpressionAttributeValues] for more information.

	return_consumed_capacity (str [https://docs.python.org/2/library/functions.html#str]) – Determines the level of detail
about provisioned throughput consumption that is returned in the
response. Should be None or one of INDEXES or TOTAL

	return_item_collection_metrics (bool [https://docs.python.org/2/library/functions.html#bool]) – Determines whether item
collection metrics are returned.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
query(table_name, consistent_read=False, exclusive_start_key=None, expression_attribute_names=None, expression_attribute_values=None, filter_expression=None, projection_expression=None, index_name=None, limit=None, return_consumed_capacity=None, scan_index_forward=True, select=None)

	A Query operation uses the primary key of a table or a secondary
index to directly access items from that table or index.

You can use the scan_index_forward parameter to get results in
forward or reverse order, by sort key.

Queries that do not return results consume the minimum number of read
capacity units for that type of read operation.

If the total number of items meeting the query criteria exceeds the
result set size limit of 1 MB, the query stops and results are returned
to the user with the LastEvaluatedKey element to continue the query
in a subsequent operation. Unlike a Scan operation, a Query operation
never returns both an empty result set and a LastEvaluatedKey
value. LastEvaluatedKey is only provided if the results exceed
1 MB, or if you have used the limit parameter.

You can query a table, a local secondary index, or a global secondary
index. For a query on a table or on a local secondary index, you can
set the consistent_read parameter to true and obtain a strongly
consistent result. Global secondary indexes support eventually
consistent reads only, so do not specify consistent_read when
querying a global secondary index.

	Parameters:	
	table_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the table containing the requested
items.

	consistent_read (bool [https://docs.python.org/2/library/functions.html#bool]) – Determines the read consistency model: If
set to True, then the operation uses strongly consistent reads;
otherwise, the operation uses eventually consistent reads. Strongly
consistent reads are not supported on global secondary indexes. If
you query a global secondary index with consistent_read set to
True, you will receive a
ValidationException.

	exclusive_start_key (str|bytes|int) – The primary key of the first
item that this operation will evaluate. Use the value that was
returned for LastEvaluatedKey in the previous operation. In a
parallel scan, a Scan request that includes
exclusive_start_key must specify the same segment whose
previous Scan returned the corresponding value of
LastEvaluatedKey.

	expression_attribute_names (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – One or more substitution tokens
for attribute names in an expression.

	expression_attribute_values (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – One or more values that can be
substituted in an expression.

	filter_expression (str [https://docs.python.org/2/library/functions.html#str]) – A string that contains conditions that
DynamoDB applies after the Query operation, but before the data
is returned to you. Items that do not satisfy the criteria are not
returned. Note that a filter expression is applied after the items
have already been read; the process of filtering does not consume
any additional read capacity units. For more information, see
Filter Expressions [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryAndScan.html#FilteringResults] in the
Amazon DynamoDB Developer Guide.

	projection_expression (str [https://docs.python.org/2/library/functions.html#str]) –

	index_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of a secondary index to query. This
index can be any local secondary index or global secondary index.
Note that if you use this parameter, you must also provide
table_name.

	limit (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of items to evaluate (not
necessarily the number of matching items). If DynamoDB processes
the number of items up to the limit while processing the results,
it stops the operation and returns the matching values up to that
point, and a key in LastEvaluatedKey to apply in a subsequent
operation, so that you can pick up where you left off. Also, if the
processed data set size exceeds 1 MB before DynamoDB reaches this
limit, it stops the operation and returns the matching values up to
the limit, and a key in LastEvaluatedKey to apply in a
subsequent operation to continue the operation. For more
information, see Query and Scan [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryAndScan.html] in the Amazon
DynamoDB Developer Guide.

	return_consumed_capacity (str [https://docs.python.org/2/library/functions.html#str]) – Determines the level of detail
about provisioned throughput consumption that is returned in the
response:

	INDEXES: The response includes the aggregate consumed
capacity for the operation, together with consumed capacity for
each table and secondary index that was accessed. Note that
some operations, such as GetItem and BatchGetItem, do not
access any indexes at all. In these cases, specifying
INDEXES will only return consumed capacity information for
table(s).

	TOTAL: The response includes only the aggregate consumed
capacity for the operation.

	NONE: No consumed capacity details are included in the
response.

	scan_index_forward (bool [https://docs.python.org/2/library/functions.html#bool]) – Specifies the order for index
traversal: If True (default), the traversal is performed in
ascending order; if False, the traversal is performed in
descending order. Items with the same partition key value are
stored in sorted order by sort key. If the sort key data type is
Number, the results are stored in numeric order. For type
String, the results are stored in order of ASCII character code
values. For type Binary, DynamoDB treats each byte of the binary
data as unsigned. If set to True, DynamoDB returns the results
in the order in which they are stored (by sort key value). This is
the default behavior. If set to False, DynamoDB reads the
results in reverse order by sort key value, and then returns the
results to the client.

	select (str [https://docs.python.org/2/library/functions.html#str]) – The attributes to be returned in the result. You can
retrieve all item attributes, specific item attributes, the count
of matching items, or in the case of an index, some or all of the
attributes projected into the index. Possible values are:

	ALL_ATTRIBUTES: Returns all of the item attributes from the
specified table or index. If you query a local secondary index,
then for each matching item in the index DynamoDB will fetch
the entire item from the parent table. If the index is
configured to project all item attributes, then all of the data
can be obtained from the local secondary index, and no fetching
is required.

	ALL_PROJECTED_ATTRIBUTES: Allowed only when querying an
index. Retrieves all attributes that have been projected into
the index. If the index is configured to project all
attributes, this return value is equivalent to specifying
ALL_ATTRIBUTES.

	COUNT: Returns the number of matching items, rather than
the matching items themselves.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
scan(table_name, consistent_read=False, exclusive_start_key=None, expression_attribute_names=None, expression_attribute_values=None, filter_expression=None, projection_expression=None, index_name=None, limit=None, return_consumed_capacity=None, segment=None, total_segments=None)

	The Scan operation returns one or more items and item attributes
by accessing every item in a table or a secondary index.

If the total number of scanned items exceeds the maximum data set size
limit of 1 MB, the scan stops and results are returned to the user as a
LastEvaluatedKey value to continue the scan in a subsequent
operation. The results also include the number of items exceeding the
limit. A scan can result in no table data meeting the filter criteria.

By default, Scan operations proceed sequentially; however, for faster
performance on a large table or secondary index, applications can
request a parallel Scan operation by providing the segment and
total_segments parameters. For more information, see
Parallel Scan [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryAndScan.html#QueryAndScanParallelScan] in the
Amazon DynamoDB Developer Guide.

By default, Scan uses eventually consistent reads when accessing the
data in a table; therefore, the result set might not include the
changes to data in the table immediately before the operation began. If
you need a consistent copy of the data, as of the time that the Scan
begins, you can set the consistent_read parameter to True.

	Parameters:	
	table_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the table containing the requested
items; or, if you provide IndexName, the name of the table to which
that index belongs.

	consistent_read (bool [https://docs.python.org/2/library/functions.html#bool]) – A Boolean value that determines the read
consistency model during the scan:

	If set to False, then the data returned from Scan might not
contain the results from other recently completed write
operations (PutItem, UpdateItem, or DeleteItem).

	If set to True, then all of the write operations that
completed before the Scan began are guaranteed to be contained in
the Scan response.

The default setting is False.

This parameter is not supported on global secondary indexes. If you
scan a global secondary index and set consistent_read to
true, you will receive a
ValidationException.

	exclusive_start_key (str|bytes|int) – The primary key of the first
item that this operation will evaluate. Use the value that was
returned for LastEvaluatedKey in the previous operation.

In a parallel scan, a Scan request that includes
exclusive_start_key must specify the same segment whose
previous Scan returned the corresponding value of
LastEvaluatedKey.

	expression_attribute_names (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – One or more substitution tokens
for attribute names in an expression.

	expression_attribute_values (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – One or more values that can be
substituted in an expression.

	filter_expression (str [https://docs.python.org/2/library/functions.html#str]) – A string that contains conditions that
DynamoDB applies after the Scan operation, but before the data is
returned to you. Items that do not satisfy the expression criteria
are not returned.

Note

A filter expression is applied after the items have
already been read; the process of filtering does not consume
any additional read capacity units.

For more information, see Filter Expressions [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryAndScan.html#FilteringResults] in the Amazon DynamoDB Developer Guide.

	projection_expression (str [https://docs.python.org/2/library/functions.html#str]) – A string that identifies one or more
attributes to retrieve from the specified table or index. These
attributes can include scalars, sets, or elements of a JSON
document. The attributes in the expression must be separated by
commas.

If no attribute names are specified, then all attributes will be
returned. If any of the requested attributes are not found, they
will not appear in the result.

For more information, see Accessing Item Attributes [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.AccessingItemAttributes.html] in the Amazon DynamoDB Developer
Guide.

	index_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of a secondary index to scan. This
index can be any local secondary index or global secondary index.
Note that if you use this parameter, you must also provide
table_name.

	limit (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of items to evaluate (not
necessarily the number of matching items). If DynamoDB processes
the number of items up to the limit while processing the results,
it stops the operation and returns the matching values up to that
point, and a key in LastEvaluatedKey to apply in a subsequent
operation, so that you can pick up where you left off. Also, if the
processed data set size exceeds 1 MB before DynamoDB reaches this
limit, it stops the operation and returns the matching values up to
the limit, and a key in LastEvaluatedKey to apply in a
subsequent operation to continue the operation. For more
information, see Query and Scan [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryAndScan.html] in the Amazon
DynamoDB Developer Guide.

	return_consumed_capacity (str [https://docs.python.org/2/library/functions.html#str]) – Determines the level of detail
about provisioned throughput consumption that is returned in the
response. Should be None or one of INDEXES or TOTAL

	segment (int [https://docs.python.org/2/library/functions.html#int]) – For a parallel Scan request, segment
identifies an individual segment to be scanned by an application
worker.

Segment IDs are zero-based, so the first segment is always 0.
For example, if you want to use four application threads to scan a
table or an index, then the first thread specifies a Segment value
of 0, the second thread specifies 1, and so on.

The value of LastEvaluatedKey returned from a parallel Scan
request must be used as ExclusiveStartKey with the same segment
ID in a subsequent Scan operation.

The value for segment must be greater than or equal to 0,
and less than the value provided for total_segments.

If you provide segment, you must also provide
total_segments.

	total_segments (int [https://docs.python.org/2/library/functions.html#int]) – For a parallel Scan request,
total_segments represents the total number of segments into
which the Scan operation will be divided. The value of
total_segments corresponds to the number of application workers
that will perform the parallel scan. For example, if you want to
use four application threads to scan a table or an index, specify a
total_segments value of 4.

The value for total_segments must be greater than or equal to
1, and less than or equal to 1000000. If you specify a
total_segments value of 1, the Scan operation will be
sequential rather than parallel.

If you specify total_segments, you must also specify
segments.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
update_item(table_name, key, return_values=False, condition_expression=None, update_expression=None, expression_attribute_names=None, expression_attribute_values=None, return_consumed_capacity=None, return_item_collection_metrics=False)

	Edits an existing item’s attributes, or adds a new item to the table
if it does not already exist. You can put, delete, or add attribute
values. You can also perform a conditional update on an existing item
(insert a new attribute name-value pair if it doesn’t exist, or replace
an existing name-value pair if it has certain expected attribute
values).

	Parameters:	
	table_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the table that contains the item to
update

	key (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – A dictionary of key/value pairs that are used to
define the primary key values for the item. For the primary key,
you must provide all of the attributes. For example, with a simple
primary key, you only need to provide a value for the partition
key. For a composite primary key, you must provide values for both
the partition key and the sort key.

	return_values (bool [https://docs.python.org/2/library/functions.html#bool]) – Set to True if you want to get the item
attributes as they appeared before they were updated with the
UpdateItem request.

	condition_expression (str [https://docs.python.org/2/library/functions.html#str]) – A condition that must be satisfied in
order for a conditional UpdateItem operation to succeed. One of:
attribute_exists, attribute_not_exists, attribute_type,
contains, begins_with, size, =, <>, <,
>, <=, >=, BETWEEN, IN, AND, OR, or
NOT.

	update_expression (str [https://docs.python.org/2/library/functions.html#str]) – An expression that defines one or more
attributes to be updated, the action to be performed on them, and
new value(s) for them.

	expression_attribute_names (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – One or more substitution tokens
for attribute names in an expression.

	expression_attribute_values (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – One or more values that can be
substituted in an expression.

	return_consumed_capacity (str [https://docs.python.org/2/library/functions.html#str]) – Determines the level of detail
about provisioned throughput consumption that is returned in the
response. Should be None or one of INDEXES or TOTAL

	return_item_collection_metrics (bool [https://docs.python.org/2/library/functions.html#bool]) – Determines whether item
collection metrics are returned.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
update_table(name, attributes, read_capacity_units=1, write_capacity_units=1, global_secondary_index_updates=None, stream_enabled=False, stream_view_type=None)

	Modifies the provisioned throughput settings, global secondary
indexes, or DynamoDB Streams settings for a given table.

You can only perform one of the following operations at once:

	Modify the provisioned throughput settings of the table.

	Enable or disable Streams on the table.

	Remove a global secondary index from the table.

	Create a new global secondary index on the table. Once the index
begins backfilling, you can use UpdateTable to perform other
operations.

UpdateTable is an asynchronous operation; while it is executing, the
table status changes from ACTIVE to UPDATING. While it is
UPDATING, you cannot issue another UpdateTable request. When the
table returns to the ACTIVE state, the UpdateTable operation is
complete.

	Parameters:	
	name (str [https://docs.python.org/2/library/functions.html#str]) – The table name to be updated

	attributes (list [https://docs.python.org/2/library/functions.html#list]) – A list of attribute definition key/value pairs
where the key is the name of the attribute and the value is one of
S, N, or B indicating the data type of the attribute.
If you are adding a new global secondary index to the table, the
attributes must include the key element(s) of the new index.

	read_capacity_units (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of strongly
consistent reads consumed per second before DynamoDB returns a
ThrottlingException

	write_capacity_units (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of writes consumed
per second before DynamoDB returns a
ThrottlingException

	global_secondary_index_updates (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – An array of one or more
global secondary indexes for the table. For each index in the
array, you can request one action:

	Create: add a new global secondary index to the table.

	
	Update: modify the provisioned throughput settings of an

	existing global secondary index.

	Delete: remove a global secondary index from the table.

For more information, see Managing Global Secondary Indexes in the
Amazon DynamoDB Developer Guide.

	stream_enabled (bool [https://docs.python.org/2/library/functions.html#bool]) – Indicates whether DynamoDB Streams is
enabled (True) or disabled (False) for the table.

	stream_view_type (str [https://docs.python.org/2/library/functions.html#str]) – When an item in the table is modified,
StreamViewType determines what information is written to the stream
for this table.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Exceptions

DynamoDB Exceptions

	
exception tornado_dynamodb.exceptions.ConditionalCheckFailedException(*args, **kwargs)

	A condition specified in the operation could not be evaluated.

	
exception tornado_dynamodb.exceptions.ConfigNotFound(*args, **kwargs)

	The configuration file could not be parsed.

	
exception tornado_dynamodb.exceptions.ConfigParserError(*args, **kwargs)

	Error raised when parsing a configuration file with
RawConfigParser

	
exception tornado_dynamodb.exceptions.DynamoDBException(*args, **kwargs)

	Base exception that is extended by all exceptions raised by
tornado_dynamodb.

	Variables:	msg – The error message

	
exception tornado_dynamodb.exceptions.InternalFailure(*args, **kwargs)

	The request processing has failed because of an unknown error, exception
or failure.

	
exception tornado_dynamodb.exceptions.InvalidAction(*args, **kwargs)

	The action or operation requested is invalid. Verify that the action is
typed correctly.

	
exception tornado_dynamodb.exceptions.InvalidParameterCombination(*args, **kwargs)

	Parameters that must not be used together were used together.

	
exception tornado_dynamodb.exceptions.InvalidParameterValue(*args, **kwargs)

	An invalid or out-of-range value was supplied for the input parameter.

	
exception tornado_dynamodb.exceptions.InvalidQueryParameter(*args, **kwargs)

	The AWS query string is malformed or does not adhere to AWS standards.

	
exception tornado_dynamodb.exceptions.ItemCollectionSizeLimitExceeded(*args, **kwargs)

	An item collection is too large. This exception is only returned for
tables that have one or more local secondary indexes.

	
exception tornado_dynamodb.exceptions.LimitExceeded(*args, **kwargs)

	The number of concurrent table requests (cumulative number of tables in
the CREATING, DELETING or UPDATING state) exceeds the maximum
allowed of 10.

Also, for tables with secondary indexes, only one of those tables can be in
the CREATING state at any point in time. Do not attempt to create more
than one such table simultaneously.

The total limit of tables in the ACTIVE state is 250.

	
exception tornado_dynamodb.exceptions.MalformedQueryString(*args, **kwargs)

	The query string contains a syntax error.

	
exception tornado_dynamodb.exceptions.MissingParameter(*args, **kwargs)

	A required parameter for the specified action is not supplied.

	
exception tornado_dynamodb.exceptions.NoCredentialsError(*args, **kwargs)

	Raised when the credentials could not be located.

	
exception tornado_dynamodb.exceptions.NoProfileError(*args, **kwargs)

	Raised when the specified profile could not be located.

	
exception tornado_dynamodb.exceptions.OptInRequired(*args, **kwargs)

	The AWS access key ID needs a subscription for the service.

	
exception tornado_dynamodb.exceptions.ProvisionedThroughputExceeded(*args, **kwargs)

	Your request rate is too high. The AWS SDKs for DynamoDB automatically
retry requests that receive this exception. Your request is eventually
successful, unless your retry queue is too large to finish. Reduce the
frequency of requests and use exponential backoff. For more information, go
to Error Retries and Exponential Backoff [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ErrorHandling.html#APIRetries] in
the Amazon DynamoDB Developer Guide.

	
exception tornado_dynamodb.exceptions.RequestException(*args, **kwargs)

	A generic HTTP request exception has occurred when communicating with
DynamoDB.

	
exception tornado_dynamodb.exceptions.RequestExpired(*args, **kwargs)

	The request reached the service more than 15 minutes after the date
stamp on the request or more than 15 minutes after the request expiration
date (such as for pre-signed URLs), or the date stamp on the request is
more than 15 minutes in the future.

	
exception tornado_dynamodb.exceptions.ResourceInUse(*args, **kwargs)

	he operation conflicts with the resource’s availability. For example,
you attempted to recreate an existing table, or tried to delete a table
currently in the CREATING state.

	
exception tornado_dynamodb.exceptions.ResourceNotFound(*args, **kwargs)

	The operation tried to access a nonexistent table or index. The resource
might not be specified correctly, or its status might not be ACTIVE.

	
exception tornado_dynamodb.exceptions.ServiceUnavailable(*args, **kwargs)

	The request has failed due to a temporary failure of the server.

	
exception tornado_dynamodb.exceptions.ThrottlingException(*args, **kwargs)

	The request was denied due to request throttling.

	
exception tornado_dynamodb.exceptions.TimeoutException(*args, **kwargs)

	The request to DynamoDB timed out.

	
exception tornado_dynamodb.exceptions.ValidationException(*args, **kwargs)

	The input fails to satisfy the constraints specified by an AWS service.

Examples

The following example uses invokes the DescribeTable endpoint for DynamoDB:

import json
import pprint

import tornado_aws
from tornado import gen, ioloop

HEADERS = {'Content-Type': 'application/x-amz-json-1.0',
 'x-amz-target': 'DynamoDB_20120810.DescribeTable'}
PAYLOAD = {'TableName': 'prod-us-east-1-history-events'}

@gen.coroutine
def async_request():
 client = tornado_aws.AsyncAWSClient('dynamodb')
 response = yield client.fetch('POST', '/', headers=HEADERS,
 body=json.dumps(PAYLOAD))
 x = json.loads(response.body.decode('utf-8'))
 pprint.pprint(x)
 ioloop.IOLoop.instance().stop()

_ioloop = ioloop.IOLoop.instance()
_ioloop.add_callback(async_request)
_ioloop.start()

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 tornado_dynamodb	

 	
 	
 tornado_dynamodb.exceptions	

Index

 C
 | D
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

C

 	
 	ConditionalCheckFailedException

 	ConfigNotFound

 	
 	ConfigParserError

 	create_table() (tornado_dynamodb.DynamoDB method)

D

 	
 	delete_item() (tornado_dynamodb.DynamoDB method)

 	delete_table() (tornado_dynamodb.DynamoDB method)

 	
 	describe_table() (tornado_dynamodb.DynamoDB method)

 	DynamoDB (class in tornado_dynamodb)

 	DynamoDBException

G

 	
 	get_item() (tornado_dynamodb.DynamoDB method)

I

 	
 	InternalFailure

 	InvalidAction

 	InvalidParameterCombination

 	
 	InvalidParameterValue

 	InvalidQueryParameter

 	ItemCollectionSizeLimitExceeded

L

 	
 	LimitExceeded

 	
 	list_tables() (tornado_dynamodb.DynamoDB method)

M

 	
 	MalformedQueryString

 	
 	MissingParameter

N

 	
 	NoCredentialsError

 	
 	NoProfileError

O

 	
 	OptInRequired

P

 	
 	ProvisionedThroughputExceeded

 	
 	put_item() (tornado_dynamodb.DynamoDB method)

Q

 	
 	query() (tornado_dynamodb.DynamoDB method)

R

 	
 	RequestException

 	RequestExpired

 	
 	ResourceInUse

 	ResourceNotFound

S

 	
 	scan() (tornado_dynamodb.DynamoDB method)

 	
 	ServiceUnavailable

T

 	
 	ThrottlingException

 	TimeoutException

 	
 	tornado_dynamodb (module)

 	tornado_dynamodb.exceptions (module)

U

 	
 	update_item() (tornado_dynamodb.DynamoDB method)

 	
 	update_table() (tornado_dynamodb.DynamoDB method)

V

 	
 	ValidationException

Version History

0.1.0 (2015-12-??)

	Initial Release

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		tornado-dynamodb

 		API

 		DynamoDB Client

 		Exceptions

 		DynamoDB Exceptions

 		Examples

_static/comment.png

_static/minus.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment-bright.png

