

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	torment 3.0.3 documentation

Torment

Torment is scalable testing fixtures.

Getting Started

Torment has many options to generate fixtures to fit your testing needs.

Multiple fixtures with the different data:

register(globals(), (RequestFixture,), {...})

Multiple fixtures using the same data (the runtime changes the behavior of the test):

p = {...}

register(globals(), (WriteFixture,), p)
regsiter(globals(), (ReadFixture,), p)

Multiple fixtures using dynamic data:

for a in fixtures.of((AccountModelFixture,)):
 register(globals(), (RequestFixture,), {
 'account': a,
 })

Automatic mocking via the fixture data:

 p = {
 'mocks': {
 'mymodule.myfunc': {
 'return_value': True,
 },
 },

* ``mocked_mymodule.myfunc`` is available in your tests and returns True

Torment Usage

In order to work as expected, Torment is based on a series of rules. The minimum requirements to get started are listed below.

	A filename with the following format: [descriptive-statement]_{UUID}.py

	Where are these files located?

	These can be located anywhere you would like. In source, out of source, whatever is desired. Normally alongside other tests.

	How do I load these files?

	torment.helpers.import_directory recursively loads python modules in a directory:

helpers.import_directory(__name__, os.path.dirname(__file__))

	The newly created file must contain at least one register to build a testcase

	torment.fixtures.register associates runtime with data, in other words it puts the data & class together

	The register requires a FixtureClass (type is defined elsewhere)

	What kind of class?
	Must be a subclass of torment.fixtures.Fixture

	Where do I define it?
	There are no restrictions on where you define

	A FixtureClass requires a TestContext

	What goes into TestContext class, etc?

	TestContext specifies which fixtures it should test:

class HelperUnitTest(TestContext, metaclass = contexts.MetaContext):
 fixture_classes = (
 ExtendFixture,
)

	Why do I have to set my metaclass to metacontext?

	The metacontext turns fixtures into test methods

Note

A metaclass is the object that specifies how a class is created.
torment.contexts.MetaContext is a metaclass we created to build TestContext classes.

If you are unfamiliar with metaclasses, it is highly recommended that you read the offical Python documentation here [https://docs.python.org/3/reference/datamodel.html?highlight=metaclass#customizing-class-creation] before getting started. For a quick primer refer to Jake Vanderplas’ blog [https://jakevdp.github.io/blog/2012/12/01/a-primer-on-python-metaclasses/] post from 2012.

	torment.contexts — Testing Contexts

	torment.fixtures — Torment Fixtures

	Index

	Module Index

	Search Page

 Copyright 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	torment 3.0.3 documentation

torment.contexts — Testing Contexts

	
class torment.contexts.MetaContext(name, bases, dct) None[source]

	torment.TestContext class creator.

Generates all testing methods that correspond with the fixtures associated
with a torment.TestContext. Also updates the definitions of
mocks_mask and mocks to include the union of all involved classes
in the creation process (all parent classes and the class being created).

When creating a torment.TestContext subclass, ensure you specify this
class as its metaclass to automatically generate test cases based on its
fixture_classes property.

	
module

	Actual module name corresponding to this context’s testing module.

	
class torment.contexts.TestContext(methodName='runTest')[source]

	Environment for Fixture execution.

Provides convenience methods indicating the environment a Fixture is
executing in. This includes a references to the real module corresponding
to the context’s testing module as well as a housing for the assertion
methods.

Inherits most of its functionality from unittest.TestCase with a couple
of additions. TestContext does extend setUp.

When used in conjunction with torment.MetaContext, the
fixture_classes property must be an iterable of subclasses of
torment.fixtures.Fixture.

Properties

	module

Public Methods

	patch

Class Variables

	Mocks_mask:	set of mocks to mask from being mocked

	Mocks:	set of mocks this TestContext provides

	
module

	Actual module name corresponding to this context’s testing module.

	
patch(name: str, relative: bool=True) None[source]

	Patch name with mock in actual module.

Sets up mock objects for the given symbol in the actual module
corresponding to this context’s testing module.

Parameters

	Name:	the symbol to mock—must exist in the actual module under test

	Relative:	prefix actual module corresponding to this context’s
testing module to the given symbol to patch

 Copyright 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	torment 3.0.3 documentation

torment.fixtures — Torment Fixtures

Fixture

	
class torment.fixtures.Fixture(context: 'torment.TestContext') None[source]

	Collection of data and actions for a particular test case.

Intended as a base class for custom fixtures. Fixture provides an API
that simplifies writing scalable test cases.

Creating Fixture objects is broken into two parts. This keeps the logic for
a class of test cases separate from the data for particular cases while
allowing re-use of the data provided by a fixture.

The first part of Fixture object creation is crafting a proper subclass that
implements the necessary actions:

	__init__:	pre-data population initialization

	Initialize:	post-data population initialization

	Setup:	pre-run setup

	Run:	REQUIRED—run code under test

	Check:	verify results of run

Note

initialize is run during __init__ and setup is run after;
otherwise, they serve the same function. The split allows different
actions to occur in different areas of the class heirarchy and generally
isn’t necessary.

By default all actions are noops and simply do nothing but run is required.
These actions allow complex class hierarchies to provide nuanced testing
behavior. For example, Fixture provides the absolute bare minimum to test
any Fixture and no more. By adding a set of subclasses, common
initialization and checks can be performed at one layer while specific run
decisions and checks can happen at a lower layer.

The second part of Fixture object creation is crafting the data. Tying data
to a Fixture class should be done with torment.fixtures.register. It
provides a declarative interface that binds a dictionary to a Fixture (keys
of dictionary become Fixture properties). torment.fixtures.register
creates a subclass that the rest of the torment knows how to transform into
test cases that are compatible with nose.

Examples

Simplest Fixture subclass:

class MyFixture(Fixture):
 pass

Of course, to be useful the Fixture needs definitions of setup, run, and
check that actually test the code we’re interested in checking:

def add(x, y):
 return x + y

class AddFixture(Fixture):
 def run(self):
 self.result = add(self.parameters['x'], self.parameters['y'])

 def check(self):
 self.context.assertEqual(self.result, self.expected)

This fixture uses a couple of conventions (not requirements):

	self.parameters as a dictionary of parameter names to values

	self.expected as the value we expect as a result

	self.result as the holder inside the fixture between run and
check

This show-cases the ridiculity of using this testing framework for simple
functions that have few cases that require testing. This framework is
designed to allow many cases to be easily and declaritively defined.

The last component required to get these fixtures to actually run is hooking
them together with a context:

from torment import contexts

class AddUnitTest(contexts.TestContext, metaclass = contexts.MetaContext):
 fixture_classes = (
 MyFixture,
 AddFixture,
)

The context that wraps a Fixture subclass should eventually inherit from
TestContext (which inherits from unittest.TestCase and provides its assert
methods). In order for nose to find and execute this TestContext, it
must have a name that contains Test.

Properties

	category

	description (override)

	name (do not override)

Methods To Override

	__init__

	check

	initialize

	run (required)

	setup

Instance Variables

	Context:	the torment.TestContext this case is running in which
provides the assertion methods of unittest.TestCase.

	
category

	Fixture’s category (the containing testing module name)

Examples

	Module:	test_torment.test_unit.test_fixtures.fixture_a44bc6dda6654b1395a8c2cbd55d964d

	Category:	fixtures

	
check() None[source]

	Check that run ran as expected.

Note

Override as necessary. Default provided so re-defenition is not
necessary.

Called after run and should be used to verify that run performed the
expected actions.

	
description

	Test name in nose output (intended to be overridden).

	
initialize() None[source]

	Post-data population initialization hook.

Note

Override as necessary. Default provided so re-defenition is not
necessary.

Called during __init__ and after properties have been populated by
torment.fixtures.register.

	
name

	Method name in nose runtime.

	
setup() None[source]

	Pre-run initialization hook.

Note

Override as necessary. Default provided so re-defenition is not
necessary.

Called after properties have been populated by
torment.fixtures.register.

Registration

	
torment.fixtures.register(namespace, base_classes: typing.Tuple, properties: typing.Dict) None[source]

	Register a Fixture class in namespace with the given properties.

Creates a Fixture class (not object) and inserts it into the provided
namespace. The properties is a dict but allows functions to reference other
properties and acts like a small DSL (domain specific language). This is
really just a declarative way to compose data about a test fixture and make
it repeatable.

Files calling this function are expected to house one or more Fixtures and
have a name that ends with a UUID without its hyphens. For example:
foo_38de9ceec5694c96ace90c9ca37e5bcb.py. This UUID is used to uniquely
track the Fixture through the test suite and allow Fixtures to scale without
concern.

Parameters

	Namespace:	dictionary to insert the generated class into

	Base_classes:	list of classes the new class should inherit

	Properties:	dictionary of properties with their values

Properties can have the following forms:

	Functions:	invoked with the Fixture as it’s argument

	Classes:	instantiated without any arguments (unless it subclasses
torment.fixtures.Fixture in which case it’s passed context)

	Literals:	any standard python type (i.e. int, str, dict)

Note

function execution may error (this will be emitted as a logging event).
functions will continually be tried until they resolve or the same set
of functions is continually erroring. These functions that failed to
resolve are left in tact for later processing.

Properties by the following names also have defined behavior:

	Description:	added to the Fixture’s description as an addendum

	Error:	must be a dictionary with three keys:
:class: class to instantiate (usually an exception)
:args: arguments to pass to class initialization
:kwargs: keyword arguments to pass to class initialization

	Mocks:	dictionary mapping mock symbols to corresponding values

Properties by the following names are reserved and should not be used:

	name

 Copyright 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	torment 3.0.3 documentation

 Python Module Index

 t

 			

 		
 t	

 	[image: -]
 	
 torment	

 	
 	
 torment.contexts	

 	
 	
 torment.fixtures	

 Copyright 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	torment 3.0.3 documentation

Index

 C
 | D
 | F
 | I
 | M
 | N
 | P
 | R
 | S
 | T

C

 	

 	category (torment.fixtures.Fixture attribute)

 	

 	check() (torment.fixtures.Fixture method)

D

 	

 	description (torment.fixtures.Fixture attribute)

F

 	

 	Fixture (class in torment.fixtures)

I

 	

 	initialize() (torment.fixtures.Fixture method)

M

 	

 	MetaContext (class in torment.contexts)

 	

 	module (torment.contexts.MetaContext attribute)

 	

 	(torment.contexts.TestContext attribute)

N

 	

 	name (torment.fixtures.Fixture attribute)

P

 	

 	patch() (torment.contexts.TestContext method)

R

 	

 	register() (in module torment.fixtures)

S

 	

 	setup() (torment.fixtures.Fixture method)

T

 	

 	TestContext (class in torment.contexts)

 	torment.contexts (module)

 	

 	torment.fixtures (module)

 Copyright 2015.
 Created using Sphinx 1.3.1.

 _static/comment-close.png

search.html

 Navigation

 		
 index

 		
 modules |

 		torment 3.0.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015.
 Created using Sphinx 1.3.1.

_static/down-pressed.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/file.png

_static/down.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/minus.png

_modules/torment/contexts.html

 Navigation

 		
 index

 		
 modules |

 		torment 3.0.3 documentation »

 		Module code »

 Source code for torment.contexts

Copyright 2015 Alex Brandt
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

import unittest
import unittest.mock
import re
import logging
import typing # noqa (use mypy typing)
import warnings

from typing import Any
from typing import Callable

from torment import decorators
from torment import fixtures

logger = logging.getLogger(__name__)

@property
def _module(self) -> str:
 '''Actual module name corresponding to this context's testing module.'''

 return re.sub(r'\.[^.]+', '', self.__module__.replace('test_', ''), 1)

[docs]class MetaContext(type):
 '''``torment.TestContext`` class creator.

 Generates all testing methods that correspond with the fixtures associated
 with a ``torment.TestContext``. Also updates the definitions of
 ``mocks_mask`` and ``mocks`` to include the union of all involved classes
 in the creation process (all parent classes and the class being created).

 When creating a ``torment.TestContext`` subclass, ensure you specify this
 class as its metaclass to automatically generate test cases based on its
 ``fixture_classes`` property.

 '''

 module = _module

 def __init__(cls, name, bases, dct) -> None:
 super(MetaContext, cls).__init__(name, bases, dct)

 cls.mocks_mask = set().union(getattr(cls, 'mocks_mask', set()), *[getattr(base, 'mocks_mask', set()) for base in bases])
 cls.mocks = set().union(getattr(cls, 'mocks', set()), *[getattr(base, 'mocks', set()) for base in bases])

 cls.docker_compose_services = set().union(getattr(cls, 'docker_compose_services', set()), *[getattr(base, 'docker_compose_services', set()) for base in bases])

 def generate_case(fixture: fixtures.Fixture) -> Callable[[Any], None]:
 '''Generate a ``unittest.TestCase`` compatible test method.

 Parameters

 :``fixture``: the fixture to transform into a ``unittest.TestCase``
 compatible test method

 Return Value(s)

 An acceptable method that nose will execute as a test case.

 '''

 def case(self) -> None:
 fixture.context = self
 fixture._execute()

 case.__name__ = fixture.name
 case.__doc__ = fixture.description

 if len(cls.mocks_mask):
 case.__doc__ += '—unmocked:' + ','.join(sorted(cls.mocks_mask))

 return case

 if not hasattr(cls, 'fixture_classes'):
 warnings.warn('type object \'{0}\' has no attribute \'fixture_classes\'')
 else:
 for fixture in fixtures.of(cls.fixture_classes, context = cls):
 _ = generate_case(fixture)
 setattr(cls, _.__name__, _)

[docs]class TestContext(unittest.TestCase):
 '''Environment for Fixture execution.

 Provides convenience methods indicating the environment a Fixture is
 executing in. This includes a references to the real module corresponding
 to the context's testing module as well as a housing for the assertion
 methods.

 Inherits most of its functionality from ``unittest.TestCase`` with a couple
 of additions. TestContext does extend setUp.

 When used in conjunction with ``torment.MetaContext``, the
 ``fixture_classes`` property must be an iterable of subclasses of
 ``torment.fixtures.Fixture``.

 Properties

 * ``module``

 Public Methods

 * ``patch``

 Class Variables

 :``mocks_mask``: set of mocks to mask from being mocked
 :``mocks``: set of mocks this TestContext provides

 '''

 mocks_mask = set() # type: Set[str]
 mocks = set() # type: Set[str]

 module = _module

 def setUp(self) -> None:
 super().setUp()

 logger.debug('self.__class__.mocks_mask: %s', self.__class__.mocks_mask)
 logger.debug('self.__class__.mocks: %s', self.__class__.mocks)

 @decorators.log
[docs] def patch(self, name: str, relative: bool = True) -> None:
 '''Patch name with mock in actual module.

 Sets up mock objects for the given symbol in the actual module
 corresponding to this context's testing module.

 Parameters

 :``name``: the symbol to mock—must exist in the actual module under test
 :``relative``: prefix actual module corresponding to this context's
 testing module to the given symbol to patch

 '''

 prefix = ''

 if relative:
 prefix = self.module + '.'

 logger.debug('prefix: %s', prefix)

 _ = unittest.mock.patch(prefix + name)
 setattr(self, 'mocked_' + name.replace('.', '_').strip('_'), _.start())
 self.addCleanup(_.stop)

 © Copyright 2015.
 Created using Sphinx 1.3.1.

_modules/torment/fixtures.html

 Navigation

 		
 index

 		
 modules |

 		torment 3.0.3 documentation »

 		Module code »

 Source code for torment.fixtures

Copyright 2015 Alex Brandt
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

import copy
import functools
import inspect
import logging
import os
import sys
import typing # noqa (use mypy typing)
import uuid

from typing import Any
from typing import Callable
from typing import Dict
from typing import Iterable
from typing import Tuple
from typing import Union

from torment import decorators

logger = logging.getLogger(__name__)

[docs]class Fixture(object):
 '''Collection of data and actions for a particular test case.

 Intended as a base class for custom fixtures. Fixture provides an API
 that simplifies writing scalable test cases.

 Creating Fixture objects is broken into two parts. This keeps the logic for
 a class of test cases separate from the data for particular cases while
 allowing re-use of the data provided by a fixture.

 The first part of Fixture object creation is crafting a proper subclass that
 implements the necessary actions:

 :``__init__``: pre-data population initialization
 :``initialize``: post-data population initialization
 :``setup``: pre-run setup
 :``run``: REQUIRED—run code under test
 :``check``: verify results of run

 .. note::
 ``initialize`` is run during ``__init__`` and setup is run after;
 otherwise, they serve the same function. The split allows different
 actions to occur in different areas of the class heirarchy and generally
 isn't necessary.

 By default all actions are noops and simply do nothing but run is required.
 These actions allow complex class hierarchies to provide nuanced testing
 behavior. For example, Fixture provides the absolute bare minimum to test
 any Fixture and no more. By adding a set of subclasses, common
 initialization and checks can be performed at one layer while specific run
 decisions and checks can happen at a lower layer.

 The second part of Fixture object creation is crafting the data. Tying data
 to a Fixture class should be done with ``torment.fixtures.register``. It
 provides a declarative interface that binds a dictionary to a Fixture (keys
 of dictionary become Fixture properties). ``torment.fixtures.register``
 creates a subclass that the rest of the torment knows how to transform into
 test cases that are compatible with nose.

 Examples

 Simplest Fixture subclass:

 .. code-block:: python

 class MyFixture(Fixture):
 pass

 Of course, to be useful the Fixture needs definitions of setup, run, and
 check that actually test the code we're interested in checking:

 .. code-block:: python

 def add(x, y):
 return x + y

 class AddFixture(Fixture):
 def run(self):
 self.result = add(self.parameters['x'], self.parameters['y'])

 def check(self):
 self.context.assertEqual(self.result, self.expected)

 This fixture uses a couple of conventions (not requirements):

 #. ``self.parameters`` as a dictionary of parameter names to values
 #. ``self.expected`` as the value we expect as a result
 #. ``self.result`` as the holder inside the fixture between ``run`` and
 ``check``

 This show-cases the ridiculity of using this testing framework for simple
 functions that have few cases that require testing. This framework is
 designed to allow many cases to be easily and declaritively defined.

 The last component required to get these fixtures to actually run is hooking
 them together with a context:

 .. code-block:: python

 from torment import contexts

 class AddUnitTest(contexts.TestContext, metaclass = contexts.MetaContext):
 fixture_classes = (
 MyFixture,
 AddFixture,
)

 The context that wraps a Fixture subclass should eventually inherit from
 TestContext (which inherits from ``unittest.TestCase`` and provides its assert
 methods). In order for nose to find and execute this ``TestContext``, it
 must have a name that contains Test.

 Properties

 * ``category``
 * ``description`` (override)
 * ``name`` (do **not** override)

 Methods To Override

 * ``__init__``
 * ``check``
 * ``initialize``
 * ``run (required)``
 * ``setup``

 Instance Variables

 :``context``: the ``torment.TestContext`` this case is running in which
 provides the assertion methods of ``unittest.TestCase``.

 '''

 def __init__(self, context: 'torment.TestContext') -> None:
 '''Create Fixture

 Initializes the Fixture's context (can be changed like any other
 property).

 Parameters

 :``context``: a subclass of ``torment.TestContext`` that provides
 assertion methods and any other environmental information
 for this test case

 '''

 self.context = context

 @property
 def category(self) -> str:
 '''Fixture's category (the containing testing module name)

 Examples

 :module: test_torment.test_unit.test_fixtures.fixture_a44bc6dda6654b1395a8c2cbd55d964d
 :category: fixtures

 '''

 logger.debug('dir(self.__module__): %s', dir(self.__module__))

 return self.__module__.__name__.rsplit('.', 2)[-2].replace('test_', '')

 @property
 def description(self) -> str:
 '''Test name in nose output (intended to be overridden).'''

 return '{0.uuid.hex}—{1}'.format(self, self.context.module)

 @property
 def name(self) -> str:
 '''Method name in nose runtime.'''

 return 'test_' + self.__class__.__name__

[docs] def initialize(self) -> None:
 '''Post-data population initialization hook.

 .. note::
 Override as necessary. Default provided so re-defenition is not
 necessary.

 Called during ``__init__`` and after properties have been populated by
 ``torment.fixtures.register``.

 '''

 pass

[docs] def setup(self) -> None:
 '''Pre-run initialization hook.

 .. note::
 Override as necessary. Default provided so re-defenition is not
 necessary.

 Called after properties have been populated by
 ``torment.fixtures.register``.

 '''

 pass

[docs] def check(self) -> None:
 '''Check that run ran as expected.

 .. note::
 Override as necessary. Default provided so re-defenition is not
 necessary.

 Called after ``run`` and should be used to verify that run performed the
 expected actions.

 '''

 pass

 def _execute(self) -> None:
 '''Run Fixture actions (setup, run, check).

 Core test loop for Fixture. Executes setup, run, and check in order.

 '''

 if hasattr(self, '_last_resolver_exception'):
 logger.warning('last exception from %s.%s:', self.__class__.__name__, self._last_resolver_exception[0], exc_info = self._last_resolver_exception[1])

 self.setup()
 self.run()
 self.check()

class ErrorFixture(Fixture):
 '''Common error checking for Fixture.

 Intended as a mixin when registering a new Fixture (via register) that will
 check an error case (one throwing an exception).

 Examples

 Using the AddFixture from the Examples in Fixture, we can create a Fixture
 that handles (an obviously contrived) exception by either crafting a new
 Fixture object or invoking register with the appropriate base classes.

 New Fixture Object:

 .. code-block:: python

 class ErrorAddFixture(ErrorFixture, AddFixture):
 pass

 Via call to register:

 .. code-block:: python

 register(globals(), (ErrorFixture, AddFixture,), { … })

 '''

 @property
 def description(self) -> str:
 '''Test name in nose output (adds error reason as result portion).'''

 return super().description + ' → {0.error}'.format(self)

 def run(self) -> None:
 '''Calls sibling with exception expectation.'''

 with self.context.assertRaises(self.error.__class__) as error:
 super().run()

 self.exception = error.exception

@decorators.log
def of(fixture_classes: Iterable[type], context: Union[None, 'torment.TestContext'] = None) -> Iterable['torment.fixtures.Fixture']:
 '''Obtain all Fixture objects of the provided classes.

 Parameters

 :``fixture_classes``: classes inheriting from ``torment.fixtures.Fixture``
 :``context``: a ``torment.TestContext`` to initialize Fixtures with

 Return Value(s)

 Instantiated ``torment.fixtures.Fixture`` objects for each individual
 fixture class that inherits from one of the provided classes.

 '''

 classes = list(copy.copy(fixture_classes))
 fixtures = [] # type: Iterable[torment.fixtures.Fixture]

 while len(classes):
 current = classes.pop()
 subclasses = current.__subclasses__()

 if len(subclasses):
 classes.extend(subclasses)
 elif current not in fixture_classes:
 fixtures.append(current(context))

 return fixtures

[docs]def register(namespace, base_classes: Tuple[type], properties: Dict[str, Any]) -> None:
 '''Register a Fixture class in namespace with the given properties.

 Creates a Fixture class (not object) and inserts it into the provided
 namespace. The properties is a dict but allows functions to reference other
 properties and acts like a small DSL (domain specific language). This is
 really just a declarative way to compose data about a test fixture and make
 it repeatable.

 Files calling this function are expected to house one or more Fixtures and
 have a name that ends with a UUID without its hyphens. For example:
 foo_38de9ceec5694c96ace90c9ca37e5bcb.py. This UUID is used to uniquely
 track the Fixture through the test suite and allow Fixtures to scale without
 concern.

 Parameters

 :``namespace``: dictionary to insert the generated class into
 :``base_classes``: list of classes the new class should inherit
 :``properties``: dictionary of properties with their values

 Properties can have the following forms:

 :functions: invoked with the Fixture as it's argument
 :classes: instantiated without any arguments (unless it subclasses
 ``torment.fixtures.Fixture`` in which case it's passed context)
 :literals: any standard python type (i.e. int, str, dict)

 .. note::
 function execution may error (this will be emitted as a logging event).
 functions will continually be tried until they resolve or the same set
 of functions is continually erroring. These functions that failed to
 resolve are left in tact for later processing.

 Properties by the following names also have defined behavior:

 :description: added to the Fixture's description as an addendum
 :error: must be a dictionary with three keys:
 :class: class to instantiate (usually an exception)
 :args: arguments to pass to class initialization
 :kwargs: keyword arguments to pass to class initialization
 :mocks: dictionary mapping mock symbols to corresponding values

 Properties by the following names are reserved and should not be used:

 * name

 '''

 # ensure we have a clean copy of the data
 # and won't stomp on re-uses elsewhere in
 # someone's code
 props = copy.deepcopy(properties)

 desc = props.pop('description', None) # type: Union[str, None]

 caller_frame = inspect.stack()[1]

 caller_file = caller_frame[1]
 caller_module = inspect.getmodule(caller_frame[0])

 my_uuid = uuid.UUID(os.path.basename(caller_file).replace('.py', '').rsplit('_', 1)[-1])
 class_name = _unique_class_name(namespace, my_uuid)

 @property
 def description(self) -> str:
 _ = super(self.__class__, self).description

 if desc is not None:
 _ += '—' + desc

 return _

 def __init__(self, context: 'torment.TestContext') -> None:
 super(self.__class__, self).__init__(context)

 functions = {}

 for name, value in props.items():
 if name == 'error':
 self.error = value['class'](*value.get('args', ()), **value.get('kwargs', {}))
 continue

 if inspect.isclass(value):
 if issubclass(value, Fixture):
 value = value(self.context)
 else:
 value = value()

 if inspect.isfunction(value):
 functions[name] = value
 continue

 setattr(self, name, value)

 _resolve_functions(functions, self)

 self.initialize()

 def setup(self) -> None:
 if hasattr(self, 'mocks'):
 logger.debug('self.mocks: %s', self.mocks)

 for mock_symbol, mock_result in self.mocks.items():
 if _find_mocker(mock_symbol, self.context)():
 _prepare_mock(self.context, mock_symbol, **mock_result)

 super(self.__class__, self).setup()

 namespace[class_name] = type(class_name, base_classes, {
 'description': description,
 '__init__': __init__,
 '__module__': caller_module,
 'setup': setup,
 'uuid': my_uuid,
 })

def _prepare_mock(context: 'torment.contexts.TestContext', symbol: str, return_value = None, side_effect = None) -> None:
 '''Sets return value or side effect of symbol's mock in context.

 .. seealso:: :py:func:`_find_mocker`

 Parameters

 :``context``: the search context
 :``symbol``: the symbol to be located
 :``return_value``: pass through to mock ``return_value``
 :``side_effect``: pass through to mock ``side_effect``

 '''

 methods = symbol.split('.')
 index = len(methods)

 mock = None

 while index > 0:
 name = 'mocked_' + '_'.join(methods[:index]).lower()
 logger.debug('name: %s', name)

 if hasattr(context, name):
 mock = getattr(context, name)
 break

 index -= 1

 logger.debug('mock: %s', mock)

 if mock is not None:
 mock = functools.reduce(getattr, methods[index:], mock)
 logger.debug('mock: %s', mock)

 if return_value is not None:
 mock.return_value = return_value

 if side_effect is not None:
 mock.side_effect = side_effect

 mock.reset_mock()

def _find_mocker(symbol: str, context: 'torment.contexts.TestContext') -> Callable[[], bool]:
 '''Find method within the context that mocks symbol.

 Given a symbol (i.e. ``tornado.httpclient.AsyncHTTPClient.fetch``), find
 the shortest ``mock_`` method that resembles the symbol. Resembles means
 the lowercased and periods replaced with underscores.

 If no match is found, a dummy function (only returns False) is returned.

 Parameters

 :``symbol``: the symbol to be located
 :``context``: the search context

 Return Value(s)

 The method used to mock the symbol.

 Examples

 Assuming the symbol is ``tornado.httpclient.AsyncHTTPClient.fetch``, the
 first of the following methods would be returned:

 * ``mock_tornado``
 * ``mock_tornado_httpclient``
 * ``mock_tornado_httpclient_asynchttpclient``
 * ``mock_tornado_httpclient_asynchttpclient_fetch``

 '''

 components = []
 method = None

 for component in symbol.split('.'):
 components.append(component.lower())
 name = '_'.join(['mock'] + components)

 if hasattr(context, name):
 method = getattr(context, name)
 break

 if method is None:
 logger.warn('no mocker for %s', symbol)

 def noop(*args, **kwargs):
 return False

 method = noop

 return method

def _resolve_functions(functions: Dict[str, Callable[[Any], Any]], fixture: Fixture) -> None:
 '''Apply functions and collect values as properties on fixture.

 Call functions and apply their values as properteis on fixture.
 Functions will continue to get applied until no more functions resolve.
 All unresolved functions are logged and the last exception to have
 occurred is also logged. This function does not return but adds the
 results to fixture directly.

 Parameters

 :``functions``: dict mapping function names (property names) to
 callable functions
 :``fixture``: Fixture to add values to

 '''

 exc_info = last_function = None
 function_count = float('inf')

 while function_count > len(functions):
 function_count = len(functions)

 for name, function in copy.copy(functions).items():
 try:
 setattr(fixture, name, copy.deepcopy(function(fixture)))
 del functions[name]
 except:
 exc_info = sys.exc_info()

 logger.debug('name: %s', name)
 logger.debug('exc_info: %s', exc_info)

 last_function = name

 if len(functions):
 logger.warning('unprocessed Fixture properties: %s', ','.join(functions.keys()))
 logger.warning('last exception from %s.%s:', fixture.name, last_function, exc_info = exc_info)

 setattr(fixture, '_last_resolver_exception', (last_function, exc_info,))

 for name, function in copy.copy(functions).items():
 setattr(fixture, name, function)

def _unique_class_name(namespace: Dict[str, Any], uuid: uuid.UUID) -> str:
 '''Generate unique to namespace name for a class using uuid.

 Parameters

 :``namespace``: the namespace to verify uniqueness against
 :``uuid``: the "unique" portion of the name

 Return Value(s)

 A unique string (in namespace) using uuid.

 '''

 count = 0

 name = original_name = 'f_' + uuid.hex
 while name in namespace:
 count += 1
 name = original_name + '_' + str(count)

 return name

 © Copyright 2015.
 Created using Sphinx 1.3.1.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		torment 3.0.3 documentation »

 All modules for which code is available

		torment.contexts

		torment.fixtures

 © Copyright 2015.
 Created using Sphinx 1.3.1.

_static/comment.png

