Tori Documentation
Release 3.1.0

Juti Noppornpitak

August 15, 2016

Contents

6

How to Install?

What’s next?

Not working after upgrade?

What if the documentation is suck or the code is buggy?
Special Thanks

Indices and Modules

Python Module Index

61

63

65

67

69

Tori Documentation, Release 3.1.0

Author Juti Noppornpitak <jnopporn@shiroyuki.com>

Tori is a collection of libraries, micro web framework based on Facebook’s Tornado framework 2.x and the ORM for
MongoDB and supports Python 2.7+ and Python 3.3+. (Read more from the Introduction.)

Contents 1

mailto:jnopporn@shiroyuki.com

Tori Documentation, Release 3.1.0

2 Contents

CHAPTER 1

How to Install?

See Installation from Getting Started.

Tori Documentation, Release 3.1.0

4 Chapter 1. How to Install?

CHAPTER 2

What’s next?

Read:
e Manual to get started and learn how to use it.
» API Reference to get the reference on APIs and methods.

* Change Logs to see what have been changed.

2.1 Manual

The manual is for the better understanding on how each part is designed and used in the human language.

2.1.1 Introduction

Tori is a collection of libraries, a micro web framework based on Facebook’s Tornado framework 2.x and the ORM
for MongoDB and supports Python 2.7+ and Python 3.3+.

Before using

Please note that this framework/library is released under MIT license copyrighted by Juti Noppornpitak. The dis-
tributed version of this license is available at https://github.com/shiroyuki/Tori/blob/master/readme.md.

Differences in Idea

As there already exists many web framework for Python, Tori Framework is made for specific purposes.
1. It is to simplify the setup process and customizable.

2. Everything in Tori, beside what Tornado provides, is designed with the concepts of aspect-oriented programming
(AOP) and dependency injections (DI) which heavily relies on Imagination Framework.

3. There is no guideline on how developers want to use the code.

4. Many libraries/components are designed for re-usability with or without the web framework part or Imagination
Framework (AOP part).

https://github.com/shiroyuki/Tori/blob/master/readme.md
https://github.com/shiroyuki/Imagination

Tori Documentation, Release 3.1.0

Differences in Code

Even though Tori is based on Tornado, there are a few elements that differ from the Tornado.

1. The setup script is different as the setup process of Tori Framework is designed to be a wrapper for Tornado’s
Application.

2. Tori Framework overrides the default template engine with Jinja2.

3. Tori Framework’s controller extends Tornado’s RequestHandler with the integration with Tori’s session
controller and the template engine.

4. Tori Framework can handle more than one route to static resource.

5. Provide a simple way to define routes. (added in 2.1)

Prerequisites

Module Required Third-party Modules
tori.application | tornado 2.4+/3+
tori.controller tornado 2.4+/3+

tori.socket tornado 2.4+/3+

tori.db pymongo 2.3+ / sqlalchemy 0.7+
tori.session redis 2.7+

tori.template jinja2 2.6+

Note: It is not required to have all of them. You can keep only what you need.

Installation

You can install via PIP command or easy_install command or you can download the source code and run python
setup.py install ormake install.

Warning: There is no plan on supporting the legacy releases of Python as the project moves forward to Python
3.3 or higher. Python 2.7 is the last series of Python 2 being supported by the project. Python 2.6 seems to be
working but the framework is not tested.

2.1.2 Concept and Philosophy

Tori Framework is designed to incorporates:
* the adapted version of PEP 8 with Object Calisthenics
* the aspect-oriented programming pattern
¢ the dependency injection pattern

altogether. Despite of that, there are a few irregular things: the controller-repository-model pattern, standalone sub-
modules and non-circular dependency graph.

6 Chapter 2. What’s next?

http://jinja.pocoo.org/
https://www.python.org/dev/peps/pep-0008

Tori Documentation, Release 3.1.0

Controller-Repository-Model Pattern (CRM)

If a sub module has to deal with static or indexed data, the controller-repository-model pattern (CRM) will be used
where:

* controllers are front-end interfaces used to provide data in the general way
* repositories are back-end interfaces used to access data specifically for a particular type of data
* models or entities are models representing the data retrieved by the repositories and known by the controllers.

For instance, the session module has tori.session.controller.Controller as the only controller, any
classes in tori.session.repository as a repository and any classes in tori.session.entity as an
entity (or data structure) if required by the repository.

Standalone Sub-modules

Some sub-modules are designed to work independently without the need of other sub-modules. This only ap-
plies to low-level modules like navigation (tori.navigation), ORM (tori.db) and templating module
(tori.template).

Non-circular Dependency Graph

All modules in Tori Framework have unidirectional relationship at the module and code level. The reasons beside all
of other cool reasons, many of which you may have heard somewhere else, of doing this is for easy maintenance, easy
testing and infinite-loop prevention.

2.1.3 Getting Started

Installation

Justrun sudo pip install tori
Hello, world... again?
Set up for Python 3.3+

Please install Tori with Python 2.7 and use nest to create the skeleton app for now as the command due a known
compatibility issue.

Set up for Python 2.7

After the installation, you can begin creating a app with the supplied nest command. In this example, we create an
app called “konota web”.

nest tori.app.create -p 5000 konataweb

What just happened?
* The command generate a basic based on an app skeleton at the working directory.

* The option —p sets the default port to 5000.

2.1. Manual 7

Tori Documentation, Release 3.1.0

At your current directory, you should see:

(app root path)

config/ <- config folder
dev.xml <- app config (routing)
service.xml <- config for service containers
settings. json <- app settings
konataweb/ <- app module
controller.py <- dummy controller
Makefile
server.py <- Bootstrap file
static/ <- Just like Flask
js/ (empty)
image/ (empty)
css/ (empty)
scss/ (empty)
templates <- Just like Flask
home.html <- dummy template

If you take a look at konataweb/controller.py, you will see:

from tori.controller import Controller

class Home (Controller) :
def get (self):
self.render ('home.html', name = 'konataweb')

where the base path of the template folder is at templates.

Note: The template engine is Jinja2.

Note: You can re-define the base path of your template either by module (e.g., konataweb.templates or
/opt/templates). For example, if you happened to have a template in konataweb/templates, you can
re-define by:

1. import a decorator.

from tori.decorator.controller import renderer

2. decorate the controller to re-define the base path.

@renderer ('konataweb.templates')
class Home (Controller) :

Run make service to start the web service (not in the background). You should now be able to access to
http://localhost:5000.

What is a service container?
In Tori Framework, you may define global variables for reusability. This part of the framework is relied on Project
Imagination (see more information from the documentation).

For example, if we want to create a container (or known as entity in Project Imagination) to do some calculation, first
create konataweb.calculator.py.

8 Chapter 2. What’s next?

http://jinja.pocoo.org
http://localhost:5000
https://github.com/shiroyuki/Imagination
https://github.com/shiroyuki/Imagination
http://imagination.readthedocs.org/en/latest/getting_started.html

Tori Documentation, Release 3.1.0

class EasyCalculator (object) :
def sum(self, +items):
summation 0

for item in items:
summation item

return item

Then, in config/service.xml, just define an entity tag for a container under <imagination>.

<entity id="easycalc" class="konataweb.calculator.EasyCalculator"/>
<!-— You may define more than one container of the same class ——>
<entity id="different_easycalc" class="konataweb.calculator.EasyCalculator"/>

To use the container in the controller or websocket handler, you can simply retrieve the global instance of the
container easycalc by calling self.component.

In konataweb/controller.py
import re
class CalculatorAPI (Controller):
def get (self, operation):
raw_nums
numbers

self.get_argument ('num_sequence',
[int (str_num)

') # tornado.web.RequestHandler's
for str_num in re.split(',', raw_nums)]

if operation
return self.set_status (405)

sum
tornado.web.RequestHandler's original

sum

self.component ('easycalc') .sum(*numbers) # tori.controller.Controller's ej

self.finish (sum)

original

xtra

Just now, we happen to have a new controller. We need to make it accessible.

Add a route

To add a new route, just add a <controller> tag under <routes>.

‘<controller id="api.calculator" class="konataweb.controller.CalculatorAPI" pattern="/api/{operation}‘

You should see the following result after send GET

http://localhost:5000/api/sumnum_sequence=1,3,5,7:

you a request to

|16

Application Settings (NEW since 3.0)

Instead of overriding the service container session, you achieve the same thing by defining the section session. For
example, we change to use the file-based session.

{
"session": {
"class": "tori.session.repository.file.FileSessionRepository",
"params": {
"location": "session.json"
}
}I
2.1. Manual 9

http://localhost:5000/api/sum?num_sequence=1,3,5,7

Tori Documentation, Release 3.1.0

Router in the template (NEW since 3.0)

In Tori 3, you can refer to any routes by ID. For instance, we add a link to the calculator AP

Test |[1link
Read more

e Controller

* Object-relational Mapping (ORM)

* Routing

* Configuration
2.1.4 Configuration

Author Juti Noppornpitak

The configuration in Tori framework is written on XML. The only reason is because it is validable and flexible. It is
largely influenced by the extensive uses of JavaBeans in Spring Framework (Java) and the lazy loading in Doctrine
(PHP).
Specification
Here is the complete specification of the configuration file:
permitive_boolean ::= 'true' | 'false'
root_node ::= '<application>' include_node server_node routing_node service_node '</application>'

Include other configuration files

include_node ::= '<include src="' include_file_path '"/>' include_node | ''
"include_file_path" is a string representing either an absolute path or a relative pat
working directory of the script.

Server-specific configuration
server_node ::= '<server>' server_debug_node server_port_node server_error_node '</serve

server_config _node ::= (
server_debug_node
| server_port_node
| server_error_node
)

server_config_node
Debug switch (which can be overridden by the app constructor)
server_debug_node ::= '<debug>' permitive_boolean '</debug>' | "'

Default to "true"

Server port number

h to the cur

br>t | T

10 Chapter 2. What’s next?

Tori Documentation, Release 3.1.0

server_port_node ::= '<port>' server_port_number '</port>' | ''

E.g., 80, 443, 8000 (default) etc.

Custom error delegate/handler as a controller.

server_error_node ::= '<error>' server_error_class '</error>' |
"server_error_class" is a string representing the full name of the error controller cl
com.shiroyuki.www.controller.ErrorController. If not specified, the default handler wij
Tornado's code.

v

Routing configuration
routing_node ::= '<routes>' routing_route_node '</routes>'

routing_route_node ::= (
routing_route_controller_node
| routing_route_redirection_node
| routing_route_resource_node
)

routing_route_node
I T

tornado_route_pattern ::= 'pattern="' tornado_route_pattern_regexp '"'

"controller_class" is a string representing the full name of the controller class, fog
com.shiroyuki.www.controller.HomeController.

Controller
routing_route_controller_node ::= '<controller class="' controller_class '" ' tornado_rq

Redirection

routing_route_redirection_node ::= '<redirection destination="' tornado_route_pattern "'
Resource

routing_route_resource_node ::= '<resource location="' file_path_pattern '" ' tornado_rq

Service configuration
service_node ::= '<service>' include_file_path '</service>' service_node | '

Note: DTD will be provided as soon as someone is willing to help out on writing.

You can see the example from the configuration of The Council Project on GitHub.

See More

Predefined Configuration

New in version 3.0.

Based on the feedback, despite of maximizing the customization, the XML configuration schema is pretty hard to
work with or remember, especially for something important like session management and databases (MongoDB).

In version 3.0, it provides the predefined configuration (in JSON format). Here is the sample of all available configu-
ration.

{

"session": {

2.1. Manual 11

ass, for inst
11 be decidec

instance,

ute_pattern

' tornado_r«

ute_pattern

https://github.com/shiroyuki/Council/tree/master/council/config

Tori Documentation, Release 3.1.0

"class": "tori.session.repository.memory.Memory"
"params": {}

}

"db" : {
"managers": {}

Database Configuration (“db”) This section currently can only tell the entity manager factory from Passerine ORM
(https://github.com/shiroyuki/passerine) to automatically prepare for the connection to

For example, we have config. json.

{
"db": |
"managers": {
"directory": "mongodb://localhost/directory"
}

}

Add this line to the XML configuration file.

<use src="config.json"/>

And you can call the service by either:

from tori.centre import services

services.get ('db.directory') # to get the entity manager

Session Configuration The following are usable session adapters.

tori.session.repository.memory.Memory This is the default option. This uses the process memory as a storage. No
parameters.

tori.session.repository.file.File This adapter uses a single JSON file to store session data. It writes to the file on
€very save.

Parameters:

param str location The location of the file. If the given location is a relative path, the base path will be
based from where the main script is.

tori.session.repository.xredis.Redis This adapter uses a single JSON file to store session data. It writes to the file
on every save.

param str prefix The key prefix for all session entries. By default, the prefix is set to tori/session.

param redis_client The redis connection client from redis (python package). By default, it is set to a
connection client bounded to localhost without credential.

param bool use_localhost_as_fallback The flag to use localhost as a fallback connection. It is set to
use this feature by default.

12 Chapter 2. What’s next?

https://github.com/shiroyuki/passerine

Tori Documentation, Release 3.1.0

Your own adapter? Just extends your adapter from tori.session.repository.base.Base

Routing

Routing Order and Priority The routes (<routes>) is prioritized by the order in the routing list.

Types of Directives There are 3 types of routes being supported.

Directive | Description
controller | A routing directive for dynamic content handled by a controller.
resource A routing directive for static content/resource.
redirection | A routing directive for relaying requests with redirection.
At- Description Expected Values
tribute
. attern the routing pattern regular expression or simple patterr
Common Attributes | P £P & P piep |

(string)

regexp the flag to indicate whether the given routing pattern is

simplified

true or false (boolean)

Regular-expression Routing Pattern In general, the attribute pattern of any routing directives is to indicate the
routing pattern where the directive intercepts, process and respond to any requests to the pattern. Each routing pattern
is unique from each other.

Simple Routing Pattern New in version 2.1.

By default, similar to Tornado, Tori Framework uses the normal regular expression for routing. However, this could
introduce an error-prone routing table for anyone that does not know the regular expression. Here is the syntax where
the routing resolver considers in the following presented order.

Simple Pattern Syntax | Equvalent Regular Expression
* % (.+)

* ([~/1+)

{name} (?P<name>.+)

Here are the simple versions of routing patterns.

Simple Pattern

Equivalent Regular Expression

Expected Parameter List/Map

/abc/def/ghi/**

/abc/def/ghi/ (.+)

index O or the first key

/abc/def/ghi/*/ k1

/abc/def/ghi/ ([~/1+) /jk1

index O or the first key

/abc/def/ghi/{key}/jk1l

/abc/def/ghi/ (?P<key>.+) /jkl

key key

To enable the simple routing pattern, the regexp attribute must be false (not default).

Default Routes for FAVICON New in version 2.1.

In addition to the simple routing, the default route for /favicon.ico is available if not assigned.

Controller For a routing directive controller, the attribute class is a class reference to a particular controller
where the controller must be on the system path (for Python).

2.1. Manual

13

Tori Documentation, Release 3.1.0

<controller class="app.note.controller.IndexController" pattern="/notes/ (.*)"/>

Redirection For a routing directive redirection, the attribute destination is a string indicating the destina-
tion of the redirection, and the attribute permanent is a boolean indicating whether the redirection is permanent.

<redirection destination="/notes/" pattern="/notes"/>

Resource For a routing directive resource, the attribute 1ocation is either:
* an absolute or relative path to static resource,
* a module name containing static resource.

the attribute cache is a boolean to indicate whether the resource should be cache.

<resource location="resources/favicon.ico" pattern="/favicon.ico" cache="true"/>

Service

Author Juti Noppornpitak
The services is prioritized by the appearing order of <service> in the file.

The content of the <service> block is the absolute or relative path to the service configuration file and follows
‘the specification <https://imagination.readthedocs.org/en/latest/api/helper.assembler.html#xml-schema> ‘_ of Imag-
ination Framework.

2.1.5 Object-relational Mapping (ORM)

Tori Framework introduces the object-relational mapping module for MongoDB 2.0 or newer.

Introduction

The object-relational mapping (ORM) module in Tori is designed for non-relational databases. The current version
of ORM is designed only for MongoDB 2.2 or newer. There are plans for other kinds of databases but there are not
enough resources.

Definitions

In this documentation, let’s define:
Entity Document

Object ID An primitive identifier (string, integer, or floating number) or an instance of
bson.ObjectId

Pseudo ID an instance of tori.db.common.PseudoOb jectId

14 Chapter 2. What’s next?

Tori Documentation, Release 3.1.0

Architecture

There are a few points to highlight.

The lazy-loading strategy and proxy objects are used for loading data wherever applicable.
The ORM uses the Unit Of Work pattern as used by:

— Hibernate (Java)

— Doctrine (PHP)

— SQLAIchemy (Python)

Although MongoDB does not has transaction support like MySQL, the ORM has sessions to manage the object
graph within the same memory space.

By containing a similar logic to determine whether a given entity is new or old, the following condition are used:
— If a given entity is identified with an object ID, the given entity will be considered as an existing entity.
— Otherwise, it will be a new entity.

The object ID cannot be changed via the ORM interfaces.

The ORM supports cascading operations on deleting, persisting, and refreshing.

Heavily rely on public properties, which does not have leading underscores (_) to map between class properties
and document keys, except the property id will be converted to the key _id.

Limitation

As sessions are not supported by MongoDB, the ORM cannot roll back in case that an exception are raisen or a
writing operation is interrupted.

Sessions cannot merge together.

Cascading operations on deleting forces the ORM to load the whole graph which potentially introduces per-
formance issue on a large data set.

Cascading operations on persisting force the ORM to load the data of all proxy objects but commiting changes
will still be made only if there are changes.

Cascading operations on refreshing force the ORM to reset the data and status of all entities, including proxy
objects. However, the status of any entities marked for deletion will not be reset.

Some database operations are not supported or optimized due to the non-generalized interfaces as shown on the
table in the next section. (Introduced in Tori 3.0)

LevelDB will only be supported for Python 2.7 as the underlying library leveldb only supports Python 2.7 due
to its dependency.

Supported SQL-equivalent Querying Operations

New in version 3.0.

2.1. Manual 15

http://www.hibernate.org/
http://www.doctrine-project.org/
http://www.sqlalchemy.org/
https://code.google.com/p/py-leveldb/

Tori Documentation, Release 3.1.0

SQL-equivalent Operation MongoDB 2.4+ | Riak 1.4+ | Riak 2.0+ | LevelDB | Redis
CRUD operations Yes Yes Yes Yes Yes
Simple query Yes No Unknown No No
AND compound statement Yes No Unknown No No
OR compound statement Yes/SW Yes/SW Yes/SW No No
Filter with regular expression Yes No Unknown No No
Range filter Yes No Unknown No No
Query optimization with index | Yes Yes Yes No No
Directly use indice for query No Yes Yes No No
Store the data as they are* Yes Yes Yes No No

Note: Some databases may store a complex-structured data, which is always the case when the ORM stores the
structured data of the entity.

Note: New in version 3.1.

The OR statements are not available by any of supported NoSQL databases. This is planned for Tori 3.1 to support by
the ORM, similar to session.

Getting Started

The chapter illustrates how to define entities and set up an entity manager.

Define an Entity

First, we define the entity (document) class.

from tori.db.entity import entity

Alternatively, (@entity('name_of collection') is to set the name of the collection.
@entity
class Character (object):
def _ init_ (self, name, team=None):
self.name = name
self.team = None

@entity
class Team(Object) :
def _ init_ (self, name):
self.name = name

where an entity of class Character automatically has a readable and writable property id which can be set only
once.

Warning: It is not recommended to the ID manually. Leave setting the ID to the backend database.

Define the Entity Manager

Then, define the entity manager.

16 Chapter 2. What’s next?

Tori Documentation, Release 3.1.0

from tori.db.manager import ManagerFactory

manager_factory = ManagerFactory ()
manager_factory.set ('ff_game', 'mongodb://db_host/db_name')

entity_manager = manager_factory.get ('ff _game')

Basic Usage

Suppose we have:

session = entity_manager.open_session ()
char_repo = session.repository (Character)

Create a new entity

Suppose two characters: “Ramza”, and “Alma”, are to created.

ramza = Character ('Ramza')
alma = Character('Alma')

character_repo.post (ramza)
character_repo.post (alma)

Note: for the following example, assume that ramza.idis 1 and alma.idis 2.

List, query or filter entities

To list all characters (documents),

query = char_repo.new_criteria('c")
characters = char_repo.find(query)

for character in characters:
print ('{}: {}'.format (character.id, character.name))

Then, you should see:

1: Ramza
2: Alma

Now, to find “Ramza”,

query = char_repo.new_criteria('c’)
query.expect ('c.name = :name')
query.define('name', 'Ramza')
characters = char_repo.find(query)

for character in characters:
print ('{}: {}'.format (character.id, character.name))

Then, you should only see:

2.1. Manual 17

Tori Documentation, Release 3.1.0

’1: Ramza

Note: The queries use a simple query language. (If you see this message and see no explaination on the query
language, please contact @shiroyuki on Twitter.)

Retrieve an entity by ID

Now, to retrieve an entity by ID,

alma = char_repo.get (2)

Note: There is no auto-conversion from any given ID to bson.ObjectId as the ID can be anything. If the ID of
the target entity is of type bson.ObJjectId, e.g., "2" is a string representation of the Ob ject Id, the code has to
be alma = collection.get (bson.ObjectId(’2’)). (Assume thatinstantiating is okay.)

Update entities

Let’s say you want to rename “Alma” to “Luso”.

alma = collection.get (2)

alma.name = 'Luso'

You can update this by

char_repo.put (character)

Delete entities

‘char_repo.delete(alma)

Working with Associations

This chapter introduces association mappings which directly use object IDs to refer to the corresponding objects.
Tori only uses decorators (or annotations in some other languages) to define the association mapping.
Instead of working with the object IDs directly, you will always work with references to objects:

» A reference to a single object is represented by object IDs.

* A collection of objects is represented by many object IDs pointing to the object holding the collection

Note: As lazy loading is the heart of architectural design of the ORM, when an entity is mapped
to an existing document, each property of the entity in the clean state will be a reference to either
tori.db.common.ProxyObject, which loads the data on demand for any non-many-to-many mappings, or
tori.db.common.ProxyCollection, whichloads the list of proxy objects to the respective entities on demand
only for any many-to-many mappings.

18 Chapter 2. What’s next?

Tori Documentation, Release 3.1.0

There are two sections in this chapter:
* types of associations

* options for associations

Types of Associations

In general, the decorator tori.db.mapper.link () is used to define the association a property of the decorated
class to the another class.

For the sake of the simplicity of this chapter, all examples are assumed to be in the module sampleapp.model, and
all begin with:

from tori.db.entity import entity
from tori.db.mapper import link, AssociationType as t, CascadingType as c

Before getting started, here is the general table of abilities which will be explained later on in this chapter.

o - Destination
Ability Origin Unidirectional | Bidirectional
Map a property to object | Yes N/A Yes
Cascade opeations Yes N/A No, Ignored
Force read-only mode Yes N/A Yes

where available operations are “merge”, “delete”, “persist”, and “refresh”.

One-to-one Suppose there are two entities: Owner and Restaurant, one-to-one associations imply the relation-
ship between two entities as described in the following UML.:

Owner (1) —-———-— (1) Restaurant

Unidirectional UML:

Owner (1) <--x- (1) Restaurant

Suppose we have two classes: Owner and Restaurant, where Restaurant has the one-to-one unidirectional
relationship with Owner.

@entity
class Owner (object) :
def _ init_ (self, name):
self.name = name
Qlink (
target = 'sampleapp.model.Owner',
mapped_by = 'owner',

association = t.ONE_TO_ONE
)
@entity
class Restaurant (object) :
def _ init__ (self, name, owner):
self.name = name
self.owner = owner

where the sample of the stored documents will be:

2.1. Manual 19

Tori Documentation, Release 3.1.0

// collection: owner
{'_id': 'o-1', 'name': 'siamese'}

// collection: restaurant
{'_id': 'rest-1', 'name': 'green curry', 'owner': 'o-1"'}

Tip: To avoid the issue with the order of declaration, the full namespace in string is recommended to define the target
class. However, the type reference can also be. For example, @1ink (target = Owner, ...).

Bidirectional UML:

Owner (1) <———> (1) Restaurant

Now, let’s allow Owner to have a reference back to Restaurant where the information about the reference is not
kept with Owner. So, the

@link (
target = 'sampleapp.model.Restaurant'
inverted_by = 'owner',
mapped_by = 'restaurant',

association = t.ONE_TO_ONE
)

@entity
class Owner (object) :
def _ init_ (self, name, restaurant):
self.name = name
self.restaurant = restaurant

where the the stored documents will be the same as the previous example.

inverted_by means this class (Owner) maps Restaurant to the property restaurant where the value of the
property owner of the corresponding entity of Restaurant must equal the ID of this class.

Note: The option inverted_by only maps Owner.restaurant to Restaurant virtually but the reference is
stored in the restaurant collection.

Many-to-one Suppose a Customer can have many Reward’s as illustrated:

Customer (1) ————-— (0..n) Reward

Unidirectional UML:

Customer (1) <--x- (0..n) Reward
@entity
class Customer (object) :
def _ init__ (self, name):
self.name = name
Qlink (
target = 'sampleapp.model.Customer’',
mapped_by = 'customer',

20 Chapter 2. What’s next?

Tori Documentation, Release 3.1.0

association = t.MANY_TO_ONE
)

@entity
class Reward (object) :
def _ _init__ (self, point, customer):
self.point = point
self.customer = customer

where the data stored in the database can be like this:

// collection: customer
{'_id': 'c-1', 'name': 'panda'}

// collection: reward
{'_id': 'rew-1', 'point': 2, 'customer': 'c-1'}
{'_id': 'rew-2', 'point': 13, 'customer': 'c-1"'}

Bidirectional UML:

Customer (1) <-—-> (0..n) Reward

Just change Customer.

Qlink (
target = 'sampleapp.model.Reward',
inverted_by = 'customer',
mapped_by = 'rewards',

association = t.ONE_TO_MANY
)

@entity
class Customer (object) :
def _ init_ (self, name, rewards):
self.name = name
self.rewards = rewards

where the property rewards refers to a list of rewards but the stored data remains unchanged.

Note: This mapping is equivalent to a bidirectional one-to-many mapping.

One-to-many Let’s restart the example from the many-to-one section.

Unidirectional with Built-in List The one-to-many unidirectional mapping takes advantage of the built-in list.

UML:

Customer (1) -x-——> (0..n) Reward

@link (
target = 'sampleapp.model.Reward',
mapped_by = 'rewards',

association = t.ONE_TO_MANY
)

@entity
class Customer (object) :
def _ init_ (self, name, rewards):

2.1. Manual

21

Tori Documentation, Release 3.1.0

self.name = name
self.rewards = rewards

@entity
class Reward(object) :
def _ _init__ (self, point):
self.point = point

where the property rewards is a unsorted iterable list of Reward objects and the data stored in the database can be
like this:

// collection: customer
{'_id': 'c-1', 'name': 'panda', 'reward': ['rew-1', 'rew-2']}

// collection: reward
{'_id': 'rew-1', 'point': 2}
{'_id': 'rew-2', 'point': 13}

Warning: As there is no way to enforce relationships with built-in functionality of MongoDB and there will be
constant checks for every write operation, it is not recommended to use unless it is for reverse mapping via the
option inverted_by (see below for more information).

Without a proper checker, which is not provided for performance sake, this mapping can be used like the many-
to-many join-collection mapping.

Bidirectional See Many-to-one Bidirectional Association.

Many-to-many Suppose there are Teacher and Student where students can have many teachers and vise versa:

Teacher (%) —-———- (x) Student

Similar other ORMs, the many-to-many mapping uses the corresponding join collection.

Unidirectional with Join Collection UML:

Teacher (%) <-—-x— (%) Student

@entity ('teachers"')
class Teacher (object) :

def _ init__ (self, name):
self.name = name
@link (
mapped_by = 'teachers',
target = Teacher,
association = AssociationType.MANY_TO_MANY,
cascading = [c.DELETE, c.PERSIST]

)
@entity ('students')
class Student (object) :

def _ init_ (self, name, teachers=[]):
self.name = name
self.teachers = teachers

where the stored data can be like the following example:

22 Chapter 2. What’s next?

Tori Documentation, Release 3.1.0

// db.students.find()

{'_id': 1, 'name': 'Shirou'}
{'_id': 2, 'name': 'Shun'}
{'_id': 3, 'name': 'Bob'}

// db.teachers.find()
{'_id': 1, 'name': 'John McCain'}
{'_id': 2, 'name': 'Onizuka'}

// db.students_teachers.find() // —-> join collection

{'_id': 1, 'origin': 1, 'destination': 1}
{'_id': 2, 'origin': 1, 'destination': 2}
{'_id': 3, 'origin': 2, 'destination': 2}
{'_id': 4, 'origin': 3, 'destination': 1}

Bidirectional Implemented for Tori 2.1 (https://github.com/shiroyuki/Tori/issues/27).

Options for Associations

The decorator tori.db.mapper.link () has the following options:

Option Description
association | the type of associations (See tori.db.mapper.AssociationType.)
cascading the list of allowed cascading operations (See Cascading tori.db.mapper.CascadingType.)

inverted_by | the name of property used where enable the reverse mapping if defined

mapped_by | the name of property to be map

read_only the flag to disable property setters (only usable with tori.db.common.ProxyOb ject.)
target the full name of class or the actual class

How to make a join query

New in version 3.0.

From the customer-reward example, if we want to find all rewards of a particular user, the query will be:

query = reward_repository.new_criteria('r')
query.join('r.customer', 'c')
query.expect ('c.name = "Bob"')

rewards = reward_repository.find(query)

Warning: In Tori 3.0, we only test for one-to-one and many-to-one relationships.

See also:

Database APIs

Handling transactions (sessions)

Similar to Sessions in SQLAlchemy.

2.1. Manual 23

https://github.com/shiroyuki/Tori/issues/27
http://docs.sqlalchemy.org/en/latest/orm/session.html

Tori Documentation, Release 3.1.0

In the most general sense, the session establishes all conversations with the database and represents a “holding zone”
for all the objects which you’ve loaded or associated with it during its lifespan. It provides the entrypoint to ac-
quireatori.db.orm.repository.Repository object, which sends queries to the database using the current
database connection of the session (tori.db.orm.session. Session), populating result rows into objects that
are then stored in the session, inside a structure called the identity map (internally being the combination of “the record
map” and “the object ID map”) - a data structure that maintains unique copies of each object, where “unique” means
“only one object with a particular primary key”.

The session begins in an essentially stateless form. Once queries are issued or other objects are persisted with it, it
requests a connection resource from an manager that is associated with the session itself. This connection represents
an ongoing transaction, which remains in effect until the session is instructed to commit.

All changes to objects maintained by a session are tracked - before the database is queried again or before the current
transaction is committed, it flushes all pending changes to the database. This is known as the Unit of Work pattern.

When using a session, it’s important to note that the objects which are associated with it are proxy objects
(tori.db.orm.common.ProxyObject) to the transaction being held by the session - there are a variety of
events that will cause objects to re-access the database in order to keep synchronized. It is possible to “detach” ob-
jects from a session, and to continue using them, though this practice has its caveats. It’s intended that usually, you’d
re-associate detached objects with another Session when you want to work with them again, so that they can resume
their normal task of representing database state.

Supported Operations

Supported Operation | Supported Version

Persist 2.1

Delete 2.1

Refresh 2.1

Merge No plan at the moment

Detach No plan at the moment
Example

First, define the entity manager.

from tori.db.manager import ManagerFactory

manager_factory = ManagerFactory ()

manager_factory.set ('

entity_manager = manager_factory.get ('default')

default', 'mongodb://db_host/db_name"')

Then, open a session:

session = entity_manager.open_session ()

Then, try to query for “Bob” (User) with tori.db.orm.repository.Repository:

repo = session.collection (User)

query = repo.new_criteria('c')

query.expect ('c.name
query.define ('name',

= :name')
'Bob")

bob = repo.find(query)

24

Chapter 2. What’s next?

Tori Documentation, Release 3.1.0

print (bob.address)

The output should show:

Bangkok, Thailand

Then, update his address:

bob.address = 'London, UK’
session.persist (bob)

Or, delete bob:

’session.delete(bob)

Or, refresh bob:

‘session.refresh(bob)

Then, if bob is either persisted or deleted, to flush/commit the change, simply run:

‘session.flush()

Drawbacks Introduced by Either MongoDB or Tori

1. Even though MongoDB does not support transactions, like some relational database engines, such as, InnoDB,
Tori provides software-based transactions. However, as mentioned earlier, Tori does not provide roll-back
operations.

2. Merging and detaching operations are currently not supported in 2013 unless someone provides the supporting
code.

3. Any querying operations cannot find any uncommitted changes.

Cascading

This is the one toughest section to write.

MongoDB, as far as everyone knows, does not support cascading operations like the way MySQL and other vendors
do with cascading deletion. Nevertheless, Tori supports cascading through the database abstraction layer (DBAL).

Warning: Cascading persistence and removal via DBAL has high probability of degrading performance with
large dataset as in order to calculate a dependency graph, all data must be loaded into the memory space of the
computing process. This introduces a spike in memory and network usage.

This feature is introduced for convenience sake but should be used sparingly or accounted for potential performance
degration.

Here is a sample scenario.

Suppose I have two types of objects: a sport team and a player. When a team is updated, removed or refreshed, the
associated player should be treated the same way as the team. Here is a sample code.

from tori.db.entity import entity
from tori.db.mapper import CascadingType as c

@entity
class Player (object):

2.1. Manual 25

Tori Documentation, Release 3.1.0

pass # omit the usual setup decribed in the basic usage.

Qlink (

target=Player,

mapped_by='player',

cascading=[c.PERSIST, c.DELETE, c.REFRESH]
)
@entity
class Team(object):

pass # omit the usual setup decribed in the basic usage.

Now, whatever operation is used on a Team entity, associated Player entites are subject to the same operation.

Testing Environments

The ORM is tested with the following configurations.

MongoDB Version | Operating System / Platform
2.2+ Mac OS X 10.8 Server

2.2+ GNU/Linux Debian*

2.2+ Fedora Core*

anything versions Travis CI

Note: Only test on the latest stable version of OSs running on the latest version of VirtualBox 4.2 on Mac OS X.

See also

¢ Database APIs

2.1.6 Console and CLI Framework

New in version 2.2.

Setup

Similar to how you set up a server (see Getting Started), you need to add tori.cli.console.Console into the
mix, for instance, we have a script name nep

#!/usr/bin/env python
—+— coding: utf-8 —#-

mmwn

Nameless Education Platform

codeauthor:: Juti Noppornpitak <jnopporn@shiroyuki.com>
mmn
from tori.application import Application
from tori.cli.console import Console
from tori.cli.exception import TerminationSignal

app = Application('config/app.xml")
console = Console('NEP")

26 Chapter 2. What’s next?

Tori Documentation, Release 3.1.0

console.load (app) ;

try:
console.handle ()

except TerminationSignal as e:
pass

where you can see the list of all registered commands by executing nep.

Configuration

As commands are treated as reusable components (with Imagination Framework), they must be defined first with tag
“command” and then any thing with prefix “command:”. For example,

<!-- From https://github.com/nepteam/nep —-->
<entity
id="command.db"
class="neptune.command.Database"
tags="command command:db">
<param name="db" type="entity">db</param>
<interception before="me" do="execute" with="init"/>
<interception after="me" do="execute" with="clean_up"/>
</entity>

99,99

Then, the command will be referenced with anything after ”:”. From the previous example, the command “com-
mand.db” will be referred as “db” and executed as:

./nep db -d # in this example, this command is to reset the databases.

Implement Commands

Just write a class extending from tori.cli.command.Command.
There are two methods that mush be overridden:

define_arguments (argument_parser)
Define the arguements. Override the method with the keyword pass if there is no argument to define.

Parameters argument_parser (argparse.ArgumentParser) — the argument parser
For more information on how to define the arguments, see http://docs.python.org/3.3/library/argparse.html.

execute (args)
Execute the command.

Parameters args (argparse.Namespace) — the arguments

2.1.7 Controller

Tori’s framework ships with a based controller, extending from tornado.web.RequestHandler. So, the usage
is pretty much the same as you can find in Tornado’s documentation.

Suppose we have the following file structure.:

web/
__init___.py
controller.py

2.1. Manual 27

http://docs.python.org/3.3/library/argparse.html

Tori Documentation, Release 3.1.0

views/
index.html
error.html

Create a Controller

Let’s start with create a controller in web/controller.py

Module: web.controller (web/controller)
from tori.controller import Controller

class HomeController (Controller) :
def get (self, name):
self.write('Hello, {}.'.format (name))

However, as mentioned earlier, the rendering engine is replaced with Jinja2. By default, the methods render and
render_template of Controller are not ready to use.

Enable the Template Engine

Template Engine in Tori Framework is totally optional but enabling is not a big problem.

Before getting started, the integration between the rendering part and the controller part is based on the concept of
flexibility where each controller can use any template engine or any source. For instance, two controllers may use two
different engines or sources.

First, the decorator tori.decorator.controller.renderer (or @renderer for short) must be imported.

’from tori.decorator.controller import renderer

where the only parameter of @renderer is either the name of the package (web.views) or the file path
(web/views). In this example, we use the package.

@renderer ('web.views")
class HomeController (Controller) :
pass

Note: The file path can be either relative with regard of the current working directory or absolute. However, using
the package option is recommended.

Suppose the content of web/views/index.html is

’Hello, {{ name }}

Then, we replace self.write (...) with

‘self.render('index.html', name=name)

There is only one default and reserved variable app with two attributes:
* app.request: an instance of controller’s request tornado.httpserver.HTTPRequest

* app.session: areference to controller’s session getter tori.session.controller.Controller

28 Chapter 2. What’s next?

Tori Documentation, Release 3.1.0

Using Session

Where Tornado framework provide nothing regarding to session management, Tori integrates the cookie-based session
controller.

Note: The session controller works with both secure and non-secure cookies. The secure cookies are highly recom-
mended.

The session controller for the session data for a particular session ID is accessible via the read-only property session
of the controller. For example, to get a session key “userld”, you can do by

self.session.get ('userlid')

from any method of the controller. Please read more from tori.session.controller.Controller.

REST Controller

Tori provides the base controller tori.controller.RestController for CRUD operations. It is however
designed strictly for querying, creating, retrieving, updating and deleting data.

To use it, the route pattern must accept only one parameter where it is optional. For example, the route can be

<controller class="web.controller.BlogEntryRestController" pattern:"/blog/rest/entry/(.%)"/>

where web.controller.BlogEntryRestController is

class BlogEntryRestController (RestController):
def list (self):
GET /blog/rest/entry/
query the list of entries
pass

def create(self):
POST /blog/rest/entry/
create a new entry
pass

def retrieve(self, id):
GET /blog/rest/entry/ID
retrieve the entry by ID
pass

def update(self, id):
PUT /blog/rest/entry/ID
update the entry by ID
pass

def remove (self, id)
DELETE /blog/rest/entry/ID
delete the entry by ID
pass

Note: The remove method is actual the replacement of the de lete method but to minimize the need of users to
call the parent/ancestors version of the overridden method, the delete method is tended to be left untouched where
the deleting implementation should be placed in the remove method.

2.1. Manual 29

Tori Documentation, Release 3.1.0

Customize Error Page

There are types of custom error pages for normal controllers and error controllers where any custom error pages will
receive three variables: message, code (HTTP Response Code) and debug_info (the text version of stack trace).

Custom Error Pages for Unattended Exceptions

When exceptions are raised unexpectedly, to handle the exceptions not handled by normal controllers, you need some-
thing similar to the following code.

@custom_error ('error.html')
@Qrenderer ('app.view')
class ErrorController (BaseErrorController): pass

Then, add a single <error> tag under the <server> tag. For example,

<?xml version="1.0" encoding="utf-8"?>
<application>
<l— .0 —=>
<server>
<= o0 —=>
<error>app.controller.ErrorController</error>
<l—— .. —>
</server>
<l— .0 ==
</application>

Controller-specific Custom Error Pages

When exceptions are raised on a normal controller (e.g., any controller based on
tori.controller.Controller and tori.controller.RestController), what you need is just
add the decorator tori.decorator.controller.custom error () to the controller. For example,

@custom_error('error.html'")
@renderer ('web.views')
class HomeController (Controller) :
Assuming something
pass

References

For more information, please read
e Templates (Manual)
e tori.controller
* tori.decorator.controller
» Template Engine Modules (API)
* Session API

30 Chapter 2. What’s next?

Tori Documentation, Release 3.1.0

2.1.8 Nest

Nest is a command-line script to help you quickly setup an app container. By default, it will be installed on under
/usr/local/bin for most of the system. Run nest -h for more information.

New in version 2.1.2: The option ——dry-run is added to prevent the command from performing any write opera-
tions, including running pip.

Deprecated since version 2.1.2: The prompt for Ul library installation is removed in flavour to other package managers
or any automation scripts like puppet and chef.

Warning: Nest only works on Python 2.6 and 2.7. It would be fixed in the future release.

2.1.9 Templates

Tori Framework uses Jinja2 as the default template engine. It is to minimize the incompatibility between the syntax
of the famous Django framework and the irregular syntax of Tornado’s default template engine in case of porting code
and reduce the learning curve.

2.1.10 Web Socket

The implementation of Web Socket in Tori Framework incorporates Tornado’s Web Socket Handler with Tori’s cookie-
based Session Controller, which is pretty much like working with Controller.

Here is an example.

Suppose I want to create a message-relay module

from council.common.handler import WSRPCInterface
where WSRPCInterface inherits from tori.socket.rpc.Interface

class MathAPI (WSRPCInterface) :
def add(self, a, b):
return a + b

Then, the client just has to send the message in JSON format.

{

"id": 12345
"method": "add"
"data": {

"a" . 1,

"bll : 2

}

Then, the server will reply with.

{
"id": 12345
"result": 3

2.1. Manual 31

http://jinja.pocoo.org/

Tori Documentation, Release 3.1.0

See More

¢ Web Socket (Reference)

2.2 API Reference

Author Juti Noppornpitak <jnopporn@shiroyuki.com>

This section is all about the reference for Tori API.

2.2.1 tori.cli

class tori.cli.command.Command
Abstract class for all Tori-based commands

define_arguments (argument_parser)
Define the arguments

execute (args)
Execute the command

class tori.cli.console.Console (namespace=None)
Main Console

The commands must be defined first with tag “command” and then any thing with prefix “command:”. For

example,

<!—-—- From https://github.com/nepteam/nep ——>
<entity
id="command.db"
class="neptune.command.Database"
tags="command command:db">
<param name="db" type="entity">db</param>

<interception before="me" do="execute" with="init"/>
<interception after="me" do="execute" with="clean_up"/>

</entity>

Then, the command will be referenced with anything after
“command:db” will be referred as “db”.

exception tori.cli.exception.CommandNotFound
Command Not Found

exception tori.cli.exception.InterfaceException
Interface Exception. Require implementation

exception tori.cli.exception.NotConfigured
Not-configured exception

exception tori.cli.exception.TerminationSignal
Termination Signal

2.2.2 tori.common

Author Juti Noppornpitak

This package contains classes and functions for common use.

99,99

From the previous example, the command

32

Chapter 2. What’s next?

mailto:jnopporn@shiroyuki.com

Tori Documentation, Release 3.1.0

class tori.common.Enigma
Hashlib wrapper

hash (*data_list)
Make a hash out of the given value.

Parameters data_list (1ist of string)- the list of the data being hashed.
Returns the hashed data string

static instance ()
Get a singleton instance.

Note: This class is capable to act as a singleton class by invoking this method.

class tori.common.Finder
File System API Wrapper

read (file_path, is_binary=False)
Read a file from file_path.

By default, read a file normally. If is_binary is True, the method will read in binary mode.

2.2.3 tori.controller

Author Juti Noppornpitak

This package contains an abstract controller (based on t ornado . web.RequestHandler) and built-in controllers.

class tori.controller.Controller (*args, **kwargs)
The abstract controller for Tori framework which uses Jinja2 as a template engine instead of the default one that
comes with Tornado.

component (name, fork_component=False)
Get the (re-usable) component from the initialized Imagination component locator service.

Parameters
* name — the name of the registered re-usable component.
* fork_component — the flag to fork the component
Returns module, package registered or None

redirect_to (route_id, params={}, full_url=False)
Redirect to the path by ID

Parameters
* str (id) - the path ID
* params (dict) — the variables used in the routing pattern
e full_url (bool)— option to provide full URL to the server.

render (template_name, **contexts)
Render the template with the given contexts and push the output buffer.

See tori.renderer.Renderer.render () for more information on the parameters.

2.2. API Reference 33

Tori Documentation, Release 3.1.0

render_template (template_name, **contexts)
Render the template with the given contexts.

See tori.renderer.Renderer.render () for more information on the parameters.

resolve_route (route_id, params={}, full_url=False)
Resolve the path by ID

Parameters
* str (id) - the path ID
* params (dict) — the variables used in the routing pattern
e full url (bool)- option to provide full URL to the server.

session
Session Controller

Return type rori.session.controller.Controller

template_engine
Template Engine

Return type tori.template.renderer.Renderer

Raises RenderingSourceMissingError — if the template base path and the reverse core
reference are not defined.

Changed in version 3.0: The exception will not be raised if the reverse core reference is defined.

Note: The reverse core reference is the first instance of tori.application.Application in the
process.

class tori.controller.ErrorController (*args, **kwargs)
Generates an error response with status_code for all requests.

class tori.controller.ResourceService (*args, **kwargs)
Resource service is to serve a static resource via HTTP/S protocol.

static add_pattern (pattern, base_path, enable_cache=False)
Add the routing pattern for the resource path prefix.

Parameters
* pattern - arouting pattern. It can be a Python-compatible regular expression.
* base_path — a path prefix of the resource corresponding to the routing pattern.

* enable_cache - a flag to indicate whether any loaded resources need to be cached on
the first request.

get (path=None)
Get a particular resource.

Parameters path — blocks of path used to composite an actual path.

Note: This method requires refactoring.

class tori.controller.RestController (*args, **kwargs)
Abstract REST-capable controller based on a single primary key.

34 Chapter 2. What’s next?

Tori Documentation, Release 3.1.0

create ()
Create an entity.

delete (key=None)
Handle DELETE requests.

get (key=None)
Handle GET requests.

list ()
Retrieve the list of all entities.

post (key=None)
Handle POST requests.

put (key=None)
Handle PUT requests.

remove (key)
Remove an entity with key.

retrieve (key)
Retrieve an entity with key.

update (key)
Update an entity with key.

class tori.controller.SimpleController (*args, **kwargs)
Simplified Request Controller

2.2.4 tori.decorator.common

Author Juti Noppornpitak
This package contains decorators for common use.

class tori.decorator.common.BaseDecoratorForCallableObject (reference)
Base decorator based from an example at http://www.artima.com/weblogs/viewpost.jsp?thread=240808.

tori.decorator.common.make_singleton_class (class_reference, *args, **kwargs)
Make the given class a singleton class.

class_reference is a reference to a class type, not an instance of a class.
args and kwargs are parameters used to instantiate a singleton instance.

To use this, suppose we have a class called DummyClass and later instantiate a variable dummy_instnace
as an instance of class DummyClass. class_reference will be DummyClass, not dummy_instance.

Note that this method is not for direct use. Always use @singleton or @singleton_with.

tori.decorator.common.singleton (*args, **kwargs)
Decorator to make a class to be a singleton class. This decorator is designed to be able to take parameters for
the construction of the singleton instance.

Please note that this decorator doesn’t support the first parameter as a class reference. If you are using that way,
please try to use @singleton_with instead.

Example:

Declaration
@singleton
class MyFirstClass (ParentClass) :

2.2. API Reference 35

http://www.artima.com/weblogs/viewpost.jsp?thread=240808

Tori Documentation, Release 3.1.0

def __ _init__ (self):
self.number = 0
def call (self):
self.number += 1
echo self.number
Or
@singleton (20)
class MySecondClass (ParentClass) :
def _ _init_ (self, init_number) :
self.number = init_number
def call (self):
self.number += 1
echo self.number

Executing

for i in range(10):
MyFirstClass.instance () .call()

Expecting 1-10 to be printed on the console.

for i in range(10):
MySecondClass.instance () .call ()

Expecting 11-20 to be printed on the console.

The end result is that the console will show the number from 1 to 10.

tori.decorator.common.singleton_with (*args, **kwargs)

Decorator to make a class to be a singleton class with given parameters for the constructor.

Please note that this decorator always requires parameters. Not giving one may result errors. Additionally, it
is designed to solve the problem where the first parameter is a class reference. For normal usage, please use
@singleton instead.

Example:

Declaration
class MyAdapter (AdapterClass) :
def broadcast (self) :
print "Hello, world."

@singleton_with (MyAdapter)
class MyClass (ParentClass):
def __init__ (self, adapter):
self.adapter = adapter ()
def take_action(self):
self.adapter.broadcast ()

Executing
MyClass.instance () .take_action() # expecting the message on the console.

The end result is that the console will show the number from 1 to 10.

2.2.5 tori.decorator.controller

Author Juti Noppornpitak

This package contains decorators for enhancing controllers.

tori.decorator.controller.custom_error (template_name, **contexts)

Set up the controller to handle exceptions with a custom error page.

36

Chapter 2. What’s next?

Tori Documentation, Release 3.1.0

Note: This decorator is to override the method write_error.

Parameters
* template_name (string) — the name of the template to render.
* contexts (dict)— map of context variables
tori.decorator.controller.renderer (*args, **kwargs)
Set up the renderer for a controller.

See tori.template.renderer.Renderer for more information.

2.2.6 tori.exception

exception tori.exception.DuplicatedPortError
Exception thrown only when the port config is duplicated within the same configuration file.

exception tori.exception.DuplicatedRouteError
Exception used when the routing pattern is already registered.

exception tori.exception.FutureFeatureException
Exception used when the future feature is used where it is not properly implemented.

exception tori.exception.InvalidConfigurationError
Exception thrown only when the configuration is invalid.

exception tori.exception.InvalidControllerDirectiveError
Exception used when the controller directive is incomplete due to missing parameter

exception tori.exception.InvalidInput
Exception used when the given input is invalid or incompatible to the requirement.

exception tori.exception.InvalidRedirectionDirectiveError
Exception used when the redirection directive is incomplete because some parameters aren’t provided or incom-
patible.

exception tori.exception.LoadedFixtureException
Exception raised when the fixture is loaded.

exception tori.exception.RendererNotFoundError
Exception thrown when the unknown template repository is used.

exception tori.exception.RendererSetupError
Exception thrown when there exists errors during setting up the template.

exception tori.exception.RenderingSourceMissingError
Exception used when the rendering source is not set.

exception tori.exception.RoutingPatternNotFoundError
Exception used when the routing pattern is not specified in the configuration file.

exception tori.exception.RoutingTypeNotFoundError
Exception used when the routing type is not specified in the configuration file.

exception tori.exception.SessionError
Exception thrown when there is an error with session component.

2.2. API Reference 37

Tori Documentation, Release 3.1.0

exception tori.exception.SingletonInitializationException
This exception is used when the target class contain a special attribute _singleton_instance not a reference to its
own class.

exception tori.exception.UnexpectedComputationError
Exception used when the code runs mistakenly unexpectedly.

exception tori.exception.UnknownRoutingTypeError
Exception used when the routing type is not unknown.

exception tori.exception.UnknownServiceError
Exception thrown when the requested service is unknown or not found.

exception tori.exception.UnsupportObjectTypeError
Exception used when the unsupported object type is used in an inappropriate place.

Please note that this is a general exception.

exception tori.exception.UnsupportedRendererError
Exception thrown when the unsupported renderer is being registered.

2.2.7 Navigation APIs

Author Juti Noppornpitaks
Purpose Internal Use Only
The navigation module is designed specifically for the dependency-injectable Application.

Please note that the term DOMElement used on this page denotes any of yotsuba.kotoba.Kotoba,
yotsuba.kotoba.DOMElements and yotsuba.kotoba.DOMElement.

Additionally, the parameter route for any methods mentioned on this page is an instance of DOMElement.

class tori.navigation.DynamicRoute (route)
Dynamic route based on class Route handled by a controller.

controller ()
Get the controller.

to_tuple()
Convert the route to tuple.

class tori.navigation.RelayRoute (route)
Relay routing directive based on Route used for redirection

destination ()
Get the relaying destination.

is_permanent ()
Check whether the relay route is permanent.

to_tuple()
Convert the route to tuple.

class tori.navigation.Route (route_data)
The abstract class representing a routing directive.

Parameters route — an instance of kotoba.kotoba.Kotoba representing the route.

bean_class ()
Get the class reference for the route.

Return type rype

38 Chapter 2. What’s next?

Tori Documentation, Release 3.1.0

static get_pattern (route_data)
Get the routing pattern for a given route.

static get_type (route_data)
Get the routing type for a given route.

source ()
Get the original data for the route.

Return type str

type ()
Get the routing type.

Return type str

class tori.navigation.RoutingMap
Routing Map

export ()
Export the route map as a list of tuple representatives.

Return type /ist

find_by_pattern (routing_pattern)
Get the route by routing_pattern where it is a string.

static make (configuration, base_path=None)
Make a routing table based on the given configuration.

Parameters base_path —is an optional used by :method Route.make:.

register (route, force_action=False)
Register a route.

resolve (id, **params)
Resolve the path by ID

Parameters
* str (id)—the path ID
* params — the variables used in the routing pattern

class tori.navigation.StaticRoute (route, base_path)
Static routing directive based on Rout e handled by a resource controller

Parameters base_path —is a string indicating the base path for the static resource.

cache_enabled ()
Check whether the caching option is enabled.

location ()
Get the location of the static resource/content.

service ()
Get the resource service.

to_tuple()
Convert the route to tuple.

2.2.8 Template Engine Modules

Author Juti Noppornpitak

2.2. API Reference 39

Tori Documentation, Release 3.1.0

This package is used for rendering.

class tori.template.renderer.DefaultRenderer (*referers)
The default renderer with Jinja2

Parameters referers — the template module path (e.g., com.shiroyuki.view) or multiple base
paths of Jinja templates based on the current working directory.

For example:

Instantiate with the module path.
renderer = DefaultRenderer ('app.views')

Instantiate with multiple base paths of Jinja templates.
renderer = DefaultRenderer ('/opt/app/ui/template', '/usr/local/tori/module/template]

render (template_path, **contexts)
See Renderer. render () for more information.

class tori.template.renderer.Renderer (*args, **kwargs)
The abstract renderer for Tori framework.

Warning: This is a non-working renderer. To use the built-in renderer
(with Jinja2), try DefaultRenderer. Otherwise, you should be expecting
tori.exception.FutureFeatureException.

render (template_path, **contexts)
Render a template with context variables.

Parameters
* template_path (string or unicode)— a path to the template
* contexts — a dictionary of context variables.

Return type string or unicode

Example:
renderer = Renderer ()
renderer.render ('dummy.html', appname='ikayaki', wversion=1.0)

Author Juti Noppornpitaks
Restriction Internal Use Only

class tori.template.repository.Repository (class_reference)
The template repository used by Rendering Service.

Parameters class_reference (tori.template.service.RenderingService) -
class reference

Note: This class is designed as a strict-type collection and may be refactored to the common area later on.

get (renderer_name)
Retrieve the renderer by name.

Parameters renderer_name (string or unicode) - the name of the renderer.

Return type tori.template.renderer.Renderer

40 Chapter 2. What’s next?

Tori Documentation, Release 3.1.0

set (renderer)
Register the renderer.

Returns self
Author Juti Noppornpitak

Restriction Internal Use Only

This package contains the rendering service. This is a module automatically loaded by
tori.application.Application.

class tori.template.service.RenderingService (renderer_class=<class
‘tori.template.renderer.Renderer’>,

repository_class=<class
‘tori.template.repository.Repository’>)
The rendering service allows the access to all template repositories.

This acts as a controller.

Parameters

* renderer_class (tori.template.renderer.Renderer) - a class reference of
a renderer

* repository class (tori.template.repository.Repository) — a class
reference of a template repository

register (renderer)
Register a renderer.

Parameters renderer (tori.template.renderer.Renderer) — the renderer
Returns self.

render (repository_name, template_path, **contexts)
Render a template from a repository repository_name.

As this method acts as a shortcut and wrapper to the actual renderer for the given repository, see
tori.template.renderer.Renderer.render () for more information.

Return type string

use (repository_name)
Retrieve the renderer by name

Parameters repository_ name (str)— the name of the repository

Return type rori.template.renderer.Renderer

2.2.9 Session API

Author Juti Noppornpitak

This package contains the session controller used with the web controller and socket handler.

class tori.session.controller.Controller (session_repository, id)
A session controller for the controller (request handler).

delete (key)
Delete the data :param key: data key :type key: str

get (key)
Retrieve the data

2.2. API Reference 41

Tori Documentation, Release 3.1.0

Parameters key (str)— data key
Returns the data stored by the given key
id
Administrated Session ID

Returns str

reset ()
Clear out all data of the administrated session

set (key, content)
Define the data

Parameters
* key (str)—data key

¢ content — data content

2.2.10 Web Socket

Generic Web Socket Module

Author Juti Noppornpitak
Status Stable
Last Update August 15,2016

class tori.socket.websocket .WebSocket (*args, **kwargs)
Web Socket Handler with extension to session controller

component (name, fork_component=False)

Get the (re-usable) component from the initialized Imagination component locator service.

Parameters

* name — the name of the registered re-usable component.

* fork_component — the flag to fork the component
Returns module, package registered or None

session
Session Controller

Return type rori.session.controller.Controller

Remote Procedure Call Module

Author Juti Noppornpitak
Status Stable/Testing
Last Update August 15,2016

class tori.socket.rpc.Interface (*args, **kwargs)
Remote Interface

Extends from tori.socket.websocket.WebSocket

on_message (message)

42

Chapter 2. What’s next?

Tori Documentation, Release 3.1.0

The parameter message is supposed to be in JSON format:

{

["id": unique_id,]
["service": service_name,]
["data": parameter_object,]
"method": method_name

}

When the service is not specified, the interface will act as a service.

class tori.socket.rpc.Remote (method, id=None, data=None, service=None)
RPC Request

Parameters
e method (str) — the name of the method
* id - the request ID (default with unix timestamp)
* data (dict) — method parameters
* service (str)—the ID of the registered component/service (optional)

call ()
Execute the request

Returns the result of the execution

class tori.socket.rpc.Response (result, id)
RPC Response

Parameters
¢ result — the result from RPC

* id - the response ID

2.2.11 Database APIs

Tori Framework only provides the object-relational mapping interface for MongoDB databases via PyMongo.

tori.db.common

Author Juti Noppornpitak <jnopporn@shiroyuki.com>
Stability Stable

class tori.db.common.ProxyCollection (session, origin, guide)
Proxy Collection

This collection is extended from the built-in class 11st, designed to only load the associated data whenever is
required.

Parameters
* session(tori.db.session.Session) - the managed session
* origin (object) — the origin of the association

* guide (tori.db.mapper.RelatingGuide) — the relational guide

2.2. API Reference 43

mailto:jnopporn@shiroyuki.com

Tori Documentation, Release 3.1.0

Note: To replace with criteria and driver

reload()
Reload the data list

Warning: This method is not recommended to be called directly. Use
tori.db.session.Session.refresh () onthe owned object instead.

class tori.db.common.ProxyFactory
Proxy Factory

This factory is to create a proxy object.
Parameters
* session(tori.db.session.Session)— the managed session
e id - the object ID
* mapping_guide (tori.db.mapper.RelatingGuide) — the relational guide

class tori.db.common.ProxyObject (session, cls, object_id, read_only, cascading_options,

is_reverse_proxy)
Proxy Collection

This class is designed to only load the entity whenever the data access is required.
Parameters

* session (tori.db.session.Session)— the managed session
* cls (type) — the class to map the data
* object_id - the object ID
* read_only (bool) —the read-only flag
* cascading_options (list or tuple) - the cascading options
* is_reverse_proxy (bool) — the reverse proxy flag

class tori.db.common.PseudoObjectId (oid=None)
Pseudo Object ID

This class extends from bson.objectid.ObjectId.
This is used to differentiate stored entities and new entities.

class tori.db.common.Serializer (max_depth=2, mode="forgiven’)
Object Serializer for Entity

encode (data, stack_depth=0, convert_object_id_to_str="False)
Encode data into dictionary and list.

Parameters
e data - the data to encode
* stack_depth — traversal depth limit

* convert_object_id to_str - flag to convert object ID into string

44 Chapter 2. What’s next?

Tori Documentation, Release 3.1.0

tori.db.criteria

tori.db.criteria — Query Criteria

class tori.db.criteria.Order
Sorting Order Definition

ASC
Ascending Order

alias of ASCENDING

DESC
Descending Order

alias of DESCENDING

class tori.db.criteria.Query (alias)
Criteria

Note: The current implementation does not support filtering on associated entities.

criteria
Expression Criteria

define (variable_name=None, value=None, **definition_map)
Define the value of one or more variables (known as parameters).

Parameters
* variable_name (str) —the name of the variable (for single assignment)
* value - the value of the variable (for single assignment)
* definition_map - the variable-to-value dictionary

This method is usually recommended be used to define multiple variables like the following example.

criteria.define(foo = 'foo', bar = 2)

However, it is designed to support the assign of a single user. For instance,

expect (statement)
Define the condition / expectation of the main expression.

Parameters statement (str) — the conditional statement

This is a shortcut expression to define expectation of the main expression. The main expression will be
defined automatically if it is undefined. For example,

c = Query()
c.expect ('foo = 123")

is the same thing as

c = Query ()
c.criteria = c.new_criteria()
c.criteria.expect ('foo = 123")

2.2. API Reference 45

Tori Documentation, Release 3.1.0

join (property_path, alias)
Define a join path

join_map
A join map

limit (limit)
Define the filter limit

Parameters 1limit (int) — the filter limit

new_criteria(()
Get a new expression for this criteria

Return type tori.db.expression.Criteria

order (field, direction=<class ‘ASCENDING’>)
Define the returning order

Parameters
e field (str) - the sorting field
* direction - the sorting direction

start (offset)
Define the filter offset

Parameters offset (int) — the filter offset

where (key_or_full_condition, filter_data=None)
Define the condition

Deprecated since version 3.1: Starting in Tori 3.0, the new way to query will be.

Parameters

* key_or_full condition (str or dict) — either the key of the condition (e.g.,

a field name, $or, $gt etc.)

* filter_data - the filter data associating to the key

tori.db.driver

class tori.db.driver.interface.DialectInterface
Dialect interface
It is used to translate a generic query into a native query.

get_alias_to_native_query map (query)
Retrieve a map from alias to native query.

Parameters tori.db.criteria.Query — the query object
Return type dict

get_iterating constrains (query)
Retrieve the query constrains.

Raises NotImplemented - only if the interface is not overridden.

get_native_operand (generic_operand)
Translate a generic operand into a corresponding native operand.

Parameters generic_operand - a generic operand

46

Chapter 2. What’s next?

Tori Documentation, Release 3.1.0

Returns a native operand
Return type str

process_join_conditions (alias_to_conditions_map, alias, join_config, parent_alias)
Process the join conditions.

Parameters
* alias_to_conditions_map (dict) — a alias-to-conditions map
* join_config (dict) - ajoin config map
* alias (str)—an alias of the given join map
* parent_alias (str) — the parent alias of the given join map
Raises NotImplemented - only if the interface is not overridden.

process_non_join_conditions (alias_to_conditions_map, definition_map, left, right, operand)
Process the non-join conditions.

Parameters
* alias_to_conditions_map (dict) — a alias-to-conditions map
* definition_map (dict) — a parameter-to-value map
* left (tori.db.expression.ExpressionPart)— the left expression
e right (tori.db.expression.ExpressionPart) — the right expression
* operand - the native operand
Raises NotImplemented — only if the interface is not overridden.

class tori.db.driver.interface.DriverInterface (config, dialect)
The abstract driver interface

Parameters
* config (dict) - the configuration used to initialize the database connection / client

e dialect (tori.db.driver.interface.DialectInterface) — the corre-
sponding dialect

client
Driver Connection / Client

collection (name)
Low-level Collection-class API

Returns the low-level collection-class API
Raises NotImplemented — only if the interface is not overridden.

config
Driver configuration

connect (config)
Connect the client to the server.

Raises NotImplemented — only if the interface is not overridden.

database_name
The name of provisioned database

2.2. API Reference 47

Tori Documentation, Release 3.1.0

db (name)
Low-level Database-class API

Returns the low-level database-class API
Raises NotImplemented — only if the interface is not overridden.

dialect
Driver dialect

disconnect ()
Disconnect the client.

Raises NotImplemented - only if the interface is not overridden.

index_count ()
Retrieve the number of indexes.

Raises Not Implemented — only if the interface is not overridden.

indice ()
Retrieve the indice.

Raises Not Implemented — only if the interface is not overridden.

insert (collection_name, data)
Low-level insert function

Raises NotImplemented — only if the interface is not overridden.

class tori.db.driver.interface.QueryIteration (alias, native_query)
Driver Query Iteration

This is a metadata class representing an iteration in complex queries.
Parameters
* alias (str) - the alias of the rewritten target

* native_query (dict) — the native query for a specific engine

Note: Internal use only

class tori.db.driver.interface.QuerySequence
Driver Query Sequence

The collection represents the sequence of sub queries.

add (iteration)
Append the the iteration

Parameters iteration (tori.db.driver.interface.QueryIteration) — the
query iteration

each ()
Get the sequence iterator.

exception tori.db.driver.mongodriver.InvalidExpressionError
MongoDB-specific Invalid Expression Error

exception tori.db.driver.mongodriver.UnsupportedExpressionError
MongoDB-specific Unsupported Expression Error

48 Chapter 2. What’s next?

Tori Documentation, Release 3.1.0

This is due to that the expression may be unsafe (e.g., 1 =2) or result in unnecessary complex computation (e.g.,
e.mobile_phone = e.home_phone).

tori.db.entity

Author Juti Noppornpitak <jnopporn@shiroyuki.com>

class tori.db.entity.BasicAssociation (origin, destination)
Basic Association

Parameters
* origin (object) — The origin of the association

* destination (object)— The destination (endpoint) of the association

Note: This class is used automatically by the association mapper.

class tori.db.entity.Entity (**attributes)
Dynamic-attribute Basic Entity

Parameters attributes (dict) - key-value dictionary

Here is an example on how to use this class.

@entity
class Note (Entity): pass

class tori.db.entity.Index (field_map, unique=False)
Parameters
» field_map (dict) —the map of field to index type
* unique (bool) - the unique flag

Unless a field is not in the map of fixed orders, the index will instruct the repository to ensure all combinations
of indexes are defined whenever is necessary.

tori.db.entity.entity (*args, **kwargs)
Entity decorator

Parameters collection_name (str)— the name of the collection
Returns the decorated object
Return type object

tori.db.entity.prepare_entity_class (cls, collection_name=None, indexes=[])
Create a entity class

Parameters
¢ cls (object) —the document class

* collection_name (str) — the name of the corresponding collection where the default
is the lowercase version of the name of the given class (cls)

The object decorated with this decorator will be automatically provided with a few additional attributes.

2.2. API Reference 49

mailto:jnopporn@shiroyuki.com

Tori Documentation, Release 3.1.0

Attribute Access | Description Read | Write

id Instance | Document Identifier | Yes Yes, ONLY id is undefined.

_ t3_orm_meta__ | Static Tori 3’s Metadata Yes ONLY the property of the metadata
__session__ Instance | DB Session Yes Yes, but NOT recommended.

The following attributes might stay around but are deprecated as soon as the stable Tori 3.0 is released.

Attribute Access | Description Read | Write

__collection_name___ | Static Collection Name | Yes Yes, but NOT recommended.
__relational_map__ Static Relational Map Yes Yes, but NOT recommended.
__indexes___ Static Indexing List Yes Yes, but NOT recommended.

__session___ isused to resolve the managing rights in case of using multiple sessions simutaneously.

For example,

@entity
class Note (object) :
def _ init_ (self, content, title='"):
self.content = content
self.title = title

where the collection name is automatically defined as “note”.

Changed in version 3.0: The way Tori stores metadata objects in ___collection_name__,
__relational_map__ and __indexes___ are now ignored by the ORM in favour of
__t3_orm_meta__ which is an entity metadata object.

This change is made to allow easier future development.

Tip: You can define it as “notes” by replacing @ent ity with @entity (' notes’).

tori.db.exception

exception tori.db.exception.DuplicatedRelationalMapping
Exception thrown when the property is already mapped.

exception tori.db.exception.EntityAlreadyRecognized
Warning raised when the entity with either a designated ID or a designated session is provided to Repository.post

exception tori.db.exception.EntityNotRecognized
Warning raised when the entity without either a designated ID or a designated session is provided to Reposi-
tory.put or Repository.delete

exception tori.db.exception.IntegrityConstraintError
Runtime Error raised when the given value violates a integrity constraint.

exception tori.db.exception.InvalidUrlError
Invalid DB URL Error

exception tori.db.exception.LockedIdException
Exception thrown when the ID is tempted to change.

exception tori.db.exception.MissingObjectIdException
Exception raised when the object Id is not specified during data retrieval.

exception tori.db.exception.NonRefreshableEntity
Exception thrown when the UOW attempts to refresh a non-refreshable entity

50 Chapter 2. What’s next?

Tori Documentation, Release 3.1.0

exception tori.db.exception.ReadOnlyProxyException
Exception raised when the proxy is for read only.

exception tori.db.exception.UOWRepeatedRegistrationError
Error thrown when the given reference is already registered as a new reference or already existed.

exception tori.db.exception.UOWUnknownRecordError
Error thrown when the given reference is already registered as a new reference or already existed.

exception tori.db.exception.UOWUpdateError
Error thrown when the given reference is already registered as a new reference or already existed.

exception tori.db.exception.UnavailableCollectionException
Exception thrown when the collection is not available.

exception tori.db.exception.UnknownDriverError
Unknown Driver Error

exception tori.db.exception.UnsupportedRepositoryReferenceError
Unsupported Repository Reference Error

tori.db.expression
class tori.db.expression.Criteria
Expression Criteria

Support operands: =, <=, <, >, >=, in, like (SQL-like string pattern), rlike (Regular-expression pattern), indexed
with (only for Riak)

class tori.db.expression.Expression (left, operand, right)
Query Expression

Parameters
* left (tori.db.expression.ExpressionPart) — the left part
* right (tori.db.expression.ExpressionPart) — the right part
* operand (str) — the generic operand

class tori.db.expression.ExpressionPart (original, kind, value, alias)
Query Expression

Parameters
* original (str) - the original query
* kind (str) — the type of the part
* value - the parameter value only for a data part

* alias (str) - the entity alias for a property part or the name of the parameter of a param-
eter part

class tori.db.expression.ExpressionSet (expressions)
Representation of Analyzed Expression

exception tori.db.expression.InvalidExpressionError
Generic Invalid Expression Error

2.2. API Reference 51

Tori Documentation, Release 3.1.0

tori.db.fixture

Warning: This feature is added in 2.1 but neither tested nor supported in 2.1.

Author Juti Noppornpitak

class tori.db.fixture.Fixture (repository)
Foundation of the council

Note: this must be used at most once.

Warning: this class is not tested.

set (kind, fixtures)
Define the fixtures.

Parameters
* kind (unicode/ str)— astring represent the kind

» fixtures (dict) - the data dictionary keyed by the alias

fixture = Fixture()

fixture.set (
'council.security.model.Provider',

{
'ldap': { 'name': 'ldap' }

)
fixture.set (
'council.user.model.User"', {
'admin': { 'name': 'Juti Noppornpitak' }

)
fixture.set (
'council.security.model.Credential',

{

'shiroyuki': {
'login': 'admin',
'user': 'proxy/council.user.model.User/admin',
'provider': 'proxy/council.security.model.Provider/ldap'

tori.db.manager

class tori.db.manager .Manager (driver)
Entity Manager

Parameters driver (tori.db.driver.interface.DriverInterface) - the driverin-
terface

52 Chapter 2. What’s next?

Tori Documentation, Release 3.1.0

close_session (id_or_session)
Close the managed session

Warning: This method is designed to bypass errors when the given ID is unavailable or already
closed.

driver
Driver API

Return type fori.db.driver.interface.Driverlnterface

open_session (id=None, supervised=False)
Open a session

Parameters
e id - the session ID

* supervised (bool) - the flag to indicate that the opening session will be observed and
supervised by the manager. This allows the session to be reused by multiple components.
However, it is not thread-safe. It is disabled by default.

tori.db.mapper

Note: The current implementation doesn’t support merging or detaching a document simultaneously observed by at
least two entity manager.

class tori.db.mapper.AssociationFactory (origin, guide, cascading_options,
is_reverse_mapping)
Association Factory

class_name
Auto-generated Association Class Name

Return type str

Note: This is a read-only property.

cls
Auto-generated Association Class

Return type rype

Note: This is a read-only property.

collection_name
Auto-generated Collection Name

Return type str

Note: This is a read-only property.

2.2. API Reference 53

Tori Documentation, Release 3.1.0

destination
Destination

Return type rype
origin
Origin
Return type rype

class tori.db.mapper.AssociationType

Association Type

AUTO_DETECT =1

Auto detection (default, disabled and raising exception)

MANY_ TO_MANY =5

Many-to-many association mode

MANY_TO_ONE =4

Many-to-one association mode

ONE_TO_MANY =3

One-to-many association mode

ONE_TO ONE =2
One-to-one association mode

static known_type (1)
Check if it is a known type

Parameters t (int) - type

Returns True if it is a known type.

Return type bool

class tori.db.mapper.BasicGuide (target_class, association)

Basic Relation Guide

This class is abstract and used with the relational map of the given entity class.

Parameters

* target_class (object) — the target class or class name (e.g., acme.entity.User)

* association (int) - the type of association

target_class
The target class

Return type fype

class tori.db.mapper.CascadingType

Cascading Type

DELETE =2
Cascade on delete operation

DETACH =4
Cascade on detach operation

Note: Supported in Tori 2.2

54

Chapter 2. What’s next?

Tori Documentation, Release 3.1.0

MERGE =3

Cascade on merge operation

Note: Supported in Tori 2.2

PERSIST =1

Cascade on persist operation

REFRESH =5
Cascade on refresh operation

class tori.db.mapper.RelatingGuide (entity_class, target_class, inverted_by, association,

read_only, cascading_options)

Relation Guide

This class is used with the relational map of the given entity class.

Parameters

entity_ class (type) — the reference of the current class

mapped_by (st r) — the name of property of the current class
target_class (type) — the target class or class name (e.g., acme.entity.User)
inverted_by (str) — the name of property of the target class
association (int) — the type of association

read_only (bool) - the flag to indicate whether this is for read only.

cascading_options (I1ist or tuple)— the list of actions on cascading

tori.db.mapper.link (mapped_by=None, target=None, inverted_by=None, association=1,

read_only=False, cascading=[])

Association decorator

New in version 2.1.

This is to map a property of the current class to the target class.

Parameters

* mapped_by (str)—the name of property of the current class

target (type) — the target class or class name (e.g., acme.entity.User)
inverted_by (str) —the name of property of the target class
association (int) - the type of association

read_only (bool) — the flag to indicate whether this is for read only.

cascading (list or tuple) - the list of actions on cascading

Returns the decorated class

Return type fype

Tip: If target is not defined, the default target will be the reference class.

tori.db.mapper.map (cls, mapped_by=None, target=None, inverted_by=None, association=1,

read_only=False, cascading=[])

Map the given class property to the target class.

2.2. API Reference 55

Tori Documentation, Release 3.1.0

New in version 2.1.
Parameters

* cls (type) — the reference of the current class
* mapped_by (str)—the name of property of the current class
* target (type) — the target class or class name (e.g., acme.entity.User)
* inverted_by (str) — the name of property of the target class
* association (int) - the type of association
* read_only (bool) —the flag to indicate whether this is for read only.

* cascading (1ist or tuple) - the list of actions on cascading

tori.db.metadata
class tori.db.metadata.entity.EntityMetadata
Entity Metadata

cls
Entity Class

collection_name
Collection / Bucket / Table Name

index_1list
Index List

relational_map
Relational Map

class tori.db.metadata.helper.EntityMetadataHelper
Entity Metadata Helper

static extract ()
Extract the metadata of the given class

Parameters cls (type) — the entity class
Return type rori.db.metadata.entity. EntityMetadata

static hasMetadata ()
Check if the given class cls has a metadata

Parameters cls (type) — the entity class
Return type bool

static imprint (collection_name, indexes)
Imprint the entity metadata to the class (type)

Parameters
* cls (type) — the entity class
¢ collection_name (str) - the name of the collection (known as table, bucket etc.)

e indexes (1ist) - the list of indexes

56 Chapter 2. What’s next?

Tori Documentation, Release 3.1.0

tori.db.repository

Author Juti Noppornpitak <jnopporn@shiroyuki.com>
Status Stable

class tori.db.repository.Repository (session, representing_class)
Repository (Entity AbstractRepository) for Mongo DB

Parameters
* session(tori.db.session.Session) - the entity manager
* representing_class (t ype) — the representing class

A repository may automatically attempt to create an index if auto_index () define the auto-index flag. Please
note that the auto-index feature is only invoked when it tries to use a criteria with sorting or filtering with a certain
type of conditions.

auto_index (auto_index)
Enable the auto-index feature

Parameters auto_index (bool) — the index flag

count (criteria)
Count the number of entities satisfied the given criteria

Parameters criteria (tori.db.criteria.Query) — the search criteria
Return type int

£ind (criteria, force_loading=False)
Find entity with criteria

Parameters

e criteria (tori.db.criteria.Query) - the search criteria

* force_loading (bool) — the flag to force loading all references behind the proxy
Returns the result based on the given criteria
Return type object or list of objects

index (index, force_index=False)
Index data

Parameters
e index (list, tori.db.entity.Index or str)- theindex
* force_index (bool) - force indexing if necessary

name
Collection name

Return type str

new (**attributes)
Create a new document/entity

Parameters attributes — attribute map

Returns object

2.2. API Reference 57

mailto:jnopporn@shiroyuki.com

Tori Documentation, Release 3.1.0

Note: This method deal with data mapping.

new_criteria (alias="e’)
Create a criteria

Return type tori.db.criteria.Query

session
Session

Return type fori.db.session.Session

setup_index ()
Set up index for the entity based on the ent ity and 1ink decorators

tori.db.session
class tori.db.session.Session (driver)
Database Session
Parameters
*» database name - the database name
* driver — the driver API

apply_relational_map (entity)
Wire connections according to the relational map

collection (entity_class)
Alias to repository ()

Deprecated since version 2.2.

delete (*entities)
Delete entities

Parameters entities (type of list of type)-— one or more entities

flush()
Flush all changes of the session.

persist (*entities)
Persist entities

Parameters entities (type of list of type)—one or more entities

refresh (*entities)
Refresh entities

Parameters entities (type of list of type)-—one or more entities

register_ class (entity_class)
Register the entity class

Parameters entity_class (type) — the class of document/entity

Return type tori.db.repository.Repository

58 Chapter 2. What’s next?

Tori Documentation, Release 3.1.0

Note: This is for internal operation only. As it seems to be just a residual from the prototype stage, the
follow-up investigation in order to remove the method will be for Tori 3.1.

repositories ()
Retrieve the list of collections

Return type /ist

repository (reference)
Retrieve the collection

Parameters reference - the entity class or entity metadata of the target repository / collec-
tion

Return type rtori.db.repository.Repository

tori.db.uow
class tori.db.uow.DependencyNode (record)
Dependency Node
This is designed to be bi-directional to maximize flexibility on traversing the graph.

class tori.db.uow.UnitOfWork (entity_manager)
Unit of Work

This Unit of Work (UOW) is designed specifically for non-relational databases.

Note: It is the design decision to make sub-commit methods available so that when it is used with Imagination
Framework, the other Imagination entity may intercept before or after actually committing data. In the other
word, Imagination Framework acts as an event controller for any actions (public methods) of this class.

refresh (entity)
Refresh the entity

Note: This method

Parameters entity (object) — the target entity
register_clean (entity)
Register the entity with the clean bit
Parameters entity (object) — the entity to register

register_deleted (entity)
Register the entity with the removal bit

Parameters entity (object) — the entity to register

register_dirty (entity)
Register the entity with the dirty bit

Parameters entity (object) — the entity to register

register_new (entity)
Register a new entity

2.2. API Reference 59

Tori Documentation, Release 3.1.0

Parameters entity (ob ject) — the entity to register

2.3 Change Logs

Code Definition
BCB-x.y | Backward-compatibility breakage caused by the marked features from version x .y

2.3.1 Version 3.1

Release Date TBA
* [Planned] Possibly removed tori.db.session.Session.register_class(...).

¢ [Planned] Switch from tori.db to Passerine ORM.

2.3.2 Version 3.0

Release Date 2014.11.23

Note: tori.db has been spinned off as project Passerine ORM (https://github.com/shiroyuki/passerine). Tori
3.0 only contains the testing version of Passerine ORM. The documentation for Passerine (http://passerine-
orm.readthedocs.org/) is compatible with tori.db.

* ORM/tori.db: Allow cross-collection (or cross-repository) queries within the same type of backend datastores.
* ORM/tori.db: (BCB-2.1) Removed the silly preconditions of the setup of ORM.

* ORM/tori.db: (BCB-2.1) The setup of ORM becomes more generic in order to support multiple drivers.

¢ ORM/tori.db: (BCB-2.1) No auto indexing.

* ORM/tori.db: (BCB-2.1) The query mechanism is changed to reduce the direct access to PyMongo APIs di-
rectly. It will be a BCB if the code that uses tori.db.criteria.Criteria instantiates the class directly.

* ORM/tori.db: (BCB-2.1) Class Criteria has been renamed to Query as the internal class will be labeled as
Criteria. This change is to address the semantic / readability issue. (Hence, all references to Criteria objects
are now referred to Query objects.)

¢ ORM/tori.db: Removed unused / tedious code from the ORM.

* Web Framework: (BCB-2.1) The simple routing scheme is now default instead of the regular expression
originally used by Tornado. (The router class will take care of the translation.)

* Web Framework: The first instance of tori.application.Application is now self-referenced as
tori.centre.core.

* Web Framework: Add a file-base session repository. This allows the app to store the session data as a json file.

* Web Framework: Without specifying the rendering path for each controller, the controller will be looking for
templates from <app_base_path>/templates.

¢ Web Framework: Introduce /manual/configuration/predefined-config.rst. (The old style
will be deprecated in 3.2.)

* Tests: Reorganized the tests and refactored the ORM tests.

60 Chapter 2. What’s next?

https://github.com/shiroyuki/passerine
http://passerine-orm.readthedocs.org/
http://passerine-orm.readthedocs.org/

CHAPTER 3

Not working after upgrade?

File a bug at Tori on GitHub.

61

https://github.com/shiroyuki/Tori

Tori Documentation, Release 3.1.0

62 Chapter 3. Not working after upgrade?

CHAPTER 4

What if the documentation is suck or the code is buggy?

If the document is unclear or missing or needs improvement, please help us by contributing to the codebase of Tori on
GitHub.

63

https://github.com/shiroyuki/Tori
https://github.com/shiroyuki/Tori

Tori Documentation, Release 3.1.0

64 Chapter 4. What if the documentation is suck or the code is buggy?

CHAPTER 5

Special Thanks

This project is not possible without helps and guidance from Guilherme Blanco from Doctrine (PHP).

65

http://phpork.net/
http://doctrine-project.org

Tori Documentation, Release 3.1.0

66 Chapter 5. Special Thanks

CHAPTER 6

Indices and Modules

¢ genindex

¢ modindex

67

Tori Documentation, Release 3.1.0

68 Chapter 6. Indices and Modules

Python Module Index

tori.
tori.
tori.
. common, 32
tori.

tori

tori.
tori.
tori.
tori.
tori.
tori.
tori.
tori.
tori.
tori.
tori.
tori.
tori.
tori.
tori.
tori.
tori.
tori.
.navigation, 38
tori.

tori

tori.
tori.
tori.
.template.repository, 40
tori.

tori

cli.command, 32
cli.console, 32
cli.exception, 32

controller, 33

db.
db.
db.
db.
db.
db.
db.
db.
.manager, 52
db.
db.
db.
db.
.session, 58
db.

db

db

common, 43

criteria (All), 45
driver.interface, 46
driver.mongodriver, 48
entity, 49
exception, 50
expression, 5l
fixture, 52

mapper, 53
metadata.entity, 56
metadata.helper, 56
repository, 57

uow, 59

decorator.common, 35
decorator.controller, 36
exception, 37

session.controller, 41
socket.rpc, 42

socket .websocket, 42
template.renderer, 39

template.service, 41

69

Tori Documentation, Release 3.1.0

70 Python Module Index

Index

A

add() (tori.db.driver.interface.QuerySequence method),
48

add_pattern() (tori.controller.ResourceService static
method), 34

apply_relational_map() (tori.db.session.Session method),
58

ASC (tori.db.criteria.Order attribute), 45

AssociationFactory (class in tori.db.mapper), 53

AssociationType (class in tori.db.mapper), 54

AUTO_DETECT (tori.db.mapper.AssociationType
attribute), 54

auto_index() (tori.db.repository.Repository method), 57

B

BaseDecoratorForCallableObject
tori.decorator.common), 35
BasicAssociation (class in tori.db.entity), 49
BasicGuide (class in tori.db.mapper), 54
bean_class() (tori.navigation.Route method), 38

C

cache_enabled() (tori.navigation.StaticRoute method), 39

call() (tori.socket.rpc.Remote method), 43

CascadingType (class in tori.db.mapper), 54

class_name (tori.db.mapper.AssociationFactory at-
tribute), 53

client (tori.db.driver.interface.DriverInterface attribute),
47

close_session() (tori.db.manager.Manager method), 52

cls (tori.db.mapper.AssociationFactory attribute), 53

cls (tori.db.metadata.entity.EntityMetadata attribute), 56

collection() (tori.db.driver.interface.DriverInterface
method), 47

collection() (tori.db.session.Session method), 58

collection_name (tori.db.mapper.AssociationFactory at-
tribute), 53

collection_name (tori.db.metadata.entity.EntityMetadata
attribute), 56

Command (class in tori.cli.command), 32

(class in

CommandNotFound, 32
component() (tori.controller.Controller method), 33
component() (tori.socket.websocket. WebSocket method),

42

config (tori.db.driver.interface.DriverInterface attribute),
47

connect() (tori.db.driver.interface.DriverInterface

method), 47
Console (class in tori.cli.console), 32
Controller (class in tori.controller), 33
Controller (class in tori.session.controller), 41
controller() (tori.navigation.DynamicRoute method), 38
count() (tori.db.repository.Repository method), 57
create() (tori.controller.RestController method), 34
Criteria (class in tori.db.expression), 51
criteria (tori.db.criteria.Query attribute), 45
custom_error() (in module tori.decorator.controller), 36

D

database_name (tori.db.driver.interface.DriverInterface
attribute), 47

db() (tori.db.driver.interface.DriverInterface method), 47

DefaultRenderer (class in tori.template.renderer), 40

define() (tori.db.criteria.Query method), 45

define_arguments(), 27

define_arguments()
method), 32

DELETE (tori.db.mapper.CascadingType attribute), 54

delete() (tori.controller.RestController method), 35

delete() (tori.db.session.Session method), 58

delete() (tori.session.controller.Controller method), 41

DependencyNode (class in tori.db.uow), 59

DESC (tori.db.criteria.Order attribute), 45

destination (tori.db.mapper.AssociationFactory attribute),
53

destination() (tori.navigation.RelayRoute method), 38

DETACH (tori.db.mapper.CascadingType attribute), 54

dialect (tori.db.driver.interface.DriverInterface attribute),
48

DialectInterface (class in tori.db.driver.interface), 46

(tori.cli.command.Command

71

Tori Documentation, Release 3.1.0

disconnect() (tori.db.driver.interface.DriverInterface
method), 48

driver (tori.db.manager.Manager attribute), 53

DriverInterface (class in tori.db.driver.interface), 47

DuplicatedPortError, 37

DuplicatedRelationalMapping, 50

DuplicatedRouteError, 37

DynamicRoute (class in tori.navigation), 38

E

each() (tori.db.driver.interface.QuerySequence method),
48

encode() (tori.db.common.Serializer method), 44

Enigma (class in tori.common), 32

Entity (class in tori.db.entity), 49

entity() (in module tori.db.entity), 49

EntityAlreadyRecognized, 50

EntityMetadata (class in tori.db.metadata.entity), 56

EntityMetadataHelper (class in tori.db.metadata.helper),
56

EntityNotRecognized, 50

ErrorController (class in tori.controller), 34

execute(), 27

execute() (tori.cli.command.Command method), 32

expect() (tori.db.criteria.Query method), 45

export() (tori.navigation.RoutingMap method), 39

Expression (class in tori.db.expression), 51

ExpressionPart (class in tori.db.expression), 51

ExpressionSet (class in tori.db.expression), 51

extract() (tori.db.metadata.helper.EntityMetadataHelper
static method), 56

F

find() (tori.db.repository.Repository method), 57

find_by_pattern() (tori.navigation.RoutingMap method),
39

Finder (class in tori.common), 33

Fixture (class in tori.db.fixture), 52

flush() (tori.db.session.Session method), 58

FutureFeatureException, 37

G

get() (tori.controller.ResourceService method), 34

get() (tori.controller.RestController method), 35

get() (tori.session.controller.Controller method), 41

get() (tori.template.repository.Repository method), 40

get_alias_to_native_query_map()
(tori.db.driver.interface.DialectInterface
method), 46

get_iterating_constrains()
(tori.db.driver.interface.DialectInterface
method), 46

get_native_operand() (tori.db.driver.interface.DialectInterfa

method), 46

get_pattern() (tori.navigation.Route static method), 39
get_type() (tori.navigation.Route static method), 39

H

hash() (tori.common.Enigma method), 33

hasMetadata() (tori.db.metadata.helper.EntityMetadataHelper

static method), 56

id (tori.session.controller.Controller attribute), 42

imprint() (tori.db.metadata.helper.EntityMetadataHelper
static method), 56

Index (class in tori.db.entity), 49

index() (tori.db.repository.Repository method), 57

index_count() (tori.db.driver.interface.DriverInterface

method), 48

(tori.db.metadata.entity.EntityMetadata

tribute), 56

indice() (tori.db.driver.interface.DriverInterface method),
48

insert() (tori.db.driver.interface.DriverInterface method),
48

instance() (tori.common.Enigma static method), 33

IntegrityConstraintError, 50

Interface (class in tori.socket.rpc), 42

InterfaceException, 32

InvalidConfigurationError, 37

InvalidControllerDirectiveError, 37

InvalidExpressionError, 48, 51

InvalidInput, 37

InvalidRedirectionDirectiveError, 37

InvalidUrlError, 50

is_permanent() (tori.navigation.RelayRoute method), 38

J

join() (tori.db.criteria.Query method), 45
join_map (tori.db.criteria.Query attribute), 46

K

known_type() (tori.db.mapper.AssociationType
method), 54

index_list at-

static

L

limit() (tori.db.criteria.Query method), 46

link() (in module tori.db.mapper), 55

list() (tori.controller.RestController method), 35
LoadedFixtureException, 37

location() (tori.navigation.StaticRoute method), 39
LockedIdException, 50

M

Juake() (tori.navigation.RoutingMap static method), 39

72

Index

Tori Documentation, Release 3.1.0

make_singleton_class() (in module
tori.decorator.common), 35

Manager (class in tori.db.manager), 52

MANY_TO_MANY (tori.db.mapper.AssociationType at-
tribute), 54

MANY_TO_ONE (tori.db.mapper.AssociationType at-
tribute), 54

map() (in module tori.db.mapper), 55

MERGE (tori.db.mapper.CascadingType attribute), 54

MissingObjectIdException, 50

N

name (tori.db.repository.Repository attribute), 57

new() (tori.db.repository.Repository method), 57
new_criteria() (tori.db.criteria.Query method), 46
new_criteria() (tori.db.repository.Repository method), 58
NonRefreshableEntity, 50

NotConfigured, 32

O

on_message() (tori.socket.rpc.Interface method), 42

ONE_TO_MANY (tori.db.mapper.AssociationType at-
tribute), 54

ONE_TO_ONE (tori.db.mapper.AssociationType at-
tribute), 54

open_session() (tori.db.manager.Manager method), 53

Order (class in tori.db.criteria), 45

order() (tori.db.criteria.Query method), 46

origin (tori.db.mapper.AssociationFactory attribute), 54

P

PERSIST (tori.db.mapper.CascadingType attribute), 55

persist() (tori.db.session.Session method), 58

post() (tori.controller.RestController method), 35

prepare_entity_class() (in module tori.db.entity), 49

process_join_conditions()
(tori.db.driver.interface.DialectInterface
method), 47

process_non_join_conditions()
(tori.db.driver.interface.DialectInterface
method), 47

ProxyCollection (class in tori.db.common), 43

ProxyFactory (class in tori.db.common), 44

ProxyObject (class in tori.db.common), 44

PseudoObjectld (class in tori.db.common), 44

put() (tori.controller.RestController method), 35

Python Enhancement Proposals

PEP 8, 6

Q

Query (class in tori.db.criteria), 45
Querylteration (class in tori.db.driver.interface), 48
QuerySequence (class in tori.db.driver.interface), 48

R

read() (tori.common.Finder method), 33

ReadOnlyProxyException, 50

redirect_to() (tori.controller.Controller method), 33

REFRESH (tori.db.mapper.CascadingType attribute), 55

refresh() (tori.db.session.Session method), 58

refresh() (tori.db.uow.UnitOfWork method), 59

register() (tori.navigation.RoutingMap method), 39

register() (tori.template.service.RenderingService
method), 41

register_class() (tori.db.session.Session method), 58

register_clean() (tori.db.uow.UnitOfWork method), 59

register_deleted() (tori.db.uow.UnitOfWork method), 59

register_dirty() (tori.db.uow.UnitOfWork method), 59

register_new() (tori.db.uow.UnitOfWork method), 59

RelatingGuide (class in tori.db.mapper), 55

relational_map (tori.db.metadata.entity.EntityMetadata
attribute), 56

RelayRoute (class in tori.navigation), 38

reload() (tori.db.common.ProxyCollection method), 44

Remote (class in tori.socket.rpc), 43

remove() (tori.controller.RestController method), 35

render() (tori.controller.Controller method), 33

render() (tori.template.renderer.DefaultRenderer
method), 40

render() (tori.template.renderer.Renderer method), 40

render() (tori.template.service.RenderingService
method), 41

render_template() (tori.controller.Controller method), 33

Renderer (class in tori.template.renderer), 40

renderer() (in module tori.decorator.controller), 37

RendererNotFoundError, 37

RendererSetupError, 37

RenderingService (class in tori.template.service), 41

RenderingSourceMissingError, 37

repositories() (tori.db.session.Session method), 59

Repository (class in tori.db.repository), 57

Repository (class in tori.template.repository), 40

repository() (tori.db.session.Session method), 59

reset() (tori.session.controller.Controller method), 42

resolve() (tori.navigation.RoutingMap method), 39

resolve_route() (tori.controller.Controller method), 34

ResourceService (class in tori.controller), 34

Response (class in tori.socket.rpc), 43

RestController (class in tori.controller), 34

retrieve() (tori.controller.RestController method), 35

Route (class in tori.navigation), 38

RoutingMap (class in tori.navigation), 39

RoutingPatternNotFoundError, 37

RoutingTypeNotFoundError, 37

S

Serializer (class in tori.db.common), 44
service() (tori.navigation.StaticRoute method), 39

Index

73

Tori Documentation, Release 3.1.0

Session (class in tori.db.session), 58

session (tori.controller.Controller attribute), 34

session (tori.db.repository.Repository attribute), 58
session (tori.socket.websocket.WebSocket attribute), 42
SessionError, 37

set() (tori.db.fixture.Fixture method), 52

set() (tori.session.controller.Controller method), 42
set() (tori.template.repository.Repository method), 40
setup_index() (tori.db.repository.Repository method), 58
SimpleController (class in tori.controller), 35
singleton() (in module tori.decorator.common), 35
singleton_with() (in module tori.decorator.common), 36
SingletonlnitializationException, 37

source() (tori.navigation.Route method), 39

start() (tori.db.criteria.Query method), 46

StaticRoute (class in tori.navigation), 39

T

target_class (tori.db.mapper.BasicGuide attribute), 54
template_engine (tori.controller.Controller attribute), 34
TerminationSignal, 32

to_tuple() (tori.navigation.DynamicRoute method), 38
to_tuple() (tori.navigation.RelayRoute method), 38
to_tuple() (tori.navigation.StaticRoute method), 39
tori.cli.command (module), 32

tori.cli.console (module), 32

tori.cli.exception (module), 32

tori.common (module), 32

tori.controller (module), 33

tori.db.common (module), 43

tori.db.criteria (module), 45

tori.db.driver.interface (module), 46
tori.db.driver.mongodriver (module), 48
tori.db.entity (module), 49

tori.db.exception (module), 50

tori.db.expression (module), 51

tori.db.fixture (module), 52

tori.db.manager (module), 52

tori.db.mapper (module), 53
tori.db.metadata.entity (module), 56
tori.db.metadata.helper (module), 56
tori.db.repository (module), 57

tori.db.session (module), 58

tori.db.uow (module), 59

tori.decorator.common (module), 35
tori.decorator.controller (module), 36
tori.exception (module), 37

tori.navigation (module), 38

tori.session.controller (module), 41

tori.socket.rpc (module), 42

tori.socket.websocket (module), 42
tori.template.renderer (module), 39
tori.template.repository (module), 40
tori.template.service (module), 41

type() (tori.navigation.Route method), 39

U

UnavailableCollectionException, 51
UnexpectedComputationError, 38
UnitOfWork (class in tori.db.uow), 59
UnknownDriverError, 51
UnknownRoutingTypeError, 38
UnknownServiceError, 38
UnsupportedExpressionError, 48
UnsupportedRendererError, 38
UnsupportedRepositoryReferenceError, 51
UnsupportObjectTypeError, 38
UOWRepeatedRegistrationError, 51
UOWUnknownRecordError, 51
UOWUpdateError, 51
update() (tori.controller.RestController method), 35
use() (tori.template.service.RenderingService method),
41

W

WebSocket (class in tori.socket.websocket), 42
where() (tori.db.criteria.Query method), 46

74

Index

	How to Install?
	What's next?
	Not working after upgrade?
	What if the documentation is suck or the code is buggy?
	Special Thanks
	Indices and Modules
	Python Module Index

