
torchgan Documentation
Release v0.0.2

Avik Pal and Aniket Das

Dec 19, 2018

GETTING STARTED

1 Installation 3
1.1 Pip Installation . 3
1.2 Conda Installation . 3
1.3 Install from Source . 3

2 Dependencies 5
2.1 Mandatory Dependencies . 5
2.2 Optional Dependencies . 5

3 Philosophy 7

4 Contributing 9
4.1 Contribution Guidelines . 9
4.2 Contributors . 9

5 Starter Example 11

6 License 13

7 torchgan.layers 15
7.1 Residual Blocks . 16
7.2 Densenet Blocks . 18
7.3 Self Attention . 21
7.4 Spectral Normalization . 21
7.5 Minibatch Discrimination . 22
7.6 Virtual Batch Normalization . 23

8 torchgan.logging 25
8.1 Backends . 25
8.2 Logger . 26
8.3 Visualization . 28

9 torchgan.losses 33
9.1 Loss . 34
9.2 Least Squares Loss . 37
9.3 Minimax Loss . 38
9.4 Boundary Equilibrium Loss . 40
9.5 Energy Based Loss . 42

i

9.6 Wasserstein Loss . 46
9.7 Mutual Information Penalty . 49
9.8 Dragan Loss . 50
9.9 Auxillary Classifier Loss . 52
9.10 Feature Matching Loss . 54
9.11 Historical Averaging . 55

10 torchgan.metrics 59
10.1 Metric . 59
10.2 Classifier Score . 60

11 torchgan.models 61
11.1 GAN . 62
11.2 Deep Convolutional GAN . 63
11.3 Conditional GAN . 64
11.4 InfoGAN . 66
11.5 AutoEncoders . 68
11.6 Auxiliary Classifier GAN . 70

12 torchgan.trainer 73
12.1 Trainer . 73

ii

torchgan Documentation, Release v0.0.2

The torchgan package consists of various generative adversarial networks and utilities that have been found useful
in training them. This package provides an easy to use API which can be used to train popular GANs as well as
develop newer variants.

GETTING STARTED 1

torchgan Documentation, Release v0.0.2

2 GETTING STARTED

CHAPTER 1

Installation

Follow the following instructions to set up torchgan. Torchgan is tested and known to work on major linux
distrubutions. If you face any problem with other operating systems feel free to file an issue.

1.1 Pip Installation

To install the last released version make a pip install.

$ pip3 install torchgan

For the latest version.

$ pip3 install git+https://github.com/torchgan/torchgan.git

1.2 Conda Installation

Installing via conda is currently unavailable. It will be available once we are at v0.1

1.3 Install from Source

$ git clone https://github.com/torchgan/torchgan
$ cd torchgan
$ python setup.py install

3

torchgan Documentation, Release v0.0.2

4 Chapter 1. Installation

CHAPTER 2

Dependencies

2.1 Mandatory Dependencies

• Numpy

• Pytorch 0.4.1

• Torchvision

2.2 Optional Dependencies

• TensorboardX : For Tensorboard Logging. Install using pip install tensorboardX.

• Visdom : For logging using Xisdom. Install using pip install visdom.

5

https://github.com/numpy/numpy
https://pytorch.org/
https://github.com/pytorch/vision
https://github.com/lanpa/tensorboardX
https://github.com/facebookresearch/visdom

torchgan Documentation, Release v0.0.2

6 Chapter 2. Dependencies

CHAPTER 3

Philosophy

Nowadays there are a lot of repositories for training Generative Adversarial Networks in Pytorch, however, there are
some challenges which still remain:

• Most of these are not documented

• Majority of them are not maintained

• They are built without considering the ease of usage in mind

• These are not properly tested and often are not supported by the newer releases of Pytorch

• There is no proper unified API among these repositories

The idea of this framework is to provide an elegant design to solve issues regarding training and visualizing GANs.
The design principles of this framework are the following:

• A common unified API for designing GANs

• Well documented code and API

• Proper examples to facilitate ease of use

• Easy to integrate with your applications

• Provide a easy API for fast prototyping and research

• Provide advanced features without taking away the ability to customize from users

• Presence of popular loss functions, metrics and modules from cutting edge research

7

torchgan Documentation, Release v0.0.2

8 Chapter 3. Philosophy

CHAPTER 4

Contributing

4.1 Contribution Guidelines

Contributions in all forms are always welcome. Follow the following guidelines while contributing :-

1. If contributing a new feature, first open an issue on github. Describe the feature and provide some ref-
erences. Also clarify why it shall be a good feature to have in the core library and not simply as a
representative example.

2. If submitting a bug fix, file the issue on github. Make sure the bug exists on the master.

3. If submitting a new model, open a PR in the model zoo repository. Follow the contribution guidelines
present there.

4. Also fell free to submit documentation changes.

For you PR to be merged it must strictly adhere to the style guidelines, we use flake8 for that purpose. Also all
existing tests must pass. No breaking changes will be accepted unless when we are making a change in the major
version. Also be sure to add tests and documentation for any code that you submit.

4.2 Contributors

We are thankful to all our contributors! For a complete list of contributors, please see the official Contributors List on
github.

9

https://github.com/torchgan/torchgan/graphs/contributors

torchgan Documentation, Release v0.0.2

10 Chapter 4. Contributing

CHAPTER 5

Starter Example

As a starter example we will try to train a DCGAN on CIFAR-10. DCGAN is in-built into to the library, but let it not fool
you into believing that we can only use this package for some fixed limited tasks. This library is fully customizable.
For that have a look at the Examples.

But for now let us just use this as a small demo example

First we import the necessary files

import torch
import torchvision
from torch.optim import Adam
import torch.utils.data as data
import torchvision.datasets as dsets
import torchvision.transforms as transforms
import torchgan
from torchgan.models import DCGANGenerator, DCGANDiscriminator
from torchgan.losses import MinimaxGeneratorLoss, MinimaxDiscriminatorLoss,
from torchgan.trainer import Trainer

Now write a function which returns the data loader for CIFAR10.

def cifar10_dataloader():
train_dataset = dsets.CIFAR10(root='./cifar10', train=True,

transform=transforms.Compose([transforms.ToTensor(),
transforms.Normalize(mean = (0.5, 0.5, 0.5), std

→˓= (0.5, 0.5, 0.5))]),
download=True)

train_loader = data.DataLoader(train_dataset, batch_size=128, shuffle=True)
return train_loader

Now lets us create the Trainer object and pass the data loader to it.

trainer = Trainer({"generator": {"name": DCGANGenerator, "args": {"out_channels": 3,
→˓"step_channels": 16}, "optimizer": {"name": Adam, "args": {"lr": 0.0002, "betas":
→˓(0.5, 0.999)}}},

(continues on next page)

11

torchgan Documentation, Release v0.0.2

(continued from previous page)

"discriminator": {"name": DCGANDiscriminator, "args": {"in_channels
→˓": 3, "step_channels": 16}, "optimizer": {"name": Adam, "args": {"lr": 0.0002,
→˓"betas": (0.5, 0.999)}}}},

[MinimaxGeneratorLoss(), MinimaxDiscriminatorLoss()],
sample_size=64, epochs=20)

trainer(cifar10_dataloader())

Now log into tensorboard and visualize the training process.

12 Chapter 5. Starter Example

CHAPTER 6

License

MIT License:

Copyright (c) 2018 - Present Avik Pal and Aniket Das

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

1. The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

2. Every publication and presentation for which work based on the Program or
its output has been used must contain an appropriate citation and acknowledgement
of the authors of this Program.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

13

torchgan Documentation, Release v0.0.2

14 Chapter 6. License

CHAPTER 7

torchgan.layers

This layers subpackage is a collection of popular building blocks for GAN architectures. Currently the following
blocks are supported:

• Residual Blocks

– ResidualBlock2d

– ResidualBlockTranspose2d

• Densenet Blocks

– BasicBlock2d

– BottleneckBlock2d

– TransitionBlock2d

– TransitionBlockTranspose2d

– DenseBlock2d

• Self Attention

– SelfAttention2d

• Spectral Normalization

– SpectralNorm2d

• Minibatch Discrimination

– MinibatchDiscrimination1d

• Virtual Batch Normalization

– VirtualBatchNorm

15

torchgan Documentation, Release v0.0.2

7.1 Residual Blocks

7.1.1 ResidualBlock2d

class torchgan.layers.ResidualBlock2d(filters, kernels, strides=None, paddings=None, non-
linearity=None, batchnorm=True, shortcut=None,
last_nonlinearity=None)

Residual Block Module as described in “Deep Residual Learning for Image Recognition by He et. al.”

The output of the residual block is computed in the following manner:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑙𝑎𝑦𝑒𝑟𝑠(𝑥) + 𝑠ℎ𝑜𝑟𝑡𝑐𝑢𝑡(𝑥))

where

• 𝑥 : Input to the Module

• 𝑙𝑎𝑦𝑒𝑟𝑠 : The feed forward network

• 𝑠ℎ𝑜𝑟𝑡𝑐𝑢𝑡 : The function to be applied along the skip connection

• 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 : The activation function applied at the end of the residual block

Parameters

• filters (list) – A list of the filter sizes. For ex, if the input has a channel dimension of
16, and you want 3 convolution layers and the final output to have a channel dimension of
16, then the list would be [16, 32, 64, 16].

• kernels (list) – A list of the kernel sizes. Each kernel size can be an integer or a tuple,
similar to Pytorch convention. The length of the kernels list must be 1 less than the
filters list.

• strides (list, optional) – A list of the strides for each convolution layer.

• paddings (list, optional) – A list of the padding in each convolution layer.

• nonlinearity (torch.nn.Module, optional) – The activation to be used after
every convolution layer.

• batchnorm (bool, optional) – If set to False, batch normalization is not used after
every convolution layer.

• shortcut (torch.nn.Module, optional) – The function to be applied on the in-
put along the skip connection.

• last_nonlinearity (torch.nn.Module, optional) – The activation to be ap-
plied at the end of the residual block.

forward(x)
Computes the output of the residual block

Parameters x (torch.Tensor) – A 4D Torch Tensor which is the input to the Residual
Block.

Returns 4D Torch Tensor after applying the desired functions as specified while creating the
object.

16 Chapter 7. torchgan.layers

https://arxiv.org/abs/1512.03385
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

torchgan Documentation, Release v0.0.2

7.1.2 ResidualBlockTranspose2d

class torchgan.layers.ResidualBlockTranspose2d(filters, kernels, strides=None,
paddings=None, nonlinearity=None,
batchnorm=True, shortcut=None,
last_nonlinearity=None)

A customized version of Residual Block having Conv Transpose layers instead of Conv layers.

The output of this block is computed in the following manner:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑙𝑎𝑦𝑒𝑟𝑠(𝑥) + 𝑠ℎ𝑜𝑟𝑡𝑐𝑢𝑡(𝑥))

where

• 𝑥 : Input to the Module

• 𝑙𝑎𝑦𝑒𝑟𝑠 : The feed forward network

• 𝑠ℎ𝑜𝑟𝑡𝑐𝑢𝑡 : The function to be applied along the skip connection

• 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 : The activation function applied at the end of the residual block

Parameters

• filters (list) – A list of the filter sizes. For ex, if the input has a channel dimension
of 16, and you want 3 transposed convolution layers and the final output to have a channel
dimension of 16, then the list would be [16, 32, 64, 16].

• kernels (list) – A list of the kernel sizes. Each kernel size can be an integer or a tuple,
similar to Pytorch convention. The length of the kernels list must be 1 less than the
filters list.

• strides (list, optional) – A list of the strides for each convolution layer.

• paddings (list, optional) – A list of the padding in each convolution layer.

• nonlinearity (torch.nn.Module, optional) – The activation to be used after
every convolution layer.

• batchnorm (bool, optional) – If set to False, batch normalization is not used after
every convolution layer.

• shortcut (torch.nn.Module, optional) – The function to be applied on the in-
put along the skip connection.

• last_nonlinearity (torch.nn.Module, optional) – The activation to be ap-
plied at the end of the residual block.

forward(x)
Computes the output of the residual block

Parameters x (torch.Tensor) – A 4D Torch Tensor which is the input to the Transposed
Residual Block.

Returns 4D Torch Tensor after applying the desired functions as specified while creating the
object.

7.1. Residual Blocks 17

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

torchgan Documentation, Release v0.0.2

7.2 Densenet Blocks

7.2.1 BasicBlock2d

class torchgan.layers.BasicBlock2d(in_channels, out_channels, kernel, stride=1, padding=0,
batchnorm=True, nonlinearity=None)

Basic Block Module as described in “Densely Connected Convolutional Networks by Huang et. al.”

The output is computed by concatenating the input tensor to the output tensor (of the internal model)
along the channel dimension.

The internal model is simply a sequence of a Conv2d layer and a BatchNorm2d layer, if activated.

Parameters

• in_channels (int) – The channel dimension of the input tensor.

• out_channels (int) – The channel dimension of the output tensor.

• kernel (int, tuple) – Size of the Convolutional Kernel.

• stride (int, tuple, optional) – Stride of the Convolutional Kernel.

• padding (int, tuple, optional) – Padding to be applied on the input tensor.

• batchnorm (bool, optional) – If True, batch normalization shall be performed.

• nonlinearity (torch.nn.Module, optional) – Activation to be applied. De-
faults to torch.nn.LeakyReLU.

forward(x)
Computes the output of the basic dense block

Parameters x (torch.Tensor) – The input tensor having channel dimension same as
in_channels.

Returns 4D Tensor by concatenating the input to the output of the internal model.

7.2.2 BottleneckBlock2d

class torchgan.layers.BottleneckBlock2d(in_channels, out_channels, kernel, stride=1,
padding=0, bottleneck_channels=None, batch-
norm=True, nonlinearity=None)

Bottleneck Block Module as described in “Densely Connected Convolutional Networks by Huang et. al.”

The output is computed by concatenating the input tensor to the output tensor (of the internal model)
along the channel dimension.

The internal model is simply a sequence of 2 Conv2d layers and 2 BatchNorm2d layers, if activated. This
Module is much more computationally efficient than the BasicBlock2d, and hence is more recommended.

Parameters

• in_channels (int) – The channel dimension of the input tensor.

• out_channels (int) – The channel dimension of the output tensor.

• kernel (int, tuple) – Size of the Convolutional Kernel.

• stride (int, tuple, optional) – Stride of the Convolutional Kernel.

• padding (int, tuple, optional) – Padding to be applied on the input tensor.

18 Chapter 7. torchgan.layers

https://arxiv.org/abs/1608.06993
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://arxiv.org/abs/1608.06993
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

torchgan Documentation, Release v0.0.2

• bottleneck_channels (int, optional) – The channels in the intermediate con-
volutional layer. A higher value will make learning of more complex functions possible.
Defaults to 4 * in_channels.

• batchnorm (bool, optional) – If True, batch normalization shall be performed.

• nonlinearity (torch.nn.Module, optional) – Activation to be applied. De-
faults to torch.nn.LeakyReLU.

forward(x)
Computes the output of the bottleneck dense block

Parameters x (torch.Tensor) – The input tensor having channel dimension same as
in_channels.

Returns 4D Tensor by concatenating the input to the output of the internal model.

7.2.3 TransitionBlock2d

class torchgan.layers.TransitionBlock2d(in_channels, out_channels, kernel, stride=1,
padding=0, batchnorm=True, nonlinearity=None)

Transition Block Module as described in “Densely Connected Convolutional Networks by Huang et. al.”

This is a simple Sequential model of a Conv2d layer and a BatchNorm2d layer, if activated.

Parameters

• in_channels (int) – The channel dimension of the input tensor.

• out_channels (int) – The channel dimension of the output tensor.

• kernel (int, tuple) – Size of the Convolutional Kernel.

• stride (int, tuple, optional) – Stride of the Convolutional Kernel.

• padding (int, tuple, optional) – Padding to be applied on the input tensor.

• batchnorm (bool, optional) – If True, batch normalization shall be performed.

• nonlinearity (torch.nn.Module, optional) – Activation to be applied. De-
faults to torch.nn.LeakyReLU.

forward(x)
Computes the output of the transition block

Parameters x (torch.Tensor) – The input tensor having channel dimension same as
in_channels.

Returns 4D Tensor by applying the model on x.

7.2.4 TransitionBlockTranspose2d

class torchgan.layers.TransitionBlockTranspose2d(in_channels, out_channels, ker-
nel, stride=1, padding=0, batch-
norm=True, nonlinearity=None)

Transition Block Transpose Module is constructed by simply reversing the effect of Transition Block Module.
We replace the Conv2d layers by ConvTranspose2d layers.

Parameters

• in_channels (int) – The channel dimension of the input tensor.

• out_channels (int) – The channel dimension of the output tensor.

7.2. Densenet Blocks 19

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://arxiv.org/abs/1608.06993
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

torchgan Documentation, Release v0.0.2

• kernel (int, tuple) – Size of the Convolutional Kernel.

• stride (int, tuple, optional) – Stride of the Convolutional Kernel.

• padding (int, tuple, optional) – Padding to be applied on the input tensor.

• batchnorm (bool, optional) – If True, batch normalization shall be performed.

• nonlinearity (torch.nn.Module, optional) – Activation to be applied. De-
faults to torch.nn.LeakyReLU.

forward(x)
Computes the output of the transition block transpose

Parameters x (torch.Tensor) – The input tensor having channel dimension same as
in_channels.

Returns 4D Tensor by applying the model on x.

7.2.5 DenseBlock2d

class torchgan.layers.DenseBlock2d(depth, in_channels, growth_rate, block, kernel, stride=1,
padding=0, batchnorm=True, nonlinearity=None)

Dense Block Module as described in “Densely Connected Convolutional Networks by Huang et. al.”

Parameters

• depth (int) – The total number of blocks that will be present.

• in_channels (int) – The channel dimension of the input tensor.

• growth_rate (int) – The rate at which the channel dimension increases. The
output of the module has a channel dimension of size in_channels + depth *
growth_rate.

• block (torch.nn.Module) – Should be once of the Densenet Blocks. Forms the build-
ing block for the Dense Block.

• kernel (int, tuple) – Size of the Convolutional Kernel.

• stride (int, tuple, optional) – Stride of the Convolutional Kernel.

• padding (int, tuple, optional) – Padding to be applied on the input tensor.

• batchnorm (bool, optional) – If True, batch normalization shall be performed.

• nonlinearity (torch.nn.Module, optional) – Activation to be applied. De-
faults to torch.nn.LeakyReLU.

forward(x)
Computes the output of the transition block transpose

Parameters x (torch.Tensor) – The input tensor having channel dimension same as
in_channels.

Returns 4D Tensor by applying the model on x.

20 Chapter 7. torchgan.layers

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://arxiv.org/abs/1608.06993
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

torchgan Documentation, Release v0.0.2

7.3 Self Attention

7.3.1 SelfAttention2d

class torchgan.layers.SelfAttention2d(input_dims, output_dims=None, return_attn=False)
Self Attention Module as proposed in the paper “Self-Attention Generative Adversarial Networks by Han Zhang
et. al.”

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥((𝑞𝑢𝑒𝑟𝑦(𝑥))𝑇 * 𝑘𝑒𝑦(𝑥))

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝛾 * 𝑣𝑎𝑙𝑢𝑒(𝑥) * 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛+ 𝑥

where

• 𝑞𝑢𝑒𝑟𝑦 : 2D Convolution Operation

• 𝑘𝑒𝑦 : 2D Convolution Operation

• 𝑣𝑎𝑙𝑢𝑒 : 2D Convolution Operation

• 𝑥 : Input

Parameters

• input_dims (int) – The input channel dimension in the input x.

• output_dims (int, optional) – The output channel dimension. If None the output
channel value is computed as input_dims // 8. So if the input_dims is less than
8 then the layer will give an error.

• return_attn (bool, optional) – Set it to True if you want the attention values to
be returned.

forward(x)
Computes the output of the Self Attention Layer

Parameters x (torch.Tensor) – A 4D Tensor with the channel dimension same as
input_dims.

Returns A tuple of the output and the attention if return_attn is set to True else
just the output tensor.

7.4 Spectral Normalization

7.4.1 SpectralNorm2d

class torchgan.layers.SpectralNorm2d(module, name=’weight’, power_iterations=1)
2D Spectral Norm Module as described in “Spectral Normalization for Generative Adversarial Networks by
Miyato et. al.” The spectral norm is computed using power iterations.

Computation Steps:

𝑣𝑡+1 =
𝑊𝑇𝑊𝑣𝑡

||𝑊𝑇𝑊𝑣𝑡||
=

(𝑊𝑇𝑊)𝑡𝑣

||(𝑊𝑇𝑊)𝑡𝑣||

𝑢𝑡+1 = 𝑊𝑣𝑡

7.3. Self Attention 21

https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/1805.08318
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://arxiv.org/abs/1802.05957
https://arxiv.org/abs/1802.05957

torchgan Documentation, Release v0.0.2

𝑣𝑡+1 = 𝑊𝑇𝑢𝑡+1

𝑁𝑜𝑟𝑚(𝑊) = ||𝑊𝑣|| = 𝑢𝑇𝑊𝑣

𝑂𝑢𝑡𝑝𝑢𝑡 =
𝑊

𝑁𝑜𝑟𝑚(𝑊)
=

𝑊

𝑢𝑇𝑊𝑣

Parameters

• module (torch.nn.Module) – The Module on which the Spectral Normalization needs
to be applied.

• name (str, optional) – The attribute of the module on which normalization needs
to be performed.

• power_iterations (int, optional) – Total number of iterations for the norm to
converge. 1 is usually enough given the weights vary quite gradually.

Example

>>> layer = SpectralNorm2d(Conv2d(3, 16, 1))
>>> x = torch.rand(1, 3, 10, 10)
>>> layer(x)

forward(*args)
Computes the output of the module and appies spectral normalization to the name attribute of the
module.

Returns The output of the module.

7.5 Minibatch Discrimination

7.5.1 MinibatchDiscrimination1d

class torchgan.layers.MinibatchDiscrimination1d(in_features, out_features, intermedi-
ate_features=16)

1D Minibatch Discrimination Module as proposed in the paper “Improved Techniques for Training GANs by
Salimans et. al.”

Allows the Discriminator to easily detect mode collapse by augmenting the activations to the succeeding layer
with side information that allows it to determine the ‘closeness’ of the minibatch examples with each other

𝑀𝑖 = 𝑇 * 𝑓(𝑥𝑖)

𝑐𝑏(𝑥𝑖, 𝑥𝑗) = exp(−||𝑀𝑖,𝑏 −𝑀𝑗,𝑏||1) ∈ R.

𝑜(𝑥𝑖)𝑏 =

𝑛∑︁
𝑗=1

𝑐𝑏(𝑥𝑖, 𝑥𝑗) ∈ R

𝑜(𝑥𝑖) =
[︁
𝑜(𝑥𝑖)1, 𝑜(𝑥𝑖)2, . . . , 𝑜(𝑥𝑖)𝐵

]︁
∈ R𝐵

𝑜(𝑋) ∈ R𝑛×𝐵

This is followed by concatenating 𝑜(𝑥𝑖) and 𝑓(𝑥𝑖)

where

22 Chapter 7. torchgan.layers

https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/1805.08318

torchgan Documentation, Release v0.0.2

• 𝑓(𝑥𝑖) ∈ R𝐴 : Activations from an intermediate layer

• 𝑓(𝑥𝑖) ∈ R𝐴 : Parameter Tensor for generating minibatch discrimination matrix

Parameters

• in_features (int) – Features input corresponding to dimension :math: A

• out_features (int) – Number of output features that are to be concatenated corre-
sponding to dimension :math: B

• intermediate_features (int) – Intermediate number of features corresponding to
dimension :math: C

Returns math: (N, in_features + out_features) where :math: N is the batch size

Return type A Tensor of size

forward(x)
Computes the output of the Minibatch Discrimination Layer

Parameters x (torch.Tensor) – A Torch Tensor of dimensions :math: (N, infeatures)

Returns math: (N,infeatures + outfeatures) after applying Minibatch Discrimination

Return type 3D Torch Tensor of size

7.6 Virtual Batch Normalization

7.6.1 VirtualBatchNorm

class torchgan.layers.VirtualBatchNorm(in_features, eps=1e-05)
Virtual Batch Normalization Module as proposed in the paper “Improved Techniques for Training GANs by
Salimans et. al.”

Performs Normalizes the features of a batch based on the statistics collected on a reference batch of samples
that are chosen once and fixed from the start, as opposed to regular batch normalization that uses the statistics
of the batch being normalized

Virtual Batch Normalization requires that the size of the batch being normalized is at least a multiple of (and
ideally equal to) the size of the reference batch. Keep this in mind while choosing the batch size in `torch.
utils.data.DataLoader` or use `drop_last=True`

𝑦 =
𝑥− E[𝑥𝑟𝑒𝑓]√︀
Var[𝑥𝑟𝑒𝑓] + 𝜖

* 𝛾 + 𝛽

where

• 𝑥 : Batch Being Normalized

• 𝑥𝑟𝑒𝑓 : Reference Batch

Parameters

• in_features (int) – Size of the input dimension to be normalized

• eps (float, optional) – Value to be added to variance for numerical stability while
normalizing

7.6. Virtual Batch Normalization 23

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/1805.08318
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

torchgan Documentation, Release v0.0.2

forward(x)
Computes the output of the Virtual Batch Normalization

Parameters x (torch.Tensor) – A Torch Tensor of dimension at least 2 which is to be
Normalized

Returns Torch Tensor of the same dimension after normalizing with respect to the statistics of
the reference batch

24 Chapter 7. torchgan.layers

https://pytorch.org/docs/stable/tensors.html#torch.Tensor

CHAPTER 8

torchgan.logging

This subpackage provides strong visualization capabilities using a variety of Backends. It is strongly integrated with
the Trainer. The Logger supports a variety of configurations and customizations.

• Backends

• Logger

• Visualization

– Visualize

– LossVisualize

– GradientVisualize

– MetricVisualize

– ImageVisualize

Note: The Logger API is currently deeply integrated with the Trainer and hence might not be a very pleasant
thing to use externally. However, work is being done to make them as much independent as possible and support
extendibility of the Logger. Hence, this is expected to improve in the future.

8.1 Backends

Currently available backends are:

1. TensorboardX: To enable this set the TENSORBOARD_LOGGING to 1. If the package is pre-installed on your
system, this variable is enabled by default.

If you want to disable this then os.environ["TENSORBOARD_LOGGING"] = "0". Make sure to
do it before loading torchgan.

25

torchgan Documentation, Release v0.0.2

Once the logging begins, you need to start a tensorboard server using this code tensorboard
--logdir runs.

2. Visdom: To enable this set the VISDOM_LOGGING to 1. If the package is pre-installed on your system, this
variable is enabled by default.

If you want to disable this then os.environ["VISDOM_LOGGING"] = "0". We recommend using
visdom if you need to save your plots. In general tensorboard support is better in terms of the image
display.

Warning: If this package is present and VISDOM_LOGGING is set to 1, then a server must be
started using the command python -m visdom.server before the Training is started. Otherwise the code
will simply crash.

3. Console: The details of training are printed on the console. This is enabled by default but can be turned off by
os.environ["CONSOLE_LOGGING"] = "0".

Add more backends for visualization is a work-in-progress.

Note: It is the responsibility of the user to install the necessary packages needed for visualization. If the necessary
packages are missing the logging will not occur or if the user trys to force it the program will terminate with an error
message.

Note: It is recommended to use only 1 logging service (apart from the Console). Using multiple Logging services
might affect the training time. It is recommended to use Visdom only if the plots are to be downloaded easily.

8.2 Logger

class torchgan.logging.Logger(trainer, losses_list, metrics_list=None, visdom_port=8097,
log_dir=None, writer=None, nrow=8, test_noise=None)

Base Logger class. It controls the executions of all the Visualizers and is deeply integrated with the functioning
of the Trainer.

Note: The Logger has been designed to be controlled internally by the Trainer. It is recommended that
the user does not attempt to use it externally in any form.

Warning: This Logger is meant to work on the standard Visualizers available. Work is being done to
support custom Visualizers in a clean way. But currently it is not possible to do so.

Parameters

• trainer (torchgan.trainer.Trainer) – The base trainer used for training.

• losses_list (list) – A list of the Loss Functions that need to be minimized. For a list
of pre-defined losses look at torchgan.losses. All losses in the list must be a subclass
of atleast GeneratorLoss or DiscriminatorLoss.

26 Chapter 8. torchgan.logging

https://docs.python.org/3/library/stdtypes.html#list

torchgan Documentation, Release v0.0.2

• metrics_list (list, optional) – List of Metric Functions that need to be logged.
For a list of pre-defined metrics look at torchgan.metrics. All losses in the list must
be a subclass of EvaluationMetric.

• visdom_port (int, optional) – Port to log using visdom. A deafult server is
started at port 8097. So manually a new server has to be started if the post is changed. This
is ignored if VISDOM_LOGGING is 0.

• log_dir (str, optional) – Directory where TensorboardX should store the logs.
This is ignored if TENSORBOARD_LOGGING is 0.

• writer (tensorboardX.SummaryWriter, optonal) – Send a SummaryWriter if
you don’t want to start a new SummaryWriter.

• test_noise (torch.Tensor, optional) – If provided then it will be used as the
noise for image sampling.

• nrow (int, optional) – Number of rows in which the image is to be stored.

close()
Turns off the tensorboard SummaryWriter if it were created.

get_grad_viz()
Get the GradientVisualize object.

get_loss_viz()
Get the LossVisualize object.

get_metric_viz()
Get the MetricVisualize object.

register(visualize, *args, mid_epoch=True, **kwargs)
Register a new Visualize object with the Logger.

Parameters

• visualize (torchgan.logging.Visualize) – Class name of the visualizer.

• mid_epoch (bool, optional) – Set it to False if it is to be executed once the
epoch is over. Otherwise it is executed after every call to the train_iter.

run_end_epoch(trainer, epoch, *args)
Runs the Visualizers at the end of one epoch.

Parameters

• trainer (torchgan.trainer.Trainer) – The base trainer used for training.

• epoch (int) – The epoch number which was completed.

run_mid_epoch(trainer, *args)
Runs the Visualizers after every call to the train_iter.

Parameters trainer (torchgan.trainer.Trainer) – The base trainer used for train-
ing.

8.2. Logger 27

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

torchgan Documentation, Release v0.0.2

8.3 Visualization

8.3.1 Visualize

class torchgan.logging.Visualize(visualize_list, visdom_port=8097, log_dir=None,
writer=None)

Base class for all Visualizations.

Parameters

• visualize_list (list, optional) – List of the functions needed for visualization.

• visdom_port (int, optional) – Port to log using visdom. The visdom server
needs to be manually started at this port else an error will be thrown and the code will crash.
This is ignored if VISDOM_LOGGING is 0.

• log_dir (str, optional) – Directory where TensorboardX should store the logs.
This is ignored if TENSORBOARD_LOGGING is 0.

• writer (tensorboardX.SummaryWriter, optonal) – Send a SummaryWriter if
you don’t want to start a new SummaryWriter.

log_console()
Console logging function. Needs to be defined in the subclass

Raises NotImplementedError –

log_tensorboard()
Tensorboard logging function. Needs to be defined in the subclass

Raises NotImplementedError –

log_visdom()
Visdom logging function. Needs to be defined in the subclass

Raises NotImplementedError –

step_update()
Helper function which updates the step at the end of one print iteration.

8.3.2 LossVisualize

class torchgan.logging.LossVisualize(visualize_list, visdom_port=8097, log_dir=None,
writer=None)

This class provides the Visualizations for Generator and Discriminator Losses.

Parameters

• visualize_list (list, optional) – List of the functions needed for visualization.

• visdom_port (int, optional) – Port to log using visdom. The visdom server
needs to be manually started at this port else an error will be thrown and the code will crash.
This is ignored if VISDOM_LOGGING is 0.

• log_dir (str, optional) – Directory where TensorboardX should store the logs.
This is ignored if TENSORBOARD_LOGGING is 0.

• writer (tensorboardX.SummaryWriter, optonal) – Send a SummaryWriter if
you don’t want to start a new SummaryWriter.

log_console(running_losses)
Console logging function. This function logs the mean generator and discriminator losses.

28 Chapter 8. torchgan.logging

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

torchgan Documentation, Release v0.0.2

Parameters running_losses (dict) – A dict with 2 items namely, Running
Discriminator Loss, and Running Generator Loss.

log_tensorboard(running_losses)
Tensorboard logging function. This function logs the following:

• Running Discriminator Loss

• Running Generator Loss

• Running Losses

• Loss Values of the individual Losses.

Parameters running_losses (dict) – A dict with 2 items namely, Running
Discriminator Loss, and Running Generator Loss.

log_visdom(running_losses)
Visdom logging function. This function logs the following:

• Running Discriminator Loss

• Running Generator Loss

• Running Losses

• Loss Values of the individual Losses.

Parameters running_losses (dict) – A dict with 2 items namely, Running
Discriminator Loss, and Running Generator Loss.

8.3.3 GradientVisualize

class torchgan.logging.GradientVisualize(visualize_list, visdom_port=8097, log_dir=None,
writer=None)

This class provides the Visualizations for the Gradients.

Parameters

• visualize_list (list, optional) – List of the functions needed for visualization.

• visdom_port (int, optional) – Port to log using visdom. The visdom server
needs to be manually started at this port else an error will be thrown and the code will crash.
This is ignored if VISDOM_LOGGING is 0.

• log_dir (str, optional) – Directory where TensorboardX should store the logs.
This is ignored if TENSORBOARD_LOGGING is 0.

• writer (tensorboardX.SummaryWriter, optonal) – Send a SummaryWriter if
you don’t want to start a new SummaryWriter.

log_console(name)
Console logging function. This function logs the mean gradients.

Parameters name (str) – Name of the model whose gradients are to be logged.

log_tensorboard(name)
Tensorboard logging function. This function logs the values of the individual gradients.

Parameters name (str) – Name of the model whose gradients are to be logged.

log_visdom(name)
Visdom logging function. This function logs the values of the individual gradients.

8.3. Visualization 29

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

torchgan Documentation, Release v0.0.2

Parameters name (str) – Name of the model whose gradients are to be logged.

report_end_epoch()
Prints to the console at the end of the epoch.

update_grads(name, model, eps=1e-05)
Updates the gradient logs.

Parameters

• name (str) – Name of the model.

• model (torch.nn.Module) – Either a torchgan.models.Generator or a
torchgan.models.Discriminator or their subclass.

• eps (float, optional) – Tolerance value.

8.3.4 MetricVisualize

class torchgan.logging.MetricVisualize(visualize_list, visdom_port=8097, log_dir=None,
writer=None)

This class provides the Visualizations for Metrics.

Parameters

• visualize_list (list, optional) – List of the functions needed for visualization.

• visdom_port (int, optional) – Port to log using visdom. The visdom server
needs to be manually started at this port else an error will be thrown and the code will crash.
This is ignored if VISDOM_LOGGING is 0.

• log_dir (str, optional) – Directory where TensorboardX should store the logs.
This is ignored if TENSORBOARD_LOGGING is 0.

• writer (tensorboardX.SummaryWriter, optonal) – Send a SummaryWriter if
you don’t want to start a new SummaryWriter.

log_console()
Console logging function. This function logs the mean metrics.

log_tensorboard()
Tensorboard logging function. This function logs the values of the individual metrics.

log_visdom()
Visdom logging function. This function logs the values of the individual metrics.

8.3.5 ImageVisualize

class torchgan.logging.ImageVisualize(trainer, visdom_port=8097, log_dir=None,
writer=None, test_noise=None, nrow=8)

This class provides the Logging for the Images.

Parameters

• trainer (torchgan.trainer.Trainer) – The base trainer used for training.

• visdom_port (int, optional) – Port to log using visdom. The visdom server
needs to be manually started at this port else an error will be thrown and the code will crash.
This is ignored if VISDOM_LOGGING is 0.

• log_dir (str, optional) – Directory where TensorboardX should store the logs.
This is ignored if TENSORBOARD_LOGGING is 0.

30 Chapter 8. torchgan.logging

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

torchgan Documentation, Release v0.0.2

• writer (tensorboardX.SummaryWriter, optonal) – Send a SummaryWriter if
you don’t want to start a new SummaryWriter.

• test_noise (torch.Tensor, optional) – If provided then it will be used as the
noise for image sampling.

• nrow (int, optional) – Number of rows in which the image is to be stored.

log_console(trainer, image, model)
Saves a generated image at the end of an epoch. The path where the image is being stored is controlled by
the trainer.

Parameters

• trainer (torchgan.trainer.Trainer) – The base trainer used for training.

• image (Image) – The generated image.

• model (str) – The name of the model which generated the image.

log_tensorboard(trainer, image, model)
Logs a generated image in tensorboard at the end of an epoch.

Parameters

• trainer (torchgan.trainer.Trainer) – The base trainer used for training.

• image (Image) – The generated image.

• model (str) – The name of the model which generated the image.

log_visdom(trainer, image, model)
Logs a generated image in visdom at the end of an epoch.

Parameters

• trainer (torchgan.trainer.Trainer) – The base trainer used for training.

• image (Image) – The generated image.

• model (str) – The name of the model which generated the image.

8.3. Visualization 31

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

torchgan Documentation, Release v0.0.2

32 Chapter 8. torchgan.logging

CHAPTER 9

torchgan.losses

This losses subpackage is a collection of popular loss functions used in the training of GANs. Currently the following
losses are supported:

• Loss

– GeneratorLoss

– DiscriminatorLoss

• Least Squares Loss

– LeastSquaresGeneratorLoss

– LeastSquaresDiscriminatorLoss

• Minimax Loss

– MinimaxGeneratorLoss

– MinimaxDiscriminatorLoss

• Boundary Equilibrium Loss

– BoundaryEquilibriumGeneratorLoss

– BoundaryEquilibriumDiscriminatorLoss

• Energy Based Loss

– EnergyBasedGeneratorLoss

– EnergyBasedDiscriminatorLoss

– EnergyBasedPullingAwayTerm

• Wasserstein Loss

– WassersteinGeneratorLoss

33

torchgan Documentation, Release v0.0.2

– WassersteinDiscriminatorLoss

– WassersteinGradientPenalty

• Mutual Information Penalty

• Dragan Loss

– DraganGradientPenalty

• Auxillary Classifier Loss

– AuxiliaryClassifierGeneratorLoss

– AuxiliaryClassifierDiscriminatorLoss

• Feature Matching Loss

– FeatureMatchingGeneratorLoss

• Historical Averaging

– HistoricalAverageGeneratorLoss

– HistoricalAverageDiscriminatorLoss

These losses are tested with the current available trainers. So if you need to implement you custom loss for using with
the trainer it is recommended that you subclass the GeneratorLoss and DiscriminatorLoss.

Warning: The override_train_ops gets only the arguments that were received by the default train_ops.
Hence it might not be a wise to use this very often. If this is used make sure to take into account the arguments and
their order. A better alternative is to subclass the Loss and define a custom train_ops.

Warning: train_ops are designed to be used internally through the Trainer. Hence it is highly recom-
mended that this function is not directly used by external sources, i.e. no call to this function is made outside the
Trainer.

9.1 Loss

9.1.1 GeneratorLoss

class torchgan.losses.GeneratorLoss(reduction=’mean’, override_train_ops=None)
Base class for all generator losses.

Note: All Losses meant to be minimized for optimizing the Generator must subclass this.

Parameters

• reduction (str, optional) – Specifies the reduction to apply to the output. If none
no reduction will be applied. If mean the outputs are averaged over batch size. If sum the
elements of the output are summed.

• override_train_ops (function, optional) – Function to be used in place of
the default train_ops

34 Chapter 9. torchgan.losses

https://docs.python.org/3/library/stdtypes.html#str

torchgan Documentation, Release v0.0.2

set_arg_map(value)
Updates the arg_map for passing a different value to the train_ops.

Parameters value (dict) – A mapping of the argument name in the method signature
and the variable name in the Trainer it corresponds to.

Note: If the train_ops signature is train_ops(self, gen, disc,
optimizer_generator, device, batch_size, labels=None) then we need to map
gen to generator and disc to discriminator. In this case we make the following function call
loss.set_arg_map({"gen": "generator", "disc": "discriminator"}).

train_ops(generator, discriminator, optimizer_generator, device, batch_size, labels=None)
Defines the standard train_ops used by most losses. Losses which have a different training procedure
can either subclass it (recommended approach) or make use of override_train_ops argument.

The standard optimization algorithm for the generator defined in this train_ops is as
follows:

1. 𝑓𝑎𝑘𝑒 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟(𝑛𝑜𝑖𝑠𝑒)

2. 𝑣𝑎𝑙𝑢𝑒 = 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟(𝑓𝑎𝑘𝑒)

3. 𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑣𝑎𝑙𝑢𝑒)

4. Backpropagate by computing ∇𝑙𝑜𝑠𝑠

5. Run a step of the optimizer for generator

Parameters

• generator (torchgan.models.Generator) – The model to be optimized.

• discriminator (torchgan.models.Discriminator) – The discriminator
which judges the performance of the generator.

• optimizer_generator (torch.optim.Optimizer) – Optimizer which updates
the parameters of the generator.

• device (torch.device) – Device on which the generator and discriminator
is present.

• batch_size (int) – Batch Size of the data infered from the DataLoader by the
Trainer.

• labels (torch.Tensor, optional) – Labels for the data.

Returns Scalar value of the loss.

9.1.2 DiscriminatorLoss

class torchgan.losses.DiscriminatorLoss(reduction=’mean’, override_train_ops=None)
Base class for all discriminator losses.

Note: All Losses meant to be minimized for optimizing the Discriminator must subclass this.

Parameters

9.1. Loss 35

https://docs.python.org/3/library/stdtypes.html#dict
https://pytorch.org/docs/stable/optim.html#torch.optim.Optimizer
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

torchgan Documentation, Release v0.0.2

• reduction (str, optional) – Specifies the reduction to apply to the output. If none
no reduction will be applied. If mean the outputs are averaged over batch size. If sum the
elements of the output are summed.

• override_train_ops (function, optional) – Function to be used in place of
the default train_ops

set_arg_map(value)
Updates the arg_map for passing a different value to the train_ops.

Parameters value (dict) – A mapping of the argument name in the method signature
and the variable name in the Trainer it corresponds to.

Note: If the train_ops signature is train_ops(self, gen, disc,
optimizer_discriminator, device, batch_size, labels=None) then we need to
map gen to generator and disc to discriminator. In this case we make the following function
call loss.set_arg_map({"gen": "generator", "disc": "discriminator"}).

train_ops(generator, discriminator, optimizer_discriminator, real_inputs, device, labels=None)
Defines the standard train_ops used by most losses. Losses which have a different training procedure
can either subclass it (recommended approach) or make use of override_train_ops argument.

The standard optimization algorithm for the discriminator defined in this train_ops is
as follows:

1. 𝑓𝑎𝑘𝑒 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟(𝑛𝑜𝑖𝑠𝑒)

2. 𝑣𝑎𝑙𝑢𝑒1 = 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟(𝑓𝑎𝑘𝑒)

3. 𝑣𝑎𝑙𝑢𝑒2 = 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟(𝑟𝑒𝑎𝑙)

4. 𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑣𝑎𝑙𝑢𝑒1, 𝑣𝑎𝑙𝑢𝑒2)

5. Backpropagate by computing ∇𝑙𝑜𝑠𝑠

6. Run a step of the optimizer for discriminator

Parameters

• generator (torchgan.models.Generator) – The model to be optimized.

• discriminator (torchgan.models.Discriminator) – The discriminator
which judges the performance of the generator.

• optimizer_discriminator (torch.optim.Optimizer) – Optimizer which
updates the parameters of the discriminator.

• real_inputs (torch.Tensor) – The real data to be fed to the discriminator.

• device (torch.device) – Device on which the generator and discriminator
is present.

• batch_size (int) – Batch Size of the data infered from the DataLoader by the
Trainer.

• labels (torch.Tensor, optional) – Labels for the data.

Returns Scalar value of the loss.

36 Chapter 9. torchgan.losses

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://pytorch.org/docs/stable/optim.html#torch.optim.Optimizer
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

torchgan Documentation, Release v0.0.2

9.2 Least Squares Loss

9.2.1 LeastSquaresGeneratorLoss

class torchgan.losses.LeastSquaresGeneratorLoss(reduction=’mean’, c=1.0, over-
ride_train_ops=None)

Least Squares GAN generator loss from “Least Squares Generative Adversarial Networks by Mao et. al.” paper

The loss can be described as

𝐿(𝐺) =
(𝐷(𝐺(𝑧))− 𝑐)2

2

where

• 𝐺 : Generator

• 𝐷 : Disrciminator

• 𝑐 : target generator label

• 𝑧 : A sample from the noise prior

Parameters

• reduction (str, optional) – Specifies the reduction to apply to the output. If none
no reduction will be applied. If mean the outputs are averaged over batch size. If sum the
elements of the output are summed.

• c (float, optional) – Target generator label.

• override_train_ops (function, optional) – Function to be used in place of
the default train_ops

forward(dgz)
Computes the loss for the given input.

Parameters dgz (torch.Tensor) – Output of the Discriminator with generated data. It must
have the dimensions (N, *) where * means any number of additional dimensions.

Returns scalar if reduction is applied else Tensor with dimensions (N, *).

9.2.2 LeastSquaresDiscriminatorLoss

class torchgan.losses.LeastSquaresDiscriminatorLoss(reduction=’mean’,
a=0.0, b=1.0, over-
ride_train_ops=None)

Least Squares GAN discriminator loss from “Least Squares Generative Adversarial Networks by Mao et. al.”
paper.

The loss can be described as:

𝐿(𝐷) =
(𝐷(𝑥)− 𝑏)2 + (𝐷(𝐺(𝑧))− 𝑎)2

2

where

• 𝐺 : Generator

• 𝐷 : Disrciminator

• 𝑎 : Target discriminator label for generated image

9.2. Least Squares Loss 37

https://arxiv.org/abs/1611.04076
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://arxiv.org/abs/1611.04076

torchgan Documentation, Release v0.0.2

• 𝑏 : Target discriminator label for real image

Parameters

• reduction (str, optional) – Specifies the reduction to apply to the output. If none
no reduction will be applied. If mean the outputs are averaged over batch size. If sum the
elements of the output are summed.

• a (float, optional) – Target discriminator label for generated image.

• b (float, optional) – Target discriminator label for real image.

• override_train_ops (function, optional) – Function to be used in place of
the default train_ops

forward(dx, dgz)
Computes the loss for the given input.

Parameters

• dx (torch.Tensor) – Output of the Discriminator with real data. It must have the
dimensions (N, *) where * means any number of additional dimensions.

• dgz (torch.Tensor) – Output of the Discriminator with generated data. It must have
the dimensions (N, *) where * means any number of additional dimensions.

Returns scalar if reduction is applied else Tensor with dimensions (N, *).

9.3 Minimax Loss

9.3.1 MinimaxGeneratorLoss

class torchgan.losses.MinimaxGeneratorLoss(reduction=’mean’, nonsaturating=True, over-
ride_train_ops=None)

Minimax game generator loss from the original GAN paper “Generative Adversarial Networks by Goodfellow
et. al.”

The loss can be described as:

𝐿(𝐺) = 𝑙𝑜𝑔(1−𝐷(𝐺(𝑧)))

The nonsaturating heuristic is also supported:

𝐿(𝐺) = −𝑙𝑜𝑔(𝐷(𝐺(𝑧)))

where

• 𝐺 : Generator

• 𝐷 : Discriminator

• 𝑧 : A sample from the noise prior

Parameters

• reduction (str, optional) – Specifies the reduction to apply to the output. If none
no reduction will be applied. If mean the outputs are averaged over batch size. If sum the
elements of the output are summed.

38 Chapter 9. torchgan.losses

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://docs.python.org/3/library/stdtypes.html#str

torchgan Documentation, Release v0.0.2

• override_train_ops (function, optional) – Function to be used in place of
the default train_ops

• nonsaturating (bool, optional) – Specifies whether to use the nonsaturating
heuristic loss for the generator.

• reduction – Specifies the reduction to apply to the output. If none no reduction will be
applied. If mean the mean of the output. If sum the elements of the output will be summed.

forward(dgz)
Computes the loss for the given input.

Parameters dgz (torch.Tensor) – Output of the Discriminator with generated data. It must
have the dimensions (N, *) where * means any number of additional dimensions.

Returns scalar if reduction is applied else Tensor with dimensions (N, *).

9.3.2 MinimaxDiscriminatorLoss

class torchgan.losses.MinimaxDiscriminatorLoss(label_smoothing=0.0, re-
duction=’mean’, over-
ride_train_ops=None)

Minimax game discriminator loss from the original GAN paper “Generative Adversarial Networks by Goodfel-
low et. al.”

The loss can be described as:

𝐿(𝐷) = −[𝑙𝑜𝑔(𝐷(𝑥)) + 𝑙𝑜𝑔(1−𝐷(𝐺(𝑧)))]

where

• 𝐺 : Generator

• 𝐷 : Discriminator

• 𝑥 : A sample from the data distribution

• 𝑧 : A sample from the noise prior

Parameters

• label_smoothing (float, optional) – The factor by which the labels (1 in this
case) needs to be smoothened. For example, label_smoothing = 0.2 changes the value of the
real labels to 0.8.

• reduction (str, optional) – Specifies the reduction to apply to the output. If none
no reduction will be applied. If mean the mean of the output. If sum the elements of the
output will be summed.

• override_train_ops (function, optional) – A function is passed to this argu-
ment, if the default train_ops is not to be used.

forward(dx, dgz)
Computes the loss for the given input.

Parameters

• dx (torch.Tensor) – Output of the Discriminator with real data. It must have the
dimensions (N, *) where * means any number of additional dimensions.

9.3. Minimax Loss 39

https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

torchgan Documentation, Release v0.0.2

• dgz (torch.Tensor) – Output of the Discriminator with generated data. It must have
the dimensions (N, *) where * means any number of additional dimensions.

Returns scalar if reduction is applied else Tensor with dimensions (N, *).

9.4 Boundary Equilibrium Loss

9.4.1 BoundaryEquilibriumGeneratorLoss

class torchgan.losses.BoundaryEquilibriumGeneratorLoss(reduction=’mean’, over-
ride_train_ops=None)

Boundary Equilibrium GAN generator loss from “BEGAN : Boundary Equilibrium Generative Adversarial
Networks by Berthelot et. al.” paper

The loss can be described as

𝐿(𝐺) = 𝐷(𝐺(𝑧))

where

• 𝐺 : Generator

• 𝐷 : Discriminator

Parameters

• reduction (str, optional) – Specifies the reduction to apply to the output. If none
no reduction will be applied. If mean the outputs are averaged over batch size. If sum the
elements of the output are summed.

• override_train_ops (function, optional) – Function to be used in place of
the default train_ops

forward(dgz)
Computes the loss for the given input.

Parameters dgz (torch.Tensor) – Output of the Discriminator with generated data. It must
have the dimensions (N, *) where * means any number of additional dimensions.

Returns scalar if reduction is applied else Tensor with dimensions (N, *).

9.4.2 BoundaryEquilibriumDiscriminatorLoss

class torchgan.losses.BoundaryEquilibriumDiscriminatorLoss(reduction=’mean’,
over-
ride_train_ops=None,
init_k=0.0,
lambd=0.001,
gamma=0.75)

Boundary Equilibrium GAN discriminator loss from “BEGAN : Boundary Equilibrium Generative Adversarial
Networks by Berthelot et. al.” paper

The loss can be described as

𝐿(𝐷) = 𝐷(𝑥)− 𝑘𝑡 ×𝐷(𝐺(𝑧))

40 Chapter 9. torchgan.losses

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://arxiv.org/abs/1703.10717
https://arxiv.org/abs/1703.10717
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://arxiv.org/abs/1703.10717
https://arxiv.org/abs/1703.10717

torchgan Documentation, Release v0.0.2

𝑘𝑡+1 = 𝑘𝑡 + 𝜆× (𝛾 ×𝐷(𝑥)−𝐷(𝐺(𝑧)))

where

• 𝐺 : Generator

• 𝐷 : Discriminator

• 𝑘𝑡 : Running average of the balance point of G and D

• 𝜆 : Learning rate of the running average

• 𝛾 : Goal bias hyperparameter

Parameters

• reduction (str, optional) – Specifies the reduction to apply to the output. If none
no reduction will be applied. If mean the outputs are averaged over batch size. If sum the
elements of the output are summed.

• override_train_ops (function, optional) – Function to be used in place
ofthe default train_ops

• init_k (float, optional) – Initial value of the balance point k.

• lambd (float, optional) – Learning rate of the running average.

• gamma (float, optional) – Goal bias hyperparameter.

forward(dx, dgz)
Computes the loss for the given input.

Parameters

• dx (torch.Tensor) – Output of the Discriminator with real data. It must have the
dimensions (N, *) where * means any number of additional dimensions.

• dgz (torch.Tensor) – Output of the Discriminator with generated data. It must have
the dimensions (N, *) where * means any number of additional dimensions.

Returns A tuple of 3 loss values, namely the total loss, loss due to real data
and loss due to fake data.

set_k(k=0.0)
Change the default value of k

Parameters k (float, optional) – New value to be set.

train_ops(generator, discriminator, optimizer_discriminator, real_inputs, device, labels=None)
Defines the standard train_ops used by boundary equilibrium loss.

The standard optimization algorithm for the discriminator defined in this train_ops is
as follows:

1. 𝑓𝑎𝑘𝑒 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟(𝑛𝑜𝑖𝑠𝑒)

2. 𝑣𝑎𝑙𝑢𝑒1 = 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟(𝑓𝑎𝑘𝑒)

3. 𝑣𝑎𝑙𝑢𝑒2 = 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟(𝑟𝑒𝑎𝑙)

4. 𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑣𝑎𝑙𝑢𝑒1, 𝑣𝑎𝑙𝑢𝑒2)

5. Backpropagate by computing ∇𝑙𝑜𝑠𝑠

6. Run a step of the optimizer for discriminator

7. Update the value of :math: k.

9.4. Boundary Equilibrium Loss 41

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#float

torchgan Documentation, Release v0.0.2

Parameters

• generator (torchgan.models.Generator) – The model to be optimized.

• discriminator (torchgan.models.Discriminator) – The discriminator
which judges the performance of the generator.

• optimizer_discriminator (torch.optim.Optimizer) – Optimizer which
updates the parameters of the discriminator.

• real_inputs (torch.Tensor) – The real data to be fed to the discriminator.

• device (torch.device) – Device on which the generator and discriminator
is present.

• labels (torch.Tensor, optional) – Labels for the data.

Returns Scalar value of the loss.

update_k(loss_real, loss_fake)
Update the running mean of k for each forward pass.

The update takes place as

𝑘𝑡+1 = 𝑘𝑡 + 𝜆× (𝛾 ×𝐷(𝑥)−𝐷(𝐺(𝑧)))

Parameters

• loss_real (float) – 𝐷(𝑥)

• loss_fake (float) – 𝐷(𝐺(𝑧))

9.5 Energy Based Loss

9.5.1 EnergyBasedGeneratorLoss

class torchgan.losses.EnergyBasedGeneratorLoss(reduction=’mean’, over-
ride_train_ops=None)

Energy Based GAN generator loss from “Energy Based Generative Adversarial Network by Zhao et. al.” paper.

The loss can be described as:

𝐿(𝐺) = 𝐷(𝐺(𝑧))

where

• 𝐺 : Generator

• 𝐷 : Discriminator

• 𝑧 : A sample from the noise prior

Parameters

• reduction (str, optional) – Specifies the reduction to apply to the output. If none
no reduction will be applied. If mean the outputs are averaged over batch size. If sum the
elements of the output are summed.

• override_train_ops (function, optional) – A function is passed to this argu-
ment, if the default train_ops is not to be used.

42 Chapter 9. torchgan.losses

https://pytorch.org/docs/stable/optim.html#torch.optim.Optimizer
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1609.03126
https://docs.python.org/3/library/stdtypes.html#str

torchgan Documentation, Release v0.0.2

forward(dgz)
Computes the loss for the given input.

Parameters dgz (torch.Tensor) – Output of the Discriminator with generated data. It must
have the dimensions (N, *) where * means any number of additional dimensions.

Returns scalar if reduction is applied else Tensor with dimensions (N, *).

train_ops(generator, discriminator, optimizer_generator, device, batch_size, labels=None)
This function sets the embeddings attribute of the AutoEncodingDiscriminator to False and
calls the train_ops of the GeneratorLoss. After the call the attribute is again set to True.

Parameters

• generator (torchgan.models.Generator) – The model to be optimized.

• discriminator (torchgan.models.Discriminator) – The discriminator
which judges the performance of the generator.

• optimizer_generator (torch.optim.Optimizer) – Optimizer which updates
the parameters of the generator.

• device (torch.device) – Device on which the generator and discriminator
is present.

• batch_size (int) – Batch Size of the data infered from the DataLoader by the
Trainer.

• labels (torch.Tensor, optional) – Labels for the data.

Returns Scalar value of the loss.

9.5.2 EnergyBasedDiscriminatorLoss

class torchgan.losses.EnergyBasedDiscriminatorLoss(reduction=’mean’, margin=80.0,
override_train_ops=None)

Energy Based GAN generator loss from “Energy Based Generative Adversarial Network by Zhao et. al.” paper

The loss can be described as:

𝐿(𝐷) = 𝐷(𝑥) +𝑚𝑎𝑥(0,𝑚−𝐷(𝐺(𝑧)))

where

• 𝐺 : Generator

• 𝐷 : Discriminator

• 𝑚 : Margin Hyperparameter

• 𝑧 : A sample from the noise prior

Note: The convergence of EBGAN is highly sensitive to hyperparameters. The margin hyperparameter as
per the paper was taken as follows:

Dataset Margin
MNIST 10.0
LSUN 80.0
CELEB A 20.0
Imagenet (128 x 128) 40.0
Imagenet (256 x 256) 80.0

9.5. Energy Based Loss 43

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/optim.html#torch.optim.Optimizer
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://arxiv.org/abs/1609.03126

torchgan Documentation, Release v0.0.2

Parameters

• reduction (str, optional) – Specifies the reduction to apply to the output. If none
no reduction will be applied. If mean the outputs are averaged over batch size. If sum the
elements of the output are summed.

• margin (float, optional) – The margin hyperparameter.

• override_train_ops (function, optional) – Function to be used in place of
the default train_ops

forward(dx, dgz)
Computes the loss for the given input.

Parameters

• dx (torch.Tensor) – Output of the Discriminator with real data. It must have the
dimensions (N, *) where * means any number of additional dimensions.

• dgz (torch.Tensor) – Output of the Discriminator with generated data. It must have
the dimensions (N, *) where * means any number of additional dimensions.

Returns scalar if reduction is applied else Tensor with dimensions (N, *).

train_ops(generator, discriminator, optimizer_discriminator, real_inputs, device, batch_size, la-
bels=None)

This function sets the embeddings attribute of the AutoEncodingDiscriminator to False and
calls the train_ops of the DiscriminatorLoss. After the call the attribute is again set to True.

Parameters

• generator (torchgan.models.Generator) – The model to be optimized.

• discriminator (torchgan.models.Discriminator) – The discriminator
which judges the performance of the generator.

• optimizer_discriminator (torch.optim.Optimizer) – Optimizer which
updates the parameters of the discriminator.

• real_inputs (torch.Tensor) – The real data to be fed to the discriminator.

• device (torch.device) – Device on which the generator and discriminator
is present.

• batch_size (int) – Batch Size of the data infered from the DataLoader by the
Trainer.

• labels (torch.Tensor, optional) – Labels for the data.

Returns Scalar value of the loss.

9.5.3 EnergyBasedPullingAwayTerm

class torchgan.losses.EnergyBasedPullingAwayTerm(pt_ratio=0.1, over-
ride_train_ops=None)

Energy Based Pulling Away Term from “Energy Based Generative Adversarial Network by Zhao et. al.” paper.

The loss can be described as:

𝑓𝑃𝑇 (𝑆) =
1

𝑁(𝑁 − 1)

∑︁
𝑖

∑︁
𝑗 ̸=𝑖

(︂
𝑆𝑇
𝑖 𝑆𝑗

||𝑆𝑖|| ||𝑆𝑗 ||

)︂2

44 Chapter 9. torchgan.losses

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/optim.html#torch.optim.Optimizer
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://arxiv.org/abs/1609.03126

torchgan Documentation, Release v0.0.2

where

• 𝑆 : The feature output from the encoder for generated images

• 𝑁 : Batch Size of the Input

Parameters

• pt_ratio (float, optional) – The weight given to the pulling away term.

• override_train_ops (function, optional) – A function is passed to this argu-
ment, if the default train_ops is not to be used.

forward(dgz, d_hid)
Computes the loss for the given input.

Parameters

• dgz (torch.Tensor) – Output of the Discriminator with generated data. It must have
the dimensions (N, *) where * means any number of additional dimensions.

• d_hid (torch.Tensor) – The embeddings generated by the discriminator.

Returns scalar.

train_ops(generator, discriminator, optimizer_generator, device, batch_size, labels=None)
This function extracts the hidden embeddings of the discriminator network. The furthur computation is
same as the standard train_ops.

Note: For the loss to work properly, the discriminator must be a AutoEncodingDiscriminator and
it must have a embeddings attribute which should be set to True. Also the generator label_type
must be none. As a result of these constraints it advisable not to use custom models with this loss. This
will be improved in future.

Parameters

• generator (torchgan.models.Generator) – The model to be optimized.

• discriminator (torchgan.models.Discriminator) – The discriminator
which judges the performance of the generator.

• optimizer_generator (torch.optim.Optimizer) – Optimizer which updates
the parameters of the generator.

• device (torch.device) – Device on which the generator and discriminator
is present.

• batch_size (int) – Batch Size of the data infered from the DataLoader by the
Trainer.

• labels (torch.Tensor, optional) – Labels for the data.

Returns Scalar value of the loss.

9.5. Energy Based Loss 45

https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/optim.html#torch.optim.Optimizer
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

torchgan Documentation, Release v0.0.2

9.6 Wasserstein Loss

9.6.1 WassersteinGeneratorLoss

class torchgan.losses.WassersteinGeneratorLoss(reduction=’mean’, over-
ride_train_ops=None)

Wasserstein GAN generator loss from “Wasserstein GAN by Arjovsky et. al.” paper

The loss can be described as:

𝐿(𝐺) = −𝑓(𝐺(𝑧))

where

• 𝐺 : Generator

• 𝑓 : Critic/Discriminator

• 𝑧 : A sample from the noise prior

Parameters

• reduction (str, optional) – Specifies the reduction to apply to the output. If none
no reduction will be applied. If mean the mean of the output. If sum the elements of the
output will be summed.

• override_train_ops (function, optional) – A function is passed to this argu-
ment, if the default train_ops is not to be used.

forward(fgz)
Computes the loss for the given input.

Parameters dgz (torch.Tensor) – Output of the Discriminator with generated data. It must
have the dimensions (N, *) where * means any number of additional dimensions.

Returns scalar if reduction is applied else Tensor with dimensions (N, *).

9.6.2 WassersteinDiscriminatorLoss

class torchgan.losses.WassersteinDiscriminatorLoss(reduction=’mean’, clip=None,
override_train_ops=None)

Wasserstein GAN generator loss from “Wasserstein GAN by Arjovsky et. al.” paper

The loss can be described as:

𝐿(𝐷) = 𝑓(𝐺(𝑧))− 𝑓(𝑥)

where

• 𝐺 : Generator

• 𝑓 : Critic/Discriminator

• 𝑥 : A sample from the data distribution

• 𝑧 : A sample from the noise prior

Parameters

46 Chapter 9. torchgan.losses

https://arxiv.org/abs/1701.07875
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://arxiv.org/abs/1701.07875

torchgan Documentation, Release v0.0.2

• reduction (str, optional) – Specifies the reduction to apply to the output. If none
no reduction will be applied. If mean the mean of the output. If sum the elements of the
output will be summed.

• clip (tuple, optional) – Tuple that specifies the maximum and minimum parameter
clamping to be applied, as per the original version of the Wasserstein loss without Gradient
Penalty.

• override_train_ops (function, optional) – A function is passed to this argu-
ment, if the default train_ops is not to be used.

forward(fx, fgz)
Computes the loss for the given input.

Parameters

• fx (torch.Tensor) – Output of the Discriminator with real data. It must have the
dimensions (N, *) where * means any number of additional dimensions.

• fgz (torch.Tensor) – Output of the Discriminator with generated data. It must have
the dimensions (N, *) where * means any number of additional dimensions.

Returns scalar if reduction is applied else Tensor with dimensions (N, *).

train_ops(generator, discriminator, optimizer_discriminator, real_inputs, device, labels=None)
Defines the standard train_ops used by wasserstein discriminator loss.

The standard optimization algorithm for the discriminator defined in this train_ops is
as follows:

1. Clamp the discriminator parameters to satisfy 𝑙𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

2. 𝑓𝑎𝑘𝑒 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟(𝑛𝑜𝑖𝑠𝑒)

3. 𝑣𝑎𝑙𝑢𝑒1 = 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟(𝑓𝑎𝑘𝑒)

4. 𝑣𝑎𝑙𝑢𝑒2 = 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟(𝑟𝑒𝑎𝑙)

5. 𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑣𝑎𝑙𝑢𝑒1, 𝑣𝑎𝑙𝑢𝑒2)

6. Backpropagate by computing ∇𝑙𝑜𝑠𝑠

7. Run a step of the optimizer for discriminator

Parameters

• generator (torchgan.models.Generator) – The model to be optimized.

• discriminator (torchgan.models.Discriminator) – The discriminator
which judges the performance of the generator.

• optimizer_discriminator (torch.optim.Optimizer) – Optimizer which
updates the parameters of the discriminator.

• real_inputs (torch.Tensor) – The real data to be fed to the discriminator.

• device (torch.device) – Device on which the generator and discriminator
is present.

• labels (torch.Tensor, optional) – Labels for the data.

Returns Scalar value of the loss.

9.6. Wasserstein Loss 47

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/optim.html#torch.optim.Optimizer
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

torchgan Documentation, Release v0.0.2

9.6.3 WassersteinGradientPenalty

class torchgan.losses.WassersteinGradientPenalty(reduction=’mean’, lambd=10.0,
override_train_ops=None)

Gradient Penalty for the Improved Wasserstein GAN discriminator from “Improved Training of Wasserstein
GANs by Gulrajani et. al.” paper

The gradient penalty is calculated as:

The gradient being taken with respect to x

where

• 𝐺 : Generator

• 𝐷 : Disrciminator/Critic

• 𝜆 : Scaling hyperparameter

• 𝑥 : Interpolation term for the gradient penalty

Parameters

• reduction (str, optional) – Specifies the reduction to apply to the output. If none
no reduction will be applied. If mean the mean of the output. If sum the elements of the
output will be summed.

• lambd (float,optional) – Hyperparameter lambda for scaling the gradient penalty.

• override_train_ops (function, optional) – A function is passed to this argu-
ment, if the default train_ops is not to be used.

forward(interpolate, d_interpolate)
Computes the loss for the given input.

Parameters

• interpolate (torch.Tensor) – It must have the dimensions (N, *) where * means
any number of additional dimensions.

• d_interpolate (torch.Tensor) – Output of the discriminator with
interpolate as the input. It must have the dimensions (N, *) where * means any
number of additional dimensions.

Returns scalar if reduction is applied else Tensor with dimensions (N, *).

train_ops(generator, discriminator, optimizer_discriminator, real_inputs, device, labels=None)
Defines the standard train_ops used by the Wasserstein Gradient Penalty.

The standard optimization algorithm for the discriminator defined in this train_ops is
as follows:

1. 𝑓𝑎𝑘𝑒 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟(𝑛𝑜𝑖𝑠𝑒)

2. 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒 = 𝜖× 𝑟𝑒𝑎𝑙 + (1− 𝜖)× 𝑓𝑎𝑘𝑒

3. 𝑑_𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒 = 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟(𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒)

4. 𝑙𝑜𝑠𝑠 = 𝜆𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒, 𝑑_𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒)

5. Backpropagate by computing ∇𝑙𝑜𝑠𝑠

6. Run a step of the optimizer for discriminator

Parameters

48 Chapter 9. torchgan.losses

https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1704.00028
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

torchgan Documentation, Release v0.0.2

• generator (torchgan.models.Generator) – The model to be optimized.

• discriminator (torchgan.models.Discriminator) – The discriminator
which judges the performance of the generator.

• optimizer_discriminator (torch.optim.Optimizer) – Optimizer which
updates the parameters of the discriminator.

• real_inputs (torch.Tensor) – The real data to be fed to the discriminator.

• device (torch.device) – Device on which the generator and discriminator
is present.

• batch_size (int) – Batch Size of the data infered from the DataLoader by the
Trainer.

• labels (torch.Tensor, optional) – Labels for the data.

Returns Scalar value of the loss.

9.7 Mutual Information Penalty

class torchgan.losses.MutualInformationPenalty(lambd=1.0, reduction=’mean’, over-
ride_train_ops=None)

Mutual Information Penalty as defined in “InfoGAN : Interpretable Representation Learning by Information
Maximising Generative Adversarial Nets by Chen et. al.” paper

The loss is the variational lower bound of the mutual information between the latent codes and the generator
distribution and is defined as

𝐿(𝐺,𝑄) = 𝑙𝑜𝑔(𝑄|𝑥)

where

• 𝑥 is drawn from the generator distribution G(z,c)

• 𝑐 drawn from the latent code prior 𝑃 (𝑐)

Parameters

• lambd (float, optional) – The scaling factor for the loss.

• reduction (str, optional) – Specifies the reduction to apply to the output. If none
no reduction will be applied. If mean the mean of the output. If sum the elements of the
output will be summed.

• override_train_ops (function, optional) – A function is passed to this argu-
ment, if the default train_ops is not to be used.

forward(c_dis, c_cont, dist_dis, dist_cont)
Computes the loss for the given input.

Parameters

• c_dis (int) – The discrete latent code sampled from the prior.

• c_cont (int) – The continuous latent code sampled from the prior.

• dist_dis (torch.distributions.Distribution) – The auxilliary distribu-
tion 𝑄(𝑐|𝑥) over the discrete latent code output by the discriminator.

9.7. Mutual Information Penalty 49

https://pytorch.org/docs/stable/optim.html#torch.optim.Optimizer
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://arxiv.org/abs/1606.03657
https://arxiv.org/abs/1606.03657
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

torchgan Documentation, Release v0.0.2

• dist_cont (torch.distributions.Distribution) – The auxilliary distribu-
tion 𝑄(𝑐|𝑥) over the continuous latent code output by the discriminator.

Returns scalar if reduction is applied else Tensor with dimensions (N, *).

train_ops(generator, discriminator, optimizer_generator, optimizer_discriminator, dis_code,
cont_code, device, batch_size)

Defines the standard train_ops used by most losses. Losses which have a different training procedure
can either subclass it (recommended approach) or make use of override_train_ops argument.

The standard optimization algorithm for the generator defined in this train_ops is as
follows:

1. 𝑓𝑎𝑘𝑒 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟(𝑛𝑜𝑖𝑠𝑒)

2. 𝑣𝑎𝑙𝑢𝑒 = 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟(𝑓𝑎𝑘𝑒)

3. 𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑣𝑎𝑙𝑢𝑒)

4. Backpropagate by computing ∇𝑙𝑜𝑠𝑠

5. Run a step of the optimizer for generator

Parameters

• generator (torchgan.models.Generator) – The model to be optimized.

• discriminator (torchgan.models.Discriminator) – The discriminator
which judges the performance of the generator.

• optimizer_generator (torch.optim.Optimizer) – Optimizer which updates
the parameters of the generator.

• device (torch.device) – Device on which the generator and discriminator
is present.

• batch_size (int) – Batch Size of the data infered from the DataLoader by the
Trainer.

• labels (torch.Tensor, optional) – Labels for the data.

Returns Scalar value of the loss.

9.8 Dragan Loss

9.8.1 DraganGradientPenalty

class torchgan.losses.DraganGradientPenalty(reduction=’mean’, lambd=10.0, k=1.0, over-
ride_train_ops=None)

Gradient Penalty for the DRAGAN discriminator from “On Convergence and Stability of GANs by Kodali et.
al.” paper

The gradient penalty is calculated as:

𝜆× (||𝑔𝑟𝑎𝑑(𝐷(𝑥))||2 − 𝑘)2

The gradient being taken with respect to x

where

• 𝐺 : Generator

50 Chapter 9. torchgan.losses

https://pytorch.org/docs/stable/optim.html#torch.optim.Optimizer
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://arxiv.org/abs/1705.07215
https://arxiv.org/abs/1705.07215

torchgan Documentation, Release v0.0.2

• 𝐷 : Disrciminator

• 𝜆 : Scaling hyperparameter

• 𝑥 : Interpolation term for the gradient penalty

• 𝑘 : Constant

Parameters

• reduction (str, optional) – Specifies the reduction to apply to the output. If none
no reduction will be applied. If mean the outputs are averaged over batch size. If sum the
elements of the output are summed.

• lambd (float,optional) – Hyperparameter 𝜆 for scaling the gradient penalty.

• k (float, optional) – Constant.

• override_train_ops (function, optional) – Function to be used in place of
the default train_ops

forward(interpolate, d_interpolate)
Computes the loss for the given input.

Parameters

• interpolate (torch.Tensor) – It must have the dimensions (N, *) where * means
any number of additional dimensions.

• d_interpolate (torch.Tensor) – Output of the discriminator with
interpolate as the input. It must have the dimensions (N, *) where * means any
number of additional dimensions.

Returns scalar if reduction is applied else Tensor with dimensions (N, *).

train_ops(generator, discriminator, optimizer_discriminator, real_inputs, device, labels=None)
Defines the standard train_ops used by the DRAGAN Gradient Penalty.

The standard optimization algorithm for the discriminator defined in this train_ops is
as follows:

1. 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒 = 𝑟𝑒𝑎𝑙 + 1
2 × (1− 𝛼)× 𝑠𝑡𝑑(𝑟𝑒𝑎𝑙)× 𝛽

2. 𝑑_𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒 = 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟(𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒)

3. 𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒, 𝑑_𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒)

4. Backpropagate by computing ∇𝑙𝑜𝑠𝑠

5. Run a step of the optimizer for discriminator

Parameters

• generator (torchgan.models.Generator) – The model to be optimized.

• discriminator (torchgan.models.Discriminator) – The discriminator
which judges the performance of the generator.

• optimizer_discriminator (torch.optim.Optimizer) – Optimizer which
updates the parameters of the discriminator.

• real_inputs (torch.Tensor) – The real data to be fed to the discriminator.

• device (torch.device) – Device on which the generator and discriminator
is present.

9.8. Dragan Loss 51

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/optim.html#torch.optim.Optimizer
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

torchgan Documentation, Release v0.0.2

• labels (torch.Tensor, optional) – Labels for the data.

Returns Scalar value of the loss.

9.9 Auxillary Classifier Loss

9.9.1 AuxiliaryClassifierGeneratorLoss

class torchgan.losses.AuxiliaryClassifierGeneratorLoss(reduction=’mean’, over-
ride_train_ops=None)

Auxiliary Classifier GAN (ACGAN) loss based on a from “Conditional Image Synthesis With Auxiliary Clas-
sifier GANs by Odena et. al. “ paper

Parameters reduction (str, optional) –

Specifies the reduction to apply to the output. If none no reduction will be applied. If mean
the outputs are averaged over batch size. If sum the elements of the output are summed.

override_train_ops (function, optional): A function is passed to this argument, if the de-
fault train_ops is not to be used.

train_ops(generator, discriminator, optimizer_generator, device, batch_size, labels=None)
Defines the standard train_ops used by most losses. Losses which have a different training procedure
can either subclass it (recommended approach) or make use of override_train_ops argument.

The standard optimization algorithm for the generator defined in this train_ops is as
follows:

1. 𝑓𝑎𝑘𝑒 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟(𝑛𝑜𝑖𝑠𝑒)

2. 𝑣𝑎𝑙𝑢𝑒 = 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟(𝑓𝑎𝑘𝑒)

3. 𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑣𝑎𝑙𝑢𝑒)

4. Backpropagate by computing ∇𝑙𝑜𝑠𝑠

5. Run a step of the optimizer for generator

Parameters

• generator (torchgan.models.Generator) – The model to be optimized.

• discriminator (torchgan.models.Discriminator) – The discriminator
which judges the performance of the generator.

• optimizer_generator (torch.optim.Optimizer) – Optimizer which updates
the parameters of the generator.

• device (torch.device) – Device on which the generator and discriminator
is present.

• batch_size (int) – Batch Size of the data infered from the DataLoader by the
Trainer.

• labels (torch.Tensor, optional) – Labels for the data.

Returns Scalar value of the loss.

52 Chapter 9. torchgan.losses

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://arxiv.org/abs/1610.09585
https://arxiv.org/abs/1610.09585
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/optim.html#torch.optim.Optimizer
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

torchgan Documentation, Release v0.0.2

9.9.2 AuxiliaryClassifierDiscriminatorLoss

class torchgan.losses.AuxiliaryClassifierDiscriminatorLoss(reduction=’mean’,
over-
ride_train_ops=None)

Auxiliary Classifier GAN (ACGAN) loss based on a from “Conditional Image Synthesis With Auxiliary Clas-
sifier GANs by Odena et. al. “ paper

Parameters

• reduction (str, optional) – Specifies the reduction to apply to the output. If none
no reduction will be applied. If mean the outputs are averaged over batch size. If sum the
elements of the output are summed.

• override_train_ops (function, optional) – A function is passed to this argu-
ment, if the default train_ops is not to be used.

train_ops(generator, discriminator, optimizer_discriminator, real_inputs, device, labels=None)
Defines the standard train_ops used by the Auxiliary Classifier discriminator loss.

The standard optimization algorithm for the discriminator defined in this train_ops is
as follows (label_g and label_d both could be either real labels or generated labels):

1. 𝑓𝑎𝑘𝑒 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟(𝑛𝑜𝑖𝑠𝑒, 𝑙𝑎𝑏𝑒𝑙𝑔)

2. 𝑣𝑎𝑙𝑢𝑒1 = 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑓𝑎𝑘𝑒, 𝑙𝑎𝑏𝑒𝑙𝑔)

3. 𝑣𝑎𝑙𝑢𝑒2 = 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑟𝑒𝑎𝑙, 𝑙𝑎𝑏𝑒𝑙𝑑)

4. 𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑣𝑎𝑙𝑢𝑒1, 𝑙𝑎𝑏𝑒𝑙𝑔) + 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑣𝑎𝑙𝑢𝑒2, 𝑙𝑎𝑏𝑒𝑙𝑑)

5. Backpropagate by computing ∇𝑙𝑜𝑠𝑠

6. Run a step of the optimizer for discriminator

Parameters

• generator (torchgan.models.Generator) – The model to be optimized. For
ACGAN, it must require labels for training

• discriminator (torchgan.models.Discriminator) – The discriminator
which judges the performance of the generator.

• optimizer_discriminator (torch.optim.Optimizer) – Optimizer which
updates the parameters of the discriminator.

• real_inputs (torch.Tensor) – The real data to be fed to the discriminator.

• device (torch.device) – Device on which the generator and discriminator
is present.

• batch_size (int) – Batch Size of the data infered from the DataLoader by the
Trainer.

• labels (torch.Tensor, optional) – Labels for the data.

Returns Scalar value of the loss.

9.9. Auxillary Classifier Loss 53

https://arxiv.org/abs/1610.09585
https://arxiv.org/abs/1610.09585
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/optim.html#torch.optim.Optimizer
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

torchgan Documentation, Release v0.0.2

9.10 Feature Matching Loss

9.10.1 FeatureMatchingGeneratorLoss

class torchgan.losses.FeatureMatchingGeneratorLoss(reduction=’mean’, over-
ride_train_ops=None)

Feature Matching Generator loss from “Improved Training of GANs by Salimans et. al.” paper

The loss can be described as:

𝐿(𝐺) = ||𝑓(𝑥)− 𝑓(𝐺(𝑧))||2

where

• 𝐺 : Generator

• 𝑓 : An intermediate activation from the discriminator

• 𝑧 : A sample from the noise prior

Parameters

• reduction (str, optional) – Specifies the reduction to apply to the output. If none
no reduction will be applied. If mean the outputs are averaged over batch size. If sum the
elements of the output are summed.

• override_train_ops (function, optional) – Function to be used in place of
the default train_ops

forward(fx, fgz)
Computes the loss for the given input.

Parameters

• dx (torch.Tensor) – Output of the Discriminator with real data. It must have the
dimensions (N, *) where * means any number of additional dimensions.

• dgz (torch.Tensor) – Output of the Discriminator with generated data. It must have
the dimensions (N, *) where * means any number of additional dimensions.

Returns scalar if reduction is applied else Tensor with dimensions (N, *).

train_ops(generator, discriminator, optimizer_generator, real_inputs, device, labels=None)
Defines the standard train_ops used for feature matching.

The standard optimization algorithm for the generator defined in this train_ops is as
follows:

1. 𝑓𝑎𝑘𝑒 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟(𝑛𝑜𝑖𝑠𝑒)

2. 𝑣𝑎𝑙𝑢𝑒1 = 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟(𝑓𝑎𝑘𝑒) where 𝑣𝑎𝑙𝑢𝑒1 is an activation of an intermediate discriminator
layer

3. 𝑣𝑎𝑙𝑢𝑒2 = 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟(𝑟𝑒𝑎𝑙) where 𝑣𝑎𝑙𝑢𝑒2 is an activation of the same intermediate
discriminator layer

4. 𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑣𝑎𝑙𝑢𝑒1, 𝑣𝑎𝑙𝑢𝑒2)

5. Backpropagate by computing ∇𝑙𝑜𝑠𝑠

6. Run a step of the optimizer for generator

Parameters

54 Chapter 9. torchgan.losses

https://arxiv.org/abs/1606.03498
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

torchgan Documentation, Release v0.0.2

• generator (torchgan.models.Generator) – The model to be optimized.

• discriminator (torchgan.models.Discriminator) – The discriminator
which judges the performance of the generator.

• optimizer_generator (torch.optim.Optimizer) – Optimizer which updates
the parameters of the generator.

• real_inputs (torch.Tensor) – The real data to be fed to the discriminator.

• device (torch.device) – Device on which the generator and discriminator
is present.

• labels (torch.Tensor, optional) – Labels for the data.

Returns Scalar value of the loss.

9.11 Historical Averaging

9.11.1 HistoricalAverageGeneratorLoss

class torchgan.losses.HistoricalAverageGeneratorLoss(reduction=’elementwise_mean’,
override_train_ops=None,
lambd=1.0)

Historical Average Generator Loss from “Improved Techniques for Training GANs by Salimans et. al.” paper

The loss can be described as

|| − 1

𝑡

𝑡∑︁
𝑖=1

[𝑖]||2

where

• 𝐺 : Generator

• math vtheta[i] : Generator Parameters at Past Timestep :math: i

Parameters

• reduction (str, optional) – Specifies the reduction to apply to the output. If none
no reduction will be applied. If mean the outputs are averaged over batch size. If sum the
elements of the output are summed.

• override_train_ops (function, optional) – Function to be used in place of
the default train_ops

• lambd (float, optional) – Hyperparameter lambda for scaling the Historical Aver-
age Penalty

train_ops(generator, optimizer_generator)
Defines the standard train_ops used by most losses. Losses which have a different training procedure
can either subclass it (recommended approach) or make use of override_train_ops argument.

The standard optimization algorithm for the generator defined in this train_ops is as
follows:

1. 𝑓𝑎𝑘𝑒 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟(𝑛𝑜𝑖𝑠𝑒)

2. 𝑣𝑎𝑙𝑢𝑒 = 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟(𝑓𝑎𝑘𝑒)

9.11. Historical Averaging 55

https://pytorch.org/docs/stable/optim.html#torch.optim.Optimizer
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://arxiv.org/pdf/1606.03498.pdf
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

torchgan Documentation, Release v0.0.2

3. 𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑣𝑎𝑙𝑢𝑒)

4. Backpropagate by computing ∇𝑙𝑜𝑠𝑠

5. Run a step of the optimizer for generator

Parameters

• generator (torchgan.models.Generator) – The model to be optimized.

• discriminator (torchgan.models.Discriminator) – The discriminator
which judges the performance of the generator.

• optimizer_generator (torch.optim.Optimizer) – Optimizer which updates
the parameters of the generator.

• device (torch.device) – Device on which the generator and discriminator
is present.

• batch_size (int) – Batch Size of the data infered from the DataLoader by the
Trainer.

• labels (torch.Tensor, optional) – Labels for the data.

Returns Scalar value of the loss.

9.11.2 HistoricalAverageDiscriminatorLoss

class torchgan.losses.HistoricalAverageDiscriminatorLoss(reduction=’elementwise_mean’,
over-
ride_train_ops=None,
lambd=1.0)

Historical Average Discriminator Loss from “Improved Techniques for Training GANs by Salimans et. al.”
paper

The loss can be described as

|| − 1

𝑡

𝑡∑︁
𝑖=1

[𝑖]||2

where

• 𝐺 : Discriminator

• math vtheta[i] : Discriminator Parameters at Past Timestep :math: i

Parameters

• reduction (str, optional) – Specifies the reduction to apply to the output. If none
no reduction will be applied. If mean the outputs are averaged over batch size. If sum the
elements of the output are summed.

• override_train_ops (function, optional) – Function to be used in place of
the default train_ops

• lambd (float, optional) – Hyperparameter lambda for scaling the Historical Aver-
age Penalty

train_ops(discriminator, optimizer_discriminator)
Defines the standard train_ops used by most losses. Losses which have a different training procedure
can either subclass it (recommended approach) or make use of override_train_ops argument.

56 Chapter 9. torchgan.losses

https://pytorch.org/docs/stable/optim.html#torch.optim.Optimizer
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://arxiv.org/pdf/1606.03498.pdf
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

torchgan Documentation, Release v0.0.2

The standard optimization algorithm for the discriminator defined in this train_ops is
as follows:

1. 𝑓𝑎𝑘𝑒 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟(𝑛𝑜𝑖𝑠𝑒)

2. 𝑣𝑎𝑙𝑢𝑒1 = 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟(𝑓𝑎𝑘𝑒)

3. 𝑣𝑎𝑙𝑢𝑒2 = 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟(𝑟𝑒𝑎𝑙)

4. 𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑣𝑎𝑙𝑢𝑒1, 𝑣𝑎𝑙𝑢𝑒2)

5. Backpropagate by computing ∇𝑙𝑜𝑠𝑠

6. Run a step of the optimizer for discriminator

Parameters

• generator (torchgan.models.Generator) – The model to be optimized.

• discriminator (torchgan.models.Discriminator) – The discriminator
which judges the performance of the generator.

• optimizer_discriminator (torch.optim.Optimizer) – Optimizer which
updates the parameters of the discriminator.

• real_inputs (torch.Tensor) – The real data to be fed to the discriminator.

• device (torch.device) – Device on which the generator and discriminator
is present.

• batch_size (int) – Batch Size of the data infered from the DataLoader by the
Trainer.

• labels (torch.Tensor, optional) – Labels for the data.

Returns Scalar value of the loss.

9.11. Historical Averaging 57

https://pytorch.org/docs/stable/optim.html#torch.optim.Optimizer
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

torchgan Documentation, Release v0.0.2

58 Chapter 9. torchgan.losses

CHAPTER 10

torchgan.metrics

This subpackage provides various metrics that are available to judge the performance of GANs. Currently available
metrics are:

• Metric

– EvaluationMetric

• Classifier Score

10.1 Metric

10.1.1 EvaluationMetric

class torchgan.metrics.EvaluationMetric
Base class for all Evaluation Metrics

calculate_score(x)
Subclasses must override this function and provide their own score calculation.

Raises NotImplementedError – If the subclass doesn’t override this function.

metric_ops(generator, discriminator, **kwargs)
Subclasses must override this function and provide their own metric evaluation ops.

Raises NotImplementedError – If the subclass doesn’t override this function.

preprocess(x)
Subclasses must override this function and provide their own preprocessing pipeline.

Raises NotImplementedError – If the subclass doesn’t override this function.

set_arg_map(value)
Updates the arg_map for passing a different value to the metric_ops.

59

https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/exceptions.html#NotImplementedError

torchgan Documentation, Release v0.0.2

Parameters value (dict) – A mapping of the argument name in the method signature
and the variable name in the Trainer it corresponds to.

Note: If the metric_ops signature is metric_ops(self, gen, disc) then we need to map
gen to generator and disc to discriminator. In this case we make the following function call
metric.set_arg_map({"gen": "generator", "disc": "discriminator"}).

10.2 Classifier Score

class torchgan.metrics.ClassifierScore(classifier=None, transform=None)
Computes the Classifier Score of a Model. Also popularly known as the Inception Score. The classifier
can be any model. It also supports models outside of torchvision models. For more details on how to use custom
trained models look up the tutorials.

Parameters

• classifier (torch.nn.Module, optional) – The model to be used as a base to
compute the classifier score. If None is passed the pretrained torchvision.models.
inception_v3 is used.

• transform (torchvision.transforms, optional) – Transformations applied
to the image before feeding it to the classifier. Look up the documentation of the torchvision
models for this transforms.

calculate_score(x)
Computes the Inception Score for the Input.

Parameters x (torch.Tensor) – Image in tensor format

Returns The Inception Score.

metric_ops(generator, device)
Defines the set of operations necessary to compute the ClassifierScore.

Parameters

• generator (torchgan.models.Generator) – The generator which needs to be
evaluated.

• device (torch.device) – Device on which the generator is present.

Returns The Classifier Score (scalar quantity)

preprocess(x)
Preprocessor for the Classifier Score. It transforms the image as per the transform requirements and feeds
it to the classifier.

Parameters x (torch.Tensor) – Image in tensor format

Returns The output from the classifier.

60 Chapter 10. torchgan.metrics

https://docs.python.org/3/library/stdtypes.html#dict
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

CHAPTER 11

torchgan.models

This models subpackage is a collection of popular GAN architectures. It has the support for existing architectures and
provides a base class for extending to any form of new architecture. Currently the following models are supported:

• GAN

– Generator

– Discriminator

• Deep Convolutional GAN

– DCGANGenerator

– DCGANDiscriminator

• Conditional GAN

– ConditionalGANGenerator

– ConditionalGANDiscriminator

• InfoGAN

– InfoGANGenerator

– InfoGANDiscriminator

• AutoEncoders

– AutoEncodingGenerator

– AutoEncodingDiscriminator

• Auxiliary Classifier GAN

– ACGANGenerator

– ACGANDiscriminator

61

torchgan Documentation, Release v0.0.2

You can construct a new model by simply calling its constructor.

>>> import torchgan.models as models
>>> dcgan_discriminator = DCGANDiscriminator()
>>> dcgan_generator = DCGANGenerator()

All models follow the same structure. There are additional customization options. Look into the individual documen-
tation for such capabilities.

11.1 GAN

11.1.1 Generator

class torchgan.models.Generator(encoding_dims, label_type=’none’)
Base class for all Generator models. All Generator models must subclass this.

Parameters

• encoding_dims (int) – Dimensions of the sample from the noise prior.

• label_type (str, optional) – The type of labels expected by the Generator. The
available choices are ‘none’ if no label is needed, ‘required’ if the original labels are needed
and ‘generated’ if labels are to be sampled from a distribution.

_weight_initializer()
Default weight initializer for all generator models. Models that require custom weight initialization can
override this method

sampler(sample_size, device)
Function to allow sampling data at inference time. Models requiring input in any other format must
override it in the subclass.

Parameters

• sample_size (int) – The number of images to be generated

• device (torch.device) – The device on which the data must be generated

Returns A list of the items required as input

11.1.2 Discriminator

class torchgan.models.Discriminator(input_dims, label_type=’none’)
Base class for all Discriminator models. All Discriminator models must subclass this.

Parameters

• input_dims (int) – Dimensions of the input.

• label_type (str, optional) – The type of labels expected by the Discriminator.
The available choices are ‘none’ if no label is needed, ‘required’ if the original labels are
needed and ‘generated’ if labels are to be sampled from a distribution.

_weight_initializer()
Default weight initializer for all disciminator models. Models that require custom weight initialization can
override this method

62 Chapter 11. torchgan.models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

torchgan Documentation, Release v0.0.2

11.2 Deep Convolutional GAN

11.2.1 DCGANGenerator

class torchgan.models.DCGANGenerator(encoding_dims=100, out_size=32, out_channels=3,
step_channels=64, batchnorm=True, non-
linearity=None, last_nonlinearity=None, la-
bel_type=’none’)

Deep Convolutional GAN (DCGAN) generator from “Unsupervised Representation Learning With Deep Con-
volutional Generative Aversarial Networks by Radford et. al. “ paper

Parameters

• encoding_dims (int, optional) – Dimension of the encoding vector sampled from
the noise prior.

• out_size (int, optional) – Height and width of the input image to be generated.
Must be at least 16 and should be an exact power of 2.

• out_channels (int, optional) – Number of channels in the output Tensor.

• step_channels (int, optional) – Number of channels in multiples of which the
DCGAN steps up the convolutional features. The step up is done as dim 𝑧 → 𝑑 → 2× 𝑑 →
4× 𝑑 → 8× 𝑑 where 𝑑 = step_channels.

• batchnorm (bool, optional) – If True, use batch normalization in the convolutional
layers of the generator.

• nonlinearity (torch.nn.Module, optional) – Nonlinearity to be used in the
intermediate convolutional layers. Defaults to LeakyReLU(0.2) when None is passed.

• last_nonlinearity (torch.nn.Module, optional) – Nonlinearity to be used
in the final convolutional layer. Defaults to Tanh() when None is passed.

• label_type (str, optional) – The type of labels expected by the Generator. The
available choices are ‘none’ if no label is needed, ‘required’ if the original labels are needed
and ‘generated’ if labels are to be sampled from a distribution.

forward(x, feature_matching=False)
Calculates the output tensor on passing the encoding x through the Generator.

Parameters

• x (torch.Tensor) – A 2D torch tensor of the encoding sampled from a probability
distribution.

• feature_matching (bool, optional) – Returns the activation from a predefined
intermediate layer.

Returns A 4D torch.Tensor of the generated image.

11.2.2 DCGANDiscriminator

class torchgan.models.DCGANDiscriminator(in_size=32, in_channels=3, step_channels=64,
batchnorm=True, nonlinearity=None,
last_nonlinearity=None, label_type=’none’)

Deep Convolutional GAN (DCGAN) discriminator from “Unsupervised Representation Learning With Deep
Convolutional Generative Aversarial Networks by Radford et. al. “ paper

Parameters

11.2. Deep Convolutional GAN 63

https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434

torchgan Documentation, Release v0.0.2

• in_size (int, optional) – Height and width of the input image to be evaluated.
Must be at least 16 and should be an exact power of 2.

• in_channels (int, optional) – Number of channels in the input Tensor.

• step_channels (int, optional) – Number of channels in multiples of which the
DCGAN steps up the convolutional features. The step up is done as dim 𝑧 → 𝑑 → 2× 𝑑 →
4× 𝑑 → 8× 𝑑 where 𝑑 = step_channels.

• batchnorm (bool, optional) – If True, use batch normalization in the convolutional
layers of the generator.

• nonlinearity (torch.nn.Module, optional) – Nonlinearity to be used in the
intermediate convolutional layers. Defaults to LeakyReLU(0.2) when None is passed.

• last_nonlinearity (torch.nn.Module, optional) – Nonlinearity to be used
in the final convolutional layer. Defaults to Tanh() when None is passed.

• label_type (str, optional) – The type of labels expected by the Generator. The
available choices are ‘none’ if no label is needed, ‘required’ if the original labels are needed
and ‘generated’ if labels are to be sampled from a distribution.

forward(x, feature_matching=False)
Calculates the output tensor on passing the image x through the Discriminator.

Parameters

• x (torch.Tensor) – A 4D torch tensor of the image.

• feature_matching (bool, optional) – Returns the activation from a predefined
intermediate layer.

Returns A 1D torch.Tensor of the probability of each image being real.

11.3 Conditional GAN

11.3.1 ConditionalGANGenerator

class torchgan.models.ConditionalGANGenerator(num_classes, encoding_dims=100,
out_size=32, out_channels=3,
step_channels=64, batch-
norm=True, nonlinearity=None,
last_nonlinearity=None)

Conditional GAN (CGAN) generator based on a DCGAN model from “Conditional Generative Adversarial
Nets by Mirza et. al. “ paper

Parameters

• num_classes (int) – Total classes present in the dataset.

• encoding_dims (int, optional) – Dimension of the encoding vector sampled from
the noise prior.

• out_size (int, optional) – Height and width of the input image to be generated.
Must be at least 16 and should be an exact power of 2.

• out_channels (int, optional) – Number of channels in the output Tensor.

• step_channels (int, optional) – Number of channels in multiples of which the
DCGAN steps up the convolutional features. The step up is done as dim 𝑧 → 𝑑 → 2× 𝑑 →
4× 𝑑 → 8× 𝑑 where 𝑑 = step_channels.

64 Chapter 11. torchgan.models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

torchgan Documentation, Release v0.0.2

• batchnorm (bool, optional) – If True, use batch normalization in the convolutional
layers of the generator.

• nonlinearity (torch.nn.Module, optional) – Nonlinearity to be used in the
intermediate convolutional layers. Defaults to LeakyReLU(0.2) when None is passed.

• last_nonlinearity (torch.nn.Module, optional) – Nonlinearity to be used
in the final convolutional layer. Defaults to Tanh() when None is passed.

forward(z, y)
Calculates the output tensor on passing the encoding z through the Generator.

Parameters

• z (torch.Tensor) – A 2D torch tensor of the encoding sampled from a probability
distribution.

• y (torch.Tensor) – The labels corresponding to the encoding z.

Returns A 4D torch.Tensor of the generated Images conditioned on y.

sampler(sample_size, device)
Function to allow sampling data at inference time. Models requiring input in any other format must
override it in the subclass.

Parameters

• sample_size (int) – The number of images to be generated

• device (torch.device) – The device on which the data must be generated

Returns A list of the items required as input

11.3.2 ConditionalGANDiscriminator

class torchgan.models.ConditionalGANDiscriminator(num_classes, in_size=32,
in_channels=3, step_channels=64,
batchnorm=True, nonlinear-
ity=None, last_nonlinearity=None)

Condititional GAN (CGAN) discriminator based on a DCGAN model from “Conditional Generative Adversarial
Nets by Mirza et. al. “ paper

Parameters

• num_classes (int) – Total classes present in the dataset.

• in_size (int, optional) – Height and width of the input image to be evaluated.
Must be at least 16 and should be an exact power of 2.

• in_channels (int, optional) – Number of channels in the input Tensor.

• step_channels (int, optional) – Number of channels in multiples of which the
DCGAN steps up the convolutional features. The step up is done as dim 𝑧 → 𝑑 → 2× 𝑑 →
4× 𝑑 → 8× 𝑑 where 𝑑 = step_channels.

• batchnorm (bool, optional) – If True, use batch normalization in the convolutional
layers of the generator.

• nonlinearity (torch.nn.Module, optional) – Nonlinearity to be used in the
intermediate convolutional layers. Defaults to LeakyReLU(0.2) when None is passed.

• last_nonlinearity (torch.nn.Module, optional) – Nonlinearity to be used
in the final convolutional layer. Defaults to Tanh() when None is passed.

11.3. Conditional GAN 65

https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/nn.html#torch.nn.Module

torchgan Documentation, Release v0.0.2

forward(x, y, feature_matching=False)
Calculates the output tensor on passing the image x through the Discriminator.

Parameters

• x (torch.Tensor) – A 4D torch tensor of the image.

• y (torch.Tensor) – Labels corresponding to the images x.

• feature_matching (bool, optional) – Returns the activation from a predefined
intermediate layer.

Returns A 1D torch.Tensor of the probability of each image being real.

11.4 InfoGAN

11.4.1 InfoGANGenerator

class torchgan.models.InfoGANGenerator(dim_dis, dim_cont, encoding_dims=100,
out_size=32, out_channels=3, step_channels=64,
batchnorm=True, nonlinearity=None,
last_nonlinearity=None)

Generator for InfoGAN based on the Deep Convolutional GAN (DCGAN) architecture, from “InfoGAN : In-
terpretable Representation Learning With Information Maximizing Generative Aversarial Nets by Chen et. al. “
paper

Parameters

• dim_dis (int) – Dimension of the discrete latent code sampled from the prior.

• dim_cont (int) – Dimension of the continuous latent code sampled from the prior.

• encoding_dims (int, optional) – Dimension of the encoding vector sampled from
the noise prior.

• out_size (int, optional) – Height and width of the input image to be generated.
Must be at least 16 and should be an exact power of 2.

• out_channels (int, optional) – Number of channels in the output Tensor.

• step_channels (int, optional) – Number of channels in multiples of which the
DCGAN steps up the convolutional features. The step up is done as dim 𝑧 → 𝑑 → 2× 𝑑 →
4× 𝑑 → 8× 𝑑 where 𝑑 = step_channels.

• batchnorm (bool, optional) – If True, use batch normalization in the convolutional
layers of the generator.

• nonlinearity (torch.nn.Module, optional) – Nonlinearity to be used in the
intermediate convolutional layers. Defaults to LeakyReLU(0.2) when None is passed.

• last_nonlinearity (torch.nn.Module, optional) – Nonlinearity to be used
in the final convolutional layer. Defaults to Tanh() when None is passed.

Example

66 Chapter 11. torchgan.models

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://arxiv.org/abs/1606.03657
https://arxiv.org/abs/1606.03657
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/nn.html#torch.nn.Module

torchgan Documentation, Release v0.0.2

>>> import torchgan.models as models
>>> G = models.InfoGANGenerator(10, 30)
>>> z = torch.randn(10, 100)
>>> c_cont = torch.randn(10, 10)
>>> c_dis = torch.randn(10, 30)
>>> x = G(z, c_cont, c_dis)

forward(z, c_dis=None, c_cont=None)
Calculates the output tensor on passing the encoding x through the Generator.

Parameters

• x (torch.Tensor) – A 2D torch tensor of the encoding sampled from a probability
distribution.

• feature_matching (bool, optional) – Returns the activation from a predefined
intermediate layer.

Returns A 4D torch.Tensor of the generated image.

11.4.2 InfoGANDiscriminator

class torchgan.models.InfoGANDiscriminator(dim_dis, dim_cont, in_size=32,
in_channels=3, step_channels=64,
batchnorm=True, nonlinear-
ity=None, last_nonlinearity=None, la-
tent_nonlinearity=None)

Discriminator for InfoGAN based on the Deep Convolutional GAN (DCGAN) architecture, from “InfoGAN :
Interpretable Representation Learning With Information Maximizing Generative Aversarial Nets by Chen et. al.
“ paper

The approximate conditional probability distribution over the latent code Q(c|x) is chosen to be a factored
Gaussian for the continuous latent code and a Categorical distribution for the discrete latent code

Parameters

• dim_dis (int) – Dimension of the discrete latent code sampled from the prior.

• dim_cont (int) – Dimension of the continuous latent code sampled from the prior.

• encoding_dims (int, optional) – Dimension of the encoding vector sampled from
the noise prior.

• in_size (int, optional) – Height and width of the input image to be evaluated.
Must be at least 16 and should be an exact power of 2.

• in_channels (int, optional) – Number of channels in the input Tensor.

• step_channels (int, optional) – Number of channels in multiples of which the
DCGAN steps up the convolutional features. The step up is done as dim 𝑧 → 𝑑 → 2× 𝑑 →
4× 𝑑 → 8× 𝑑 where 𝑑 = step_channels.

• batchnorm (bool, optional) – If True, use batch normalization in the convolutional
layers of the generator.

• nonlinearity (torch.nn.Module, optional) – Nonlinearity to be used in the
intermediate convolutional layers. Defaults to LeakyReLU(0.2) when None is passed.

• last_nonlinearity (torch.nn.Module, optional) – Nonlinearity to be used
in the final convolutional layer. Defaults to Tanh() when None is passed.

11.4. InfoGAN 67

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://arxiv.org/abs/1606.03657
https://arxiv.org/abs/1606.03657
https://arxiv.org/abs/1606.03657
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/nn.html#torch.nn.Module

torchgan Documentation, Release v0.0.2

• latent_nonlinearity (torch.nn.Module, optional) – Nonlinearity to be
used in the dist_conv. Defaults to LeakyReLU(0.2) when None is passed.

Example

>>> import torchgan.models as models
>>> D = models.InfoGANDiscriminator(10, 30)
>>> x = torch.randn(10, 3, 32, 32)
>>> score, q_categorical, q_gaussian = D(x, return_latents=True)

forward(x, return_latents=False, feature_matching=False)
Calculates the output tensor on passing the image x through the Discriminator.

Parameters

• x (torch.Tensor) – A 4D torch tensor of the image.

• feature_matching (bool, optional) – Returns the activation from a predefined
intermediate layer.

Returns A 1D torch.Tensor of the probability of each image being real.

11.5 AutoEncoders

11.5.1 AutoEncodingGenerator

class torchgan.models.AutoEncodingGenerator(encoding_dims=100, out_size=32,
out_channels=3, step_channels=64,
scale_factor=2, batchnorm=True, non-
linearity=None, last_nonlinearity=None,
label_type=’none’)

Autoencoding Generator for Boundary Equilibrium GAN (BEGAN) from “BEGAN : Boundary Equilibrium
Generative Adversarial Networks by Berthelot et. al.” paper

Parameters

• encoding_dims (int, optional) – Dimension of the encoding vector sampled from
the noise prior.

• out_size (int, optional) – Height and width of the input image to be generated.
Must be at least 16 and should be an exact power of 2.

• out_channels (int, optional) – Number of channels in the output Tensor.

• step_channels (int, optional) – Number of channels in multiples of which the
DCGAN steps up the convolutional features. The step up is done as dim 𝑧 → 𝑑 → 2× 𝑑 →
4× 𝑑 → 8× 𝑑 where 𝑑 = step_channels.

• scale_factor (int, optional) – The scale factor is used to infer properties
of the model like upsample_pad, upsample_filters, upsample_stride and
upsample_output_pad.

• batchnorm (bool, optional) – If True, use batch normalization in the convolutional
layers of the generator.

• nonlinearity (torch.nn.Module, optional) – Nonlinearity to be used in the
intermediate convolutional layers. Defaults to LeakyReLU(0.2) when None is passed.

68 Chapter 11. torchgan.models

https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://arxiv.org/abs/1703.10717
https://arxiv.org/abs/1703.10717
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/nn.html#torch.nn.Module

torchgan Documentation, Release v0.0.2

• last_nonlinearity (torch.nn.Module, optional) – Nonlinearity to be used
in the final convolutional layer. Defaults to Tanh() when None is passed.

• label_type (str, optional) – The type of labels expected by the Generator. The
available choices are ‘none’ if no label is needed, ‘required’ if the original labels are needed
and ‘generated’ if labels are to be sampled from a distribution.

forward(z)
Calculates the output tensor on passing the encoding z through the Generator.

Parameters z (torch.Tensor) – A 2D torch tensor of the encoding sampled from a proba-
bility distribution.

Returns A 4D torch.Tensor of the generated image.

11.5.2 AutoEncodingDiscriminator

class torchgan.models.AutoEncodingDiscriminator(in_size=32, in_channels=3, encod-
ing_dims=100, step_channels=64,
scale_factor=2, batch-
norm=True, nonlinearity=None,
last_nonlinearity=None, en-
ergy=True, embeddings=False,
label_type=’none’)

Autoencoding Generator for Boundary Equilibrium GAN (BEGAN) from “BEGAN : Boundary Equilibrium
Generative Adversarial Networks by Berthelot et. al.” paper

Parameters

• in_size (int, optional) – Height and width of the input image to be evaluated.
Must be at least 16 and should be an exact power of 2.

• in_channels (int, optional) – Number of channels in the input Tensor.

• step_channels (int, optional) – Number of channels in multiples of which the
DCGAN steps up the convolutional features. The step up is done as dim 𝑧 → 𝑑 → 2× 𝑑 →
4× 𝑑 → 8× 𝑑 where 𝑑 = step_channels.

• scale_factor (int, optional) – The scale factor is used to infer properties of the
model like downsample_pad, downsample_filters and downsample_stride.

• batchnorm (bool, optional) – If True, use batch normalization in the convolutional
layers of the generator.

• nonlinearity (torch.nn.Module, optional) – Nonlinearity to be used in the
intermediate convolutional layers. Defaults to LeakyReLU(0.2) when None is passed.

• last_nonlinearity (torch.nn.Module, optional) – Nonlinearity to be used
in the final convolutional layer. Defaults to Tanh() when None is passed.

• energy (bool, optional) – If set to True returns the energy instead of the decoder
output.

• embeddings (bool, optional) – If set to True the embeddings will be returned.

• label_type (str, optional) – The type of labels expected by the Generator. The
available choices are ‘none’ if no label is needed, ‘required’ if the original labels are needed
and ‘generated’ if labels are to be sampled from a distribution.

forward(x, feature_matching=False)
Calculates the output tensor on passing the image x through the Discriminator.

11.5. AutoEncoders 69

https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://arxiv.org/abs/1703.10717
https://arxiv.org/abs/1703.10717
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

torchgan Documentation, Release v0.0.2

Parameters

• x (torch.Tensor) – A 4D torch tensor of the image.

• feature_matching (bool, optional) – Returns the activation from a predefined
intermediate layer.

Returns A 1D torch.Tensor of the energy value of each image.

11.6 Auxiliary Classifier GAN

11.6.1 ACGANGenerator

class torchgan.models.ACGANGenerator(num_classes, encoding_dims=100, out_size=32,
out_channels=3, step_channels=64, batchnorm=True,
nonlinearity=None, last_nonlinearity=None)

Auxiliary Classifier GAN (ACGAN) generator based on a DCGAN model from “Conditional Image Synthesis
With Auxiliary Classifier GANs by Odena et. al. “ paper

Parameters

• num_classes (int) – Total classes present in the dataset.

• encoding_dims (int, optional) – Dimension of the encoding vector sampled from
the noise prior.

• out_size (int, optional) – Height and width of the input image to be generated.
Must be at least 16 and should be an exact power of 2.

• out_channels (int, optional) – Number of channels in the output Tensor.

• step_channels (int, optional) – Number of channels in multiples of which the
DCGAN steps up the convolutional features. The step up is done as dim 𝑧 → 𝑑 → 2× 𝑑 →
4× 𝑑 → 8× 𝑑 where 𝑑 = step_channels.

• batchnorm (bool, optional) – If True, use batch normalization in the convolutional
layers of the generator.

• nonlinearity (torch.nn.Module, optional) – Nonlinearity to be used in the
intermediate convolutional layers. Defaults to LeakyReLU(0.2) when None is passed.

• last_nonlinearity (torch.nn.Module, optional) – Nonlinearity to be used
in the final convolutional layer. Defaults to Tanh() when None is passed.

forward(z, y)
Calculates the output tensor on passing the encoding z through the Generator.

Parameters

• z (torch.Tensor) – A 2D torch tensor of the encoding sampled from a probability
distribution.

• y (torch.Tensor) – The labels corresponding to the encoding z.

Returns A 4D torch.Tensor of the generated Images conditioned on y.

sampler(sample_size, device)
Function to allow sampling data at inference time. Models requiring input in any other format must
override it in the subclass.

Parameters

70 Chapter 11. torchgan.models

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://arxiv.org/abs/1610.09585
https://arxiv.org/abs/1610.09585
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

torchgan Documentation, Release v0.0.2

• sample_size (int) – The number of images to be generated

• device (torch.device) – The device on which the data must be generated

Returns A list of the items required as input

11.6.2 ACGANDiscriminator

class torchgan.models.ACGANDiscriminator(num_classes, in_size=32, in_channels=3,
step_channels=64, batchnorm=True, nonlinear-
ity=None, last_nonlinearity=None)

Auxiliary Classifier GAN (ACGAN) discriminator based on a DCGAN model from “Conditional Image Syn-
thesis With Auxiliary Classifier GANs by Odena et. al. “ paper

Parameters

• num_classes (int) – Total classes present in the dataset.

• in_size (int, optional) – Height and width of the input image to be evaluated.
Must be at least 16 and should be an exact power of 2.

• in_channels (int, optional) – Number of channels in the input Tensor.

• step_channels (int, optional) – Number of channels in multiples of which the
DCGAN steps up the convolutional features. The step up is done as dim 𝑧 → 𝑑 → 2× 𝑑 →
4× 𝑑 → 8× 𝑑 where 𝑑 = step_channels.

• batchnorm (bool, optional) – If True, use batch normalization in the convolutional
layers of the generator.

• nonlinearity (torch.nn.Module, optional) – Nonlinearity to be used in the
intermediate convolutional layers. Defaults to LeakyReLU(0.2) when None is passed.

• last_nonlinearity (torch.nn.Module, optional) – Nonlinearity to be used
in the final convolutional layer. Defaults to Tanh() when None is passed.

forward(x, mode=’discriminator’, feature_matching=False)
Calculates the output tensor on passing the image x through the Discriminator.

Parameters

• x (torch.Tensor) – A 4D torch tensor of the image.

• mode (str, optional) – Option to choose the mode of the ACGANDiscriminator.
Setting it to ‘discriminator’ gives the probability of the image being fake/real, ‘classifier’
allows it to make a prediction about the class of the image and anything else leads to
returning both the values.

• feature_matching (bool, optional) – Returns the activation from a predefined
intermediate layer.

Returns A 1D torch.Tensor of the probability of each image being real.

11.6. Auxiliary Classifier GAN 71

https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/1610.09585
https://arxiv.org/abs/1610.09585
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

torchgan Documentation, Release v0.0.2

72 Chapter 11. torchgan.models

CHAPTER 12

torchgan.trainer

This subpackage provides ability to perform end to end training capabilities of the Generator and Discriminator mod-
els. It provides strong visualization capabilities using tensorboardX. Most of the cases can be handled elegantly with
the default trainer itself. But if incase you need to subclass the trainer for any reason follow the docs closely.

12.1 Trainer

class torchgan.trainer.Trainer(models, losses_list, metrics_list=None, de-
vice=<sphinx.ext.autodoc.importer._MockObject ob-
ject>, ncritic=None, epochs=5, sample_size=8, check-
points=’./model/gan’, retain_checkpoints=5, recon=’./images’,
log_dir=None, test_noise=None, nrow=8, **kwargs)

Base class for all Trainers for various GANs.

Features provided by this Base Trainer are:

• Loss and Metrics Logging via the Logger class.

• Generating Image Samples.

• Saving models at the end of every epoch and loading of previously saved models.

• Highly flexible and allows changing hyperparameters by simply adjusting the arguments.

Most of the functionalities provided by the Trainer are flexible enough and can be customized by simply passing
different arguments. You can train anything from a simple DCGAN to complex CycleGANs without ever having
to subclass this Trainer.

Parameters

• models (dict) – A dictionary containing a mapping between the variable name, storing
the generator, discriminator and any other model that you might want to define,
with the function and arguments that are needed to construct the model. Refer to the exam-
ples to see how to define complex models using this API.

73

https://github.com/lanpa/tensorboardX
https://docs.python.org/3/library/stdtypes.html#dict

torchgan Documentation, Release v0.0.2

• losses_list (list) – A list of the Loss Functions that need to be minimized. For a list
of pre-defined losses look at torchgan.losses. All losses in the list must be a subclass
of atleast GeneratorLoss or DiscriminatorLoss.

• metrics_list (list, optional) – List of Metric Functions that need to be logged.
For a list of pre-defined metrics look at torchgan.metrics. All losses in the list must
be a subclass of EvaluationMetric.

• device (torch.device, optional) – Device in which the operation is to be carried
out. If you are using a CPU machine make sure that you change it for proper functioning.

• ncritic (int, optional) – Setting it to a value will make the discriminator train that
many times more than the generator.

• sample_size (int, optional) – Total number of images to be generated at the end
of an epoch for logging purposes.

• epochs (int, optional) – Total number of epochs for which the models are to be
trained.

• checkpoints (str, optional) – Path where the models are to be saved. The nam-
ing convention is if checkpoints is ./model/gan then models are saved as ./model/
gan0.model and so on.

• retain_checkpoints (int, optional) – Total number of checkpoints that should
be retained. For example, if the value is set to 3, we save at most 3 models and start rewriting
the models after that.

• recon (str, optional) – Directory where the sampled images are saved. Make sure
the directory exists from beforehand.

• log_dir (str, optional) – The directory for logging tensorboard. It is ignored if
TENSORBOARD_LOGGING is 0.

• test_noise (torch.Tensor, optional) – If provided then it will be used as the
noise for image sampling.

• nrow (int, optional) – Number of rows in which the image is to be stored.

Any other argument that you need to store in the object can be simply passed via keyword arguments.

Example

>>> dcgan = Trainer(
{"generator": {"name": DCGANGenerator, "args": {"out_channels": 1,

→˓"step_channels":
16}, "optimizer": {"name": Adam, "args": {"lr": 0.0002,
"betas": (0.5, 0.999)}}},

"discriminator": {"name": DCGANDiscriminator, "args": {"in_channels
→˓": 1,

"step_channels": 16}, "optimizer": {"var": "opt_
→˓discriminator",

"name": Adam, "args": {"lr": 0.0002, "betas": (0.5,
→˓ 0.999)}}}},

[MinimaxGeneratorLoss(), MinimaxDiscriminatorLoss()],
sample_size=64, epochs=20)

complete(**kwargs)
Marks the end of training. It saves the final model and turns off the logger.

74 Chapter 12. torchgan.trainer

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int

torchgan Documentation, Release v0.0.2

Note: It is not necessary to call this function. If it is not called the logger is kept alive in the background.
So it might be considered a good practice to call this function.

eval_ops(**kwargs)
Runs all evaluation operations at the end of every epoch. It calls all the metric functions that are passed to
the Trainer.

load_model(load_path=”, load_items=None)
Function to load the model and some necessary information along with it. List of items loaded:

• Epoch

• Model States

• Optimizer States

• Loss Information

• Loss Objects

• Metric Objects

• Loss Logs

Warning: An Exception is raised if the model could not be loaded. Make sure that the model being
loaded was saved previously by torchgan Trainer itself. We currently do not support loading
any other form of models but this might be improved in the future.

Parameters

• load_path (str, optional) – Path from which the model is to be loaded.

• load_items (str, list, optional) – Pass the variable name of any other item
you want to load. If the item cannot be found then a warning will be thrown and model
will start to train from scratch. So make sure that item was saved.

optim_ops()
Runs all the schedulers at the end of every epoch.

save_model(epoch, save_items=None)
Function saves the model and some necessary information along with it. List of items stored for future
reference:

• Epoch

• Model States

• Optimizer States

• Loss Information

• Loss Objects

• Metric Objects

• Loss Logs

The save location is printed when this function is called.

Parameters

12.1. Trainer 75

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

torchgan Documentation, Release v0.0.2

• epoch (int, optional) – Epoch Number at which the model is being saved

• save_items (str, list, optional) – Pass the variable name of any other item
you want to save. The item must be present in the __dict__ else training will come to an
abrupt end.

train(data_loader, **kwargs)
Uses the information passed by the user while creating the object and trains the model. It iterates over
the epochs and the DataLoader and calls the functions for training the models and logging the required
variables.

Note: Even though __call__ calls this function, it is best if train is not called directly. When
__call__ is invoked, we infer the batch_size from the data_loader. Also, we are certain not
going to change the interface of the __call__ function so it gives the user a stable API, while we can
change the flow of execution of train in future.

Warning: The user should never try to change this function in subclass. It is too delicate and changing
affects every other function present in this Trainer class.

This function controls the execution of all the components of the Trainer. It controls the logger,
train_iter, save_model, eval_ops and optim_ops.

Parameters data_loader (torch.utils.data.DataLoader) – A DataLoader for the
trainer to iterate over and train the models.

train_iter()
Calls the train_ops of the loss functions. This is the core function of the Trainer. In most cases you will
never have the need to extend this function. In extreme cases simply extend train_iter_custom.

Warning: This function is needed in this exact state for the Trainer to work correctly. So it is highly
recommended that this function is not changed even if the Trainer is subclassed.

Returns An NTuple of the generator loss, discriminator loss, number
of times the generator was trained and the number of times the
discriminator was trained.

train_iter_custom()
Function that needs to be extended if train_iter is to be modified. Use this function to perform any
sort of initialization that need to be done at the beginning of any train iteration. Refer the model zoo and
tutorials for more details on how to write this function.

76 Chapter 12. torchgan.trainer

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader

Index

Symbols
_weight_initializer() (torchgan.models.Discriminator

method), 62
_weight_initializer() (torchgan.models.Generator

method), 62

A
ACGANDiscriminator (class in torchgan.models), 71
ACGANGenerator (class in torchgan.models), 70
AutoEncodingDiscriminator (class in torchgan.models),

69
AutoEncodingGenerator (class in torchgan.models), 68
AuxiliaryClassifierDiscriminatorLoss (class in torch-

gan.losses), 53
AuxiliaryClassifierGeneratorLoss (class in torch-

gan.losses), 52

B
BasicBlock2d (class in torchgan.layers), 18
BottleneckBlock2d (class in torchgan.layers), 18
BoundaryEquilibriumDiscriminatorLoss (class in torch-

gan.losses), 40
BoundaryEquilibriumGeneratorLoss (class in torch-

gan.losses), 40

C
calculate_score() (torchgan.metrics.ClassifierScore

method), 60
calculate_score() (torchgan.metrics.EvaluationMetric

method), 59
ClassifierScore (class in torchgan.metrics), 60
close() (torchgan.logging.Logger method), 27
complete() (torchgan.trainer.Trainer method), 74
ConditionalGANDiscriminator (class in torch-

gan.models), 65
ConditionalGANGenerator (class in torchgan.models), 64

D
DCGANDiscriminator (class in torchgan.models), 63

DCGANGenerator (class in torchgan.models), 63
DenseBlock2d (class in torchgan.layers), 20
Discriminator (class in torchgan.models), 62
DiscriminatorLoss (class in torchgan.losses), 35
DraganGradientPenalty (class in torchgan.losses), 50

E
EnergyBasedDiscriminatorLoss (class in torch-

gan.losses), 43
EnergyBasedGeneratorLoss (class in torchgan.losses), 42
EnergyBasedPullingAwayTerm (class in torchgan.losses),

44
eval_ops() (torchgan.trainer.Trainer method), 75
EvaluationMetric (class in torchgan.metrics), 59

F
FeatureMatchingGeneratorLoss (class in torch-

gan.losses), 54
forward() (torchgan.layers.BasicBlock2d method), 18
forward() (torchgan.layers.BottleneckBlock2d method),

19
forward() (torchgan.layers.DenseBlock2d method), 20
forward() (torchgan.layers.MinibatchDiscrimination1d

method), 23
forward() (torchgan.layers.ResidualBlock2d method), 16
forward() (torchgan.layers.ResidualBlockTranspose2d

method), 17
forward() (torchgan.layers.SelfAttention2d method), 21
forward() (torchgan.layers.SpectralNorm2d method), 22
forward() (torchgan.layers.TransitionBlock2d method),

19
forward() (torchgan.layers.TransitionBlockTranspose2d

method), 20
forward() (torchgan.layers.VirtualBatchNorm method),

23
forward() (torchgan.losses.BoundaryEquilibriumDiscriminatorLoss

method), 41
forward() (torchgan.losses.BoundaryEquilibriumGeneratorLoss

method), 40

77

torchgan Documentation, Release v0.0.2

forward() (torchgan.losses.DraganGradientPenalty
method), 51

forward() (torchgan.losses.EnergyBasedDiscriminatorLoss
method), 44

forward() (torchgan.losses.EnergyBasedGeneratorLoss
method), 42

forward() (torchgan.losses.EnergyBasedPullingAwayTerm
method), 45

forward() (torchgan.losses.FeatureMatchingGeneratorLoss
method), 54

forward() (torchgan.losses.LeastSquaresDiscriminatorLoss
method), 38

forward() (torchgan.losses.LeastSquaresGeneratorLoss
method), 37

forward() (torchgan.losses.MinimaxDiscriminatorLoss
method), 39

forward() (torchgan.losses.MinimaxGeneratorLoss
method), 39

forward() (torchgan.losses.MutualInformationPenalty
method), 49

forward() (torchgan.losses.WassersteinDiscriminatorLoss
method), 47

forward() (torchgan.losses.WassersteinGeneratorLoss
method), 46

forward() (torchgan.losses.WassersteinGradientPenalty
method), 48

forward() (torchgan.models.ACGANDiscriminator
method), 71

forward() (torchgan.models.ACGANGenerator method),
70

forward() (torchgan.models.AutoEncodingDiscriminator
method), 69

forward() (torchgan.models.AutoEncodingGenerator
method), 69

forward() (torchgan.models.ConditionalGANDiscriminator
method), 65

forward() (torchgan.models.ConditionalGANGenerator
method), 65

forward() (torchgan.models.DCGANDiscriminator
method), 64

forward() (torchgan.models.DCGANGenerator method),
63

forward() (torchgan.models.InfoGANDiscriminator
method), 68

forward() (torchgan.models.InfoGANGenerator method),
67

G
Generator (class in torchgan.models), 62
GeneratorLoss (class in torchgan.losses), 34
get_grad_viz() (torchgan.logging.Logger method), 27
get_loss_viz() (torchgan.logging.Logger method), 27
get_metric_viz() (torchgan.logging.Logger method), 27
GradientVisualize (class in torchgan.logging), 29

H
HistoricalAverageDiscriminatorLoss (class in torch-

gan.losses), 56
HistoricalAverageGeneratorLoss (class in torch-

gan.losses), 55

I
ImageVisualize (class in torchgan.logging), 30
InfoGANDiscriminator (class in torchgan.models), 67
InfoGANGenerator (class in torchgan.models), 66

L
LeastSquaresDiscriminatorLoss (class in torch-

gan.losses), 37
LeastSquaresGeneratorLoss (class in torchgan.losses), 37
load_model() (torchgan.trainer.Trainer method), 75
log_console() (torchgan.logging.GradientVisualize

method), 29
log_console() (torchgan.logging.ImageVisualize

method), 31
log_console() (torchgan.logging.LossVisualize method),

28
log_console() (torchgan.logging.MetricVisualize

method), 30
log_console() (torchgan.logging.Visualize method), 28
log_tensorboard() (torchgan.logging.GradientVisualize

method), 29
log_tensorboard() (torchgan.logging.ImageVisualize

method), 31
log_tensorboard() (torchgan.logging.LossVisualize

method), 29
log_tensorboard() (torchgan.logging.MetricVisualize

method), 30
log_tensorboard() (torchgan.logging.Visualize method),

28
log_visdom() (torchgan.logging.GradientVisualize

method), 29
log_visdom() (torchgan.logging.ImageVisualize method),

31
log_visdom() (torchgan.logging.LossVisualize method),

29
log_visdom() (torchgan.logging.MetricVisualize

method), 30
log_visdom() (torchgan.logging.Visualize method), 28
Logger (class in torchgan.logging), 26
LossVisualize (class in torchgan.logging), 28

M
metric_ops() (torchgan.metrics.ClassifierScore method),

60
metric_ops() (torchgan.metrics.EvaluationMetric

method), 59
MetricVisualize (class in torchgan.logging), 30

78 Index

torchgan Documentation, Release v0.0.2

MinibatchDiscrimination1d (class in torchgan.layers), 22
MinimaxDiscriminatorLoss (class in torchgan.losses), 39
MinimaxGeneratorLoss (class in torchgan.losses), 38
MutualInformationPenalty (class in torchgan.losses), 49

O
optim_ops() (torchgan.trainer.Trainer method), 75

P
preprocess() (torchgan.metrics.ClassifierScore method),

60
preprocess() (torchgan.metrics.EvaluationMetric

method), 59

R
register() (torchgan.logging.Logger method), 27
report_end_epoch() (torchgan.logging.GradientVisualize

method), 30
ResidualBlock2d (class in torchgan.layers), 16
ResidualBlockTranspose2d (class in torchgan.layers), 17
run_end_epoch() (torchgan.logging.Logger method), 27
run_mid_epoch() (torchgan.logging.Logger method), 27

S
sampler() (torchgan.models.ACGANGenerator method),

70
sampler() (torchgan.models.ConditionalGANGenerator

method), 65
sampler() (torchgan.models.Generator method), 62
save_model() (torchgan.trainer.Trainer method), 75
SelfAttention2d (class in torchgan.layers), 21
set_arg_map() (torchgan.losses.DiscriminatorLoss

method), 36
set_arg_map() (torchgan.losses.GeneratorLoss method),

35
set_arg_map() (torchgan.metrics.EvaluationMetric

method), 59
set_k() (torchgan.losses.BoundaryEquilibriumDiscriminatorLoss

method), 41
SpectralNorm2d (class in torchgan.layers), 21
step_update() (torchgan.logging.Visualize method), 28

T
train() (torchgan.trainer.Trainer method), 76
train_iter() (torchgan.trainer.Trainer method), 76
train_iter_custom() (torchgan.trainer.Trainer method), 76
train_ops() (torchgan.losses.AuxiliaryClassifierDiscriminatorLoss

method), 53
train_ops() (torchgan.losses.AuxiliaryClassifierGeneratorLoss

method), 52
train_ops() (torchgan.losses.BoundaryEquilibriumDiscriminatorLoss

method), 41
train_ops() (torchgan.losses.DiscriminatorLoss method),

36

train_ops() (torchgan.losses.DraganGradientPenalty
method), 51

train_ops() (torchgan.losses.EnergyBasedDiscriminatorLoss
method), 44

train_ops() (torchgan.losses.EnergyBasedGeneratorLoss
method), 43

train_ops() (torchgan.losses.EnergyBasedPullingAwayTerm
method), 45

train_ops() (torchgan.losses.FeatureMatchingGeneratorLoss
method), 54

train_ops() (torchgan.losses.GeneratorLoss method), 35
train_ops() (torchgan.losses.HistoricalAverageDiscriminatorLoss

method), 56
train_ops() (torchgan.losses.HistoricalAverageGeneratorLoss

method), 55
train_ops() (torchgan.losses.MutualInformationPenalty

method), 50
train_ops() (torchgan.losses.WassersteinDiscriminatorLoss

method), 47
train_ops() (torchgan.losses.WassersteinGradientPenalty

method), 48
Trainer (class in torchgan.trainer), 73
TransitionBlock2d (class in torchgan.layers), 19
TransitionBlockTranspose2d (class in torchgan.layers),

19

U
update_grads() (torchgan.logging.GradientVisualize

method), 30
update_k() (torchgan.losses.BoundaryEquilibriumDiscriminatorLoss

method), 42

V
VirtualBatchNorm (class in torchgan.layers), 23
Visualize (class in torchgan.logging), 28

W
WassersteinDiscriminatorLoss (class in torchgan.losses),

46
WassersteinGeneratorLoss (class in torchgan.losses), 46
WassersteinGradientPenalty (class in torchgan.losses), 48

Index 79

	Installation
	Pip Installation
	Conda Installation
	Install from Source

	Dependencies
	Mandatory Dependencies
	Optional Dependencies

	Philosophy
	Contributing
	Contribution Guidelines
	Contributors

	Starter Example
	License
	torchgan.layers
	Residual Blocks
	Densenet Blocks
	Self Attention
	Spectral Normalization
	Minibatch Discrimination
	Virtual Batch Normalization

	torchgan.logging
	Backends
	Logger
	Visualization

	torchgan.losses
	Loss
	Least Squares Loss
	Minimax Loss
	Boundary Equilibrium Loss
	Energy Based Loss
	Wasserstein Loss
	Mutual Information Penalty
	Dragan Loss
	Auxillary Classifier Loss
	Feature Matching Loss
	Historical Averaging

	torchgan.metrics
	Metric
	Classifier Score

	torchgan.models
	GAN
	Deep Convolutional GAN
	Conditional GAN
	InfoGAN
	AutoEncoders
	Auxiliary Classifier GAN

	torchgan.trainer
	Trainer

