TorchFusion Documentation
Release 0.2.0

"John Olafenwa" "Moses Olafenwa"

Nov 23, 2018

Training Neural Networks with TorchFusion:

1 Hello FASHION MNIST!

2 Training CIFAR10!

3 Mixed Precision Training

4 Training With Custom Datasets!

5 Logging and Visualizing the Training Process!

6 Buiding Custom Trainers!

7 Introduction to Generative Adversarial Networks
8 Conditional Generative Adversarial Networks

9 GAN Inference

10 Buiding Custom Trainers!

15

19

23

29

31

35

37

39

TorchFusion Documentation, Release 0.2.0

TorchFusion is built to accelerate research and developement of modern Al systems. It is based on PyTorch and
allows unimpeded access to all of PyTorch’s features. In creating TorchFusion, our goal is to build a deep learning
framework that can easily support complex research projects while being incredibly simple enough to allow researchers
focus more on research ideas rather than dealing with framework complexity. To achieve this, TorchFusion is built
with multiple layers of abstractions, allowing researchers to remain productive while doing research projects needing
varying levels of complexity. At all levels of abstraction, TorchFusion allows you to seamlessly use all standard
PyTorch code and functions including its support libraries. The entire framework is highly decoupled allowing you to
take advantage of various features even without using TorchFusion’s trainers.

TorchFusion is a project developed by John Olafenwa and Moses Olafenwa, the Al Commons team.
The Official GitHub Repository of TorchFusion is https://github.com/johnolafenwa/TorchFusion
Installing TorchFusion

* Install PyTorch 0.4.1 or higher : visit pytorch.org

Install Torchfusion

pip3 install ——upgrade torchfusion

Training Neural Networks with TorchFusion: 1

https://john.aicommons.science/
https://moses.aicommons.science/
https://aicommons.science/
https://github.com/johnolafenwa/TorchFusion/
https://pytorch.org/

TorchFusion Documentation, Release 0.2.0

2 Training Neural Networks with TorchFusion:

CHAPTER 1

Hello FASHION MNIST!

TorchFusion makes data loading, network definition and training very easy. As you will see in this tutorial. We shall
be training a basic pytorch model on the Fashion MNIST dataset.

FASHION MNIST DESCRIPTION

MNIST has been over-explored, state-of-the-art on MNIST doesn’t make much sense with over 99% already achieved.
Fashion MNIST provides a more challenging version of the MNIST dataset. It contains 10 classes of grayscale
diagrams of fashion items. It is exactly the same size, dimension and format as MNIST, but it is more challenging,
hence, it is provides a dataset that is both fast to train and yet challenging enough to benchmark new models. Below
are samples from the FashionMNIST dataset.

To learn more visit. Fashion MNIST

Import Classes

from torchfusion.layers import =«

from torchfusion.datasets import =

from torchfusion.metrics import =«

import torch.nn as nn

import torch.cuda as cuda

from torch.optim import Adam

from torchfusion.learners import StandardLearner

https://github.com/zalandoresearch/fashion-mnist/

TorchFusion Documentation, Release 0.2.0

Load the dataset
train_loader = fashionmnist_loader (size=28,batch_size=32)
test_loader = fashionmnist_loader (size=28,train=False,batch_size=32)

If you have used PyTorch before, you will notice just how simpler the data loading process is, this function still allows
you to specify custom transformations. By default, TorchFusion loaders will normalize the images to range between
-1 to 1, you can control the default normalization using the mean and std args.

Define the model

model = nn.Sequential (
Flatten (),
Linear (784,100),
Swish (),
Linear (100,100),
Swish (),
Linear (100,100),
Swish (),
Linear (100,10)

The above is a simple 4 layer MLP, notice that all the layers above are from torchfusion. Unlike pure pytorch layers,
torchfusion layers have optimal initialization by default, and you can easily specify custom initialization for them.
However, they are still 100% compatible with their equivalent pytorch layers. You can also mix pure pytorch and
torchfusion layers in the same model.

Define optimizer and loss

if cuda.is_available():
model = model.cuda ()

optimizer = Adam(model.parameters())
loss_fn = nn.CrossEntropyLoss ()

train_metrics = [Accuracy ()]
test_metrics = [Accuracy ()]

Print Summary and Train the model

learner = StandardLearner (model)

if _ name_ == "_ _main__ ":
learner.summary((1,28,28))
learner.train(train_loader,train_metrics=train_metrics,optimizer=optimizer, loss_
—fn=loss_fn,test_loader=test_loader,test_metrics=test_metrics,num_epochs=40,batch_
—log=False)

PUTTING IT ALL TOGETHER

from torchfusion.layers import =«

from torchfusion.datasets import =«

from torchfusion.metrics import =«

import torch.nn as nn

import torch.cuda as cuda

from torch.optim import Adam

from torchfusion.learners import StandardLearner

(continues on next page)

4 Chapter 1. Hello FASHION MNIST!

TorchFusion Documentation, Release 0.2.0

(continued from previous page)

train_loader = fashionmnist_loader (size=28,batch_size=32)
test_loader = fashionmnist_loader (size=28,train=False,batch_size=32)

model = nn.Sequential (
Flatten (),
Linear (784,100),
Swish (),
Linear (100,100),
Swish (),
Linear (100,100),
Swish (),
Linear (100,10)

if cuda.is_available():

model = model.cuda ()
optimizer = Adam(model.parameters())
loss_fn = nn.CrossEntropyLoss ()

train_metrics = [Accuracy ()]
test_metrics = [Accuracy ()]

learner = StandardLearner (model)

if name == "_ _main_ ":
print (learner.summary ((1,28,28)))
learner.train(train_loader,train_metrics=train_metrics,optimizer=optimizer, loss_
—fn=loss_fn,test_loader=test_loader,test_metrics=test_metrics,num_epochs=40,batch_
—~log=False)

Running the code above should reach an accuracy of about 90% after 30 epochs.

You can enable and disable epoch-end visualizations with the boolean args: display_metrics and save_metrics
PERFORMANCE METRICS

The Accuracy class measures the the topK accuracy. The default is top1, however, you can easily specify any K level.

Top K metric example:

train_metrics = [Accuracy (),Accuracy (topK=2),Accuracy (topK=5)]

Load the saved weights and evaluate performance on test set

We have just trained a classifier on Fashion MNIST and evaluated the performance at the end of each epoch. You can
also use the evaluation function to evaluate the test performance separately.

Run evaluation

if name == "__main__ ":
topl_acc = Accuracy ()
top5_acc = Accuracy (topK=5)

learner.load_model ("best-models/model_3.pth")

(continues on next page)

TorchFusion Documentation, Release 0.2.0

(continued from previous page)

learner.evaluate (test_loader, [topl_acc,topb5_acc])
print ("Topl Acc: Top5 Acc: ".format (topl_acc.getValue (), top5_acc.getValue()))

This produces Topl Acc: 0.871399998664856 Top5 Acc: 0.996999979019165

Inference

The ultimate goal of training models is to use them to classify new images, now that we have trained the model on
fashion images, save the images below and use the code after to classify them

Inference code

import torch

from torchfusion.layers import =«

import torch.nn as nn

import torch.cuda as cuda

from torchfusion.learners import StandardLearner
from torchfusion.utils import load_image

model = nn.Sequential (
Flatten (),
Linear (784,100),
Swish (),
Linear (100,100),
Swish (),
Linear (100,100),
Swish (),
Linear (100,10)

if cuda.is_available():
model = model.cuda ()

learner = StandardLearner (model)
learner.load_model ("best_models\model_ 20.pth")

if name == "__main__ ":

#map class indexes to class names
class_map = {0:"T-Shirt",1l:"Trouser",2:"Pullover",3:"Dress",4:"Coat",5:"Sandal", 6:
—"Shirt",7:"Sneaker",8:"Bag", 9:"Ankle Boot"}

#Load the image
image load_image ("sample—-1.jpg",grayscale=True,target_size=28,mean=0.5,std=0.5)

(continues on next page)

6 Chapter 1. Hello FASHION MNIST!

TorchFusion Documentation, Release 0.2.0

(continued from previous page)

#add batch dimension
image = image.unsqueeze (0)

#run prediction
pred = learner.predict (image)

#convert prediction to probabilities
pred = torch.softmax (pred, 0)

#get the predicted class
pred_class = pred.argmax () .item()

#get confidence for the prediction
pred_conf = pred.max () .item()

#Map class_index to name
class_name = class_map[pred_class]

print ("Predicted Class: , Confidence:

".format (class_name, pred_conf))

TorchFusion Documentation, Release 0.2.0

8 Chapter 1. Hello FASHION MNIST!

CHAPTER 2

Training CIFAR10!

In this section, we shall be using convolutional neural networks to train an Image Classification model on the CIFAR10
Dataset. We shall also explore more advanced concepts such as custom data transformations, learning rate scheduling
and metric visualization.

CIFAR10 DESCRIPTION

Cifar10 is a dataset of 60000 images in 10 different categories. The dataset is split into a train set of 50000 images
and a test set of 10000 images. CIFAR10 was collected by Alex Krizhevsky in 2009, and it is the most widely used
dataset for research in Image Classification.

To learn more visit. To learn more visit. Cifar 10

Import Classes

from torchfusion.layers import =

from torchfusion.datasets import =

from torchfusion.metrics import =«

from torchfusion.initializers import Kaiming Normal, Xavier_Normal
import torchvision.transforms as transforms

import torch.nn as nn

import torch.cuda as cuda

from torch.optim import Adam

from torch.optim.lr scheduler import StepLR

from torchfusion.learners import StandardLearner

Load the dataset

train_transforms = transforms.Compose ([
transforms.RandomCrop (32, padding=4),
transforms.RandomHorizontalFlip (),
transforms.ToTensor (),
transforms.Normalize ((0.5,0.5,0.5), (0.5,0.5,0.5))
1)

test_transforms = transforms.Compose ([

(continues on next page)

https://www.cs.toronto.edu/~kriz/cifar.html/

TorchFusion Documentation, Release 0.2.0

KHE=AEEEE S

APSREMAEM N8
TS v WS
ST IxE DEl | B
N >N =EaEiVa
TA-NrEEr A
SEN CETE W8

EBEUNSECHSE]3I
HiTSE SEE W
HEWESEENINY

Chapter 2. Training CIFAR10!

10

TorchFusion Documentation, Release 0.2.0

(continued from previous page)

transforms.CenterCrop(32),

transforms.ToTensor (),

transforms.Normalize ((0.5,0.5,0.5),(0.5,0.5,0.5))
1)

train_loader = cifarl0_loader (transform=train_transforms,batch_size=32)
test_loader = cifarl0_loader (transform=test_transforms,train=False,batch_size=32)

Data augmentation helps to improve the performance of our models, hence, for the train set we overrided the default
transformations of torchfusion with a new one containing our custom transforms. For the test set, we simply use the
default transforms.

Define the model

class Unit (nn.Module) :
def _ init_ (self,in_channels, out_channels):
super (Unit,self).__init__ ()
self.conv = Conv2d(in_channels, out_channels,kernel_size=3,padding=1,weight_
—init=Kaiming_Normal ())
self.bn = BatchNorm2d (out_channels)
self.activation = Swish()

def forward(self, inputs) :
outputs = self.conv(inputs)
outputs = self.bn (outputs)
return self.activation (outputs)

model = nn.Sequential (
Unit (3,64),
Unit (64, 64),
Unit (64, 64),
nn.Dropout (0.25),

nn.MaxPool2d (kernel_size=3,stride=2),

Unit (64,128),
Unit (128,128),
Unit (128,128)

nn.Dropout (0.25),

’

nn.MaxPool2d (kernel_size=3,stride=2),
Unit (128,256),
Unit (256,256),
Unit (256,256),

GlobalAvgPool2d (),

Linear (256, 10,weight_init=Xavier_Normal ())

To make the code more compact above, we first defined a Unit module that we reused in the model. Notice how we
initialized the convolution layer with Kaiming Normal in the above, all torchfusion convolution layers are by default
initialized with Kaiming_Normal and all Linear layers have default init of Xavier_Normal, however, we explicitly
defined the intialization here to demonstrate how you can use any of the many initializers that torchfusion provides to
initialize your layers. The bias_init arguement also allows you to initialize the bias as you want.

11

TorchFusion Documentation, Release 0.2.0

Define optimizer, Ir scheduler and loss

if cuda.is_available():
model = model.cuda ()

optimizer = Adam(model.parameters(),1lr=0.001)
lr_scheduler = StepLR (optimizer, step_size=30,gamma=0.1)
loss_fn = nn.CrossEntropyLoss ()

train_metrics = [Accuracy ()]
test_metrics = [Accuracy ()]

In the above, we defined a learning rate scheduler to reduce the learning rate by a factor of 10 every 30 epochs. There
are many learning rate schedulers in pyorch’s Ir_scheduler package, you can use any of them here.

Train the model
learner = StandardLearner (model)
if _ name_ == "_ _main_ ":

learner.train(train_loader,train_metrics=train_metrics,optimizer=optimizer, loss_
—fn=loss_fn,model_dir="./cifarl0O-models", test_loader=test_loader,test_metrics=test_
—metrics, num_epochs=200,batch_log=False, lr_scheduler=1r_scheduler, save_logs="cifarl0-
—logs.txt",display_metrics=True, save_metrics=True)

Here we specified a number of additional arguements, first we specified the /r_scheduler we earlier created, next
we specified save_logs, this will save all logs to the file we specified, finally, save_metrics and display_metrics will
display visualization of loss and metrics and save the generated plots. The save plots,logs and models can all be found
in the directory cifarl0-models that we specified above.

PUTTING IT ALL TOGETHER

from torchfusion.layers import x

from torchfusion.datasets import =«

from torchfusion.metrics import =«

from torchfusion.initializers import Kaiming Normal, Xavier_Normal
import torchvision.transforms as transforms

import torch.nn as nn

import torch.cuda as cuda

from torch.optim import Adam

from torch.optim.lr scheduler import StepLR

from torchfusion.learners import StandardLearner

train_transforms = transforms.Compose ([
transforms.RandomCrop (32, padding=4),
transforms.RandomHorizontalFlip (),
transforms.ToTensor (),
transforms.Normalize ((0.5,0.5,0.5), (0.5,0.5,0.5))
1)

test_transforms = transforms.Compose ([
transforms.CenterCrop(32),
transforms.ToTensor (),
transforms.Normalize ((0.5,0.5,0.5), (0.5,0.5,0.5))
1)

(continues on next page)

12 Chapter 2. Training CIFAR10!

TorchFusion Documentation, Release 0.2.0

(continued from previous page)

train_loader = cifarl0_loader (transform=train_transforms,batch_size=32)
test_loader = cifarl0_loader (transform=test_transforms,train=False,batch_size=32)

class Unit (nn.Module) :
def _ init_ (self,in_channels, out_channels):
super (Unit, self).__init__ ()
self.conv = Conv2d(in_channels,out_channels,kernel_size=3,padding=1,weight_
—init=Kaiming_Normal ())
self.bn = BatchNorm2d (out_channels)
self.activation = Swish()

def forward(self, inputs):
outputs = self.conv (inputs)
outputs = self.bn(outputs)
return self.activation (outputs)

model = nn.Sequential (
Unit (3,64),
Unit (64,64),
Unit (64, 64),
nn.Dropout (0.25),

nn.MaxPool2d (kernel_size=3,stride=2),

Unit (64,128),
Unit (128,128),
Unit (128,128)

nn.Dropout (0.25),

4

nn.MaxPool2d (kernel_size=3,stride=2),
Unit (128,256),
Unit (256,256),
Unit (256,256),

GlobalAvgPool2d (),

Linear (256, 10,weight_init=Xavier_Normal ())

if cuda.is_available():
model = model.cuda ()

optimizer = Adam(model.parameters(),lr=0.001)
lr_scheduler = StepLR (optimizer, step_size=30,gamma=0.1)

loss_fn = nn.CrossEntropyLoss ()

train_metrics = [Accuracy ()]
test_metrics = [Accuracy ()]
learner = StandardLearner (model)
if name_ == "_ main_ ":

learner.train(train_loader,train_metrics=train_metrics,optimizer=optimizer,loss_

—fn=loss_fn,model_dir="./cifarl0-models", test_loader=test_loader, test_mdeoniRuss-Qmnext page)
—metrics, num_epochs=30,batch_log=False,lr_scheduler=1r_scheduler,save_logs="cifarl0-

13

TorchFusion Documentation, Release 0.2.0

(continued from previous page)

|

14 Chapter 2. Training CIFAR10!

CHAPTER 3

Mixed Precision Training

Deep Learning models are usually trained using standard 32 bit floating point arithmetic. To speed up the training
of deep learning models, a lot of research has gone into using lower bit precison arithmetic such as 8 bit and 16 bit
arithmetic. The lower bits are much faster than the 32 bit precision arithmetic. NVIDIA Volta GPUs have tensor cores
specialized for 16 bit precison arithmetic, taking advantage of them could lead to significant speed up in training of
large deep learning models.

To learn more about mixed precision training, read ‘‘Nvidia Mixed Precision Training https://docs.nvidia.com/
deeplearning/sdk/mixed-precision-training/index.html/¢_

The greatest challenge with training in mixed precision made is radical decrease in model accuracy. Hence, a naive im-
plementation of mixed precision training will result in very poor performance. TorchFusion includes highly optimized
procedures for training Deep Learning Models in mixed precision without compromising performance.

PROCEDURE
The following are the procedures you need to follow to train torchfusion models in mixed precision.

Import Classes

from torchfusion.fpl6_utils import half _model, FP1l6_Optimizer

CONVERT MODEL AND OPTIMIZER INTO FP16

model = half model (model)

optimizer = FP1l6_Optimizer (Adam (model.parameters()))
learner = StandardLearner (model)

learner.half ()

1f using lr_scheduler
lr_scheduler = StepLlR (optimizer.optimizer,step_size=30,gamma=0.1)

PUTTING IT ALL TOGETHER

from torchfusion.layers import =«
from torchfusion.datasets import =

(continues on next page)

15

https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html/
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html/

TorchFusion Documentation, Release 0.2.0

(continued from previous page)

from torchfusion.metrics import =«

from torchfusion.initializers import Kaiming Normal, Xavier_Normal
import torchvision.transforms as transforms

import torch.nn as nn

import torch.cuda as cuda

from torch.optim import Adam

from torch.optim.lr scheduler import StepLR

from torchfusion.learners import StandardLearner

train_transforms = transforms.Compose ([

1)

transforms.RandomCrop (32, padding=4),
transforms.RandomHorizontalFlip (),
transforms.ToTensor (),

transforms.Normalize ((0.5,0.5,0.5), (0.5,0.5,0.5))

test_transforms = transforms.Compose ([

1)

transforms.CenterCrop (32),
transforms.ToTensor (),
transforms.Normalize ((0.5,0.5,0.5), (0.5,0.5,0.5))

train_loader = cifarl0_loader (transform=train_transforms,batch_size=32)
test_loader = cifarl0_loader (transform=test_transforms,train=False,batch_size=32)

class Unit (nn.Module) :

def _ init_ (self,in_channels, out_channels) :
super (Unit,self).__init__ ()
self.conv = Conv2d(in_channels,out_channels,kernel_size=3,padding=1,weight_

—~init=Kaiming_Normal ())

self.bn = BatchNorm2d (out_channels)
self.activation = Swish{()

def forward(self, inputs) :
outputs = self.conv (inputs)
outputs = self.bn (outputs)
return self.activation (outputs)

model = nn.Sequential (

Unit (3,64),

Unit (64,64),

Unit (64,64),
nn.Dropout (0.25),

nn.MaxPool2d (kernel_size=3,stride=2),

Unit (64,128),
Unit (128,128),
Unit (128,128)

nn.Dropout (0.25),

4

nn.MaxPool2d (kernel_size=3,stride=2),

Unit (128,256),
Unit (256,256),
Unit (256,256),

(continues on next page)

16

Chapter 3. Mixed Precision Training

TorchFusion Documentation, Release 0.2.0

(continued from previous page)

GlobalAvgPool2d (),

Linear (256, 10,weight_init=Xavier_Normal ())

if cuda.is_available():
model = model.cuda ()
model = half_ model (model)

optimizer = FP16_Optimizer (Adam(model.parameters(),lr=0.001))
lr_scheduler = StepLR(optimizer.optimizer, step_size=30,gamma=0.1)
loss_fn = nn.CrossEntropyLoss ()

train_metrics = [Accuracy ()]
test_metrics = [Accuracy ()]

learner = StandardLearner (model)
learner.half ()

if name == "_ _main

"
learner.train(train_loader,train_metrics=train_metrics,optimizer=optimizer,loss_

—~fn=loss_fn,model_dir="./cifarl0O-models", test_loader=test_loader,test_metrics=test_

—metrics, num_epochs=30,batch_log=False,lr_scheduler=1r_scheduler,save_logs="cifarl0-

—~logs.txt",display_metrics=True, save_metrics=True)

17

TorchFusion Documentation, Release 0.2.0

18 Chapter 3. Mixed Precision Training

CHAPTER 4

Training With Custom Datasets!

While TorchFusion provides pre-defined loaders for popular standard datasets. Very often, you will need to train on
your own custom datasets. TorcFusion provides loaders for any image dataset organized into a single folder with
subfolders representing each class of images. For example, if you are training a model to recognize cats and dogs, you
should have a train folder with two subfolders, one for dogs and one for cats.

Import Classes

from torchfusion.layers import x

from torchfusion.datasets import =«

from torchfusion.metrics import =«

from torchfusion.initializers import Kaiming Normal, Xavier_Normal
import torchvision.transforms as transforms

import torch.nn as nn

import torch.cuda as cuda

from torch.optim import Adam

from torch.optim.lr scheduler import StepLR

from torchfusion.learners import StandardLearner

Load the dataset

train_transforms = transforms.Compose ([
transforms.RandomCrop (224, padding=4),
transforms.RandomHorizontalFlip (),
transforms.ToTensor (),
transforms.Normalize ((0.5,0.5,0.5), (0.5,0.5,0.5))
1)

test_transforms = transforms.Compose ([
transforms.CenterCrop(224),
transforms.ToTensor (),
transforms.Normalize ((0.5,0.5,0.5), (0.5,0.5,0.5))
1)

train_loader = imagefolder_loader (transform=train_transforms,batch_size=32,
—shuffle=True, root="path-to-train-folder")

(continues on next page)

19

TorchFusion Documentation, Release 0.2.0

(continued from previous page)

test_loader = imagefolder_loader (transform=test_transforms,shuffle=False,batch_
—size=32,root="path-to-test-folder")

Define the model
class Unit (nn.Module) :
def _ init_ (self,in_channels, out_channels) :
super (Unit,self).__init__ ()

self.conv = Conv2d(in_channels, out_channels,kernel_size=3,padding=1,weight_
—init=Kaiming_Normal ())

self.bn = BatchNorm2d (out_channels)

self.activation = Swish{()

def forward(self, inputs) :
outputs = self.conv (inputs)
outputs = self.bn (outputs)
return self.activation (outputs)

model = nn.Sequential (
Unit (3,64),
Unit (64, 64),
Unit (64,64),
nn.Dropout (0.25),

nn.MaxPool2d (kernel_size=3,stride=2),

Unit (64,128),
Unit (128,128),
Unit (128,128)

nn.Dropout (0.25),

I4

nn.MaxPool2d (kernel_size=3,stride=2),
Unit (128,256),
Unit (256,256),
Unit (256,256),

GlobalAvgPool2d (),

Linear (256, 10,weight_init=Xavier_Normal ())

Define optimizer, Ir scheduler and loss

if cuda.is_available():
model = model.cuda ()

optimizer = Adam(model.parameters(),1lr=0.001)
lr_scheduler = SteplR (optimizer,step_size=30,gamma=0.1)

loss_fn = nn.CrossEntropyLoss ()

train_metrics = [Accuracy ()]
test_metrics = [Accuracy ()]
Train the model

20 Chapter 4. Training With Custom Datasets!

TorchFusion Documentation, Release 0.2.0

learner = StandardLearner (model)

if _ name_ == "_ _main_ ":
learner.train(train_loader,train_metrics=train_metrics,optimizer=optimizer,loss_
—fn=loss_fn,model_dir="./custom-models",test_loader=test_loader,test_metrics=test_

—metrics, num_epochs=200,batch_log=False, lr_scheduler=1r_scheduler, save_logs="custom—
—model-logs.txt",display_metrics=True, save_metrics=True)

PUTTING IT ALL TOGETHER

from torchfusion.layers import =«

from torchfusion.datasets import =

from torchfusion.metrics import =

from torchfusion.initializers import Kaiming Normal, Xavier_Normal
import torchvision.transforms as transforms

import torch.nn as nn

import torch.cuda as cuda

from torch.optim import Adam

from torch.optim.lr_ scheduler import StepLR

from torchfusion.learners import StandardLearner

train_transforms = transforms.Compose ([
transforms.RandomCrop (224, padding=4),
transforms.RandomHorizontalFlip (),
transforms.ToTensor (),
transforms.Normalize ((0.5,0.5,0.5), (0.5,0.5,0.5))
1)

test_transforms = transforms.Compose ([
transforms.CenterCrop(224),
transforms.ToTensor (),
transforms.Normalize ((0.5,0.5,0.5), (0.5,0.5,0.5))

1

train_loader = imagefolder_loader (transform=train_transforms,batch_size=32,
—shuffle=True, root="path-to-train-folder")
test_loader = imagefolder_loader (transform=test_tranforms,shuffle=False,batch_size=32,

—root="path-to-test-folder")

class Unit (nn.Module) :
def _ init_ (self,in_channels, out_channels) :
super (Unit,self).__init__ ()
self.conv = Conv2d(in_channels, out_channels,kernel_size=3,padding=1,weight_
—~init=Kaiming_Normal ())
self.bn = BatchNorm2d (out_channels)
self.activation = Swish ()

def forward(self, inputs) :
outputs = self.conv(inputs)
outputs = self.bn (outputs)
return self.activation (outputs)

model = nn.Sequential (
Unit (3, 64),
Unit (64,64),
Unit (64,64),
nn.Dropout (0.25),

(continues on next page)

21

TorchFusion Documentation, Release 0.2.0

(continued from previous page)

nn.MaxPool2d (kernel_size=3,stride=2),

Unit (64,128),
Unit (128,128),
Unit (128,128)

nn.Dropout (0.25),

4

nn.MaxPool2d (kernel_size=3,stride=2),

Unit (128,256),
Unit (256,256),
Unit (256,256),

GlobalAvgPool2d (),

Linear (256, 10,weight_init=Xavier_Normal ())

if cuda.is_available () :
model = model.cuda ()

optimizer = Adam(model.parameters(),lr=0.001)
lr_scheduler = StepLR (optimizer, step_size=30,gamma=0.1)
loss_fn = nn.CrossEntropyLoss ()

train_metrics = [Accuracy ()]
test_metrics = [Accuracy ()]

learner = StandardLearner (model)

learner = StandardLearner (model)

if name == "_ _main_ ":
learner.train(train_loader,train_metrics=train_metrics,optimizer=optimizer, loss_

—fn=loss_fn,model_dir="./custom—-models", test_loader=test_loader,test_metrics=test_

—metrics, num_epochs=30,batch_log=False, lr_scheduler=1r_scheduler, save_logs="custom—

—models—-logs.txt",display_metrics=True, save_metrics=True)

22 Chapter 4. Training With Custom Datasets!

CHAPTER B

Logging and Visualizing the Training Process!

While torchfusion allows you to easily visualize the training process using matplotlib based charts, for more advanced
visualization, Torchfusion has in-built support for visualizing the training process in both Visdom and Tensorboard.

Logging with Visdom

Visdom is a visualizing kit developed by Facebook AI Research, visdom was installed the first time you installed
Torchfusion.

To visualize your training process in visdom, follow the steps below.

Step 1: Import the visdom logger:

from torchfusion.utils import VisdomLogger

Step 2: Specify the logger in your train func

visdom_logger = VisdomLogger ()
if name == "__main__ ":
learner.train(train_loader,train_metrics=train_metrics,optimizer=optimizer, loss_

—~fn=loss_fn,visdom_log=visdom_logger)

Step 3: Start the visdom server from the commad promp

python -m visdom.server

Ensure you are connected to the intenet when you run this, as visdom will need to download a few scripts.
Notice the output above, open your browser and navigate to the url given, in this case: localhost:8097

Run this to see visdom in action

from torchfusion.layers import =«
from torchfusion.datasets import =«
from torchfusion.metrics import =«
import torch.nn as nn

import torch.cuda as cuda

(continues on next page)

23

https://github.com/facebookresearch/visdom/

TorchFusion Documentation, Release 0.2.0

3 r

B Command Prompt - python -m visdom.server

pogsoft Windows [Version 6.3.96001 5
(c>» 2013 Microzoft Corporation. All rights reserved.

slserssMoses: wn —m visdon.server
i z. It might take a while.
It's Alive!?
INFO:root:Application Started

o

(continued from previous page)

from torch.optim import Adam
from torchfusion.learners import StandardLearner
from torchfusion.utils import VisdomLogger

train_loader = fashionmnist_loader (size=28,batch_size=32)
test_loader = fashionmnist_loader (size=28,train=False,batch_size=32)

model = nn.Sequential (
Flatten (),
Linear (784,100),
Swish (),
Linear (100,100),
Swish (),
Linear (100,100),
Swish (),
Linear (100,10)

if cuda.is_available():
model = model.cuda ()

optimizer = Adam(model.parameters())

loss_fn = nn.CrossEntropyLoss ()
train_metrics = [Accuracy ()]
test_metrics = [Accuracy ()]

visdom_logger = VisdomLogger ()

learner = StandardLearner (model)

if == "__main__ ":

(continues on next page)

24 Chapter 5. Logging and Visualizing the Training Process!

TorchFusion Documentation, Release 0.2.0

(continued from previous page)

print (learner.summary((1,28,28)))

learner.train(train_loader,train_metrics=train_metrics,visdom_log=visdom_logger,
—optimizer=optimizer,loss_fn=loss_fn,test_loader=test_loader,test_metrics=test_
—metrics, num_epochs=30,batch_log=False)

Generated Visuals

&« C | @ localhost8097 w HEH D B

visdom | Environment ~ main *° % @ Vew curent~ B Filter text S m

Train Loss| Test Accuracy Train Accuracy

Train Loss Test Accuracy Train Accuracy

] Basic_LinkedInData...zip | Show all] X

Using Tensorboard Torchfusion can also generate tensorboard logs that you can view with tensorboard, while Torch-
fusion does not require tensorboard or tensorflow installed to generate the logs as it uses TensorboardX, you need to
install both tensorflow and tensorboard to view the generated logs.

Vist tensorflow.org for instructions on installing tensorflow and https://github.com/tensorflow/tensorboard for instruc-
tions on installing tensorbord

Once installed, you can use tensorboard in just ONE Line.

Specify the tensorboard_log in your train func

visdom_logger = VisdomLogger ()

if _ name_ == "_ _main__ ":
learner.train(train_loader,train_metrics=train_metrics,optimizer=optimizer,loss_

—fn=loss_fn, tensorboard_log="./tboard-logs",visdom_log=visdom_logger)

Notice how we use both tensorboard and visdom here, we can use either independently or both if we want to.
Start the tensorboard server from the command prompt :: tensorboard —logdir=tboard-logs
Notice the output above, open your browser and navigate to the url given, in this case: specpal:6006

Run this to see tensorboard in action

from torchfusion.layers import =«
from torchfusion.datasets import =
from torchfusion.metrics import x*
import torch.nn as nn

(continues on next page)

25

https://github.com/lanpa/tensorboardX/
https://tensorflow.org/
https://github.com/tensorflow/tensorboard/

TorchFusion Documentation, Release 0.2.0

] tensorboard --logdir=tboard-logs

e ProjectsAlxTorchFusion Notebooks >tenszorboard lo
logs
sappdataslocalsprogrs pythonspythond5slibvimport libs_bootstrap.p
ngs o py.dtype s e changed, may indicate binary incompatibi |
9%, got BB
5, wWikuds >
sappdataslocalspw pythonspython3dSsxlibxs ite—packages~hSpy™
H of the second argument of hdtype §
to i rated. In future, it will be treated as
np.dtype
import register_converters as _register_converters

sappdata 1N progrs spythonspython3d5slibsimport libs_bootstrap.p
o py.dt ype changed, may indicate binary incompatibi
got H8
return [{(#args, #skuds?
sorBoard 1.5.1 at htty sPECPAL:6886 <{Press CIRL+C to guit?

(continued from previous page)

import torch.cuda as cuda

from torch.optim import Adam

from torchfusion.learners import StandardLearner
from torchfusion.utils import VisdomLogger

train_loader = fashionmnist_loader (size=28,batch_size=32)
test_loader = fashionmnist_loader (size=28,train=False,batch_size=32)
model = nn.Sequential (

Flatten (),
Linear (784,100),
Swish (),

Linear (100,100),
Swish (),

Linear (100,100),
Swish (),

Linear (100,10)

if cuda.is_available() :
model = model.cuda ()
optimizer = Adam(model.parameters())

loss_fn = nn.CrossEntropyLoss ()

train_metrics = [Accuracy ()]
test_metrics = [Accuracy ()]
visdom_logger = VisdomLogger ()
learner = StandardLearner (model)

(continues on next page)

26 Chapter 5. Logging and Visualizing the Training Process!

TorchFusion Documentation, Release 0.2.0

(continued from previous page)

if name == "_main__":

print (learner.summary((1,28,28)))

learner.train(train_loader,train_metrics=train_metrics,tensorboard_log="./tboard-
—logs",visdom_log=visdom_logger, optimizer=optimizer,loss_fn=loss_fn,test_loader=test_
—loader,test_metrics=test_metrics,num_epochs=30,batch_log=False)

Generated Visuals

M Yourt X ¥ () PyTor X
€ C ‘(D Not secure | specpal:6006/#scalars k4 § &

Bugat X ¥ [@Nc x Y[Data’ x ¥ W Imag: X ¥ 4 CIFAF X ¥ [Loggi X ¥ T Home X ¥ [visde X ¥ T Home X ¥ ¥ visuz! X /[Tensc X

INACTIVE ~C 8 @

[Show data download links logs/test_metrics/Accuracy logs/train_loss

Ignore outliers in chart scaling

nese 0.450
Tooltip sorting method: default - 0864 5420
0.860
) 0380
Smoothing 0856
0340
06 0.852
0.848 0.300
1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000
Horizontal Axis [— -
e — | o
RELATIVE WALL N
m logs/train_metrics/Accuracy
0.890
Runs
Write a regex to filter runs 0.870
|
. O 0.850
0.830
TOGGLE ALL RUNS
1000 2000 3000 4000 5000 6.000
thoard-logs

L Basic_LinkedInData...zip ™ X

27

TorchFusion Documentation, Release 0.2.0

28 Chapter 5. Logging and Visualizing the Training Process!

CHAPTER O

Buiding Custom Trainers!

While Tochfusion strives to provide very good trainers, we know researchers often need custom training logic. Torch-
Fusion makes using custom training logic easy. All you need to do is extend the Learners.

Sample Custom Trainer

#Extend the StandardLearner
class CustomLearner (StandardLearner) :

#Override the train logic
def _ train_func_ (self, data):

self.optimizer.zero_grad()

if self.clip_grads is not None:
clip_grads(self.model,self.clip_grads[0],self.clip_grads[1l])

train_x, train_y = data

batch_size = train_x.size(0)

train_x = Variable(train_x.cuda() if self.cuda else train_x)
train_y = Variable(train_y.cuda() if self.cuda else train_y)
outputs = self.model (train_x)

loss = self.loss_fn(outputs, train_y)

loss.backward()

self.optimizer.step()

self.train_running_loss.add_(loss.cpu() * batch_size)

for metric in self.train metrics:
metric.update (outputs, train_y)

(continues on next page)

29

TorchFusion Documentation, Release 0.2.0

(continued from previous page)

#Override the evaluation logic

def _ eval_function_ (self, data):

test_x, test_y = data

test_x = Variable (test_x.cuda ()

test_y = Variable (test_y.cuda/()

outputs

self.model (test_x)

for metric in self.test_metrics:

metric.update (outputs, test_y)
#0verride the validation logic
def _ val_function_ (self, data):

val_x, val_y = data

val_x = Variable(val_x.cuda ()

val_y = Variable(val_y.cuda ()

outputs

self.model (val_x)

for metric in self.val_metrics:

metric.update (outputs,

#override the prediction logic

val_y)

def _ predict_func__ (self, inputs):

inputs = Variable (inputs.cuda ()

return self.model (inputs)

if self.cuda else test_x)

if self.cuda else test_y)

if self.cuda else val_x)

if self.cuda else val_y)

if self.cuda else inputs)

30

Chapter 6. Buiding Custom Trainers!

CHAPTER /

Introduction to Generative Adversarial Networks

Classification and regression models are used for predictive tasks, they map diverse inputs to fixed outputs, these
class of models are called discriminative models. Generative Models do the opposite, they generate diverse outputs
from fixed inputs. An example generative model is a model that can generate new pictures of cars simply from a text
description. Different generative models exist, the most successful are Generative Adversarial Networks by Goood-
fellow et al,2014 These models consist of a generator model which is responsible for generating new outputs, and a
discriminator model that attempts to tell if the generated outputs are real or fake. During training, the discriminator is
presented with both real and generated images. The discriminator is trained is trained to correctly tell the real images
apart from generated images, while the generator is trained to generate images that are so real that the discriminaor
will classify them as real. Hence, the two networks are competing with each other and the generator is trying to fool
the discriminator. While the logic of GANs can be slighly complicated, TorchFusion makes using them a breeze and
provides a highly sophiscated framework for doing research with custom GAN logic.

Below is are two pictures generated by a GAN. Karras et al,2017
UNCONDITIONAL GAN EXAMPLE
Earlier on, we learnt to correctly classify grayscale fashion images, now we shall attempt to generate them instead.

Step 1: Imports!

from torchfusion.gan.learners import =«

from torchfusion.gan.applications import StandardGenerator,
—StandardProjectionDiscriminator

from torch.optim import Adam

from torchfusion.datasets import fashionmnist_loader
import torch.cuda as cuda

import torch.nn as nn

Define Generator and Discriminator

G = StandardGenerator (output_size=(1,32,32),latent_size=128)
D = StandardProjectionDiscriminator (input_size=(1,32,32),apply_sigmoid=False)

if cuda.is_available():

(continues on next page)

31

https://arxiv.org/1406.2661/
https://arxiv.org/1406.2661/
http://arxiv.org/abs/1710.10196/

TorchFusion Documentation, Release 0.2.0

(continued from previous page)

G = nn.DataParallel (G.cuda())
nn.DataParallel (D.cuda())

@)
Il

Here, we use predefined Generator and Discriminator in torchfusion, we set the size of the generated images to be
1,32,32 and the latent_size as 128. The images will be generated from the latent_code which will be of the size 128.

Setup optimizers

g_optim = Adam(G.parameters(),lr=0.0002,betas=(0.5,0.999))
d_optim = Adam (D.parameters (), 1lr=0.0002,betas=(0.5,0.999))

Since our generator and discriminator are separately trained, we need to specify different optimizers for them, try to
stick to the hyper-parameters here as GANs can be very sensitive to this values.

load dataset

’dataset = fashionmnist_loader (size=32,batch_size=64)

The image size here is set to be the same as the size of the images to be generated.

Define the learner

’learner = RStandardGanLearner (G, D)

The Learner does all the heavy-lifting
Train the Models

if _ name_ == "_ main_ ":

learner.train(dataset,gen_optimizer=g_optim,disc_optimizer=d_optim, save_outputs_
—interval=500,model_dir="./fashion-gan", latent_size=128, num_epochs=50,batch_
—log=False)

By specifying the save_outputs_interval as 500, every 500 batch iterations it will print sample generated immages.
Note that this is different from number of epochs.

32 Chapter 7. Introduction to Generative Adversarial Networks

TorchFusion Documentation, Release 0.2.0

Putting it all Together

from torchfusion.gan.learners import =«

from torchfusion.gan.applications import StandardGenerator,
—StandardProjectionDiscriminator

from torch.optim import Adam

from torchfusion.datasets import fashionmnist_loader
import torch.cuda as cuda

import torch.nn as nn

G
D

StandardGenerator (output_size=(1,32,32), latent_size=128)
StandardProjectionDiscriminator (input_size=(1,32,32),apply_sigmoid=False)

if cuda.is_available():
G = nn.DataParallel (G.cuda())
D = nn.DataParallel (D.cuda())

g_optim = Adam(G.parameters(),lr=0.0002,betas=(0.5,0.999))
d_optim = Adam(D.parameters(),lr=0.0002,betas=(0.5,0.999))

dataset = fashionmnist_loader (size=32,batch_size=64)

learner = RStandardGanLearner (G,D)

if name == "_ _main_ ":
learner.train(dataset,gen_optimizer=g_optim,disc_optimizer=d_optim, save_outputs_
—interval=500,model_dir="./fashion-gan", latent_size=128, num_epochs=50,batch_

—log=False)

33

TorchFusion Documentation, Release 0.2.0

34 Chapter 7. Introduction to Generative Adversarial Networks

CHAPTER 8

Conditional Generative Adversarial Networks

In the previous chapter, images were randomly generated without respect to classes. Here we shall generated Images
of specific classes While Conditional GANs are complex, torchfusion makes this super easy, all you have to do is state
the num_classes in the Generator, Discriminator and in the Learner

Use classes in Generator and Discriminator

G = StandardGenerator (output_size=(1,32,32),latent_size=128,num_classes=10)
D StandardProjectionDiscriminator (input_size=(1,32,32),apply_sigmoid=False, num_
—classes=10)

Define num_classes in Learner

if name == "_ _main

learner.train (dataset,num_classes=10,gen_optimizer=g_optim,disc_optimizer=d_optim,
—save_outputs_interval=500,model_dir="./fashion-gan", latent_size=128,num_epochs=50,

—batch_log=False)

And thats it ! The full code is below

Putting it all Together

from torchfusion.gan.learners import =

from torchfusion.gan.applications import StandardGenerator,
—StandardProjectionDiscriminator

from torch.optim import Adam

from torchfusion.datasets import fashionmnist_loader
import torch.cuda as cuda

import torch.nn as nn

G = StandardGenerator (output_size=(1,32,32),latent_size=128,num_classes=10)
D = StandardProjectionDiscriminator (input_size=(1,32,32),apply_sigmoid=False, num_
—~classes=10)

if cuda.is_available():
G = nn.DataParallel (G.cuda())

(continues on next page)

35

TorchFusion Documentation, Release 0.2.0

(continued from previous page)

D = nn.DataParallel (D.cuda())

g_optim = Adam(G.parameters(),lr=0.0002,betas=(0.5,0.999))
d_optim = Adam(D.parameters(),lr=0.0002,betas=(0.5,0.999))

dataset = fashionmnist_loader (size=32,batch_size=64)

learner = RStandardGanLearner (G,D)

if name == "__main_ ":
learner.train(dataset,num_classes=10,gen_optimizer=g_optim,disc_optimizer=d_optim,
—save_outputs_interval=500,model_dir="./fashion-gan", latent_size=128,num_epochs=50,

—batch_log=False)

After just 17 epochs, this produces

#
g

36 Chapter 8. Conditional Generative Adversarial Networks

CHAPTER 9

GAN Inference

Now that we have learn’t how to generate images of specific classes, here we shall use the trained generator for

inference

Putting it all Together

from torchfusion.gan.learners import =

from torchfusion.gan.applications import StandardGenerator
import torch.cuda as cuda

import torch.nn as nn

from torchvision.utils import save_image

import torch

from torch.distributions import Normal

G = StandardGenerator (output_size=(1,32,32),latent_size=128,num_classes=10)

if cuda.is_available():
G = nn.DataParallel (G.cuda())

learner = RStandardGanLearner (G, None)
learner.load_generator ("path-to-trained-gen")

if name_ == "_ main_ ":
"Define an instance of the normal distribution"
dist = Normal (0, 1)

#Get a sample latent vector from the distribution
latent_vector = dist.sample((1,128))

#Define the class of the image you want to generate
label = torch.LongTensor (1) .£fill_(5)

#Run inference
image = learner.predict ([latent_vector, labell])

(continues on next page)

37

TorchFusion Documentation, Release 0.2.0

(continued from previous page)

#Save generated image

save_image (image,

"image. jpg")

38

Chapter 9. GAN Inference

cHAaPTER 10

Buiding Custom Trainers!

Torchfusion provides a wide variety of GAN Learners, you will find them in the torchfusion.gan.learners package
However, lots of research is ongoing into improved techniques for GANs, hence, we provide multiple levels of ab-
stractions to faciliate research.

Custom Loss

#Extend the StandardBaseGanLearner
class CustomGanLearner (StandardBaseGanLearner) :

#Override the __update_discriminator._loss___
def _ update_discriminator_loss__ (self, real_images, gen_images, real_preds, gen_
—preds) :
pred_loss = —-torch.mean (real_preds - gen_preds)

return pred_loss

#Override the __update_generator_loss___
def _ _update_generator_loss__ (self,real_images,gen_images, real_preds,gen_preds) :
pred_loss = —-torch.mean(gen_preds - real_preds)

return pred_loss

Custom Training Logic

#Extend BaseGanCore
class CustomGanLearner (BaseGanCore) :

#Extend train

def train(self,train_loader, gen_optimizer,disc_optimizer,latent_size,loss_fn=nn.
—BCELoss (), xxkwargs) :

self.latent_size = latent_size
self.loss_fn = loss_fn
super () .__train_loop__ (train_loader,gen_optimizer,disc_optimizer, xxkwargs)

(continues on next page)

39

TorchFusion Documentation, Release 0.2.0

(continued from previous page)

#Extend _ _disc train func
def _ disc_train_func__ (self, data):

super () .__disc_train_func__ (data)

self.disc_optimizer.zero_grad()

if isinstance(data, 1list) or isinstance(data, tuple):

x = datal[0]
else:
x = data

batch_size = x.size (0)

source = self.dist.sample((batch_size,self.latent_size))

real_labels = torch.ones (batch_size, 1)
fake_labels torch.zeros (batch_size, 1)

if self.cuda:

x = x.cuda ()
source = source.cuda ()
real_labels = real labels.cuda()

fake_labels = fake_labels.cuda ()

x = Variable (x)
source = Variable (source)
outputs = self.disc_model (x)

generated = self.gen_model (source)
gen_outputs = self.disc_model (generated.detach())

gen_loss = self.loss_fn(gen_outputs, fake_labels)
real_loss = self.loss_fn(outputs, real_labels)
loss = gen_loss + real_loss

loss.backward ()
self.disc_optimizer.step()

self.disc_running_loss.add_(loss.cpu() =* batch_size)
#Extend __gen_train_func__
def _ _gen_train_func__ (self, data):

super () .__gen_train_func__ (data)

self.gen_optimizer.zero_grad()

if isinstance(data, 1list) or isinstance(data, tuple):

x = datal[0]
else:

x = data
batch_size = x.size (0)

(continues on next page)

40

Chapter 10. Buiding Custom Trainers!

TorchFusion Documentation, Release 0.2.0

(continued from previous page)

source = self.dist.sample((batch_size,self.latent_size))
real_labels = torch.ones (batch_size, 1)
if self.cuda:

source = source.cuda ()

real_labels = real_labels.cuda()

source = Variable (source)

fake_images = self.gen_model (source)
outputs = self.disc_model (fake_images)

loss = self.loss_fn(outputs, real_labels)
loss.backward()

self.gen_optimizer.step()

self.gen_running_loss.add_(loss.cpu() =* batch_size)

Examples Visit https://github.com/AICommons/TorchfusionExamples for example codes in TorchFusion

41

https://github.com/AICommons/TorchfusionExamples/

	Hello FASHION MNIST!
	Training CIFAR10!
	Mixed Precision Training
	Training With Custom Datasets!
	Logging and Visualizing the Training Process!
	Buiding Custom Trainers!
	Introduction to Generative Adversarial Networks
	Conditional Generative Adversarial Networks
	GAN Inference
	Buiding Custom Trainers!

