
timeWarpOB Documentation
Release 1.1.0

Oliver Binns

September 09, 2016

Contents

1 About timeWarpOB 2

2 Version history 3
2.1 v1.1 . 3
2.2 v1.0.1 . 3

3 Installation 4

4 User guide 5
4.1 Background to Time Warping . 5
4.2 Example usage . 6
4.3 References . 7

5 API reference 8
5.1 timeWarpOB . 8
5.2 timeWarpOB.plotting . 11
5.3 timeWarpOB.tests.basic . 11

i

ii

timeWarpOB Documentation, Release 1.1.0

timeWarpOB is a Dynamic Time Warping implementation, built in python, by Oliver Binns

Contents:

Contents 1

CHAPTER 1

About timeWarpOB

timeWarpOB is a python implementation of Dynamic Time Warping. Time Warping allows time-series data to
be compared when one of the time series exhibits accellerations or decellerations relative to the other at different
points in time.

It has applications in speech recognition (where people may pronounce sounds at different rates) and in the general
analysis of time-series data (e.g. financial market indicators over time), where is can be combined with other
machine learning techniques. 1

For more details on how the algorithm works, see the the User guide section

1 Dynamic Time Warping (Wikipedia)

2

https://en.wikipedia.org/wiki/Dynamic_time_warping

CHAPTER 2

Version history

2.1 v1.1

• Bug fixes to ERP window function

• Python speed improvements to L1 distance calc

• Support for numba jit-compiler for speed improvements

• More developed test suite

2.2 v1.0.1

• Initial release of timeWarpOB

3

CHAPTER 3

Installation

timeWarpOB can be installed by using pip:

pip install timeWarpOB

Note that timeWarpOB requires numpy to be be installed for handling the time series and results arrays. The
matplotplib module is also required for plotting the warp graphs.

Calculation speed can be substantially improved by installing the numba module, which compiles some of the in-
ner calculation loops to give calculation performance comparable to native compiled code. However, timeWarpOB
can still run without numba. To check if numba is detected by timeWarpOB, run the following in python:

import timeWarpOB as tw
print(tw.foundNumba)

You can quickly test the timeWarpOB installation by using:

x, y, ts = tw.tests.basic.sinCos()
tw.tests.basic.testWarp(x,y,ts)

This will generate two time series based on a sin and cos function and attempt to warp them. The warp statistics
will be printed to the console and a plot showing the warp result will be shown.

4

CHAPTER 4

User guide

4.1 Background to Time Warping

Time warping is used to determine the similarity between two time series that vary in speed along the time axis.
By warping the time axis on one of the series, it is possible to make the time series ‘match’ each other, with the
amount of warping being a measure of the dis-similarity of the series. By dynamically changing the amount of
warping along the time-axis, it is possible to deal with time series that accelerate or decelerate at different points
in the series. Because of this, time warping has applications in many areas, including speech recognition, video
analysis and understanding of market data. The output from time warping can be used as a similarity distance
metric that is fed into other machine learning methods such as clustering.

Time warping techniques are based on edit distance in strings, which calculates the ‘cost’ of converting one string
into another by making a series of insertion, deletion or replacement operations. The optimal (lowest) number of
these operations can be determined using a dynamic programming algorithm 1. The same methods can be used,
but replacing the symbols in the two strings with the numeric values of a time series.

timeWarpOB implements two methods of warping the time axis, namely Dynamic Time Warping (DTW) and Edit
distance with Real Penalty (ERP) 2.

Both work by taking two time series of length 𝑛 and initially forming a 𝑛 × 𝑛 matrix measuring the pairwise
Euclidean distance between every point on the two time series (the distance matrix). Both algorithms will then
create a second 𝑛×𝑛 that describes the cumulative minimum ‘cost’ of moving through the distance matrix (the cost
matrix). Depending on the method, the costs involved are calculated differently. After this cost matrix has been
produced, a back tracing routine works backwards through the matrix and finds the lowest cost route. This path
describes the warping of the time series with respect to each other (i.e. where one is accelerating or decelerating
relative to the other)

In DTW, the algorithm will traverse the distance matrix and calculate the cumulative distance, by the minimum of
moving one step in both time series (i.e. when they are in sync) or moving only one step in one of the time series
(i.e. when one is accelerating relative to another. In ERP, the cumulative distance is based upon a penalty factor
(𝑔) when moving along only one of the time series. For a formal definition of these cost functions, see 2

In order to prevent the back tracing function from selecting a circuitous route through the cost matrix and warping
large parts of a time series in a way that is not realistic for the physical application, it is possible to apply a ‘warp
window’ to the cost matrix, which sets all values a given distance from the diagonal to a very high number (or
infinity), so the back trace algorithm does not go through them.

For a comparison of various time warping techniques, including some not implemented by timeWarpOB, see this
paper: 3. Additionally this paper 4 details the Minimum Jump cost (MJC) method.

1 Wagner-Fischer algorithm (Wikipedia)
2 Chen, Lei, and Raymond T Ng. 2004. “On the Marriage of Lp-Norms and Edit Distance..” Vldb, 792–803.
3 Serrà, Joan, and Josep Lluís Arcos. 2014. “An Empirical Evaluation of Similarity Measures for Time Series Classification..” Knowl.-

Based Syst. () cs.LG: 305–14. doi:10.1016/j.knosys.2014.04.035.
4 Serrà, Joan, and Josep Lluís Arcos. 2012. “A Competitive Measure to Assess the Similarity Between Two Time Series.” In Case-Based

Reasoning Research and Development, edited by Belén Díaz Agudo and Ian Watson, 7466:414–27. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-32986-9_31.

5

https://en.wikipedia.org/wiki/Wagner--Fischer_algorithm

timeWarpOB Documentation, Release 1.1.0

NB: with very long time series, the methods used in this package may be slow. This is as for a time series of
length 𝑛, an 𝑛 × 𝑛 matrix of values must be populated, meaning the algorithm runs on 𝒪(𝑛2). Alternatives for
large time series include the FTSE method 5 (not implemented in timeWarpOB).

4.2 Example usage

NOTE: This section assumes you have followed the instructions in the Installation section.

First, import timeWarpOB:

import timeWarpOB as tw

Then prepare two python lists of data, along with an optional list containing timestamps If you have data loaded
into a pandas dataframe called df, with two columns and an index of timestamps, you can convert them by:

a = list(df["columnA"])
b = list(df["columnB"])
ts = list(df.index)

Alternatively, generate a sin and cos series using the built-in test function (passing n for the number of half-cycles
to generate):

a, b, ts = tw.tests.basic.sinCos(n=2)

The two timeseries then be warped using the timeWarp() function, to return a warpObject:

wo = tw.timeWarp(a,b)

This will return a warp object. Useful statistics about the time warping result can be found in
wo[’warpStats’] and the total warp cost can be found in wo[’backTraceCost’]. More information
about the warp object and the calculation of the statistics can be found in the API reference section.

To plot the results of the time warp, use:

tw.plotting.plotWarp(a,b,wo,ts)

Which will give a warping result as a matplotlib chart, containing the following items:

• The central chart displays the cost matrix as a series of grey pixels in a graph. The darker pixels represent
higher costs. Time series ‘a’ runs along the vertical axis from bottom to top and time series ‘b’ runs along
the horizontal axis from left to right . The diagonal line (yellow) represents the path that would be taken
if the two series were perfectly in sync. The diagonal, dashed magenta lines show the extent of the warp
window (if applied) and the red line shows the back-traced path through the cost matrix. When the red line
deviates from the yellow diagonal line, the time series are accelerating or decelerating with respect to each
other. If the red line moves closer to the top-left corner, then this indicates that time series a is moving ahead
of time series b (and vice versa).

• To the left of the central plot is a graph of time series a (rotated, so each point aligns with its position on the
central chart). Below the central plot is a graph of time series b.

• To the right of the central plot, if a graph which shows the back-traced path, but rotated by 45 degrees
to facilitate better understanding of where the time series accelerate or decelerate relative to one an-
other. A dashed cyan line is added to show the average position of the red line (which is equal to the
warpStats.avgWarp value)

• Above the central plot, both time series are plotted against each other and red lines are added to show how
point on each time series are related according to the back-traced warp path.

5 Morse, Michael D, and Jignesh M Patel. 2007. “An Efficient and Accurate Method for Evaluating Time Series Similarity..” Sigmod.
New York, New York, USA: ACM Press, 569–80. doi:10.1145/1247480.1247544.

4.2. Example usage 6

timeWarpOB Documentation, Release 1.1.0

4.3 References

4.3. References 7

CHAPTER 5

API reference

The following is a reference guide for the functions in the modules of neurOB, sorted by submodule.

5.1 timeWarpOB

The timeWarpOB module contains the main functions for time warping. The other submodules contain functions
to help with plotting.

timeWarpOB.timeWarp(a, b, method=’DTW’, window=0, retMat=True, **kwargs)
This function is the main time warping interface, and acts as a convenient wrapper to the other functions.

Parameters

• a (list or numpy 1D-array) – First time series, which will be compared against
time series b

• b (list or numpy 1D-array) – Second time series (reference)

• method (str) – Time warping method {’DTW’,’ERP’} - see below

• window (int) – Time warping window constraint (default = 0)

• retMat (bool) – Whether to include the cost matrices in the returned object

• ERPg (int) – g-value (for method = ’ERP’ only)

Returns

• warpObj (dict) – A timeWarpOB warp object, containing the following items:

• warpObj.backTraceCost (float) – The sum cost of following the backtrace through the
cost matrix

• warpObj.backTracePath (list) – List or numpy array of pairs of coordinates in time-
space describing the backtrace through the cost matrix

• warpObj.cost (float) – Bottom left value on the cost matrix. With no warping window,
this should equal warpObj.backTraceCost

• warpObj.costMat (list) – A matrix (list of lists) or numpy array describing the cost
matrix between the two time series. For a series of length n, this matrix will be of size
n x n. Only output if retMat = True in the input parameters

• warpObj.distMat (list) – A matrix (list of lists) or numpy array describing the L1-
distance matrix between the two time series. For a series of length n, this matrix will be
of size n x n. Only output if retMat = True in the input parameters

• warpObj.warpWindow (int) – Returning the warp window parameter used (used by
plotting functions)

• warpObj.warpStats (dict) – Warp statistics object, containing:

8

https://docs.python.org/library/functions.html#str
https://docs.python.org/library/functions.html#int
https://docs.python.org/library/functions.html#bool
https://docs.python.org/library/functions.html#int

timeWarpOB Documentation, Release 1.1.0

• warpObj.warpStats.timeAhead (int) – The number of periods that time series a was
in sync with time series b.

• warpObj.warpStats.timeAhead (int) – The number of periods that time series a was
ahead of time series b.

• warpObj.warpStats.timeBehind (int) – The number of periods that time series a was
behind of time series b.

• warpObj.warpStats.amountAhead (int) – The total sum of the number of periods that
time series a was leading time series b by.

• warpObj.warpStats.amountBehind (int) – The total sum of the number of periods
that time series a was lagging time series b by.

• warpObj.warpStats.avgAhead (int) – Average amount of periods that a was ahead of
a by, i.e. amountAhead divided by timeAhead

• warpObj.warpStats.avgAhead (int) – Average amount of periods that a was behind b
by, i.e. amountBehind divided by timeBehind

• warpObj.warpStats.avgWarp (int) – Average amount of periods that a ahead
or behind b by, i.e. (amountAhead - amountBehind) / (timeAhead +
timeBehind + timeSync) This will give positive values if a is on average ahead
of b and negative values is a is on average behind b.

Notes

•If lists are supplied, the output matrices will be in list form. If numpy arrays are supplied, the output
will be as numpy arrays.

•Numpy arrays will calculate faster, as no internal type conversion is required.

•Time series should be of equal length. If they are not, the longer will be clipped from the end.

•ERP and DTW methods are available. For information on how they work, see the module documenta-
tion.

•Cost matricies should be returned for use by the plotting functions

timeWarpOB.L1distances(a, b)
Calcluates the L1 distance matrix between two time series.

Parameters

• a (list) – First time series, which will be compared against time series b

• b (list) – Second time series (reference)

Returns distance – A matrix (list of lists) describing the L1-distance matrix between the two
time series. For a series of length n, this matrix will be of size n x n.

Return type list

timeWarpOB.ERPwarp(dist, x, y, w=0, g=0)
Calcluates the ERP cost matrix between two time series.

Parameters

• dist (list) – A matrix (list of lists) describing the L1-distance matrix between two
time series. For a time series of length n, this matrix must be of size n x n.

• x (list) – First time series, which will be compared against time series y

• y (list) – Second time series (reference)

• w (int) – Time warping window constraint (default = 0)

• g (int) – ERP g-value (deafult = 0)

5.1. timeWarpOB 9

https://docs.python.org/library/functions.html#list
https://docs.python.org/library/functions.html#list
https://docs.python.org/library/functions.html#list
https://docs.python.org/library/functions.html#list
https://docs.python.org/library/functions.html#list
https://docs.python.org/library/functions.html#list
https://docs.python.org/library/functions.html#int
https://docs.python.org/library/functions.html#int

timeWarpOB Documentation, Release 1.1.0

Returns costMat – A matrix (list of lists) describing the ERP cost matrix between the two time
series. For a series of length n, this matrix will be of size n x n.

Return type list

timeWarpOB.DTWwarp(dist, x, y, w=0)
Calcluates the ERP cost matrix between two time series.

Parameters

• dist (list) – A matrix (list of lists) describing the L1-distance matrix between two
time series. For a time series of length n, this matrix must be of size n x n.

• x (list) – First time series, which will be compared against time series y

• y (list) – Second time series (reference)

• w (int) – Time warping window constraint (default = 0)

Returns costMat – A matrix (list of lists) describing the DTW cost matrix between the two time
series. For a series of length n, this matrix will be of size n x n.

Return type list

timeWarpOB.backTrace(costMat, dist)
Finds the optimal warping path by backtracking through the cost matrix.

Parameters

• dist (list) – A matrix (list of lists) describing the L1-distance matrix between two
time series. For a time series of length n, this matrix must be of size n x n.

• costMat (list) – A matrix (list of lists) describing the time-warped cost matrix
between two time series. For a time series of length n, this matrix must be of size n x n.

Returns

• path (list) – List of pairs of coordinates in time-space describing the backtrace through
the cost matrix

• backTraceCost (float) – The sum cost of following the backtrace through the cost ma-
trix

• warpStats (dict) – Warp statistics object, containing:

• warpStats.timeAhead (int) – The number of periods that time series a was in sync with
time series b.

• warpStats.timeAhead (int) – The number of periods that time series a was ahead of
time series b.

• warpStats.timeBehind (int) – The number of periods that time series a was behind of
time series b.

• warpStats.amountAhead (int) – The total sum of the number of periods that time series
a was leading time series b by.

• warpStats.amountBehind (int) – The total sum of the number of periods that time
series a was lagging time series b by.

• warpStats.avgAhead (int) – Average amount of periods that a was ahead of a by, i.e.
amountAhead divided by timeAhead

• warpStats.avgAhead (int) – Average amount of periods that a was behind b by, i.e.
amountBehind divided by timeBehind

• warpStats.avgWarp (int) – Average amount of periods that a ahead or behind b by,
i.e. (amountAhead - amountBehind) / (timeAhead + timeBehind
+ timeSync) This will give positive values if a is on average ahead of b and neg-
ative values is a is on average behind b.

5.1. timeWarpOB 10

https://docs.python.org/library/functions.html#list
https://docs.python.org/library/functions.html#list
https://docs.python.org/library/functions.html#list
https://docs.python.org/library/functions.html#list
https://docs.python.org/library/functions.html#int
https://docs.python.org/library/functions.html#list
https://docs.python.org/library/functions.html#list
https://docs.python.org/library/functions.html#list

timeWarpOB Documentation, Release 1.1.0

5.2 timeWarpOB.plotting

The timeWarpOB.plotting module contains functions for plotting the outcome of a time warp experiment.

timeWarpOB.plotting.plotWarp(a, b, warpObj, ts=[])
Plots the comprehensive results of a time warp, including the cost matrix, backtrace path, visualisation of
the warping statistics and the individual time series, with warp lines.

Parameters

• a (list) – First time series, which has been warped against time series b

• b (list) – Second time series (reference)

• warpObj (dict) – A timeWarpOB warp object - see output of
timeWarpOB.timeWarp(). NB: the object must contain the calclauted cost
matrix (i.e. retMat = True)

• ts (list) – Optional list of timestamps for displaying on the graphs. If no timestamps
are given, each time period will be given an incremented number, staring at 1.

Returns A composite plot showing the results of the time warp.

Return type matplotlib.pyplot

timeWarpOB.plotting.plotSeries(a, b, warpObj)
Plots the two time series with warp lines as a single plot

Parameters

• a (list) – First time series, which has been warped against time series b

• b (list) – Second time series (reference)

• warpObj (dict) – A timeWarpOB warp object - see output of
timeWarpOB.timeWarp().

Returns A single plot showing the warp lines on the two time series.

Return type matplotlib.pyplot

5.3 timeWarpOB.tests.basic

Basic tests of the timeWarpOB module functionality.

tests.basic.testWarp(x, y, ts)

Warps two time series, displays plots and prints the warp statistics.

Parameters

• x (list) – First time series, which has been warped against time series b

• y (list) – Second time series (reference)

• ts (list) – Optional list of timestamps for displaying on the graphs. If no timestamps
are given, each time period will be given an incremented number, staring at 1.

Returns

• matplotlib.pyplot – A composite plot showing the results of the time warp.

• warpStats (dict) – Warp statistics (printed to the console only)

tests.basic.sinCos(n=2, l=200)
Generates a test dataset of sin and cosine over 200 points in a time series.

Parameters

5.2. timeWarpOB.plotting 11

https://docs.python.org/library/functions.html#list
https://docs.python.org/library/functions.html#list
https://docs.python.org/library/stdtypes.html#dict
https://docs.python.org/library/functions.html#list
https://docs.python.org/library/functions.html#list
https://docs.python.org/library/functions.html#list
https://docs.python.org/library/stdtypes.html#dict
https://docs.python.org/library/functions.html#list
https://docs.python.org/library/functions.html#list
https://docs.python.org/library/functions.html#list

timeWarpOB Documentation, Release 1.1.0

• n (int) – Number of half-cycles to calculate the values over

• l (int) – Number of points in the time series

Returns

• x (list) – A list of sin(ts) values

• y (list) – A list of cos(ts) values

• ts (list) – A list of ‘timestamp’ values (radian angle values)

5.3. timeWarpOB.tests.basic 12

https://docs.python.org/library/functions.html#int
https://docs.python.org/library/functions.html#int

Index

B
backTrace() (in module timeWarpOB), 10

D
DTWwarp() (in module timeWarpOB), 10

E
ERPwarp() (in module timeWarpOB), 9

L
L1distances() (in module timeWarpOB), 9

P
plotSeries() (in module timeWarpOB.plotting), 11
plotWarp() (in module timeWarpOB.plotting), 11

S
sinCos() (in module tests.basic), 11

T
testWarp() (in module tests.basic), 11
timeWarp() (in module timeWarpOB), 8

13

	About timeWarpOB
	Version history
	v1.1
	v1.0.1

	Installation
	User guide
	Background to Time Warping
	Example usage
	References

	API reference
	timeWarpOB
	timeWarpOB.plotting
	timeWarpOB.tests.basic

