

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Apply methods

Common transformation of time series data involves lagging, leading,
calculating change, windowing operations and aggregation operations.
Each of these methods include keyword arguments that include defaults.

lag

The lag method simply described is putting yesterday’s value in
today’s timestamp. This is the most common use case, though there are
many times the distance between timestamps is not 1 time unit. An
arbitrary integer distance for lagging is supported, with the default
equal to 1.

The value of the cl object on Jan 3, 2000 is 111.94. On Jan 4, 2000 it
is 102.50 and on Jan 5, 2000 it’s 104.0:

using TimeSeries
using MarketData
cl[1:3]

The lag method moves values up one day:

lag(cl[1:3])

You will notice that since there is no known value for lagging the first
day, the observation on that timestamp is omitted. This behavior is
common in time series. When observations are consumed in a
transformation, the artifact dates are not preserved with a missingness
value. To pad the returned TimeArray with NaN values instead, you can
pass padding=true as a keyword argument:

lag(cl[1:3], padding=true)

lead

Leading values operates similarly to lagging values, but moves things in
the other direction. Arbitrary time distances is also supported:

using TimeSeries
using MarketData
lead(cl[1:3])

Since we are leading an object of length 3, only two values will be
transformed because we have lost a day to the transformation.

The cl object is 500 rows long so if we lead by 499 days, we should
put the last observation in the object (which happens to be on Dec 31,

	into the first date’s value slot:

lead(cl, 499)

diff

Differentiating a time series calculates the finite difference between
two consecutive points in the time series. The resulting time series
will have less points than the original. Those points are filled with
NaN values if padding=true.

using TimeSeries
using MarketData
diff(cl)

You can calculate higher order differences by using the keyword
parameter differences, accepting a positive integer. The default
value is differences=1. For instance, passing differences=2 is
equivalent to doing diff(diff(cl)).

percentchange

Calculating change between timestamps is a very common time series
operation. We use the terms percent change, returns and rate of change
interchangably. Depending on which domain you’re using time series, you
may prefer one name over the other.

This package names the function that performs this transformation
percentchange. You’re welcome to change this of course if that
represents too many letters for you to type:

using TimeSeries
roc = percentchange

The percentchange method includes the option to return a simple return
or a log return. The default is set to simple:

using MarketData
percentchange(cl)

Log returns are popular for downstream calculations since adding returns
is simpler than multiplying them. To create log returns, pass the symbol
:log to the method:

percentchange(cl, :log)

moving

Function signature:

moving(f, ta::TimeArray, window; padding=false)
moving(ta, window; padding=false) do x
 ...
end

Often when working with time series, you want to take a sliding window
view of the data and perform a calculation on it. The simplest example
of this is the moving average. For a 10-period moving average, you take
the first ten values, sum then and divide by 10 to get their average.
Then you slide the window down one and to the same thing. This operation
involves two important arguments: the function that you want to use on
your window and the size of the window you want to apply that function
over.

In our moving average example, we would pass arguments this way:

using TimeSeries
using MarketData
using Statistics
moving(mean, cl, 10)

As mentioned previously, we lose the first nine observations to the
consuming nature of this operation. They are not missing per se,
they simply do not exist.

upto

Another operation common in time series analysis is an aggregation
function. TimeSeries supports this with the upto method. Suppose you
want to keep track of the sum of all the values from the beginning to
the present timestamp. You would use the upto method like this:

using TimeSeries
using MarketData
upto(sum, cl)

basecall

Because the algorithm for the upto method needs to be
optimized further, it might be better to use a base method in its place
when one is available. Taking our summation example above, we could
instead use the basecall method and realize substantial performance
improvements:

using TimeSeries
using MarketData
basecall(cl, cumsum)

Combine methods

TimeSeries supports merging two TimeArrays, and squishing the timestamp
to a longer-term interval while representing values that make sense.

merge

The merge method performs joins between two TimeArrays. The default
behaviour is to perform an inner join, such that the resulting TimeArray
contains only timestamps that both TimeArrays share, and values that
correspond to that timestamp.

The AAPL object from MarketData has 8,336 rows of data from Dec 12, 1980
to Dec 31, 2013. If we merge it with the CAT object, which contains
13,090 rows of data from Jan 2, 1962 to Dec 31, 2013 we might expect the
resulting TimeArray to have 8,336 rows of data, corresponding to the
length of AAPL. This assumes that every day that Apple Computer, Inc.
traded, Caterpillar, Inc likewise traded. It turns out that this isn’t
true. CAT did not trade on Sep 27, 1985 because Hurricane Glorio shut
down the New York Stock Exchage. Apple Computer trades on the electronic
NASDAQ and its trading was not halted on that day. The result of the
merge should then be 8,335 rows:

using TimeSeries
using MarketData
AppleCat = merge(AAPL,CAT);
length(AppleCat)

Left, right, and outer joins can also be performed by passing the
corresponding symbol. These joins introduce NaN values when data for a
particular timestamp only exists in one of the series to be merged. For
example:

merge(op[1:3], cl[2:4], :left)
merge(op[1:3], cl[2:4], :right)
merge(op[1:3], cl[2:4], :outer)

The merge method allows users to specify the value for the meta
field of the merged object. When that value is not explicitly provided,
merge will concatenate the meta field values, assuming these values
to be strings. This covers the vast majority of use cases. In edge cases
when users do not provide a meta value and both field values are not
strings, the merged object will take on Void as its meta field
value:

meta(AppleCat)
CatApple = merge(CAT, AAPL, meta=47);
meta(CatApple)
meta(merge(AppleCat, CatApple))

collapse

The collapse method allows for compressing data into a larger time
frame. For example, converting daily data into monthly data. When
compressing dates, something rational has to be done with the values
that lived in the more granular time frame. To define what happens, a
function call is made. In our example, we want to compress the daily
cl closing prices from daily to monthly. It makes sense for us to take
the last value known and have that represented with the corresponding
timestamp. A non-exhaustive list of valid time methods is presented
below.

Dates method	Time length
————–	————-
day	daily
week	weekly
month	monthly
year	yearly

Showing this code in REPL:

using TimeSeries
using MarketData
collapse(cl,month,last)

We can also supply the function that chooses the timestamp and the
function that determines the corresponding value independently:

using Statistics
collapse(cl, month, last, mean)

vcat

The vcat method is used to concatenate time series: if you have two
time series with the same columns, but two distinct periods of time,
this function can merge them into a single object. Notably, it can be
used to merge data that is split into multiple files. Its behaviour is
quite different from merge, which does not consider that its arguments
are actually the same time series.

This concatenation is vertical (vcat) because it does not create
columns, it extends existing ones (which are represented vertically).

For example:

using TimeSeries
a = TimeArray([Date(2015, 10, 01), Date(2015, 11, 01)], [15, 16])
b = TimeArray([Date(2015, 12, 01)], [17])
[a; b]

map

This function allows complete transformation of the data within the time
series, with alteration on both the time stamps and the associated
values. It works exactly like Base.map: the first argument is a binary
function (the time stamp and the values) that returns two values,
respectively the new time stamp and the new vector of values. It does
not perform any kind of compression like collapse, but rather
transformations.

The simplest example is to postpone all time stamps in the given time
series, here by one year:

using TimeSeries
using Dates
ta = TimeArray([Date(2015, 10, 01), Date(2015, 11, 01)], [15, 16])
map((timestamp, values) -> (timestamp + Year(1), values), ta)

Customize TimeArray printing

A dot file named .timeseriesrc sets three variables that control how
TimeArrays are displayed. This doesn’t change the underlying TimeArray
and only controls how values are printed to REPL.

Here is an handy way to edit it:

julia> using TimeSeries

julia> edit(joinpath(dirname(pathof(TimeSeries)), ".timeseriesrc.jl"))

DECIMALS

DECIMALS = 4

The default setting is 4. It shows values out to four decimal places:

using TimeSeries
using MarketData
percentchange(cl)

You can change it to whatever value you prefer. If you change it to 6,
the same transformation will display like this:

julia> percentchange(cl)
499x1 TimeSeries.TimeArray{Float64,1,Date,Array{Float64,1}} 2000-01-04 to 2001-12-31
│ │ Close │
├────────────┼───────────┤
│ 2000-01-04 │ -0.084331 │
│ 2000-01-05 │ 0.014634 │
│ 2000-01-06 │ -0.086538 │
│ 2000-01-07 │ 0.047368 │
│ 2000-01-10 │ -0.017588 │
│ 2000-01-11 │ -0.051151 │
│ 2000-01-12 │ -0.059946 │
│ 2000-01-13 │ 0.109646 │
│ 2000-01-14 │ 0.03814 │
 ⋮
│ 2001-12-19 │ 0.029034 │
│ 2001-12-20 │ -0.043941 │
│ 2001-12-21 │ 0.015965 │
│ 2001-12-24 │ 0.017143 │
│ 2001-12-26 │ 0.006086 │
│ 2001-12-27 │ 0.026989 │
│ 2001-12-28 │ 0.016312 │
│ 2001-12-31 │ -0.023629 │

MISSING

This output is controlled with const values to accommodate difficult to
remember unicode numbers:

const NAN = "NaN"
const NA = "NA"
const BLACKHOLE = "\u2B24"
const DOTCIRCLE = "\u25CC"
const QUESTION = "\u003F"

MISSING = NAN

The default setting displays NaN, which represent the actual value
when padding=true is selected for certain transformations. You can
change it to show differently with the provided const values or roll
your own. Dot files are often used to customize your experience, so have
at it!

Here is an example in REPL with the default:

julia> lag(cl, padding=true)
500x1 TimeSeries.TimeArray{Float64,1,Date,Array{Float64,1}} 2000-01-03 to 2001-12-31
│ │ Close │
├────────────┼────────┤
│ 2000-01-03 │ NaN │
│ 2000-01-04 │ 111.94 │
│ 2000-01-05 │ 102.5 │
│ 2000-01-06 │ 104.0 │
│ 2000-01-07 │ 95.0 │
│ 2000-01-10 │ 99.5 │
│ 2000-01-11 │ 97.75 │
│ 2000-01-12 │ 92.75 │
│ 2000-01-13 │ 87.19 │
 ⋮
│ 2001-12-19 │ 21.01 │
│ 2001-12-20 │ 21.62 │
│ 2001-12-21 │ 20.67 │
│ 2001-12-24 │ 21.0 │
│ 2001-12-26 │ 21.36 │
│ 2001-12-27 │ 21.49 │
│ 2001-12-28 │ 22.07 │
│ 2001-12-31 │ 22.43 │

Here is an example in REPL with NA selected:

julia> lag(cl, padding=true)
500x1 TimeSeries.TimeArray{Float64,1,Date,Array{Float64,1}} 2000-01-03 to 2001-12-31
│ │ Close │
├────────────┼────────┤
│ 2000-01-03 │ NA │
│ 2000-01-04 │ 111.94 │
│ 2000-01-05 │ 102.5 │
│ 2000-01-06 │ 104.0 │
│ 2000-01-07 │ 95.0 │
│ 2000-01-10 │ 99.5 │
│ 2000-01-11 │ 97.75 │
│ 2000-01-12 │ 92.75 │
│ 2000-01-13 │ 87.19 │
 ⋮
│ 2001-12-19 │ 21.01 │
│ 2001-12-20 │ 21.62 │
│ 2001-12-21 │ 20.67 │
│ 2001-12-24 │ 21.0 │
│ 2001-12-26 │ 21.36 │
│ 2001-12-27 │ 21.49 │
│ 2001-12-28 │ 22.07 │
│ 2001-12-31 │ 22.43 │

Here is an example in REPL with BLACKHOLE selected:

julia> lag(cl, padding=true)
500x1 TimeSeries.TimeArray{Float64,1,Date,Array{Float64,1}} 2000-01-03 to 2001-12-31
│ │ Close │
├────────────┼────────┤
│ 2000-01-03 │ ⬤ │
│ 2000-01-04 │ 111.94 │
│ 2000-01-05 │ 102.5 │
│ 2000-01-06 │ 104.0 │
│ 2000-01-07 │ 95.0 │
│ 2000-01-10 │ 99.5 │
│ 2000-01-11 │ 97.75 │
│ 2000-01-12 │ 92.75 │
│ 2000-01-13 │ 87.19 │
 ⋮
│ 2001-12-19 │ 21.01 │
│ 2001-12-20 │ 21.62 │
│ 2001-12-21 │ 20.67 │
│ 2001-12-24 │ 21.0 │
│ 2001-12-26 │ 21.36 │
│ 2001-12-27 │ 21.49 │
│ 2001-12-28 │ 22.07 │
│ 2001-12-31 │ 22.43 │

Other const values include DOTCIRCLE and QUESTION.
The UNICORN value is a feature request.

Getting Started

TimeSeries is a registered package.
To add it to your Julia packages, simply do the following in REPL:

julia> Pkg.add("TimeSeries")

Throughout this tutorial, we’ll be using historical financial data sets,
which are made available in the MarketData package. MarketData is also
registered and can be added:

julia> Pkg.add("MarketData")

To create dummy data without using the MarketData package, simply use
the following code block:

using TimeSeries

using Dates
dates = Date(2018, 1, 1):Day(1):Date(2018, 12, 31)
ta = TimeArray(dates, rand(length(dates)))

TimeSeries Overview

The TimeSeries package provides convenient methods for working with time
series data in Julia.

Contents

Pages = [
 "getting_started.md",
 "timearray.md",
 "indexing.md",
 "split.md",
 "modify.md",
 "operators.md",
 "apply.md",
 "combine.md",
 "readwrite.md",
 "dotfile.md",
 "plotting.md",
]

Array indexing

Indexing out a time series is done with common bracketing semantics.

Row indexing

Integer

Example	Description	Indexing value
————–	—————————————	——————————–
[1]	First row of data only	single integer
[1:3]	First through third row only	integer range
[1:2:10]	Odd row between first to tenth row	integer range with step
[[1:3; 8]]	First through third row and eight row	integer range & single integer
[end]	Last row	

Examples in REPL:

using MarketData

ohlc[1]
ohlc[1:3]
ohlc[1:2:10]
ohlc[[1:3;8]]
ohlc[end]

Date and DateTime

Example	Description	Indexing value
———————————————-	——————————————–	—————-
[Date(2000, 1, 3)]	The row containing Jan 3, 2000 timestamp	single Date
[[Date(2000, 1, 3), Date(2000, 2, 4)]]	The rows containing Jan 3 & Feb 4, 2000	multiple Dates
[Date(2000, 1, 3):Day(1):Date(2000, 2, 4)]	The rows between Jan 3, 2000 & Feb 4, 2000	range of Date

Examples in REPL:

using MarketData
using Dates

ohlc[Date(2000, 1, 3)]
ohlc[Date(2000, 1, 3):Day(1):Date(2000, 2, 4)]

Column indexing

Symbol

Example	Description	Indexing value
——————-	—————————————-	——————
[:Open]	The column named :Open	single symbol
[:Open, :Close]	The columns named :Open and :Close	multiple symbols

Examples in REPL:

using MarketData
using Dates

ohlc[:Open]
ohlc[:Open, :Close]

Mixed approach

Example	Description	Indexing value
—————————–	——————————–	——————————-
[:Open][1:3]	:Open column & first 3 rows	single symbol & integer range
[:Open][Date(2000, 1, 3)]	:Open column and Jan 3, 2000	single symbol & Date

Examples in REPL:

using MarketData
using Dates

ohlc[:Open][1:3]
ohlc[:Open][Date(2000, 1, 3)]

Modify existing TimeArrays

Since TimeArrays are immutable, they cannot be altered or changed
in-place. In practical application, an existing TimeArray might need to
be used to create a new one with many of the same values. This might be
thought of as changing the fields of an existing TimeArray, but what
actually happens is a new TimeArray is created. To allow the use of an
existing TimeArray to create a new one, the update and rename
methods are provided.

update

The update method supports adding new observations only.
Older and in-between dates are not supported:

using TimeSeries
using MarketData
update(cl, Date(2002,1,1), 111.11)
update(cl, Date(2002,1,1), [111.11])
update(ohlc, Date(2002,1,1), [111.11 222.22 333.33 444.44])

rename

The rename method allows the column name(s) to be changed:

using TimeSeries
using MarketData
rename(cl, :Close′)
rename(cl, [:Close′])
rename(ohlc, [:Open′, :High′, :Low′, :Close′])
rename(ohlc, :Open => :Open′)
rename(ohlc, :Open => :Open′, :Close => :Close′)
rename(ohlc, Dict(:Open => :Open′, :Close => :Close′)...)
rename(Symbol ∘ uppercase ∘ string, ohlc)
rename(uppercase, ohlc, String)

Mathematical, comparison, and logical operators

TimeSeries supports common mathematical (such as .+), comparison
(such as .==) , and logic (such as .&) operators.
The operations are only calculated on values that share a timestamp.
All of the operations must be treat as dot-call.

Mathematical

Mathematical operators create a TimeArray object where values are
computed on shared timestamps when two TimeArray objects are provided.
Operations between a single TimeArray and Int or Float are also
supported. The number can precede the TimeArray object or vice versa
(e.g. cl .+ 2 or 2 .+ cl). Broadcasting single-column arrays over
multiple columns to perform operations is also supported.

The exclusion of / and ^ from this logic are special cases. In
matrix operations / has been confused with being equivalent to the
inverse, and because of the confusion base has excluded it. It is
likewise excluded here. Base uses ^ to indicate matrix
self-multiplication, and so it is not implemented in this context.

Operator	Description
———-	—————————————-
.+	arithmetic element-wise addition
.-	arithmetic element-wise subtraction
.*	arithmetic element-wise multiplication
./	arithmetic element-wise division
.^	arithmetic element-wise exponentiation
.%	arithmetic element-wise remainder

Comparison

Comparison operators create a TimeArray of type Bool. Values are
compared on shared timestamps when two TimeArray objects are provided.
Broadcasting single-column arrays over multiple columns to perform
comparisons is supported, as are comparisons between a single TimeArray
and Int, Float, or Bool values. The semantics of an non-dot
operators (>) is unclear, and such operators are not supported.

Operator	Description
———-	———————————————–
.>	element-wise greater-than comparison
.<	element-wise less-than comparison
.==	element-wise equivalent comparison
.>=	element-wise greater-than or equal comparison
.<=	element-wise less-than or equal comparison
.!=	element-wise not-equivalent comparison

Logic

Logical operators are defined for TimeArrays of type Bool and return a
TimeArray of type Bool. Values are computed on shared timestamps when
two TimeArray objects are provided. Operations between a single
TimeArray and Bool are also supported.

| Operator | Description |
|————|————————–|
| .& | element-wise logical AND |
| .\| | element-wise logical OR |
| .!, .~ | element-wise logical NOT |
| .⊻ | element-wise logical XOR |

Plotting

TimeSeries defines a recipe that allows plotting to a number of
different plotting packages using the
Plots.jl [https://github.com/JuliaPlots/Plots.jl] framework
(no plotting packages will be automatically installed by TimeSeries).

plot

The recipe allows TimeArray objects to be passed as input to plot. The
recipe will plot each variable as an individual line, aligning all
variables to the same y axis (here shown using PyPlot as a plotting
backend).

using Plots, MarketData, TimeSeries
pyplot()
plot(MarketData.ohlc)

[image: image]

More sophisticated plots can be created by using keyword attributes and
subsets:

plot(MarketData.ohlc[:Low], seriestype = :scatter, markersize = 3, color = :red, markeralpha = 0.4, grid = true)

[image: image]

A complete list of all attributes and plotting possibilities can be
found in the Plots
documentation [http://docs.juliaplots.org/latest/supported/].

Plotting candlestick:

plot(TimeSeries.Candlestick(MarketData.ohlc))

[image: image]

I/O

Reading/writing a csv file into a TimeArray object is supported.

readtimearray

The readtimearray method is a wrapper for the DelimitedFiles.readdlm method
that returns a TimeArray.

readtimearray(fname; delim=',', meta=nothing, format="")

The fname argument is a string that represents the location and name
of the csv file that you wish to parse into a TimeArray object.
Optionally, you can add a value to the meta field.

More generally, this function accepts arbitrary delimiters with delim,
just like DelimitedFiles.readdlm.

For DateTime data that has odd formatting, a format argument is
provided where users can pass the format of their data.

For example:

ta = readtimearray("close.csv", format="dd/mm/yyyy HH:MM", delim=';')

A more robust regex parsing engine is planned so users will not need to
pass a time format for anything but the most edge cases.

writetimearray

The writetimearray method writes a TimeArray to the specified file as
comma-separated values. For example:

julia> writetimearray(cl[1:5], "close.csv")

shell> cat close.csv
Timestamp,Close
2000-01-03,111.94
2000-01-04,102.5
2000-01-05,104.0
2000-01-06,95.0
2000-01-07,99.5

Splitting by conditions

Specific methods for segmenting on time ranges or if condition is met is
supported with the following methods.

when

The when methods allows aggregating elements from a TimeArray into
specific time periods, such as Mondays or the month of October:

using TimeSeries
using MarketData
when(cl, dayofweek, 1)
when(cl, dayname, "Monday")

The period argument holds a valid Date method. Below are currently
available alternatives.

Dates method	Example
——————–	————————–
day	Jan 3, 2000 = 3
dayname	Jan 3, 2000 = “Monday”
week	Jan 3, 2000 = 1
month	Jan 3, 2000 = 1
monthname	Jan 3, 2000 = “January”
year	Jan 3, 2000 = 2000
dayofweek	Monday = 1
dayofweekofmonth	Fourth Monday in Jan = 4
dayofyear	Dec 31, 2000 = 366
quarterofyear	Dec 31, 2000 = 4
dayofquarter	Dec 31, 2000 = 93

from

The from method truncates a TimeArray starting with the date passed to
the method:

using TimeSeries
using MarketData

from(cl, Date(2001, 12, 27))

to

The to method truncates a TimeArray after the date passed to the
method:

using TimeSeries
using MarketData

to(cl, Date(2000, 1, 5))

findwhen

The findwhen method test a condition and returns a vector of Date or
DateTime where the condition is true:

using TimeSeries
using MarketData

green = findwhen(ohlc[:Close] .> ohlc[:Open]);
typeof(green)
ohlc[green]

findall

The findall method tests a condition and returns a vector of Int
representing the row in the array where the condition is true:

using TimeSeries
using MarketData

red = findall(ohlc[:Close] .< ohlc[:Open]);
typeof(red)
ohlc[red]

Splitting by head and tail

head

The head method defaults to returning only the first value in a
TimeArray. By selecting the second positional argument to a different
value, the user can modify how many from the top are selected:

using TimeSeries
using MarketData

head(cl)

tail

The tail method defaults to returning only the last value in a
TimeArray. By selecting the second positional argument to a different
value, the user can modify how many from the bottom are selected:

using TimeSeries
using MarketData

tail(cl)
tail(cl, 3)

The TimeArray time series type

The TimeArray time series type is defined here
(with inner constructor code removed for readability):

struct TimeArray{T,N,D<:TimeType,A<:AbstractArray{T,N}} <: AbstractTimeSeries{T,N,D}
 timestamp::Vector{D}
 values::A # some kind of AbstractArray{T,N}
 colnames::Vector{Symbol}
 meta::Any

 # inner constructor code enforcing invariants
end

There are four fields for the type.

timestamp

The timestamp field consists of a vector of values of a child type of
of TimeType - in practise either Date or DateTime. The DateTime
type is similar to the Date type except it represents time frames
smaller than a day. For the construction of a TimeArray to work, this
vector needs to be sorted. If the vector includes dates that are not
sequential, the construction of the object will error out. The vector
also needs to be ordered from oldest to latest date, but this can be
handled by the constructor and will not prohibit an object from being
created.

values

The values field holds the data from the time series and its row count
must match the length of the timestamp array. If these do not match,
the constructor will fail. All the values inside the values array must
be of the same type.

colnames

The colnames field is a vector of Symbol and contains the
names of the columns for each column in the values field. The length
of this vector must match the column count of the values array, or the
constructor will fail. Since TimeArrays are indexable on column names,
duplicate names in the colnames vector will be modified by the inner
constructor. Each subsequent duplicate name will be appended by _n
where n enumerates from 1.

meta

The meta field defaults to holding nothing, which is represented by
type Nothing. This default is designed to allow programmers to ignore
this field. For those who wish to utilize this field, meta can hold
common types such as String or more elaborate user-defined types. One
might want to assign a name to an object that is immutable versus
relying on variable bindings outside of the object’s type fields.

Constructors

TimeArray

Fields getter functions

There are four field getter functions exported.
They are named as same as the field names.

	timestamp

	values

	colnames

	meta

timestamp
values
colnames
meta

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

