

 Navigation

 	
 index

 	
 next |

 	TimeFlow 0 documentation

TimeFlow

There are two main components of TimeFlow:

	A BaseRoutine abstract class (and some more specific subclasses
simple concrete ready-to-go subclasses) to organize your workflow into steps.

	A yaml-based declarative syntax of describing your workflow.

	A script for running

The author is talented at counting and mental math.

Contents:

	Quickstart

	Routines
	Base Classes

	Built-in Routines

	Declarative Workflows
	The YAML file

	Running a Workflow

 Copyright 2013, Philip Schleihauf.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	TimeFlow 0 documentation

Quickstart

asdf;lkj

 Copyright 2013, Philip Schleihauf.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	TimeFlow 0 documentation

Routines

Routines are the building blocks of TimeFlow workflows. If you are scripting in
python, you can use them directly. Support for building non-python algorithms
into TimeFlow routines is planned.

The left-most column is used as the independent variable when joining tables,
and in all standard routines (currently only linear_interpolate) which
require an independant reference variable.

Base Classes

RoutineBase

An abstract base class that gives the basic TimeFlow mechanics for free.

routines just import and then export.

when something calls one of their exports, they try to import whatever is
necessary and then give the result.

future plan: ask if data has changed (which gets propagated all the way up to
the first file, or other thing that has actually changed. if nothing changed,
reply with the memoized value.)

Stores data internally on the [something] property.

Routine Cycle

	The routine is asked if its data has changed.

	if it knows, it can respond right away.

	if it depends on whether a dependency’s data has changed, it passes
the request up the chain, and passes the response back down.

	The routine may be asked for its data, possibly with arguments.

	The routine may ask a dependency for data.

	The routine provides gives the data back.

The first and last routines in a chain are special. The first one can get its
data from wherever it wants, but must still provide returned data in the
standard timeflow format. The last one has to get data in that format, but may
return data in an arbirary format. Or do anything, like open a plot.

How do Routines Affect Data?

When a routine is asked for its output, it should return one of

	The original table augmented with one or more extra columns

	The original table, with modifications to values in one or more columns

Routines may accept arguments with data requests, and return data in a form
appropriate to the arguments. For example, a filter might, by default, add a
column to the data annotating whether a row passed or failed a criteria. Passing
the routine an if argument when requesting data could cause it to
instead remove rows which pass or fail the criteria.

The Data Proxy

Data proxies are objects attached to a routine which link it to its data source.
Arguments may be attached to the proxy to be passed onto the source (see above),
and some extra stuff is available.

Two ancestor tables can be joined by specifying with with another
routine on the data proxy. Currently, it’s a left join on the left-most column
of each table. The left table takes precedence on conflicting columns.

More flexible joining options will be explored at a later time.

Built-in Routines

The built-in routines are useful on their own, but also designed to be
subclassed. Extend away!

File

Import data from a variety of formats

eventually this will have an answer for whether the file has changed.

Export

numpy, pickle, csv, ...

Plot

make pretty graphs

 Copyright 2013, Philip Schleihauf.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	TimeFlow 0 documentation

Declarative Workflows

Once you have your collection of Routines, you can describe the workflow itself
with a yaml file.

The YAML file

The yaml file is a collection of descriptions of your routines. There
are three important aspects of a routine description:

	The label. Other routines will refer to it by this label.

	The data property. Specifies from which other routine it gets the
data it acts on.

	The other properties. They will be passed as constructor arguments to the
properties.

The Label

The label must simply be a valid json label. Alpha-numeric plus underscores,
starting with a letter.

The Data Property

The data property has one required sub-property, from.
from can name another routine in the yaml workflow, or an external
routine. External routines are detected by the presence of a dot (.) in
the value.

Aditional sub-properties are allowed on data. They will be passed as
arguments when the data is accessed. For example, a routine which filters the
data might take a boolean argument when accessed, to toggle whether to provide
rows which were matched or unmatched.

For from properties containg ., the following strategy is used
to try and access the routine:

	Look for a .yaml files in the current directory with a name matching
the label preceding the last ., with a routine matching the label
following the last ..

	Try to import a module using the the part of the label preceding the last
., with an importable object matching the label following the last
..

Additional Properties

Any additional properties will tell the routine about itself when created.

Running a Workflow

Run the whole thing: timeflow workflow.yaml

Run a routine (and all its dependencies): timeflow workflow.yaml routine

Specifiy what sort of output you want: timeflow workflow -o csv

	The label after the -o file will first try to use a builtin timeflow,
or try to import an export routine if it contains a dot.

 Copyright 2013, Philip Schleihauf.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	TimeFlow 0 documentation

Index

 Copyright 2013, Philip Schleihauf.
 Created using Sphinx 1.3.5.

 _static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		TimeFlow 0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Philip Schleihauf.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/comment-close.png

_static/up.png

_static/minus.png

