
Tiled Documentation
Release 1.10.2

Thorbjørn Lindeijer

04.08.2023

Benutzerhandbuch

1 Einführung 3
1.1 Über Tiled . 3
1.2 Erste Schritte . 4

2 Projekte 9
2.1 Bestandteile eines Projektes . 9
2.2 Sessions . 10
2.3 Opening a File in the Project . 10

3 Working with Layers 11
3.1 Layer Types . 12
3.2 Parallax Scrolling Factor . 13
3.3 Tinting Layers . 14

4 Editing Tile Layers 15
4.1 Stamp Brush . 15
4.2 Terrain Brush . 16
4.3 Bucket Fill Tool . 16
4.4 Shape Fill Tool . 16
4.5 Eraser . 16
4.6 Selection Tools . 17
4.7 Managing Tile Stamps . 17

5 Working with Objects 19
5.1 Placement Tools . 19
5.2 Objekte auswählen . 21
5.3 Edit Polygons . 23
5.4 Objekte verbinden . 23

6 Editing Tilesets 25
6.1 Two Types of Tileset . 25
6.2 Tileset Properties . 26
6.3 Tile Properties . 26
6.4 Terrain Information . 27
6.5 Tile Collision Editor . 27
6.6 Tile Animation Editor . 28

i

7 Custom Properties 31
7.1 Adding Properties . 32
7.2 Custom Types . 32
7.3 Tile Property Inheritance . 33

8 Using Templates 35
8.1 Creating Templates . 36
8.2 Creating Template Instances . 36
8.3 Editing Templates . 36
8.4 Detaching Template Instances . 37

9 Using Terrains 39
9.1 Define the Terrain Information . 40
9.2 Editing with the Terrain Brush . 42
9.3 Terrain Fill Mode . 43
9.4 Tile and Terrain Probability . 43
9.5 Tile Transformations . 45
9.6 Final Words . 45

10 Using Infinite Maps 47
10.1 Creating an Infinite Map . 48
10.2 Editing the Infinite Map . 48
10.3 Conversion from Infinite to Finite Map and Vice Versa . 48

11 Working with Worlds 53
11.1 Welt festlegen . 54
11.2 Welt bearbeiten . 54
11.3 Musterabgleich verwenden . 55
11.4 Nur direkte Nachbarn werden angezeigt . 56

12 Using Commands 57
12.1 The Command Button . 57
12.2 Editing Commands . 57
12.3 Example Commands . 59

13 Automapping 61
13.1 Was ist Automapping? . 61
13.2 Setting Up the Rules File . 61
13.3 Setting Up a Rule Map . 62
13.4 Automapping Properties . 67
13.5 Examples . 69
13.6 Updating Legacy Rules . 77
13.7 Credits . 78

14 Export Formats 79
14.1 Generic File Formats . 79
14.2 Defold . 80
14.3 GameMaker: Studio 1.4 . 81
14.4 GameMaker Studio 2.3 . 83
14.5 Godot 4 . 88
14.6 tBIN . 90
14.7 Other Formats . 91
14.8 Custom Export Formats . 91
14.9 Export as Image . 92

ii

15 Tastenkürzel 93
15.1 General . 93
15.2 Bei ausgewählter Kachelebene . 95
15.3 Bei ausgewählter Objektebene . 95
15.4 Im Eigenschaften-Dialog . 96

16 User Preferences 97
16.1 General . 97
16.2 Interface . 99
16.3 Keyboard . 100
16.4 Theme . 100
16.5 Plugins . 100

17 Python Scripts 101
17.1 Example Export Plugin . 102
17.2 Debugging Your Script . 103
17.3 API Reference . 103

18 Libraries and Frameworks 105
18.1 Support by Language . 105
18.2 Support by Framework . 108

19 TMX Map Format 115
19.1 <map> . 116
19.2 <editorsettings> . 117
19.3 <tileset> . 117
19.4 <layer> . 121
19.5 <objectgroup> . 122
19.6 <imagelayer> . 125
19.7 <group> . 125
19.8 <properties> . 126
19.9 Template Files . 127

20 TMX Changelog 129
20.1 Tiled 1.10 . 129
20.2 Tiled 1.9 . 129
20.3 Tiled 1.8 . 130
20.4 Tiled 1.7 . 130
20.5 Tiled 1.5 . 130
20.6 Tiled 1.4 . 130
20.7 Tiled 1.3 . 131
20.8 Tiled 1.2.1 . 131
20.9 Tiled 1.2 . 131
20.10 Tiled 1.1 . 131
20.11 Tiled 1.0 . 131
20.12 Tiled 0.18 . 132
20.13 Tiled 0.17 . 132
20.14 Tiled 0.16 . 132
20.15 Tiled 0.15 . 132
20.16 Tiled 0.14 . 132
20.17 Tiled 0.13 . 132
20.18 Tiled 0.12 . 133
20.19 Tiled 0.11 . 133
20.20 Tiled 0.10 . 133
20.21 Tiled 0.9 . 134

iii

20.22 Tiled 0.8 . 135

21 JSON-Kartenformat 137
21.1 Karte . 138
21.2 Ebene . 139
21.3 Chunk . 141
21.4 Objekt . 141
21.5 Text . 145
21.6 Tileset . 146
21.7 Objektvorlage . 150
21.8 Eigenschaft . 150
21.9 Punkt . 151
21.10 Changelog . 151

22 Global Tile IDs 155
22.1 Tile Flipping . 155
22.2 Mapping a GID to a Local Tile ID . 156
22.3 Code example . 156

23 Scripting 159
23.1 Einführung . 159
23.2 API Reference . 161

iv

Tiled Documentation, Release 1.10.2

Bemerkung: Wenn Sie nicht gefunden haben wonach Sie suchen, zögern Sie bitte nicht im Tiled Forum <htt-
ps://discourse.mapeditor.org> _ oder auf Tiled Discord nachzufragen.

Benutzerhandbuch 1

https://discord.gg/39wbTv7

Tiled Documentation, Release 1.10.2

2 Benutzerhandbuch

KAPITEL 1

Einführung

1.1 Über Tiled

Tiled in ein 2D-Leveleditor mit dessen Hilfe du Inhalte für dein Spiel erstellen kannst. Seine wichtigste Funktion
liegt in der Erstellung verschiedenster Kartentypen mit Hilfe von Kacheln. Daneben kannst du Bilder frei plat-
zieren oder aber auch Zusatzinformationen, die für dein Spiel benötigt werden, einfügen. Der Fokus von Tiled
liegt dabei auf größtmöglicher Flexibilität bei gleichzeitig einfacher Benutzbarkeit.
Tiled unterstützt dabei einfache rechteckige Ebenen, aber auch isometrische Projektion, gestaffelte isometrische Pro-
jektion und gestaffelte hexagonale Ebenen. Ein Tileset kann aus einem einzelnen Bild mit mehreren Kacheln bestehen
oder es existiert als Sammlung verschiedener Bilder. Mit Hilfe von Versatz, benutzerdefinierten Entfernungen und
Zeichenreihenfolgen werden verschiedene Techniken zur Tiefendarstellung unterstützt.

Das Hauptwerkzeug für die Bearbeitung von Kachelebenen ist der Stempel. Mit ihm können ganze Gebiete effizient
gefüllt oder kopiert werden. Tiled erlaubt auch das Zeichnen von Linien und Kreisen. Zusätzlich existieren zahlreiche
Auswahlwerkzeuge und die Möglichkeit Terrainübergänge automatisch anlegen zu lassen. Daneben erleichtert Tiled
die Arbeit durch ein Werkzeug zur Mustererkennung pattern-matching work.

Tiled unterstützt auch Objektebenen. Ursprünglich nur für die Speicherung von Zusatzinformationen in der Karte ge-
dacht, ist es seit einigen Versionen möglich, auch Bilder in einer Objektebene zu speichern. Die Elemente einer Ob-
jektebene werden als Rechtecke, Punkte, Ellipsen, Polygone oder Polygonzüge definiert. Objekte in solch einer Ebene
sind nicht an das Raster gebunden und können darüber hinaus skaliert und rotiert werden. Objektebenen bieten die
Flexibilität nahezu jede Art von Information zu speichern, die in einem Spiel benötigt werden.

Daneben bietet Tiled weitere nützliche Funktionen, wie zum Beispiel die Unterstützung benutzerdefinierter Karten- und
Tilesetformate mittels Plugins, Erweiterungen über JavaScript, einen Stempelspeicher, Unterstützung bei Animationen
und einen Kollisionseditor.

3

Tiled Documentation, Release 1.10.2

1.2 Erste Schritte

1.2.1 Ein neues Projekt erstellen

Wenn wir Tiled zum ersten Mal starten, werden wir von folgendem Fenster begrüßt:

Abb. 1: Startfenster

To make all our assets readily accessible from the Project view, as well as to be able to quickly switch between multiple
projects, it is recommended to first set up a Tiled project. This is however an entirely optional step that can be skipped
when desired.

Choose File -> New -> New Project. . . to create a new project file. It is recommended to save this file in the root of
your project. The directory in which you store the project will be automatically added, so that its files are visible in the
Project view.

When necessary, you can add additional folders to the project or replace the one added by default. For example, you
could choose to add several top-level folders like „tilesets“, „maps“, „templates“, etc. Right-click in the Project view
and choose Add Folder to Project. . . to add the relevant folders.

Hinweis: You can press Ctrl+Shift+P to open the action search widget, which can provide a faster way to get to
actions than looking for them in the menus!

4 Kapitel 1. Einführung

Tiled Documentation, Release 1.10.2

1.2.2 Neue Karte erstellen

Eine neue Karte kann über die Menüeinträge Datei -> Neu -> Neue Karte. . . (Strg+N) angelegt werden. Dadurch öffnet
sich folgender Dialog:

Abb. 2: Neue Karte

Hier wählen wir die ínitiale Kartengröße, die Kachelgröße, das Format für Kachelebenen, die Zeichenreihefolge (nur für
rechtwinklige Karten verfügbar) und ob die Karte unendlich groß ist. All diese Werte können später geändert werden.
Es ist also nicht erforderlich, alles von Anfang an richtig einzustellen.

Bemerkung: Wenn ein Projekt erstellt wurde, empfehlen wir die neue Karte in einem der Verzeichnisse dieses Pro-
jektes zu speichern. Dadurch ist ein schneller Zugriff über Datei -> Datei in Projekt öffnen. . . (Strg+P) möglich.

Nachdem wir die Karte gespeichert haben, sehen wir das Kachelraster für die standardmäßig erstellte Kachelebene. Jetzt
brauchen wir nur noch ein Tileset, damit wir überhaupt Kacheln einfügen können. Dafür öffnen wir den Tileset-Dialog
über Datei -> Neu -> Neues Tileset. . . :

Im Dialog klicken wir jetzt auf Durchsuchen. . . und wählen das Tileset tmw_desert_spacing.png, welches sich im
Installationsverzeichnis von Tiled befindet (ein eigenes Tileset tut es natürlich auch). Die Kacheln im mitgelieferte
Tileset haben eine Größe von 32x32 Pixeln, mit einem 1-Pixel starken Seitenrand und einem Abstand von einem Pixel
zwischen den Kacheln. Normalerweise müssen wir diese Werte aber nicht ändern.

Bemerkung: Die Option In Karte einbetten nutzen wir nicht. Das sollten wir auch bei anderen Tilesets so halten, da-
mit wir unser Set problemlos in verschiedenen Karten nutzen können ohne es immer wieder neu erstellen zu müssen.
Zusätzlich speichern wir es in einer eigenen Datei, um später verschiedene Dinge, wie Kacheleigenschaften, Terrain-
definitionen, Kollisionsformen und ähnliches einfach benutzen und ändern zu können. Durch die eigene Datei wird
außerdem sichergestellt, dass wir unser Set in all unseren Karten nutzen können.

1.2. Erste Schritte 5

Tiled Documentation, Release 1.10.2

Abb. 3: Neues Tileset

Nach dem Speichern sollte Tiled so aussehen:

Für dem Moment wollen wir nichts weiter mit dem Tileset tun, also gehen wir zurück zur Karte:

Jetzt sind wir bereit Kacheln auszuwählen und eine Karte zu bauen. Aber zuerst, sollten wir uns noch die
:doc:`verschiedenen Arten von Ebenen <layers>`ansehen, die Tiled zu bieten hat.

Bemerkung: Sehr viel von diesem Handbuch muss noch geschrieben werden, aber glücklicherweise gibt es auf Ga-
mesFromScratch.com schon ein paar sehr schöne Tiled-Tutorials. Zusätzlich bieten die meisten :doc: Engines und
Frameworks </reference/support-for-tmx-maps>, das Tiled-Format untersützen, nützliche Informationen.

6 Kapitel 1. Einführung

Tiled Documentation, Release 1.10.2

Abb. 4: Erzeugtes Tileset

Abb. 5: Tileset, dass jetzt auf der Karte genutzt werden kann

1.2. Erste Schritte 7

Tiled Documentation, Release 1.10.2

8 Kapitel 1. Einführung

KAPITEL 2

Projekte

2.1 Bestandteile eines Projektes

Eine Projektdatei definiert sich hauptsächlich über eine Liste von Verzeichnissen mit Assets, die zu dem Projekt gehö-
ren. Zusätzlich ist sie der Anker für :ref: die Sitzungsdatei sessions>.

Neben der Liste von Verzeichnissen, verfügt ein Projekt über ein paar Eigenschaften. Diese können in einem Dialog,
der über Projekt -> Projekteigenschaften. . . aufgerufen wird, geändert werden.

Compatibility Version
The Tiled version to target when saving or exporting files. Can be used to maintain compatibility with earlier
versions of Tiled or with Libraries and Frameworks that do not yet support certain backwards-incompatible
changes.

Verzeichnis für Erweiterungen
A project-specific directory where you can put Tiled extensions. It defaults to simply extensions, so when you
have a directory called „extensions“ alongside your project file it will be picked up automatically.

The directory is loaded in addition to the global extensions.

Automapping Rules File
Refers to an Automapping rules file, or a single rule map, that should be used for all maps while this project is
loaded. It is ignored for maps that have a rules.txt file saved alongside them.

Any types defined in the Custom Types Editor are also saved in the project.

9

Tiled Documentation, Release 1.10.2

2.2 Sessions

Each project file gets an associated .tiled-session file, stored alongside it. The session file should generally not be shared
with others and stores your last opened files, part of their last editor state, last used parameters in dialogs, etc.

When switching projects Tiled automatically switches to the associated session, so you can easily resume where you
left off. When no project is loaded a global session file is used.

2.3 Opening a File in the Project

Another advantage of setting up a project is that you can quickly open any file with a recognized extension located in
one of the folders of the project. Use File -> Open File in Project (Ctrl+P) to open the file filter and just type the name
of the file you’d like to open.

Abb. 1: Open File in Project

Future Extensions

There are many ways in which the projects could be made more powerful:

• Make the project accessible through the scripting API .

• Allow turning off features on a per-project basis, to simplify the UI and reduce the chance of accidentally
doing something your project doesn’t support.

• Recognizing the various assets in your project, so that selection of images, tilesets and templates can be made
more efficient (potentially replacing the system file dialog).

If you like any of these plans, please help me getting around to it faster by sponsoring Tiled development. The more
support I receive the more time I can afford to spend improving Tiled!

10 Kapitel 2. Projekte

https://www.mapeditor.org/donate

KAPITEL 3

Working with Layers

A Tiled map supports various sorts of content, and this content is organized into various different layers. The most
common layers are the Tile Layer and the Object Layer. There is also an Image Layer for including simple foreground
or background graphics. The order of the layers determines the rendering order of your content.

Layers can be hidden, made only partially visible and can be locked. Layers also have an offset and a parallax scrolling
factor, which can be used to position them independently of each other, for example to fake depth. Finally their contents
can be tinted by multiplying with a custom tint color.

Abb. 1: The eye and lock icon toggle the visibility and locked state of a layer respectively.

You use Group Layers to organize the layers into a hierarchy. This makes it more comfortable to work with a large

11

Tiled Documentation, Release 1.10.2

amount of layers.

3.1 Layer Types

3.1.1 Tile Layers

Tile layers provide an efficient way of storing a large area filled with tile data. The data is a simple array of tile references
and as such no additional information can be stored for each location. The only extra information stored are a few
flags, that allow tile graphics to be flipped vertically, horizontally or anti-diagonally (to support rotation in 90-degree
increments).

The information needed to render each tile layer is stored with the map, which specifies the position and rendering
order of the tiles based on the orientation and various other properties.

Despite only being able to refer to tiles, tile layers can also be useful for defining various bits of non-graphical infor-
mation in your level. Collision information can often be conveyed using a special tileset, and any kind of object that
does not need custom properties and is always aligned to the grid can also be placed on a tile layer.

3.1.2 Object Layers

Object layers are useful because they can store many kinds of information that would not fit in a tile layer. Objects can
be freely positioned, resized and rotated. They can also have individual custom properties. There are many kinds of
objects:

• Rectangle - for marking custom rectangular areas

• Ellipse - for marking custom ellipse or circular areas

• Point - for marking exact locations (since Tiled 1.1)

• Polygon - for when a rectangle or ellipse doesn’t cut it (often a collision area)

• Polyline - can be a path to follow or a wall to collide with

• Tile - for freely placing, scaling and rotating your tile graphics

• Text - for custom text or notes (since Tiled 1.0)

All objects can be named, in which case their name will show up in a label above them (by default only for selected
objects). Objects can also be given a class, which is useful since it can be used to customize the color of their label and
the available custom properties for this object. For tile objects, the class can be inherited from their tile.

For most map types, objects are positioned in plain pixels. The only exception to this are isometric maps (not isometric
staggered). For isometric maps, it was deemed useful to store their positions in a projected coordinate space. For this,
the isometric tiles are assumed to represent projected squares with both sides equal to the tile height. If you’re using a
different coordinate space for objects in your isometric game, you’ll need to convert these coordinates accordingly.

The object width and height is also mostly stored in pixels. For isometric maps, all shape objects (rectangle, point,
ellipse, polygon and polyline) are projected into the same coordinate space described above. This is based on the
assumption that these objects are generally used to mark areas on the map.

12 Kapitel 3. Working with Layers

Tiled Documentation, Release 1.10.2

3.1.3 Image Layers

Image layers provide a way to quickly include a single image as foreground or background of your map. They currently
have limited functionality and you may consider adding the image as a Tileset instead and place it as a Tile Object.
This way, you gain the ability to freely scale and rotate the image.

However, image layers can be repeated along the respective axes through their Repeat X and Repeat Y properties.

The other advantage of using an image layer is that it avoids selecting / dragging the image while using the Select
Objects tool. However, since Tiled 1.1 this can also be achieved by locking the object layer containing the tile object
you’d like to avoid interacting with.

3.1.4 Group Layers

Group layers work like folders and can be used for organizing the layers into a hierarchy. This is mainly useful when
your map contains a large amount of layers.

The visibility, opacity, offset, lock and tint color of a group layer affects all child layers.

Layers can be easily dragged in and out of groups with the mouse. The Raise Layer / Lower Layer actions also allow
moving layers in and out of groups.

3.2 Parallax Scrolling Factor

The parallax scrolling factor determines the amount by which the layer moves in relation to the camera.

By default its value is 1, which means its position on the screen changes at the same rate as the position of the camera
(in opposite direction). A lower value makes it move slower, simulating a layer that is further away, whereas a higher
value makes it move faster, simulating a layer positioned in between the screen and the camera.

A value of 0 makes the layer not move at all, which can be useful to include some pieces of your ingame UI or to mark
its general viewport boundaries.

Negative values make the layer move in opposite direction, though this is rarely useful.

When the parallax scrolling factor is set on a group layer, it applies to all its child layers. The effective parallax scrolling
factor of a layer is determined by multiplying the parallax scrolling factor by the scrolling factors of all parent layers.

3.2.1 Parallax Reference Point

To match not only the scrolling speed but also the positioning of layers, we need to use the same points of reference. In
Tiled these are the parallax origin and the center of the view. The parallax origin is stored per map and defaults to (0,0),
which is the top-left of the maps bounding box. The distance between these two points is multiplied by the parallax
factor to determine the final position on the screen for each layer. For example:

• If the parallax origin is in the center of the view, the distance is (0,0) and none of the parallax factors have any
effect. The layers are rendered where they would have been, if parallax was disabled.

• Now, when the map is scrolled right by 10 pixels, the distance between the parallax origin and the center of the
view is 10. So a layer with a parallax factor of 0.7 will have moved just 0.7 * 10 = 7 pixels.

Quite often, a viewport transform is used to scroll the entire map. In this case, one may need to adjust the position of
each layer to take its parallax factor into account. Instead of multiplying the distance with the parallax factor directly,
we now multiply by 1 - parallaxFactor to get the layer position. For example:

• When the camera moves right by 10 pixels, the layer will have moved 10 pixels to the left (-10), so by positioning
the layer at 10 * (1 - 0.7) = 3, we’re making sure that it only moves 7 pixels to the left.

3.2. Parallax Scrolling Factor 13

Tiled Documentation, Release 1.10.2

3.3 Tinting Layers

When you set the Tint Color property of a layer, this affects the way images are rendered. This includes tiles, tile objects
and the image of an Image Layer.

Each pixel color value is multiplied by the tint color. This way you can darken or colorize your graphics in various ways
without needing to set up separate images for it.

Abb. 2: A gray tileset rendered in a different color for each layer.

The tint color can also be set on a Group Layer, in which case it is inherited by all layers in the group.

Future Extensions

There are many ways in which the layers can be made more powerful:

• Ability to lock individual objects (#828).

• Moving certain map-global properties to the Tile Layer (#149). It would be useful if one map could accom-
modate layers of different tile sizes and maybe even of different orientation.

If you like any of these plans, please help me getting around to it faster by sponsoring Tiled development. The more
support I receive the more time I can afford to spend improving Tiled!

14 Kapitel 3. Working with Layers

https://github.com/bjorn/tiled/issues/828
https://github.com/bjorn/tiled/issues/149
https://www.mapeditor.org/donate

KAPITEL 4

Editing Tile Layers

Tile Layers are what makes Tiled a tile map editor. Although not as flexible as Object Layers, they provide efficient
data storage and good rendering performance as well as efficient content creation. Every new map gets one by default,
though feel free to delete it when you’re not going to use it.

4.1 Stamp Brush

Shortcut: B

The primary tool for editing tile layers is the Stamp Brush. It can be used to paint single tiles as well as larger „stamps“,
which is where it gets its name from. Using the right mouse button, it can also quickly capture tile stamps from the
currently active layer. A tile stamp is commonly created by selecting one or more tiles in the Tilesets view.

The Stamp Brush has some extra features:

• While holding Shift, click any two points to draw a line between them.

• While holding Ctrl+Shift, click any two points two draw a circle or ellipse centered on the first point.

• Activate the Random Mode using the dice button on the Tool Options toolbar to have the Stamp Brush paint with
random tiles from the tile stamp. The probability of each tile depends on how often it occurred on the tile stamp,
as well as the probability set on each tile in the Tileset Editor.

• Activate the Terrain Fill Mode using the Terrain tile button on the tool bar to have the Stamp Brush paint
using random terrain tiles. This makes adjacent tiles match edge and corner terrains to be placed. Terrain tiles
are described in detail in Using Terrains.

• In combination with the Tile Stamps view, it can also place randomly from a set of predefined tile stamps. This
can be more useful than the Random Mode, which randomly places individual tiles.

• You can flip the current tile stamp horizontally/vertically by using X and Y respectively. You can also rotate
left/right by using Z and Shift+Z respectively. These actions can also be triggered from the Tool Options tool
bar.

15

Tiled Documentation, Release 1.10.2

4.2 Terrain Brush

Shortcut: T

The Terrain Brush allows for efficient editing with certain types of terrain transitions (corner-based, edge-based or a
combination). Setting it up requires associating terrain information with your tiles, which is described in detail in Using
Terrains.

Similarly to the Stamp Brush, you can draw lines by holding Shift. When holding Ctrl, the size of the edited area is
increased to cover an entire tile rather than just one corner or edge.

When holding Alt, the editing operations are also applied at a 180 degree rotation. This is especially useful when
editing strategic maps where two sides need to have equal opportunities. The modifier works well in combination with
either Shift for drawing lines or Ctrl for increasing the edited area.

4.3 Bucket Fill Tool

Shortcut: F

The Bucket Fill Tool provides a quick way of filling empty areas or areas covered with the same tiles. The currently
active tile stamp will be repeated in the filled area. It can also be used in combination with the Random Mode, or Terrain
Fill Mode.

When holding Shift, the tool fills the currently selected area regardless of its contents. This is useful for filling custom
areas that have been selected previously using one or more Selection Tools.

You can also flip and rotate the current stamp as described for the Stamp Brush.

4.4 Shape Fill Tool

Shortcut: P

This tool provides a quick way to fill rectangles or ellipses with a certain tile or pattern.

• Holding Shift fills an exact square or circle.

• Holding Alt draws the rectangle or ellipse centered around the starting location.

You can also flip and rotate the current stamp as described for the Stamp Brush.

4.5 Eraser

Shortcut: E

A simple eraser tool. Left click erases single tiles and right click can be used to quickly erase rectangular areas.

• Holding Shift erases on all layers.

16 Kapitel 4. Editing Tile Layers

Tiled Documentation, Release 1.10.2

4.6 Selection Tools

There are various tile selection tools that all work in similar fashion:

• Rectangular Select allows selection of rectangular areas (shortcut: R)

• Magic Wand allows selection of connected areas filled with the same tile (shortcut: W)

• Select Same Tile allows selection of same-tiles across the entire layer (shortcut: S)

By default, each of these tools replaces the currently selected area. The following modifiers can be used to change this
behavior:

• Holding Shift expands the current selection with the new area

• Holding Ctrl subtracts the new area from the current selection

• Holding Ctrl and Shift selects the intersection of the new area with the current selection

You can also lock into one of these modes (Add, Subtract or Intersect) by clicking on one of the tool buttons in the Tool
Options toolbar.

4.7 Managing Tile Stamps

It can often be useful to store the current tile stamp somewhere to use it again later. The following shortcuts work for
this purpose:

• Ctrl + 1-9 - Store current tile stamp. When no tile drawing tool is selected, tries to capture the current tile
selection (similar to Ctrl + C).

• 1-9 - Recall the stamp stored at this location (similar to Ctrl + V)

Tile stamps can also be stored by name and extended with variations using the Tile Stamps view.

4.6. Selection Tools 17

Tiled Documentation, Release 1.10.2

18 Kapitel 4. Editing Tile Layers

KAPITEL 5

Working with Objects

Using objects you can add a great deal of information to your map for use in your game. They can replace tedious
alternatives like hardcoding coordinates (like spawn points) in your source code or maintaining additional data files for
storing gameplay elements.

By using tile objects, objects of various types can be made easy to recognize or they can be used for purely graphical
purposes. In some cases they can replace the use of tile layers entirely, as demonstrated by the „Sticker Knight“ example
shipping with Tiled.

All objects can have custom properties, which can also be used to create connections between objects.

To start using objects, add an Object Layer to your map.

5.1 Placement Tools

Each type of object has its own placement tool.

A preview is shown of the object you’re about to place when you hover over the map. While placing an object, you can
press Escape or right-click to cancel placement of the object. Press Escape again to switch to the Objekte auswählen
tool.

5.1.1 Rechteck einfügen

Kürzel: R

The rectangle was the first type of object supported by Tiled, which is why objects are rectangles by default in the TMX
Map Format. They are useful for marking rectangular areas and assigning custom properties to them. They are also
often used for specifying collision boxes.

Place a rectangle by clicking-and-dragging in any direction. Holding Shift makes it square and holding Ctrl snaps
its size to the tile size.

Rectangle objects have their origin in the top-left. However, if the rectangle is empty (width and height are both 0), it
is rendered as a small square around its position. This is mainly to keep it visible and selectable.

19

Tiled Documentation, Release 1.10.2

5.1.2 Punkt einfügen

Kürzel: I

Punkte sind die einfachsten Objekte, die auf einer Karte platziert werden können. Sie stellen nur einen Ort dar und
können von daher weder gedreht, noch in ihrer Größe geändert werden. Ein Punkt wird durch einen Klick auf die Karte
erstellt.

5.1.3 Ellipse einfügen

Kürzel: C

Ellipses work the same way as rectangles, except that they are rendered as an ellipse. Useful for when your area or
collision shape needs to represent a circle or ellipse.

5.1.4 Polygon einfügen

Kürzel: P

Polygons are the most flexible way of defining the shape of an area. They are most commonly used for defining collision
shapes.

When placing a polygon, the first click determines the location of the object as well as the location of the first point of
the polygon. Subsequent clicks are used to add additional points to the polygon. Polygons needs to have at least three
points. Click the first point again to finish creating the polygon. You can press Escape to cancel the creation of the
polygon.

When you want to change a polygon after it has been placed, you need to use the Edit Polygons tool.

Polylines

Polylines are created by not closing a polygon. Right-click or press Enter while creating a polygon to finish it as a
polyline.

Polylines are rendered as a line and require only two points. While they can represent collision walls, they are also often
used to represent paths to be followed.

You can extend an existing polyline at either end when it is selected, by clicking on the displayed dots. It is also possible
to finish the polyline by connecting it to either end of another existing polyline object. The other polyline object needs
to be selected as well, since the interactive dots only show on selected polylines.

The Edit Polygons tool is used to edit polylines as well.

5.1.5 Kachel einfügen

Kürzel: T

Tiles can be inserted as objects to have full flexibility in placing, scaling and rotating the tile image on your map. Like
all objects, tile objects can also have custom properties associated with them. This makes them useful for placement
of recognizable interactive objects that need special information, like a chest with defined contents or an NPC with
defined script.

To place a tile object, first select the tile you want to place in the Tilesets view. Then use the Left mouse button on the
map to start placing the object, move to position it and release to finish placing the object.

20 Kapitel 5. Working with Objects

Tiled Documentation, Release 1.10.2

To change the tile used by existing tile objects, select all the objects you want to change using the Objekte auswählen
tool and then right-click on a tile in the Tilesets view, and choose Replace Tile of Selected Objects.

You can customize the alignment of tile objects using the Object Alignment property on the Tileset. For compatibility
reasons this property is set to Unspecified by default, in which case tile objects are bottom-left aligned in all orientations
except on Isometric maps, where they are bottom-center aligned. Setting this property to Top Left makes the alignment
of tile objects consistent with that of rectangle objects.

5.1.6 Vorlage einfügen

Kürzel: V

Can be used to quickly insert multiple instances of the template selected in the Templates view. See Creating Template
Instances.

5.1.7 Text einfügen

Kürzel: X

Text objects can be used to add arbitrary multi-line text to your maps. You can configure various font properties and
the wrapping / clipping area, making them useful for both quick notes as well as text used in the game.

5.2 Objekte auswählen

Kürzel: S

When you’re not inserting new objects, you’re generally using the Select Objects tool. It packs a lot of functionality,
which is outlined below.

5.2.1 Aus- und Abwählen

You can select objects by clicking them or by dragging a rectangular lasso, selecting any object that intersect with its
area. By holding Shift or Ctrlwhile clicking, you can add/remove single objects to/from the selection. Press Escape
to deselect all objects.

When pressing and dragging on an object, this object is selected and moved. When this prevents you from starting a
rectangular selection, you can hold Shift to force the selection rectangle.

By default you interact with the top-most object. When you need to select an object below another object, first select
the higher object and then hold Alt while clicking at the same location to select lower objects. You can also hold Alt
while opening the context menu to get a list of all objects at the clicked location, so you may directly select the desired
object.

You can quickly switch to the Edit Polygons tool by double-clicking on the polygon or polyline you want to edit.

5.2. Objekte auswählen 21

Tiled Documentation, Release 1.10.2

5.2.2 Verschieben

You can simply drag any single object, or drag already selected objects by dragging any one of them. Hold Ctrl to
toggle snapping to the tile grid.

Hold Alt to force a move operation on the currently selected objects, regardless of where you click on the map. This
is useful when the selected objects are small or covered by other objects.

The selected objects can also be moved with the arrow keys. By default this moves the objects pixel by pixel. Hold
Shift while using the arrow keys to move the objects by distance of one tile.

5.2.3 Größe ändern

You can use the resize handles to resize one or more selected objects. Hold Ctrl to keep the aspect ratio of the object
and/or Shift to place the resize origin in the center.

Note that you can only change width and height independently when resizing a single object. When having multiple
objects selected, the aspect ratio is constant because there would be no way to make that work for rotated objects without
full support for transformations.

5.2.4 Drehen

To rotate, click any selected object to change the resize handles into rotation handles. Before rotating, you can drag
the rotation origin to another position if necessary. Hold Shift to rotate in 15-degree increments. Click any selected
object again to go back to resize mode.

You can also rotate the selected objects in 90-degree steps by pressing Z or Shift + Z.

5.2.5 Stapelreihenfolge ändern

If the active Object Layer has its Drawing Order property set to Manual (the default is Top Down), you can control the
stacking order of the selected objects within their object layer using the following keys:

• BildAuf - Ausgewählte Objekte nach oben verschieben

• BildAb - ausgewählte Objekte nach unten verschieben

• Home - Move selected objects to Top

• Ende - Ausgewählte Objekte nach ganz unten verschieben

You can also find these actions in the context menu. When you have multiple Object Layers, the context menu also
contains actions to move the selected objects to another layer.

5.2.6 Flipping Objects

You can flip the selected objects horizontally by pressing X or vertically by pressing Y. For tile objects, this also flips
their images.

22 Kapitel 5. Working with Objects

Tiled Documentation, Release 1.10.2

5.3 Edit Polygons

Kürzel: E

Polygons and polylines have their own editing needs and as such are covered by a separate tool, which allows selecting
and moving around their nodes. You can select and move the nodes of multiple polygons at the same time. Click a
segment to select the nodes at both ends. Press Escape to deselect all nodes, or to switch back to the Objekte auswählen
tool.

Nodes can be deleted by selecting them and choosing „Delete Nodes“ from the context menu. The Delete key can
also be used to delete the selected nodes, or the selected objects if no nodes are selected.

When you have selected multiple consecutive nodes of the same polygon, you can join them together by choosing „Join
Nodes“ from the context menu. You can also split the segments in between the nodes by choosing „Split Segments“.
Alternatively, you can simply double-click a segment to split it at that location.

You can also delete a segment when two consecutive nodes are selected in a polygon by choosing „Delete Segment“ in
the context menu. This will convert a polygon into a polyline, or turn one polyline object in two polyline objects.

It is possible to extend a polyline at either end, either by right-clicking those nodes and choosing „Extend Polyline“, or
by switching to the Polygon einfügen tool and clicking on either end of an already selected polyline.

5.4 Objekte verbinden

It can often be useful to connect one object with another, like when a switch should open a certain door or an NPC
should follow a certain path. To do this, add a custom property of type object to the source object. This property can
then be set to the desired target object in several ways.

Make sure the property value is selected, as seen on the following screenshot:

Abb. 1: Object Connection Property

Then, you can set the connection by either:

• Typing in the ID of the target object.

5.3. Edit Polygons 23

Tiled Documentation, Release 1.10.2

• Clicking the icon with the window and magnifier, to open a dialog where you can filter all objects on the map to
find your target object.

• Clicking the arrow icon and then clicking an object on the map to set it as the target object.

As shown on the screenshot above, any connections between objects are rendered as arrows, taking the color of their
target object (defined as part of the object class or by the color of the object layer). You can toggle the display of these
arrows using View -> Show Object References.

If you’d like to get to the target object, but it’s very far away, you can jump there by right-clicking the property and
selecting Go to Object.

Future Extensions

Here are some ideas about improvements that could be made to the above tools:

• Some improvements could still be made to the support for editing polygons and polylines, like allowing to
rotate and scale the selected nodes (#1487).

• The tools could put short usage instructions in the status bar, to help new users without requiring them to
carefully read the manual (#1855).

If you like any of these plans, please help me getting around to it faster by sponsoring Tiled development. The more
support I receive the more time I can afford to spend improving Tiled!

24 Kapitel 5. Working with Objects

https://github.com/bjorn/tiled/issues/1487
https://github.com/bjorn/tiled/issues/1855
https://www.mapeditor.org/donate

KAPITEL 6

Editing Tilesets

To edit a tileset it needs to be opened explicitly for editing. External tilesets can be opened via the File menu, but in
general the quickest way to edit the tileset when it is already open in the Tilesets view is to click the small Edit Tileset
button in the tool bar below the tileset.

6.1 Two Types of Tileset

A tileset is a collection of tiles. Tiled currently supports two types of tilesets, which are chosen when creating a new
tileset:

Based on Tileset Image
This tileset defines a fixed size for all tiles and the image from which these tiles are supposed to be cut. In addition
it supports a margin around the tiles and a spacing between the tiles, which allows for using tileset images that
either happen to have space between or around their tiles or those that have extruded the border pixels of each
tile to avoid color bleeding.

Collection of Images
In this type of tileset each tile refers to its own image file. It is useful when the tiles aren’t the same size, or when
the packing of tiles into a texture is done later on.

Regardless of the type of tileset, you can associate a lot of meta- information with it and its tiles. Some of this information
can be for use in your game, like collision information and animations. Other information is primarily meant for certain
editing tools.

Bemerkung: A tileset can be either embedded in a map file or saved externally. Since Tiled 1.0, the default and
recommended approach is to save your tilesets to their own file. This simplifies your workflow since it makes sure any
meta-information is shared between all maps using the same tileset.

25

Tiled Documentation, Release 1.10.2

6.2 Tileset Properties

You can access the tileset properties by using the menu action Tileset > Tileset Properties.

Name
The name of the tileset. Used to identify the tileset in the Tilesets view when editing a map.

Object Alignment
The alignment to use for tile objects referring to tiles from this tileset. This affects the placement of the tile
relative to the position of the object (the origin) and is also the location around which the rotation is applied.

Possible values are: Unspecified (the default), Top Left, Top, Top Right, Left, Center, Right, Bottom Left, Bottom
and Bottom Right. When unspecified, tile object alignment is generally Bottom Left, except for Isometric maps
where it is Bottom.

Drawing Offset
A drawing offset in pixels, applied when rendering any tile from the tileset (as part of tile layers or as tile objects).
This is can be useful to make your tiles align to the grid.

Background Color
A background color for the tileset, which can be set in case the default dark-gray background is not suitable for
your tiles.

Orientation
When the tileset contains isometric tiles, you can set this to Isometric. This value, along with the Grid Width
and Grid Height properties, is taken into account by overlays rendered on top of the tiles. This helps for example
when specifying Terrain Information. It also affects the orientation used by the Tile Collision Editor.

Columns
This is a read-only property for tilesets based on a tileset image, but for image collection tilesets you can control
the number of columns used when displaying the tileset here.

Image
This property only exists for tilesets based on a tileset image. Selecting the value field will show an Edit. . . button,
allowing you to change the parameters relevant to cutting the tiles from the image.

Of course, as with most data types in Tiled, you can also associate Custom Properties with the tileset.

6.3 Tile Properties

ID
The ID of the tile in the tileset (read-only)

Class
This property refers to custom classes defined in the Custom Types Editor. See the section about Typed Tiles for
more information.

Width and Height
The size of the tile (read-only)

Probability
Represents a relative probability that this tile will get chosen out of multiple options. This value is used in Random
Mode and by the Terrain Brush.

Image
Only relevant for tiles that are part of image collection tilesets, this shows the image file of the tile and allows
you to change it.

26 Kapitel 6. Editing Tilesets

Tiled Documentation, Release 1.10.2

6.4 Terrain Information

Terrain information can be added to a tileset to enable the use of the Terrain Brush. See the section about defining
terrain information.

6.5 Tile Collision Editor

The tile collision editor is available by clicking the Tile Collision Editor button on the tool bar. This will open a
view where you can create and edit shapes on the tile. You can also associate custom properties with each shape.

Usually these shapes define collision information for a certain sprite or for a tile representing level geometry, but of
course you could also use them to add certain hot-spots to your sprites like for particle emitters or the source of gunshots.

Abb. 1: Tile Collision Editor

To be able to easily check whether your tiles have the right collision shapes set up, they can be rendered on the map. To
enable this, check Show Tile Collision Shapes in the View menu. The collision shapes are rendered for both tile layers
and tile objects.

6.4. Terrain Information 27

Tiled Documentation, Release 1.10.2

Abb. 2: Collision shapes rendered on the map. This map is from Owyn’s Adventure.

6.6 Tile Animation Editor

The tile animation editor allows defining a single linear looping animation with each tile by referring to other tiles in

the tileset as its frames. Open it by clicking the Tile Animation Editor button.

Tile animations can be live-previewed in Tiled, which is useful for getting a feeling of what it would look like in-game.
The preview can be turned on or off via View > Show Tile Animations.

The following steps allow to add or edit a tile animation:

• Select the tile in the main Tiled window. This will make the Tile Animation Editor window show the (initially
empty) animation associated with that tile, along with all other tiles from the tileset.

• Drag tiles from the tileset view in the Tile Animation Editor into the list on the left to add animation frames. You
can drag multiple tiles at the same time. Each new frame gets a default duration of 100 ms (or other value when
set using the Frame Duration field at the top).

• Double-click on the duration of a frame to change it.

• Drag frames around in the list to reorder them.

A preview of the animation shows in the bottom left corner.

You can change the duration of multiple frames at once by selecting them, changing the value in the Frame Duration
field and then clicking Apply.

Future Extensions

There are many ways in which the tileset editor can be made more efficient, for example:

Terrain Sets

28 Kapitel 6. Editing Tilesets

https://store.steampowered.com/app/1020940/Owyns_Adventure/

Tiled Documentation, Release 1.10.2

Abb. 3: Tile Animation Editor

• Make it easier to set up terrain (#1729)

Tile Collision Editor
• Allow setting collisions for multiple tiles at once (#1322)

• Render tile collision shapes to the tileset view (#1281)

Tile Animation Editor
• Support multiple named animations per tile (#986)

• Make it easier to define animations spanning multiple tiles (#811)

If you like any of these plans, please help me getting around to it faster by sponsoring Tiled development. The more
support I receive the more time I can afford to spend improving Tiled!

6.6. Tile Animation Editor 29

https://github.com/bjorn/tiled/issues/1729
https://github.com/bjorn/tiled/issues/1322
https://github.com/bjorn/tiled/issues/1281
https://github.com/bjorn/tiled/issues/986
https://github.com/bjorn/tiled/issues/811
https://www.mapeditor.org/donate

Tiled Documentation, Release 1.10.2

30 Kapitel 6. Editing Tilesets

KAPITEL 7

Custom Properties

One of the major strengths of Tiled is that it allows setting custom properties on all of its basic data structures. This way
it is possible to include many forms of custom information, which can later be used by your game or by the framework
you’re using to integrate Tiled maps.

Custom properties are displayed in the Properties view. This view is context-sensitive, usually displaying the properties
of the last selected object. It also supports multi-selection, for changing the properties of many objects at once.

Abb. 1: Properties View

31

Tiled Documentation, Release 1.10.2

7.1 Adding Properties

When you add a property (using the ‚+‘ button at the bottom of the Properties view), you are prompted for its name
and its type. Tiled supports the following basic property types:

• bool (true or false)

• color (a 32-bit color value)

• file (a relative path referencing a file)

• float (a floating point number)

• int (a whole number)

• object (a reference to an object) - Since Tiled 1.4

• string (any text, including multi-line text)

Abb. 2: Add Property Dialog

The property type is used to choose a custom editor in the Properties view. Choosing a number or boolean type also
avoids that the value will get quoted in JSON and Lua exports.

The context menu for custom file properties provides a quick way to open the file in its preferred editor. For object
references, there is an action to quickly jump to the referenced object.

7.2 Custom Types

In addition to the basic property types listed above, you can define custom types in your project. Tiled supports custom
enums and custom classes.

Bemerkung: These types are automatically saved in the project file. Hence you need to create a project, before you
can set up your custom types.

7.2.1 Custom Enums

An enum is useful if you want to limit the options for a certain property to a fixed set of values.

An enum also defines how its value is saved. It can be saved as a string, saving one of its values directly. Alternatively
it can be saved as a number, the index of the current value in the list of values. The former is more readable whereas
the latter could easier and more efficient to load.

Finally, an enum can also allow multiple values to be chosen. In this case each option is displayed with a checkbox.
When saving as string, a comma-separated list is used and when saving as number the selected indexes are encoded as
bitflags. In both cases, the maximum number of flags supported is 31, since internally a 32-bit signed integer is used
to store the value.

32 Kapitel 7. Custom Properties

Tiled Documentation, Release 1.10.2

Abb. 3: Custom Types Editor

7.2.2 Custom Classes

A class is useful if you want to be able to add a set of properties at once, with predefined defaults. It can also prevent
excessive prefixing of property names. Classes can have members referring to other classes.

Each data type has a „Class“ property, which can be used to refer to a custom class. The members of this class will then
be directly available as custom properties of that instance (before Tiled 1.9, this feature was only available for objects
and tiles as the „Type“ property).

Each class can also have a custom color, which is used to make objects more recognizable. The class color is used when
rendering shape objects, object name labels and connections between objects.

In the JSON and Lua file formats, custom class properties used as property values are saved using the native object and
table constructs.

7.3 Tile Property Inheritance

When custom properties are added to a tile, these properties will also be visible when an object instance of that tile
is selected. This enables easy per-object overriding of certain default properties associated with a tile. This becomes
especially useful when combined with Typed Tiles.

Inherited properties will be displayed in gray (disabled text color), whereas overridden properties will be displayed in
black (usual text color).

7.3. Tile Property Inheritance 33

Tiled Documentation, Release 1.10.2

7.3.1 Typed Tiles

If you’re using tile objects, you can set the class on the tile to avoid having to set it on each object instance. Setting the
class on the tile makes the predefined properties visible when having the tile selected, allowing to override the values.
It also makes those possibly overridden values visible when having a tile object instance selected, again allowing you
to override them.

An example use-case for this would be to define custom classes like „NPC“, „Enemy“ or „Item“ with properties like
„name“, „health“ or „weight“. You can then specify values for these on the tiles representing these entities. And when
placing those tiles as objects, you can override those values if you need to.

Future Extensions

There are several types of custom properties I’d like to add:

• Customized basic properties, where you can set properties like the minimum or maximum value, the preci-
sion or a different default value.

• Array properties, which would be properties having a list of values (#1493).

Apart from predefining properties based on object type, I’d like to add support for predefining the properties for
each data type. So defining which custom properties are valid for maps, tilesets, layers, etc. (#1410)

If you like any of these plans, please help me getting around to it faster by sponsoring Tiled development. The more
support I receive the more time I can afford to spend improving Tiled!

34 Kapitel 7. Custom Properties

https://github.com/bjorn/tiled/issues/1493
https://github.com/bjorn/tiled/issues/1410
https://www.mapeditor.org/donate

KAPITEL 8

Using Templates

Any created object can be saved as a template. These templates can then be instantiated elsewhere as objects that inherit
the template’s properties. This can save a lot of tedious work of setting up the object type and properties, or even just
finding the right tile in the tileset.

Each template is stored in its own file, where they can be organized in directories. You can save templates in either
XML or JSON format, just like map and tileset files.

35

Tiled Documentation, Release 1.10.2

8.1 Creating Templates

A template can be created by right clicking on any object in the map and selecting „Save As Template“. You will be
asked to choose the file name and the format to save the template in. If the object already has a name the suggested file
name will be based on that.

To be able to select your templates for editing or instantiating you’ll generally want to use the Project view, so make
sure to save your templates in a folder that is part of your project. Dragging in a template from a file manager is also
possible.

Bemerkung: You can’t create a template from a tile object that uses a tile from an embedded tileset, because template
files do not support referring to such tilesets.

8.2 Creating Template Instances

Kürzel: V

Template instantiation works by either dragging and dropping the template from the Project view to the map, or by
using the „Insert Template“ tool by selecting a template and clicking on the map. The latter is more convenient when
you want to create many instances.

8.3 Editing Templates

Editing templates is done using the Template Editor view. A template can be opened for editing by selecting it in the
Project view or by dragging the template file on the Template Editor view. The template can also be selected using the
Open File in Project action.

When selecting the template in the Template Editor view, the Properties view will show the template’s properties,
where they can be edited.

Any changes to the template are saved automatically and are immediately reflected on all template instances.

If a property of a template instance is changed, it will be internally marked as an overridden property and won’t be
changed when the template changes.

If a template file changes on disk, it is automatically reloaded and any changes will be reflected in the Template Editor
as well as on any template instances.

36 Kapitel 8. Using Templates

Tiled Documentation, Release 1.10.2

8.4 Detaching Template Instances

Detaching a template instance will disconnect it from its template, so any further edits to the template will not affect
the detached instance.

To detach an instance, right click on it and select Detach.

If your map loader does not support object templates, but you’d still like to use them, you can enable the Detach
templates export option.

Future Extensions

• Resetting overridden properties individually (#1725).

• Locking template properties (#1726).

• Handling wrong file paths (#1732).

• Managing the templates folder, e.g. moving, renaming or deleting a template or a sub-folder (#1723).

8.4. Detaching Template Instances 37

https://github.com/bjorn/tiled/issues/1725
https://github.com/bjorn/tiled/issues/1726
https://github.com/bjorn/tiled/issues/1732
https://github.com/bjorn/tiled/issues/1723

Tiled Documentation, Release 1.10.2

38 Kapitel 8. Using Templates

KAPITEL 9

Using Terrains

When editing a tile map, sometimes we don’t think in terms of tiles but rather in terms of terrains - areas of tiles with
transitions to other kinds of tiles. Say we want to draw a patch of grass, a road or a certain platform. In this case,
manually choosing the right tiles for the various transitions or connections quickly gets tedious. The Terrain Brush was
added to make editing tile maps easier in such cases.

Warnung: While Tiled has supported terrains since version 0.9 and later supported a similar feature called „Wang
tiles“ since version 1.1, both features were unified and extended in Tiled 1.5. As a result, terrain information defined
in Tiled 1.5 can’t be used by older versions.

The Terrain Brush relies on the tileset providing one or more Terrain Sets - sets of tiles labeled according to their terrain
layouts. Tiled supports the following terrain sets:

Corner Set
Tiles that needs to match neighboring tiles at their corners, with a transition from one
type of terrain to another in between. A complete set with 2 terrains has 16 tiles.

Edge Set
Tiles that need to match neighboring tiles at their sides. This is common for roads,
fences or platforms. A complete set with 2 terrains has 16 tiles.

Mixed Set
Tiles that rely on matching neighboring tiles using both their corners and sides. This
allows a tileset to provide more variation, at the cost of needing significantly more
tiles. A complete set with 2 terrains has 256 tiles, but reduced sets like the 47-tile Blob tileset can be used with
this type as well.

Based on the information in a terrain set, the Terrain Brush can understand the map and auto-
matically choose the right tiles when making edits. When necessary, it also adjusts neighbo-
ring tiles to make sure they correctly connect to the modified area. A terrain set can contain
up to 254 terrains.

39

http://www.cr31.co.uk/stagecast/wang/blob.html

Tiled Documentation, Release 1.10.2

The Stamp Brush, as well as the Bucket Fill Tool and the Shape Fill Tool, also have a mode
where they can fill an area with random terrain.

9.1 Define the Terrain Information

9.1.1 Creating the Terrain Set

First of all, switch to the tileset file. If you’re looking at the map and have the tileset selected,
you can do this by clicking the small Edit Tileset button below the Tilesets view.

Abb. 1: Edit Tileset button

Then, activate the terrain editing mode by clicking on the Terrain Sets button on the
tool bar. With this mode activated, the Terrain Sets view will become visible, with a button to add a new set. In this
example, we’ll define a Corner Set.

Abb. 2: Adding a Terrain Set

When adding a terrain set, the name of the new set will automatically get focus. Give the set a recognizable name, in
the example we’ll type „Desert Ground“. We can also set one of the tiles as the icon of the set by right-clicking a tile
and choosing „Use as Terrain Set Image“.

9.1.2 Adding Terrains

The new set will have one terrain added by default. If we already know we need additional ones, click the Add Terrain
button to add more.

Each terrain has a name, color and can have one of the tiles as its icon it to make it more recognizable. Double-click
the terrain to edit its name. To change the color, right-click the terrain and choose „Pick Custom Color“. To assign an
icon, select the terrain and then right-click a tile, choosing „Use as Terrain Image“.

Abb. 3: Our Terrains

Bemerkung: We generally don’t need to define an explicit terrain for „empty tiles“. If you have tiles transitioning to
nothing, it should be enough to not mark those areas.

40 Kapitel 9. Using Terrains

Tiled Documentation, Release 1.10.2

With our terrains set up we’re ready to mark each of our tiles.

9.1.3 Marking the Tiles

Note that for a Corner Set, we can only mark the corners of the tiles. For a Edge Set, we’re limited to marking the edges
of our tiles. If we need both we need to use a Mixed Set. If it turns out that we chose the wrong type of terrain set, we
can still change the type in the Properties view (right-click the terrain set and choose Terrain Set Properties. . .).

With the terrain we want to mark selected, click and drag to mark the regions of the tiles that match this terrain.

Abb. 4: Here we have marked all the sandy corners in our example tileset.

If you make a mistake, just use Undo (or press Ctrl+Z). Or if you notice a mistake later, either use Erase Terrain to
clear a terrain type from a corner or select the correct terrain type and paint over it. Each corner can only have one type
of terrain associated with it.

Now do the same for each of the other terrain types. Eventually you’ll have marked all tiles apart from the special
objects.

Abb. 5: We’re done marking the terrain of our tiles.

Patterns View

Next to the Terrains tab there’s also a Patterns tab. This view can be useful when marking complete sets, since it
can highlight still missing patterns. Each pattern which already occurs on a tile in the tileset is darkened, to make the
missing patterns stand out. Note though, that it is not necessary for a terrain set to have all possible patterns, especially
when using more than 2 terrains.

Abb. 6: Patterns view, showing all possible combinations in the set.

9.1. Define the Terrain Information 41

Tiled Documentation, Release 1.10.2

9.2 Editing with the Terrain Brush

Now you can disable the Terrain Sets mode by clicking the tool bar button again. Then switch back to the map
and activate the Terrain Sets window. Select the terrain set we have just set up, so we can use its terrains.

Click on the Sand terrain and try to paint. You may immediately notice that nothing is happening. This is because there
are no other tiles on the map yet, so the terrain tool doesn’t really know how to help (because we also have no transitions
to „nothing“ in our tileset). There are two ways out of this:

• We can hold Ctrl (Command on a Mac) to paint a slightly larger area. This way we will paint at least a single tile
filled with the selected terrain, though this is not convenient for painting larger areas.

• Assuming we’re out to create a desert map, it’s better to start by filling the entire map with sand. Just switch back
to the Tilesets window for a moment, select the sand tile and then use the Bucket Fill Tool.

Once we’ve painted some sand, let’s select the Cobblestone terrain. Now you can see the tool in action!

Abb. 7: Drawing cobblestone

Finally, see what happens when you try drawing some dirt on the cobblestone. Because there are no transitions from
dirt directly to cobblestone, the Terrain tool first inserts transitions to sand and from there to cobblestone. Neat!

Abb. 8: Drawing dirt

Bemerkung: An Erase Terrain button is provided for the case where your terrain tiles transition to nothing. This allows
for erasing parts of your terrain while choosing the right tiles as well. This mode does nothing useful when there are
no transitions to nothing in the selected Terrain Set.

42 Kapitel 9. Using Terrains

Tiled Documentation, Release 1.10.2

9.3 Terrain Fill Mode

The Stamp Brush, Bucket Fill Tool and the Shape Fill Tool have a Terrain Fill Mode, which can be used to paint or fill
an area with random terrain. With this mode activated, each cell will be randomly chosen from all those in the selected
Terrain Set, making sure to match all adjacent edges and/or corners.

Abb. 9: Stamp Brush with Terrain Fill Mode Enabled

Note that since this mode makes sure that newly placed tiles match up with any already existing tiles, generally nothing
will change when painting with the Stamp Brush on existing terrain. The exception is when there are multiple variations
of the same tile, in which case it will randomize between those.

Abb. 10: Bucket Fill with Terrain Fill Mode Enabled

When filling a shape or an area, only the edges of the filled area need to connect to any existing tiles. Internally the area
is completely randomized.

9.4 Tile and Terrain Probability

Both the Terrain Fill Mode and the Terrain Brush will by default consider all matching tiles with equal probability.
Both individual tiles as well as terrains have a Probability property, which can be used to change the frequency with
which a certain tile or terrain is chosen compared to other valid options.

The relative probability of a tile is the product of its own probability and the probability of the terrain at each corner
and/or side.

9.4.1 Probability for Variations

A common usage for probability, especially at the individual tile level, is to make certain variations of a tile less common
than others. Our example tileset contains several bushes and other decorations which we may randomly want to scatter
across the desert.

To achieve this, first of all we mark all of them as „sand“ tiles, because this is their base terrain. Then, to make them
less common than the regular sand tile, we can put their probability on 0.01. This value means they are each 100 times
less likely to be chosen than the regular sand tile (which still has its default probability of 1). To edit the Probability
property of the tiles we need to exit the Terrain Sets mode.

9.3. Terrain Fill Mode 43

Tiled Documentation, Release 1.10.2

Abb. 11: Left shows „path“ with probability 0.1, right shows „path“ with probability 10.

Abb. 12: Setting low probability on decoration tiles.

Abb. 13: Random decorative tiles appearing with low probability.

44 Kapitel 9. Using Terrains

Tiled Documentation, Release 1.10.2

Hinweis: It is also possible to put the probability to 0, which disables automatic usage of a tile entirely. This can be
useful because it still makes the tools aware of the terrain of a certain tile, which is taken into account when modifying
neighboring tiles.

9.5 Tile Transformations

Tiled supports flipping and rotating tiles. When using terrains, tiles can be automatically flipped and/or rotated to create
variations that would otherwise not be available in a tileset. This can be enabled in the Tileset Properties.

The following transformation-related options are available:

Flip Horizontally
Allow tiles to be flipped horizontally.

Flip Vertically
Allow tiles to be flipped vertically. This would be left disabled when the graphics contain shadows in vertical
direction, for example.

Rotate
Allow tiles to be rotated (by 90, 180 or 270-degrees).

Prefer Untransformed Tiles
When transformations are enabled, it could happen that a certain pattern can be filled by either a regular tile or
a transformed tile. With this option enabled, the untransformed tiles will always take precedence. Leaving this
option disabled allows transformations to be used to create more variation.

Abb. 14: With rotations enabled, the normally 47-tiles Blob tileset can be reduced to a mere 15 tiles.

9.6 Final Words

Now you should have a pretty good idea about how to use this tool in your own project. A few things to keep in mind:

• For one terrain to interact with another, they need to be part of the same Terrain Set. This also means all tiles
need to be part of the same tileset. If you have tiles in different tilesets that you want to transition to one another,
you will need to merge the tilesets into one.

• Since defining the terrain information can be somewhat laborious, you’ll want to avoid using embedded tilesets
so that terrain information can be shared among several maps.

• The Terrain tool works fine with isometric maps as well. To make sure the terrain overlay is displayed correctly,
set up the Orientation, Grid Width and Grid Height in the tileset properties.

• The tool will handle any number of terrains (up to 254) and each corner of a tile can have a different type of
terrain. Still, there are other ways of dealing with transitions that this tool can’t handle. Also, it is not able to edit
multiple layers at the same time. For a more flexible, but also more complicated way of automatic tile placement,
check out Automapping.

• There’s a collection of tilesets that contain transitions that are compatible with this tool on OpenGameArt.org.

9.5. Tile Transformations 45

http://www.cr31.co.uk/stagecast/wang/blob.html
http://opengameart.org/content/terrain-transitions
http://opengameart.org/

Tiled Documentation, Release 1.10.2

46 Kapitel 9. Using Terrains

KAPITEL 10

Using Infinite Maps

Infinite maps give you independence from bounds of the map. The canvas is „auto-growing“, which basically means,
that you have an infinite grid which can be painted upon without worrying about the width and height of the map. The
bounds of a particular layer get expanded whenever tiles are painted outside the current bounds.

47

Tiled Documentation, Release 1.10.2

10.1 Creating an Infinite Map

In the order to create an infinite map, make sure the ‚Infinite‘ option is selected in New Map dialog.

The newly created map will then have an infinite canvas.

10.2 Editing the Infinite Map

Except for the Bucket Fill Tool, all tools works exactly in the same way as in the fixed-size maps. The Bucket Fill Tool
fills the current bounds of that particular tile layer. These bounds get increased upon further painting of that tile layer.

10.3 Conversion from Infinite to Finite Map and Vice Versa

In the map properties, you can toggle whether the map should be infinite or not. When converting from infinite to a
finite map, the width and height of the final map are chosen on the basis of bounds of all the tile layers.

48 Kapitel 10. Using Infinite Maps

Tiled Documentation, Release 1.10.2

Abb. 1: The Initial Infinite Map

10.3. Conversion from Infinite to Finite Map and Vice Versa 49

Tiled Documentation, Release 1.10.2

Abb. 2: Unchecking the Infinite property in Map Properties

50 Kapitel 10. Using Infinite Maps

Tiled Documentation, Release 1.10.2

Abb. 3: The Converted Map

10.3. Conversion from Infinite to Finite Map and Vice Versa 51

Tiled Documentation, Release 1.10.2

52 Kapitel 10. Using Infinite Maps

KAPITEL 11

Working with Worlds

Sometimes a game has a large world which is split over multiple maps to make the world more digestible by the game
(less memory usage) or easier to edit by multiple people (avoiding merge conflicts). It would be useful if the maps
from such a world could be seen within the same view, and to be able to quickly switch between editing different maps.
Defining a world allows you to do exactly that.

Abb. 1: Many maps from The Mana World shown at once.

53

https://www.themanaworld.org/

Tiled Documentation, Release 1.10.2

11.1 Welt festlegen

A world is defined in a .world file, which is a JSON file that tells Tiled which maps are part of the world and at what
location. Worlds can be created by using the World > New World. . . action.

You may also create .world files by hand. Here is a simple example of a world definition, which defines the global
position (in pixels) of three maps:

{
"maps": [

{
"fileName": "001-1.tmx",
"x": 0,
"y": 0

},
{

"fileName": "002-1.tmx",
"x": 0,
"y": 3200

},
{

"fileName": "006-1.tmx",
"x": 3840,
"y": 4704

}
],
"type": "world"

}

Once defined, a world needs to be loaded by choosing World > Load World. . . from the menu. Multiple worlds can be
loaded at the same time, and worlds will be automatically loaded again when Tiled is restarted.

When is map is opened, Tiled checks whether it is part of any of the loaded worlds. If so, any other maps in the same
world are loaded as well and displayed alongside the opened map. You can click any of the other maps to open them
for editing, which will switch files while keeping the view in the same position.

Worlds are reloaded automatically when their file is changed on disk.

11.2 Welt bearbeiten

Once you have loaded a world, you can select the ‚World Tool‘ from the toolbar to add, remove and move maps within
the world.

Karten hinzufügen
Click the ‚Add the current map to a loaded world‘ button on the toolbar, from the dropdown menu select the
world you want to add it to. To add a different map to the current world, you can use the ‚Add another map to the
current world‘ button from the toolbar. Alternatively, both actions can be accessed by right-clicking in the map
editor.

Karten entfernen
Hit the ‚Remove the current map from the current world‘ button on the toolbar. Alternatively, right-click a map
in the map editor and select the ‚Remove . . . from World . . . ‘ action from the context menu.

Karten verschieben

54 Kapitel 11. Working with Worlds

Tiled Documentation, Release 1.10.2

Simply drag around maps within the map editor. You can abort moving a map by hitting ‚Escape‘ or by right-
clicking.

Alternatively you can use the arrow keys to move the current selected map - holding Shift will perform bigger
steps.

Welt-Dateien speichern
You can save manipulated world files by using the World > Save World menu. Worlds will also automatically be
saved if you launch any external tool that has the ‚Save Map Before Executing‘ option enabled.

11.3 Musterabgleich verwenden

For projects where the maps follow a certain naming style that allows the location of each map in the world to be derived
from the file name, a regular expression can be used in combination with a multiplier and an offset.

Bemerkung: Currently no interface exists in Tiled to define a world using pattern matching, nor can it be modified.
World files with patterns have to be manually edited.

Hier ist ein Beispiel:

{
"patterns": [

{
"regexp": "ow-p0*(\\d+)-n0*(\\d+)-o0000\\.tmx",
"multiplierX": 6400,
"multiplierY": 6400,
"offsetX": -6400,
"offsetY": -6400

}
],
"type": "world"

}

The regular expression is matched on all files that live in the same directory as the world file. It captures two numbers, the
first is taken as x and the second as y. These will then be multiplied by multiplierX and multiplierY respectively,
and finally offsetX and offsetY are added. The offset exists mainly to allow multiple sets of maps in the same world
to be positioned relative to each other. The final value becomes the position (in pixels) of each map.

Abb. 2: The island from Alchemic Cutie, using patterns to automatically show each map at the right location.

A world definition can use a combination of manually defined maps and patterns.

11.3. Musterabgleich verwenden 55

https://alchemiccutie.com/

Tiled Documentation, Release 1.10.2

11.4 Nur direkte Nachbarn werden angezeigt

Tiled takes great care to only load each map, tileset and image once, but sometimes the world is just too large for it to
be loaded completely. Maybe there is not enough memory, or rendering the entire map is too slow.

In this case, there is an option to only load the direct neighbors of the current map. Add "onlyShowAdjacentMaps":
true to the top-level JSON object.

To make this possible, not only the position but also the size of each map needs to be defined. For individual maps, this
is done using width and height properties. For patterns, the properties are mapWidth and mapHeight, which default
to the defined multipliers for convenience. All values are in pixels.

Bemerkung: In the future, a property could be added to allow specifying a distance around the current map in which
other maps are loaded.

56 Kapitel 11. Working with Worlds

KAPITEL 12

Using Commands

The Command Button allows you to create and run shell commands (other programs) from Tiled.

You may setup as many commands as you like. This is useful if you edit maps for multiple games and you want to set up
a command for each game. Or you could setup multiple commands for the same game that load different checkpoints
or configurations.

12.1 The Command Button

It is located on the main toolbar to the right of the redo button. Clicking on it will run the default command (the
first command in the command list). Clicking the arrow next to it will bring down a menu that allows you to run any
command you have set up, as well as an option to open the Edit Commands dialog. You can also find all the commands
in the File menu.

Apart from this, you can set up custom keyboard shortcuts for each command.

12.2 Editing Commands

The ‚Edit Commands‘ dialog contains a list of commands. Each command has several properties:

Name
The name of the command as it will be shown in the drop down list, so you can easily identify it.

Executable
The executable to run. It should either be a full path or the name of an executable in the system PATH.

Arguments
The arguments for running the executable.

Working directory
The path to the working directory.

57

Tiled Documentation, Release 1.10.2

Shortcut
A custom key sequence to trigger the command. You can use ‚Clear‘ to reset the shortcut.

Show output in Console view
If this is enabled, then the output (stdout and stderr) of this command will be displayed in the Console. You can
find the Console in View > Views and Toolbars > Console.

Save map before executing
If this is enabled, then the current map will be saved before executing the command.

Enabled
A quick way to disable commands and remove them from the drop down list. The default command is the first
enabled command.

Note that if the executable or any of its arguments contain spaces, these parts need to be quoted.

12.2.1 Substituted Variables

In the executable, arguments and working directory fields, you can use the following variables:

%mapfile
the full path of the current file (either map or tileset).

%mappath
the path in which the current file is located.

%projectpath
the path in which the current project is located.

%objectclass
the class of the currently selected object, if any (also available as %objecttype for compatibility with Tiled <
1.9).

%objectid
the ID of the currently selected object, if any.

%layername
the name of the currently selected layer.

%tileid
a comma-separated list with the IDs of the selected tiles, if any.

%worldfile
the full path of the world the current map is part of, if any.

For the working directory field, you can additionally use the following variable:

%executablepath
the path to the executable.

58 Kapitel 12. Using Commands

Tiled Documentation, Release 1.10.2

12.3 Example Commands

Launching a custom game called „mygame“ with a -loadmap parameter and the mapfile:

mygame -loadmap %mapfile

On Mac, remember that Apps are folders, so you need to run the actual executable from within the Contents/MacOS
folder:

/Applications/TextEdit.app/Contents/MacOS/TextEdit %mapfile

Or use open (and note the quotes since one of the arguments contains spaces):

open -a "/Applications/CoronaSDK/Corona Simulator.app" /Users/user/Desktop/project/main.
→˓lua

Some systems also have a command to open files in the appropriate program:

• OSX: open %mapfile

• GNOME systems like Ubuntu: gnome-open %mapfile

• FreeDesktop.org standard: xdg-open %mapfile

12.3. Example Commands 59

Tiled Documentation, Release 1.10.2

60 Kapitel 12. Using Commands

KAPITEL 13

Automapping

13.1 Was ist Automapping?

Automapping can automatically place or replace tiles based on rules you define. It looks for tiles in your working
map that match each rule’s input, and if it finds any, it’ll place the corresponding output. This enables complex or
repetitive tile placement to be entirely automated, which can make decorating your levels much faster, and can help you
automatically correct mistakes.

Automapping can be applied manually via Map > AutoMap, or dynamically as you draw on the map if you enable Map
> AutoMap While Drawing.

Bemerkung: Automapping changed significantly in Tiled 1.9. It’s 10-30x faster and setting up rules is more intuitive,
but it behaves differently from the old system in some ways. Old rules should still behave the same, but you may want to
take a look at the section on updating your rules. If you need help understanding your old rules, the old documentation
is available on GitHub.

If you are making new rules, make sure you do not have any regions layers. These will enable the old Automapping
system, and the rules will likely not behave as you intend.

13.2 Setting Up the Rules File

Automapping rules are defined in regular map files, which we’ll call rule maps. These files are then referenced by a
text file, usually called rules.txt. The rules.txt can list any number of rule maps, in the order in which their rules
should be applied.

There are two ways to make the rule maps defined in the rules.txt apply to a map:

• Since Tiled 1.4 Open Project > Project Properties and set the „Automapping rules“ property to the rules.txt
file that you created in your project. If you have only a single rule map, you can also refer to that map file directly.

• Alternatively, you can save your rules.txt in the same directory as the map files to which you want the rules
to apply. This can also be used to override the project-wide rules for a certain set of maps.

61

https://github.com/mapeditor/tiled/blob/685dbff38244776108b8ddbe669b4d8937752311/docs/manual/automapping.rst
https://github.com/mapeditor/tiled/blob/685dbff38244776108b8ddbe669b4d8937752311/docs/manual/automapping.rst

Tiled Documentation, Release 1.10.2

Each line in the rules.txt file is either:

• A path to a rule map.

• A path to another .txt file which has the same syntax (e.g. in another directory).

• Since Tiled 1.9 A map filename filter, enclosed in [] and using * as a wildcard.

• A comment, when the line starts with # or //.

By default, all Automapping rules will run on any map you Automap. The map filename filters let you restrict which
maps rules apply to. For example, any rule maps listed after [town*] will only apply to maps whose filenames start
with “town”. To start applying rules to all maps again, you can use [*], which will match any map name.

13.3 Setting Up a Rule Map

A rule map is a standard map file, which can be read and written by Tiled (usually in TMX or TMJ format). A rule
map can define any number of rules. At a minimum, a rule map contains:

• One or more input layers, describing which kind of pattern(s) the working map will be searched for.

• One or more output layers, describing how the working map is changed when an input pattern is found.

In addition, custom properties on the rule map, its layers and on objects can be used to fine-tune the overall behavior
or the behavior of specific rules.

Every contiguous region of tiles on the input and output layers is a rule. Tiles are considered contiguous if they’re
next to each other vertically, horizontally, or diagonally (8-way connectivity). You can include many rules in one map,
as long as you leave space between them. By default all the rules will match simultaneously, and apply their outputs
in order from top to bottom, left to right - rules with smaller Y value come first, and if there are rules at the same Y
value, then the rules with smaller X come first. If you want the rules to match in order and take previous rules‘ output
into account, you can use the MatchInOrder map property.

13.3.1 Defining Inputs

The input layers define the pattern(s) of tiles that a rule will look for. These are Tile Layers, and their names must
follow this scheme:

input[not][index]_name

After the first underscore there will be the name of the target input layer. For example, input_Ground will look for
tiles on a layer called Ground. The input layer name can include more underscores, so input_test_case will look
for tiles on a layer called test_case. If the working map includes multiple layers by this name, the bottom-most one will
be used. If the working map does not contain the named target layer, the rule checks against a dummy empty layer.

The not is optional. If present, it inverts the layer’s meaning, so instead of matching the tiles on the layer, Tiled will
match anything but those tiles.

The index is optional. Indices on input layers allow you to create rules that match any of several completely separate
inputs. Any inputs with the same index are treated as part of the same condition, and each different index is its own
independent set of conditions. Any of these conditions being matched will count as a match for the rule. An index can
be empty, or it can be any string that doesn’t start with not and doesn’t contain any underscores.

Multiple input layers having the same name and index is explicitly allowed and is intended. Having multiple input layers
of the same name and index allows you to define different possible tiles per coordinate as input, and any combination
of those tiles will count as a match.

62 Kapitel 13. Automapping

Tiled Documentation, Release 1.10.2

Input Example

Let’s say you want to match two-tile areas of the ground, perhaps to randomise them. You might want to match any
combination of grass and flower tiles, but only whole two-tile rocks. You can achieve this like so:

Tile Layer Name

input1_Ground

input1_Ground

input2_Ground

The first two layers both have the index 1, so Automapping will match any combination of those grass and flower tiles.
The last layer has the index 2, so its tiles are checked separately. This means these inputs will match any part of the
Ground layer that looks like any of these:

Since Tiled 1.9

13.3. Setting Up a Rule Map 63

Tiled Documentation, Release 1.10.2

Matching Special Cases

In some cases, your tiles alone aren’t enough to define the scenario you want to match. Tiled provides a built-in “Au-
tomapping Rules Tileset” to handle certain special cases, which can be added to your rule map through Map > Add
Automapping Rules Tileset.

Empty
This tile matches any empty cell. If used on an output layer, this tile will output an empty tile, allowing you to
erase tiles with Automapping.

Ignore
This tile does not affect the rule in any way. Its only function is to allow connecting otherwise disconnected parts
into a single rule, but it can also be used for clarity.

NonEmpty
This tile matches any non-empty cell.

Other
This tile matches any cell, which contains a tile that is different from all the tiles used by the current rule targeting
the same input layer. This includes empty cells, unless the Empty tile is explicitly used elsewhere by the rule (since
Tiled 1.10).

Negate
This tile negates the condition at a specific location, making other input layers with the same target layer name
act like inputnot and vice versa, but only in that location, which can simplify your rules in some cases.

The meaning of these tiles is derived from their custom MatchType property. This means that you can set up your own
tiles for matching these special cases as well!

13.3.2 Defining Outputs

The output layers define what will be output when the input of the rule matches something in the working map. These
can be Tile or Object Layers, and their names must follow this scheme, which is similar to that of input layer names:

output[index]_name

Everything after the first underscore is the name, which determines which layer in the working map the tiles or objects
will be placed on. If the working map includes multiple layers by this name, the bottom-most one will be used. If the
rule matches and the working map does not already contain the named output layer, Automapping will create the layer.

The index is optional, and is not related to the input indices. Instead, output indices are used to randomize the output:
every time the rule finds a match, a random output index is chosen and only the output layers with that index will have
their contents placed into the working map.

Random Output Example

Continuing with the example from before, you can use output layers like these to randomise the Ground layer:

64 Kapitel 13. Automapping

Tiled Documentation, Release 1.10.2

Tile Layer Name

output1_Ground

output2_Ground

output3_Ground

output4_Ground

By default, the output of a rule is allowed to overlap previous output from the same rule, which isn’t always what you
want. In the example above, the output rocks can be partially overwritten by subsequent outputs from that rule. You can
set the NoOverlappingOutput map property to true to avoid this. This will only apply to rules overlapping their own
output, however - outputs from different rules will still be allowed to overlap. If you want to avoid any kind of overlap,
you will need to design your inputs such that your inputs are specific enough for different rules to not overlap.

Sometimes, you may want certain outputs to appear more or less frequently than others. The above example would look
much nicer if the flowers and rocks didn’t appear quite so often. You can control the probability of an output index by
setting the Probability layer property on one of the layers for that index.

Warnung: While Automapping can output Objects, there are some caveats when it comes to detecting whether
they’re part of a given rule’s output:

• Object rotation is not taken into account.

• Tile Objects‘ Object Alignment is not taken into account.

• Ellipse and Text Objects use their bounding rectangles.

• Point positions are checked exclusively, a Point must be within a given cell to count as part of it, merely
touching the cell is not enough.

• Polygons and Polylines are checked as if they were Points at their position, the rest of the shape is not taken
into account.

13.3. Setting Up a Rule Map 65

Tiled Documentation, Release 1.10.2

Abb. 1: Because outputs are allowed to overlap each other and the inputs aren’t very specific, the two-tile rock outputs
are overlapped by subsequent outputs.

Abb. 2: With NoOverlappingOutput set to true, outputs don’t overlap and all the rocks are whole.

Abb. 3: Setting the Probability of the grass output to 20 and the Probability of the rock output to 0.5 produces much
nicer-looking results.

66 Kapitel 13. Automapping

Tiled Documentation, Release 1.10.2

You can ensure these Objects are output by putting Ignore special tiles in a tile output layer at their position. You
may also need to connect this tile to the rest of the rule with more Ignore tiles to make sure it isn’t treated as a
separate rule.

Any custom properties set on an output layer (other than Probability) will be copied to the target layer when the output
is applied. You should normally not need to add any such properties to output layers, but this can be a way to automate
setting properties on your layers based on their contents.

13.4 Automapping Properties

The behavior of your rules can be modified by properties on the rules map, input and output layers, and on a per-rule
basis using objects.

13.4.1 Map Properties

DeleteTiles
This is a boolean map property: it can be true or false. When true, if rules of this rule map get applied at
some location in your map, all existing tiles in the input region are deleted before applying the output. The usual
way to erase tiles via Automapping is to output the Empty special tile, but this property can save you time your
rules do a lot of deletions on certain layers.

Despite the name, this property affects output Object Layers too, deleting any Objects that fully or partially over-
lap the input region of any rule that matches. This is currently the only way to delete Objects via Automapping.

Warnung: Objects are only deleted when they overlap tiles in the input region. All the caveats of outputting
objects also apply, see the warning in the Defining Outputs section.

AutomappingRadius
This map property is a number: 1, 2, 3 . . . When using Automap While Drawing, this property determines how
far beyond the tiles affected by your changes Automapping will look for matches.

MatchOutsideMap Since Tiled 1.2
This boolean map property determines whether rules can match even when their input region falls partially
outside of a map. By default it is false for bounded maps and true for infinite maps. In some cases it can be
useful to enable this for bounded maps. Tiles outside of the map boundaries are simply considered empty, unless
one of either OverflowBorder or WrapBorder are also true.

Tiled 1.0 and 1.1 behaved as if this property was true, whereas older versions of Tiled behaved as if this property
was false.

OverflowBorder Since Tiled 1.3
This boolean map property customizes the behavior of the MatchOutsideMap property. When this property
is true, tiles outside of the map boundaries are considered as if they were copies of the nearest inbound tiles,
effectively “overflowing” the map’s borders to the outside region.

When this property is true, it implies MatchOutsideMap. Note that this property has no effect on infinite maps
(since there is no notion of border).

WrapBorder Since Tiled 1.3
This boolean map property customizes the behavior of the MatchOutsideMap property. When this property is
true, the map effectively “wraps” around itself, making tiles on one border of the map influence the regions on
the other border and vice versa.

13.4. Automapping Properties 67

Tiled Documentation, Release 1.10.2

When this property is true, it implies MatchOutsideMap. Note that this property has no effect on infinite maps
(since there is no notion of border).

If both WrapBorder and OverflowBorder are true, WrapBorder takes precedence over OverflowBorder.

MatchInOrder Since Tiled 1.9
When this boolean map property is set to true, each rule is applied immediately after a match is found. This
disables concurrent matching of rules, but allows each rule to take into account the output of the previously
applied rules (as used to be the case before Tiled 1.9).

Alternatively, you can split up your rules over multiple rule maps. Rule maps are always applied in order, so each
rule map can rely on any modifications applied by previous rule maps.

13.4.2 Layer Properties

The following properties are supported on a per-layer basis:

AutoEmpty (alias: StrictEmpty)
This boolean layer property can be added to input and inputnot layers to customize the behavior for empty
tiles within a rule.

Normally, empty tiles are simply ignored. When AutoEmpty is true, empty tiles within the input region match
empty tiles in the target layer. This can only happen when you have multiple input/inputnot layers and some of
the tiles that are part of the same rule are empty while others are not. Usually, using the Empty special tile is the
best way to specify an empty tile, but this property is useful when you have multiple input layers, some of which
need to match many empty tiles. Note that the input region is defined by all input layers, regardless of index.

Probability New in Tiled 1.10
This float layer property can be added to output layers to control the probability that a given output index will
be chosen. The probabilities for each output index are relative to one another, and default to 1.0. For example, if
you have outputA with probability 2 and outputB with probability 0.5, A will be chosen four times as often as
B. If multiple output layers with the same index have their Probability set, the last (top-most) layer’s probability
will be used.

Since Tiled 1.9

13.4.3 Object Properties

A number of options can be set on individual rules, even within the same rule map. To do this, add an Object Layer to
your rule map called rule_options. On this layer, you can create plain rectangle objects and any options you set on
these objects will apply to all rules they contain.

The following options are supported per-rule:

ModX
Only apply a rule every N tiles on the X axis (defaults to 1).

ModY
Only apply a rule every N tiles on the Y axis (defaults to 1).

OffsetX
An offset applied in combination with ModX (defaults to 0).

OffsetY
An offset applied in combination with ModY (defaults to 0).

Probability
The chance that a rule applies at all, even if its input layers would have matched, from 0 to 1. A value of 0
effectively disables the rule, whereas a value of 1 (the default) means it is never skipped.

68 Kapitel 13. Automapping

Tiled Documentation, Release 1.10.2

Disabled
A convenient way to (temporarily) disable some rules (defaults to false).

NoOverlappingOutput
When set to true, the output of a rule is not allowed to overlap other outputs of the same rule (defaults to false).

IgnoreLock New in Tiled 1.10
Since Tiled 1.10, Automapping rules no longer modify locked layers. Set this property to true to ignore the
lock. This can be useful when you have layers that are only changed by rules and want to keep them locked.

All these options can also be set on the rule map itself, in which case they apply as defaults for all rules, which can then
be overridden for specific rules by placing rectangle objects.

13.5 Examples

13.5.1 RPG Cliffs

A common Automapping scenario is to automate the placement of cliff sides. Tilesets will often include cliff tiles like
this:

Terrains can be used to place the top of the cliff, but they cannot reliably add the vertical cliffs themselves. Fortunately,
they are no problem for Automapping.

The bottom side and bottom corners of the cliff are the only ones that need cliff tiles in this tileset, so only three rules
are needed to add those. The rules are shown below, layer by layer.

13.5. Examples 69

Tiled Documentation, Release 1.10.2

Abb. 4: The starting map: the flat top of a cliff painted using Terrains.

Abb. 5: Automapping can add the appropriate cliff tiles.

70 Kapitel 13. Automapping

Tiled Documentation, Release 1.10.2

Tile Layer Name

input_Cliff

output1_Cliff

output2_Cliff

The two output layers differ only in which tile is output by the middle rule, the two corner output tiles are the same in
both cases. These three rules get us most of the way there, but there are still some small issues:

This tileset includes tiles for the sides and bottom corners of the cliff top when they’re next to a cliff, so you can make
another rule map to place those. Since there are left and right side tiles and left and right corner tiles, you will need
four rules.

You could create rules that check for a literal cliff tiles next to these tiles, but that would require enumerating every tile
that counts as a cliff - all the cosmetic variants of straight cliff section, the cliff corners, and if you’re not careful, you
might still miss some edge cases like two cliff sides facing each other. A simpler approach would be check whether the
tile above this side or corner is a concave corner tile: if it is, then you know that the tile next to it will be something
with a cliff.

13.5. Examples 71

Tiled Documentation, Release 1.10.2

Abb. 6: The result of the rules above.

Abb. 7: The bottom corners and sides of the cliff are circled here because they should use different tiles when they’re
next to a cliff tile.

72 Kapitel 13. Automapping

Tiled Documentation, Release 1.10.2

Tile Layer Name

input_Cliff

input_Cliff

output_Cliff

There is no need to repeat the side and corner tiles on the second „input_Cliff“ layer, you can leave those cells empty
and only include the extra input tiles that you need.

With these additional rules in place, you should get the result shown at the top of this section: all the cliffs in place,
with no transparent holes where sides and corners meet the cliffs.

Since these rules work with a layer called „Cliff“, they will not affect cliffs drawn on any other layers. If you want to
automap cliffs on several different layers, which may be necessary if you want stacks of cliffs, you’ll need to duplicate
the rule map and adjust the input and output layer names.

Automap While Drawing

The rules above work well if you draw your cliff tops with Terrains and then manually trigger Automapping, but what
if you want to see the cliffs appear as you draw with Terrains, or want to keep drawing with Terrains after automapping
manually?

Abb. 8: Without some extra rules, Automap While Drawing can produce messy results.

For this, your rules will need to take into account tiles that may have previously been placed by Automapping.

Hinweis: If you’re using Automapping While Drawing with Terrains, it also helps for your Terrains to be aware of
the tiles that may be output to that same layer by Automapping. In this example, this would mean labeling the side and
corner tiles meant to be next to cliffs with the same Terrain labels as their base versions.

13.5. Examples 73

Tiled Documentation, Release 1.10.2

This will have the side effect of making Terrains randomly output those tiles where they’re not needed, but this can be
remedied by setting the tile probability of those tiles to 0 in the Tileset Editor. If you always use those Terrains with
Automapping, you can also just let Automapping fix the tiles.

There are two approaches you can take to make your Automapping rules take its own output into account:

• Include those tiles as alternate inputs in all the rules, or

• Make another set of rules to reset all the alternate tiles to a uniform condition.

The appropriate option will depend on your specific rules. In this case, the latter is simpler: all you have to do is erase
any cliff tiles, and replace the variants meant to be placed next to cliffs with their basic versions. For this purpose, you
should create another rule map, and place it before the other rules in your rules.txt, so that it can prepare the map
for those other rules. The actual rules are just simple substitutions:

Tile Layer Name

input_Cliff

output_Cliff

The output tiles in the top row are the Empty special tile, which means the output will erase those tiles.

For Automap While Drawing to work correctly, you may also need to increase the AutomappingRadius property of
your rules maps. This is because some of the rules may look only at tiles near the ones you change by drawing, such as
the rules that erase cliff tiles. In this example, you will probably need to set the AutomappingRadius to 1 on the reset
rules and on the rules that add cliffs.

Abb. 9: Now, Automap While Drawing produces correct results.

74 Kapitel 13. Automapping

Tiled Documentation, Release 1.10.2

13.5.2 Sidescroller Details

You can use Automapping to add various details to your maps. This small example shows adding foreground details to
a sidescroller platforms. This tileset features a number of platform tiles, some of which have rocky tops, and some of
which have grassy tops. These two rules will add random grass and flower decorations to a different layer corresponding
to the grassy-topped tiles, and delete any decorations that end up on top of non-grassy tiles. There are many input layers,
because there are many grassy-topped tiles to check.

13.5. Examples 75

Tiled Documentation, Release 1.10.2

Tile Layer Name

input_Platform

input_Platform

input_Platform

input_Platform

input_Platform

input_Platform

outputA_Foreground

outputB_Foreground

outputC_Foreground

76 Kapitel 13. Automapping

Tiled Documentation, Release 1.10.2

The inputs for these rules are identical except for the last input layer, in which the second rule, which deletes the
foreground detail tiles, has the Negate special tile. This makes all those input layers act like inputnot layers, but
only in that specific location. This means the first rule matches whenever it encounters any of those grassy-topped tiles,
while the second rule matches whenever it encounters anything other than those grassy-topped tiles. The second rule
could’ve also been made with a bunch of inputnot layers instead, but using the Negate tile reduces how many layers
this rule map needs, and it’s easier to see that the input tiles are negated when the layers are all viewed together:

The three outputs select a random foreground detail for the first rule, and are all Empty for the second rule. One of the
outputs for the first rule is also Empty, just for extra variety.

Abb. 10: A result from the two rules above.

13.6 Updating Legacy Rules

If you have some Automapping rules from before Tiled 1.9, they should still work much as they always did in most
cases. When Tiled sees that a rule map contains regions layers, it will automatically bring back the old behavior -
rules will be matched in order by default, and cells within input regions that are empty in all the input layers for a given
layer and index will be treated as „Other“.

Warnung: In Tiled 1.9.x, the presence of regions layers did not imply MatchInOrder. If you’re using 1.9.x
rather than 1.10+ and want to use legacy rules, you’ll need to set the MatchInOrder map property to true.

If you’d like to instead update your rules to not rely on any legacy behavior, that can be as simple as deleting your
regions layer(s), or it might take some extra work, depending on how exactly your rules are set up:

• If your rules rely on being applied in a set order, set the MatchInOrder map property to true.

13.6. Updating Legacy Rules 77

Tiled Documentation, Release 1.10.2

• When deleting your regions layers, make sure you weren’t relying on them to connect otherwise disconnected
areas of tiles. If you were, use the Ignore special tile to connect them on one of the input layers, so that Tiled
knows they’re part of the same rule. To make sure the rules behave exactly the same, fill in any part that was
previously part of the input region.

• If were using the DeleteTiles map property to erase tiles from the output layer, you can keep using this property. If
you want to make your rule more visually clear, however, you should unset the DeleteTiles property, and instead
use the Empty special tile in all the output cells you want to delete from.

• If were using the StrictEmpty map property to look for empty input tiles, you should now use the Empty special
tile instead in the cells you want to check for being empty. You can also continue use the StrictEmpty property
(or its newer alias, AutoEmpty), as long as at least one other input layer is not empty at those locations.

• If were relying on the behavior that any tile which is left empty on all of the input layers for a given index is
treated as “any tile not in this rule”, you should instead use the Other special tile at those locations, and also the
Empty special tile on an inputnot layer at those same locations. The Empty tile is needed because old-style Other
never matched Empty, but the MatchType Other tile does match Empty.

13.7 Credits

The Sidescroller Details example uses art from A platformer in the forest by Buch.

78 Kapitel 13. Automapping

https://opengameart.org/content/a-platformer-in-the-forest

KAPITEL 14

Export Formats

While there are many libraries and frameworks that work directly with Tiled maps, Tiled also supports a number of
additional file and export formats, as well as exporting a map to an image.

Exporting can be done by clicking File > Export. When triggering the menu action multiple times, Tiled will only ask
for the file name the first time. Exporting can also be automated using the --export-map and --export-tileset
command-line parameters.

Several Export Options are available, which are applied to maps or tilesets before they are exported (without affecting
the map or tileset itself).

14.1 Generic File Formats

Tiled supports exporting to several generic file formats which are not targeting any specific framework.

14.1.1 JSON

The JSON format is the most common additional file format supported by Tiled. It can be used instead of TMX since
Tiled can also open JSON maps and tilesets and the format supports all Tiled features. Especially in the browser and
when using JavaScript in general, the JSON format is easier to load.

14.1.2 Lua

Maps and tilesets can be exported to Lua code. This export option supports most of Tiled’s features and is useful
when using a Lua-based framework like LÖVE (with Simple Tiled Implementation), Solar2D (with ponytiled or Dusk
Engine) or Defold.

Currently not included are the type of custom properties (though the type does affect how a property value is exported)
and information related to object templates.

The tiles are referenced using Global Tile IDs, as done in the TMX and JSON formats.

79

https://love2d.org/
https://github.com/karai17/Simple-Tiled-Implementation
https://solar2d.com/
https://github.com/ponywolf/ponytiled
https://github.com/GymbylCoding/Dusk-Engine
https://github.com/GymbylCoding/Dusk-Engine
https://www.defold.com/

Tiled Documentation, Release 1.10.2

14.1.3 CSV

The CSV export only supports tile layers. Maps containing multiple tile layers will export as multiple files, called
base_<layer-name>.csv.

Each tile is written out by its ID, unless the tile has a custom property called name, in which case its value is used to
write out the tile. Using multiple tilesets will lead to ambiguous IDs, unless the custom name property is used. Empty
cells get the value -1.

When tiles are flipped horizontally, vertically or diagonally, these states are exported using bitflags in the ID, in the
same way as done in the TMX Map Format.

14.2 Defold

Tiled can export to Defold using one of the two supplied plugins. Both are disabled by default.

14.2.1 defold

This plugin exports a map to a Defold Tile Map (*.tilemap). It only supports tile layers and only a single tileset may be
used.

Custom Properties

The tile_set property of the Tile Map can be set by adding a custom string property to the map named „tile_set“
(case sensitive). If left empty, it will need to be set up in Defold after each export.

A custom float property named „z“ can be added to set the z value for each tile layer. By default, the layers will be
exported with incrementing z values, so you only need to set this property in case you need to customize the rendering
order.

14.2.2 defoldcollection

This plugin exports a map to a Defold Collection (*.collection), while also creating multiple .tilemap files.

It supports:

• Group layers (only top-level group layers are supported, not nested ones!)
• Multiple Tilesets per Tilemap

The plugin automatically assigns a Z-index to each layer ranging between 0 and 0.1. It supports the use of 9999 Group
Layers and 9999 Tile Layers per Group Layer.

When any additional information from the map is needed, the map can be exported in Lua format and loaded as Defold
script.

80 Kapitel 14. Export Formats

https://defold.com/
https://www.defold.com/manuals/tilemap/
https://www.defold.com/manuals/building-blocks/

Tiled Documentation, Release 1.10.2

Custom Properties

• The tile_set property of each tilemap may need to be set up manually in Defold after each export. However,
Tiled will attempt to find the .tilesource file corresponding with the name your Tileset in Tiled in your project’s
/tilesources/ directory. If one is found, manual adjustments won’t be necessary.

Alternatively, a custom string property called „tilesource“ (case-sensitive) can be added to the tileset, which will
then be used instead (since Tiled 1.9.2).

• If you create custom properties on your map called x-offset and y-offset, these values will be used as
coordinates for your top-level GameObject in the Collection. This is useful when working with Worlds.

• A custom float property named „z“ can be added to tile layers to manually specify their z value.

14.3 GameMaker: Studio 1.4

GameMaker: Studio 1.4 uses a custom XML-based format to store its rooms, and Tiled ships with a plugin to export
maps in this format. Currently only orthogonal maps will export correctly.

Tile layers and tile objects (when no type is set) will export as „tile“ elements. These support horizontal and vertical
flipping, but no rotation. For tile objects, scaling is also supported.

Warnung: The tilesets have to be named the same as the corresponding backgrounds in the GameMaker project.
Otherwise GameMaker will pop up an error for each tile while loading the exported room.gmx file.

14.3.1 Object Instances

GameMaker object instances are created by putting the object name in the „Type“ field of the object in Tiled. Rotation is
supported here, and for tile objects also flipping and scaling is supported (though flipping in combination with rotation
doesn’t appear to work in GameMaker).

The following custom properties can be set on objects to affect the exported instance:

• string code (instance creation code, default: „“)

• float scaleX (default: derived from tile or 1.0)

• float scaleY (default: derived from tile or 1.0)

• int originX (default: 0)

• int originY (default: 0)

The scaleX and scaleY properties can be used to override the scale of the instance. However, if the scale is relevant
then it will generally be easier to use a tile object, in which case it is automatically derived from the tile size and the
object size.

The originX and originY properties can be used to tell Tiled about the origin of the object defined in GameMaker,
as an offset from the top-left. This origin is taken into account when determining the position of the exported instance.

Hinweis: Of course setting the type and/or the above properties manually for each instance will get old fast. Since Tiled
1.0.2, you can instead use tile objects with the type set on the tile, and in Tiled 1.1 you can also use object templates.

14.3. GameMaker: Studio 1.4 81

Tiled Documentation, Release 1.10.2

14.3.2 Views

Views can be defined using rectangle objects where the Type has
been set to view. The position and size will be snapped to pixels.
Whether the view is visible when the room starts depends on whether
the object is visible. The use of views is automatically enabled when
any views are defined.

The following custom properties can be used to define the various
other properties of the view:

Port on screen
• int xport (default: 0)

• int yport (default: 0)

• int wport (default: 1024)

• int hport (default: 768)

Object following
• string objName

• int hborder (default: 32)

• int vborder (default: 32)

• int hspeed (default: -1)

• int vspeed (default: -1)

Hinweis: When you’re defining views in Tiled, it is useful to add view as class in the Custom Types Editor, adding
the above properties for ease of access. If you frequently use views with similar settings, you can set up templates for
them.

14.3.3 Map Properties

General

• int speed (default: 30)

• bool persistent (default: false)

• bool clearDisplayBuffer (default: true)

• bool clearViewBackground (default: false)

• string code (map creation code, default: „“)

82 Kapitel 14. Export Formats

Tiled Documentation, Release 1.10.2

Physics

• bool PhysicsWorld (default: false)

• int PhysicsWorldTop (default: 0)

• int PhysicsWorldLeft (default: 0)

• int PhysicsWorldRight (default: width of map in pixels)

• int PhysicsWorldBottom (default: height of map in pixels)

• float PhysicsWorldGravityX (default: 0.0)

• float PhysicsWorldGravityY (default: 10.0)

• float PhysicsWorldPixToMeters (default: 0.1)

14.3.4 Layer Properties

Both tile layers and object layers may produce „tile“ elements in the exported room file. Their depth is set automatically,
with tiles from the bottom-most layer getting a value of 10000000 (the GameMaker default) and counting up from there.
If you want to set a custom depth value you can set the following property on the layer:

• int depth (default: 10000000 + N)

14.4 GameMaker Studio 2.3

GameMaker Studio 2.3 uses a JSON-based format to store its rooms, and Tiled ships with a plugin to export maps in
this format.

This plugin will do its best to export the map as accurately as possible, mapping Tiled’s various features to the matching
GameMaker features. Tile layers get exported as tile layers when possible, but will fall back to asset layers if necessary.
Objects can get exported as instances, but also as tile graphics, sprite graphics or views. Image layers get exported as
background layers.

Warnung: Since GameMaker’s „Add Existing“ action doesn’t work at this point in time (2.3.1) the easiest way to
export a Tiled map to your GameMaker Project is to overwrite an already existing room.yy file.

Starting with Tiled 1.8, it is no longer necessary to deactivate the „Use safe writing of files“ option, since the
GameMaker export now ignores it to avoid reload issues in GameMaker.

14.4.1 References to Existing Assets

Since Tiled currently only exports a map as a GameMaker room, any sprites, tilesets and objects used by the map are
expected to be already available in the GameMaker project.

For sprites, the sprite name is derived by looking for a *.yy file in the directory of the image file and up to two parent
directories. If such a file is found, it is assumed to be the associated meta file and its name without the file extension is
used. If no *.yy file can be found, the name of the image file without its file extension is used.

If necessary, the sprite name can be explicitly specified using a custom sprite property (supported on tilesets, tiles
from image collection tilesets and image layers).

For tilesets, the tileset name entered in Tiled must match the name of the tileset asset in GameMaker.

14.4. GameMaker Studio 2.3 83

Tiled Documentation, Release 1.10.2

For object instances, the name of the object should be set in the Type field.

14.4.2 Exporting a Tiled Map

A Tiled map contains tile layers, object layers, image layers and group layers. All these layer types are supported.

Tile Layers

When possible, a tile layer will get exported as a tile layer.

When several tilesets are used on the same layer, the layer gets exported as a group with a child tile layer for each tileset,
since GameMaker supports only one tileset per tile layer.

When the tile size of a tileset doesn’t match the grid size of the map, or when the map orientation is not orthogonal (for
example, isometric or hexagonal), the tiles will get exported to an asset layer instead. This layer type is more flexible,
though for tile graphics it does not support rotation.

When the layer includes tiles from a collection of images tileset, these will get exported to an asset layer as sprite
graphics.

Object Layers

Object layers in Tiled are very flexible since objects take so many forms. As such the export looks at each object to see
how it should be exported to the GameMaker room.

When an object has a Type, it is exported as an instance on an instance layer, where the type refers to the name of the
object to instantiate. Except, when the type is „view“, the object is interpreted as a view.

When an object has no Type, but it is a tile object, then it is exported as either a tile graphic or a sprite graphic, depending
on whether the tile is from a tileset image or a collection of images.

The following custom properties can be set on objects to affect the exported instance or sprite asset:

• color colour (default: based on layer tint color)

• float scaleX (default: derived from tile or 1.0)

• float scaleY (default: derived from tile or 1.0)

• bool inheritItemSettings (default: false)

• int originX (default: 0)

• int originY (default: 0)

• bool ignore (default: whether the object is hidden)

The scaleX and scaleY properties can be used to override the scale of the instance. However, if the scale is relevant
then it will generally be easier to use a tile object, in which case it is automatically derived from the tile size and the
object size.

The originX and originY properties can be used to tell Tiled about the origin of the sprite defined in GameMaker,
as an offset from the top-left. This origin is taken into account when determining the position of the exported instance.

Hinweis: Of course setting the type and/or the above properties manually for each instance will get old fast. Instead
you can use tile objects with the type set on the tile or use object templates.

84 Kapitel 14. Export Formats

Tiled Documentation, Release 1.10.2

Object Instances

The following additional custom properties can be set on objects that are exported as object instances:

• bool hasCreationCode (default: false)

• int imageIndex (default: 0)

• float imageSpeed (default: 1.0)

• int creationOrder (default: 0)

The hasCreationCode property can be set to true. Refers to „InstanceCreationCode_[inst_name].gml“ in the room
folder which you can create inside GameMaker itself or with an external text editor.

By default the instance creation order is derived from the object positions inside the layer and object hierarchy from
Tiled. This can be changed by using the custom property creationOrder. Objects with lower values will be created be-
fore objects with higher values (so objects with negative values will be created before objects without a creationOrder
property).

Additional custom properties that are not documented here can be used to override the variable definitions that got set
up inside GameMaker for the object.

Bemerkung: As of now only variable definitions of the object itself can be overridden. Overriding variable definitions
of parent objects is not supported. As a workaround you can use the creation code to override variables of a parent
object.

Tile Graphics

For objects exported as tile graphics (aka GMS 1.4 tiles), it should be noted that rotation is not supported on asset
layers.

When 90-degree rotation with grid-alignment suffices, these tiles should be placed on tile layers instead. When free
placement with rotation is required, a collection of images tileset should be used, so that the objects can be exported as
sprite graphics instead.

Sprite Graphics

The following additional custom properties can be set on objects that are exported as sprite graphics:

• float headPosition (default: 0.0)

• float animationSpeed (default: 1.0)

Image Layers

Image layers are exported as background layers.

The file name of the source image is assumed to be the same as the name of the corresponding sprite asset. Alternatively
the custom property sprite can be used to explicitly set the name of the sprite asset.

While not supported visually in Tiled, it is possible to create an image layer without an image but with only a tint color.
Such layers will get exported as a background layer with just the color set.

The following custom properties can be set on image layers to affect the exported background layers:

14.4. GameMaker Studio 2.3 85

Tiled Documentation, Release 1.10.2

• string sprite (default: based on image filename)

• bool htiled (default: value of Repeat X property)

• bool vtiled (default: value of Repeat Y property)

• bool stretch (default: false)

• float hspeed (default: 0.0)

• float vspeed (default: 0.0)

• float animationFPS (default: 15.0)

• int animationSpeedtype (default: 0)

Even though the custom properties such as hspeed and vspeed have no visual effect inside Tiled you will see the effect
in the exported room inside GameMaker.

14.4.3 Special Cases and Custom Properties

Rooms

If a Background Color is set in the map properties of Tiled an extra background layer with the according color is
exported as the bottommost layer.

The following custom properties can be set under Map -> Map Properties.

General

• string parent (default: „Rooms“)

• bool inheritLayers (default: false)

• string tags (default: „“)

The parent property is used to define the parent folder inside GameMakers asset browser.

The tags property is used to assign tags to the room. Multiple tags can be separated by commas.

Room Settings

• bool inheritRoomSettings (default: false)

• bool persistent (default: false)

• bool clearDisplayBuffer (default: true)

• bool inheritCode (default: false)

• string creationCodeFile (default: „“)

The creationCodeFile property is used to define the path of an existing creation code file, e.g.: „${pro-
ject_dir}/rooms/room_name/RoomCreationCode.gml“.

86 Kapitel 14. Export Formats

Tiled Documentation, Release 1.10.2

Viewports and Cameras

General
• bool inheritViewSettings (default: false)

• bool enableViews (default: true when any „view“ objects were found)

• bool clearViewBackground (default: false)

Viewport 0 - Viewport 7
You can configure up to 8 viewports by using view objects (see Views).

Physics

• bool inheritPhysicsSettings (default: false)

• bool PhysicsWorld (default: false)

• float PhysicsWorldGravityX (default: 0.0)

• float PhysicsWorldGravityY (default: 10.0)

• float PhysicsWorldPixToMeters (default: 0.1)

Sprite References

As mentioned above, references to sprites generally derive the name of the sprite asset from the image file name. The
following property can be set on tilesets, tiles from image collection tilesets and image layers to explicitly specify the
sprite name:

• string sprite (default: based on image filename)

Pfade

Warnung: Paths are not supported yet, but it’s planned to export polyline and polygon objects as paths on path
layers in a future update.

Views

Views can be defined using rectangle objects where the Type has been set to „view“. The position and size will be
snapped to pixels. Whether the view is visible when the room starts depends on whether the object is visible. The use
of views is automatically enabled when any views are defined.

The following custom properties can be used to define the various other properties of the view:

General
• bool inherit (default: false)

Kameraeinstellungen
Die Kameraeinstellungen werden automatisch von der Position und der Größe des angezeigten Objektes abgeleitet.

Viewport Properties
• int xport (default: 0)

14.4. GameMaker Studio 2.3 87

Tiled Documentation, Release 1.10.2

• int yport (default: 0)

• int wport (default: 1366)

• int hport (default: 768)

Object following
• string objectId

• int hborder (default: 32)

• int vborder (default: 32)

• int hspeed (default: -1)

• int vspeed (default: -1)

Hinweis: When you’re defining views in Tiled, it is useful to add view as class in the Custom Types Editor, adding
the above properties for ease of access. If you frequently use views with similar settings, you can set up templates for
them.

Layers

All layer types support the following custom properties:

• int depth (default: auto-assigned, like in GameMaker)

• bool visible (default: derived from layer)

• bool hierarchyFrozen (default: layer locked state)

• bool noExport (default: false)

The depth property can be used to assign a specific depth value to a layer.

The visible property can be used to override the „Visible“ state of the layer if needed.

The hierarchyFrozen property can be used to override the „Locked“ state of the layer if needed.

The noExport property can be used to suppress exporting of an entire layer, including any child layers. This is useful
if you use a layer for annotations (like adding background image or text objects) that you do not want exported to
GameMaker. Note that any views defined on this layer will then also get ignored.

14.5 Godot 4

Godot 4 revamped its TileMap node, and Tiled ships with a plugin to export maps in this format. For exporting to Godot
3, see the Tiled To Godot Export extension.

The Godot 4 exporter assumes that the generated .tscn files and the tileset artwork all share the same file hierarchy.
The exporter will search for a common parent folder containing a .godot project file and use that folder as the res://
root for the project. The exporter will search at least two parent folders for a .godot file.

88 Kapitel 14. Export Formats

https://github.com/mapeditor/tiled-to-godot-export

Tiled Documentation, Release 1.10.2

14.5.1 Layer Properties

All layer types support the following custom properties:

• bool ySortEnabled (default: false)

• int zIndex (default: 0)

• bool noExport (default: false)

• bool tilesetOnly (default: blank)

The ySortEnabled property can be used to change the drawing order to allow sprites to be drawn behind tiles based
on their Y coordinate.

The zIndex property can be used to assign a specific depth value to a layer.

The noExport property can be used to suppress exporting of an entire layer, including any child layers. This is useful if
you use a layer for annotations (like adding background image or text objects) that you do not want exported to Godot.
Note that any views defined on this layer will then also get ignored.

The tilesetOnly property can be used if you want to export all the tilesets used in this layer, without actually exporting
the layer itself. By default, the exporter will only export tilesets which are actually used in the map, so this property
allows you to export tilesets that normally would otherwise get skipped. This is most useful in combination with the
tilesetResPath property.

14.5.2 Tileset Properties

Tilesets support the following property:

• bool exportAlternates (default: false)

The exportAlternates property is necessary when using flipped or rotated tiles. This will create 7 alternate tiles for
each tile, allowing all flipped and rotation combinations.

14.5.3 Tile Properties

All custom properties set on tiles will get exported as Custom Data Layers of the Godot TileSet resource.

14.5.4 Map Properties

Maps support the following custom property:

• string tilesetResPath (default: blank)

The tilesetResPath property saves the tileset to an external .tres file, allowing it to be shared between multiple maps
more efficiently. This path must be in the form of ‚res://<path>.tres‘. The tileset file will be overwritten every time the
map is exported.

Bemerkung: Only tilesets that are used in the current map will be exported. You must ensure that every map which
uses the same .tres file also uses all of the same tilesets. You may wish to create a layer with the tilesetOnly
property to ensure the correct tilesets are exported.

14.5. Godot 4 89

https://docs.godotengine.org/en/stable/tutorials/2d/using_tilesets.html#assigning-custom-metadata-to-the-tileset-s-tiles
res:/

Tiled Documentation, Release 1.10.2

14.5.5 Limitations

• The Godot 4 exporter does not currently support collection of images tilesets, object layers, or image layers.

• Godot’s hexagonal maps only support hex side lengths that are exactly half the tile height. So if, for example,
your tile height is 16, then your hex side length must be 8.

• Godot’s hexagonal maps do not support 120° tile rotations.

• Animations frames must strictly go from left-to-right and top-to-bottom, without skipping any frames, and ani-
mation frames may not be used for anything else.

14.6 tBIN

The tBIN map format is a binary format used by the tIDE Tile Map Editor. tIDE was used by Stardew Valley, a successful
game that spawned many community mods.

Tiled ships with a plugin that enables direct editing of Stardew Valley maps (and any other maps using the tBIN format).
This plugin needs to be enabled in Edit > Preferences > Plugins. It is not enabled by default because it won’t store
everything (most notably it doesn’t support object layers in general, nor external tilesets), so you need to know what
you are doing.

Bemerkung: The tBIN format supports setting custom properties on the tiles of a tile layer. Since Tiled does not
support this directly, „TileData“ objects are created that match the location of the tile, on which such properties are
then stored.

Abb. 1: One of the farm maps from Stardew Valley opened in Tiled.

90 Kapitel 14. Export Formats

https://colinvella.github.io/tIDE/
https://stardewvalley.net/
https://www.nexusmods.com/stardewvalley/?

Tiled Documentation, Release 1.10.2

14.7 Other Formats

A few other plugins ship with Tiled to support various games or tools:

droidcraft
Adds support for editing DroidCraft maps (*.dat)

flare
Adds support for editing Flare Engine maps (*.txt)

replicaisland
Adds support for editing Replica Island maps (*.bin)

rpmap
Adds support for exporting Tiled maps as RpMap (*.rpmap), the format used by MapTool.

Currently, support is limited to maps using „Image Collection“ tilesets since MapTool doesn’t support tileset
images.

tengine
Adds support for exporting to T-Engine4 maps (*.lua)

These plugins are disabled by default. They can be enabled in Edit > Preferences > Plugins.

14.8 Custom Export Formats

Tiled provides several options for extending it with support for additional file formats.

14.8.1 Using JavaScript

Tiled is extendable using JavaScript and it is possible to add custom export formats using tiled.registerMapFormat or
tiled.registerTilesetFormat.

14.8.2 Using Python

It is also possible to write Python scripts to add support for importing or exporting custom map formats.

14.8.3 Using C++

Currently all export options shipping with Tiled are written as C++ Tiled plugins. The API for such plugins is not
documented (apart from Doxygen-style comments in the libtiled source code), but there are over a dozen examples
you can look at.

Bemerkung: For binary compatibility reasons, a C++ plugin needs to be compiled for the same platform, by the same
compiler and with the same versions of Qt and Tiled that the plugin is supposed to support. Generally, the easiest way
to achieve this is by compiling the plugin along with Tiled, which is what all current plugins do. If you write a C++
plugin that could be useful for others, it is recommended you open a pull request to have it shipped with Tiled.

14.7. Other Formats 91

https://play.google.com/store/apps/details?id=org.me.droidcraft
http://flarerpg.org/
http://replicaisland.net/
https://www.rptools.net/toolbox/maptool/
https://te4.org/te4
https://www.mapeditor.org/docs/scripting/modules/tiled.html#registermapformat
https://www.mapeditor.org/docs/scripting/modules/tiled.html#registertilesetformat

Tiled Documentation, Release 1.10.2

14.9 Export as Image

Maps can be exported as image. Tiled supports most common image formats. Choose File -> Export as Image. . . to
open the relevant dialog.

Since exporting a map can in some cases result in a huge image, a Use current zoom level option is provided to allow
exporting the map at the size it’s currently displayed at.

For repeatedly converting a map to an image, manually triggering this export isn’t very convenient. For this purpose, a
tool called tmxrasterizer ships with Tiled, which contrary to its name is able to render any supported map format to
an image. It is also able to render entire worlds to an image. On Linux this tool can be set up for generating thumbnail
previews of maps in the file manager.

Bemerkung: When exporting on the command-line on Linux, Tiled will still need an X server to run. To automate
exports in a headless environment, you can use a headless X server such as Xvfb. In this case you would run Tiled from
the command-line as follows:

xvfb-run tiled --export-map ...

92 Kapitel 14. Export Formats

https://www.x.org/archive/X11R7.6/doc/man/man1/Xvfb.1.xhtml

KAPITEL 15

Tastenkürzel

Bemerkung: Die meisten der unten aufgeführten Kürzel können über die Einstellungen geändert werden.

Unter macOs gilt statt Strg natürlich Cmd.

15.1 General

• Strg + N - Neue Karte erzeugen

• Strg + O - Datei oder Projekt öffnen

• Strg + P - Datei im aktuellen Projekt öffnen

• Ctrl + Shift + P - Search for available actions

• Strg + Umsch + T - kürzlich geschlossene Datei erneut öffnen

• Strg + S - aktuelle Datei speichern

• Strg + Alt + S - Aktuelle Datei mit anderem Namen speichern

• Strg + Umsch + S - Alles speichern

• ``Strg + E `` - Aktuelles Dokument exportieren

• Strg + Umsch + E - Aktuelles Dokument mit anderem Namen speichern

• Strg + R - Aktuelles Dokument neu laden

• Strg + W - Aktuelles Dokument schließen

• Strg + Umsch + W - Alle Dokumente schließen

• Strg + Q - Tiled beenden

• Strg + Mausrad - Vergrößern/Verkleinern eines Tilesets oder einer Karte

93

Tiled Documentation, Release 1.10.2

• Strg + Plus/Minus - Karte Vergrößern/Verkleinern

• Strg + 0 - Zoom zurücksetzen

• Strg + / - Karte in Ansicht einpassen

• Strg + Objekt bewegen - Schaltet „Am Raster fangen“ vorübergehend ein oder aus

• Strg + Objektgröße ändern - erhält das Seitenverhältnis

• Alt + Objektgröße ändern - Schaltet „Am Raster fangen“ vorübergehend ein oder aus

• Mausradklick oder Leertaste - Halten um die Kartenansicht zu verschieben

• Strg + X - Ausschneiden (Kacheln, Objekte oder Eigenschaften``

• Strg + C - Kopieren (Kacheln, Objekte oder Eigenschaften)

• Strg + V - Einfügen (Kacheln, Objekte oder Eigenschaften)

• Entf - Löschen (Kacheln, Objekte, Eigenschaften oder Ebenen)

• Strg + G - Raster ein/aus

• H- Aktuelle Ebene hervorheben

• Strg + M - :doc: Automapping aufrufen

• Alt + C - Aktuelle Position der Maus in die Zwischenablage kopieren (als Kachelkoordinaten)

• Strg + D - Ausgewählte Objekte duplizieren

• Strg + J - Neue Ebene erzeugen und die aktuell ausgewählten Objekte oder Kacheln hineinkopieren

• Strg + Umsch + J - Neue Ebene erzeugen und die aktuell ausgewählten Objekte oder kacheln dorthin ver-
schieben

• Strg + Umsch + D - Ausgewählte Ebenen duplizieren

• F2 - Umbenennen (falls verfügbar)

• Tab - Ansichten und Werkzeugleisten verstecken

• Strg + Bild-Auf - Vorherige Ebene wählen (über der aktuellen)

• Strg + Bild-Ab - Nächste Ebene wählen (unter der aktuellen)

• Strg + Umsch + Hoch - Ausgewählte Ebenen nach oben verschieben

• Strg + Umsch + Runter - Ausgewählte Ebenen nach unten verschieben

• Strg + H - Ausgewählte Ebenen zeigen/verstecken

• Strg + L - Ausgewählte Ebenen (ent)sperren

• Strg + Umsch + H - Alle anderen Ebenen zeigen/verstecken („Nur aktive Ebenen sichtbar“ / „Alle Ebenen
sichtbar“)

• Strg + Umsch + L - alle anderen Ebenen (ent)sperren

• Strg + Tab / Alt + Links - Zum Dokument links wechseln

• Strg + Umsch + Tab / Alt + Rechts - Zum Dokument rechts wechseln

•] - Nächstes Tileset wählen

• [- Vorheriges Tileset wählen

• Strg + T - Neuladen aller von der aktuellen Karte verwendeten Tilesets erzwingen (Nützlich, wenn das auto-
matische Neuladen ausgeschaltet ist)

94 Kapitel 15. Tastenkürzel

Tiled Documentation, Release 1.10.2

• Strg + Umsch + A - Auswahl aufheben (Kacheln und Objekte)

15.2 Bei ausgewählter Kachelebene

• Rechtsklick auf Kachel - Übernimmt die Kachel unter dem Mauszeiger (Ziehen um größere Gebiete aus-
zuwählen).

• Strg + Rechtsklick auf Kachel - Wählt die Ebene mit der am höchsten liegenden Kachel unter dem Maus-
zeiger.

• D - Zufallsmodus an/aus

• B - Stamp Brush aktivieren

– Umsch-Klick - Linienmodus. Platziert Kacheln auf der Linie zwischen zwei angeklickten Orten

– Strg + Umsch + Klick - Kreismodus. Platziert Kacheln um einen angeklickten Mittelpunkt.

• T - Terrain Brush aktivieren

• F - Bucket Fill Tool aktivieren

• P - Shape Fill Tool aktivieren

• E - Eraser aktivieren

• R - Rechteckige Auswahl aktivieren

• W - Zauberstab aktivieren

• S - Gleiche Kachel wählen

• Ctrl + 1-9 - Store current tile stamp. When no tile drawing tool is selected, tries to capture the current tile
selection (similar to Ctrl + C).

• 1-9 - Vor Kurzem gespeicherte(n) Kachelstempel erneut aktivieren (dasselbe wie Strg + V)

• Strg + A - ganze Ebene wählen

Aktiven Stempel anpassen:

• X - Horizontal spiegeln

• Y - Vertikal spiegeln

• Z - Im Uhrzeigersinn drehen

• Umsch + Z - Gegen den Uhrzeigersinn drehen

15.3 Bei ausgewählter Objektebene

• S - Objekte auswählen aktivieren

– Bild-Auf - Ausgewählte Objekte anheben (mit manueller Zeichenreihenfolge für Objekte)

– Bild-Ab - Ausgewählte Objekte absenken (mit manueller Zeichenreihenfolge für Objekte)

– Pos1 - Ausgewählte Objekte nach ganz oben verschieben (mit manueller Zeichenreihenfolge für Objekte)

– Ende - Ausgewählte Objekte nach ganz unten verschieben (mit manueller Zeichenreihenfolge für Objekte)

• O - Edit Polygons aktivieren

15.2. Bei ausgewählter Kachelebene 95

Tiled Documentation, Release 1.10.2

• R - Rechteck einfügen aktivieren

• I - Punkt einfügen aktivieren

• C - Ellipse einfügen aktivieren

• P - Polygon einfügen aktivieren

– Enter - Objekterzeugung beenden

– Esc - Objekterzeugung abbrechen

• T - Kachel einfügen aktivieren

• V - Vorlage einfügen aktivieren (seit Tiled 1.1)

• E - Text einfügen aktivieren

• Strg + A - alle Objekte in den ausgewählten Ebenen auswählen

15.4 Im Eigenschaften-Dialog

• Rück - Eigenschaft löschen

96 Kapitel 15. Tastenkürzel

KAPITEL 16

User Preferences

There are only a few options located in the Preferences, accessible though the menu via Edit > Preferences. Most other
options, like whether to draw the grid, what kind of snapping to do or the last used settings when creating a new map
are simply remembered persistently.

The preferences are stored in a system-dependent format and location:

Windows Registry key HKEY_CURRENT_USER\SOFTWARE\mapeditor.org\Tiled
macOS ~/Library/Preferences/org.mapeditor.Tiled.plist
Linux ~/.config/mapeditor.org/tiled.conf

16.1 General

16.1.1 Saving and
Loading

Reload tileset images
when they change

This is very useful
while working on the
tiles or when the tiles
might change as a re-
sult of a source con-
trol system.

Restore previous session
on startup

When disabled, Tiled
always starts with an

97

Tiled Documentation, Release 1.10.2

empty session. This
can be useful when
you frequently switch
projects.

Use safe writing of files
This setting causes fi-
les to be written to
a temporary file, and
when all went well, to
be swapped with the
target file. This avoids
data getting lost due
to errors while saving
or due to insufficient
disk space. Unfortu-
nately, it is known to
cause issues when sa-
ving files to a Drop-
box folder or a net-
work drive, in which case it helps to disable this feature.

Repeat last export on save
With this feature ena-
bled, any time you
save a map or tileset
that was previously
exported it will auto-
matically be exported
again to the same
location and format.

16.1.2 Export Options

The following export options are applied each time a map or tileset gets exported, without affecting the map or tileset
itself.

Embed tilesets
All tilesets are embedded in the exported map. Useful for example when you are exporting to JSON and loading
an external tileset is not desired.

Detach templates
All template instances are detached. Useful when you want to use the templates feature but can’t or don’t want
to load the external template object files.

Resolve object types and properties
Stores effective object type and properties with each object. Object properties are inherited from a tile (in case
of a tile object) and from the default properties of their type.

Minimize output
Omits unnecessary whitespace in the output file. This option is supported for XML (TMX and TSX), JSON and
Lua formats.

These options are also available as options when exporting using the command-line.

98 Kapitel 16. User Preferences

Tiled Documentation, Release 1.10.2

16.2 Interface

16.2.1 Interface

Language
By default the language tries to match that of the system, but if it picks the wrong one you can change it here.

Grid colour
Because black is not always the best color for the grid.

Fine grid divisions
The tile grid can be divided further using this setting, which affects the „Snap to Fine Grid“ setting in the View
> Snapping menu.

Object line width
Shapes are by default rendered with a 2 pixel wide line, but some people like it thinner or even thicker. On some
systems the DPI-based scaling will affect this setting as well.

Object selection behavior
By default the Objekte auswählen tool selects objects from any layer. With this setting, you can make it prefer to
select objects from the currently selected layers, or to only pick objects from the selected layers.

When the „Highlight Current Layer“ option is enabled, Tiled automatically prefers to select objects from the
currently selected layers.

Hardware accelerated drawing (OpenGL)
This enables a rather unoptimized way of rendering the map using OpenGL. It’s usually not an improvement and
may lead to crashes, but in some scenarios it can make editing more responsive.

Mouse wheel zooms by default
This option causes the mouse wheel to zoom without the need to hold Control (or Command on macOS). It can
be a convenient way to navigate the map, but it can also interfere with panning on a touchpad.

Middle mouse button uses auto-scrolling
With this option enabled, the clicking middle mouse button doesn’t drag the map directly but instead controls
the speed of a continuous panning movement.

Use smooth scrolling
This option affects the behavior when scrolling with the arrow keys. When disabled, the view scrolls in steps
based on key press events. When enabled (the default), the view scrolls continuously while the keys are held
down.

16.2.2 Updates

By default, Tiled checks for news and new versions and highlights any updates in the status bar. Here you can disable
this functionality. It is recommended to keep at least one of these enabled.

If you disable displaying of new versions, you can still manually check whether a new version is available by opening
the About Tiled dialog.

16.2. Interface 99

Tiled Documentation, Release 1.10.2

16.3 Keyboard

Here you can add, remove or change the keyboard shortcuts of most available actions.

Conflicting keybindings are highlighted in red. They will not work until you resolve the conflict.

If you customize multiple shortcuts, it is recommended to use the export functionality to save the keybindings some-
where, so that you can easily recover that setup or copy it to other Tiled installations.

16.4 Theme

On Windows and Linux, the default style used by Tiled is „Tiled Fusion“. This is a customized version of the „Fusion“
style that ships with Qt. On macOS, this style can also be used, but because it looks so out of place the default is
„Native“ there.

The „Tiled Fusion“ style allows customizing the base color. When choosing a dark base color, the text automatically
switches to white and some other adjustments are made to keep things readable. You can also choose a custom selection
color.

The „Native“ style tries to fit in with the operating system, and is available since it is in some cases preferable to the
custom style. The base color and selection color can’t be changed when using this style, as they depend on the system.

16.4.1 Custom Interface Font

Normally the application font defaults to the one defined by the system. If you’d like Tiled to use a different font, you
can set one here.

16.5 Plugins

Here you can choose which plugins are enabled, as well as opening the scripted extensions folder.

Plugins add support for map and/or tileset file formats. Some generic plugins are enabled by default, while more specific
ones need to be manually enabled.

There is no need to restart Tiled when enabling or disabling plugins. When a plugin fails to load, try hovering its icon
to see if the tool tip displays a useful error message.

See Export Formats for more information about supported file formats.

100 Kapitel 16. User Preferences

KAPITEL 17

Python Scripts

Bemerkung: Since Tiled 1.3, Tiled can be extended using JavaScript. The JavaScript API provides a lot more oppor-
tunity for extending Tiled’s functionality than just adding custom map formats. It is fully documented and works out
of the box on all platforms. It should be preferred over the Python plugin when possible.

Tiled ships with a plugin that enables you to use Python 3 to add support for custom map formats. This is nice especially
since you don’t need to compile Tiled yourself and the scripts are easy to deploy to any platform.

For the scripts to get loaded, they should be placed in ~/.tiled. Tiled watches this directory for changes, so there is
no need to restart Tiled after adding or changing scripts (though the directory needs to exist when you start Tiled).

There are several example scripts available in the repository.

Bemerkung: To create the ~/.tiled folder on Windows, open command prompt (cmd.exe), which should start in
your home folder by default, then type mkdir .tiled to create the folder.

On Linux, folders starting with a dot are hidden by default. In most file managers you can toggle showing of hidden
files using Ctrl+H.

Bemerkung: Since Tiled 1.2.4, the Python plugin is disabled by default, because depending on which Python version
is installed on the system the loading of this plugin may cause a crash (#2091). To use the Python plugin, first enable
it in the Preferences.

Warnung: On Windows, Python is not installed by default. For the Tiled Python plugin to work, you’ll need to
install Python 3.8 (get it from https://www.python.org/). You will also need to check the box „Add Python 3.8 to
PATH“ in the installer:

101

https://github.com/bjorn/tiled/tree/master/src/plugins/python/scripts
https://github.com/bjorn/tiled/issues/2091
https://www.python.org/

Tiled Documentation, Release 1.10.2

On Linux you will also need to install the appropriate package. However, currently Linux builds are done on Ubuntu
20.04 against Python 3.8, and you’d need to install the same version somehow.

The Python plugin is currently not available for macOS releases.

17.1 Example Export Plugin

Suppose you’d like to have a map exported in the following format:

29,29,29,29,29,29,32,-1,34,29,29,29,29,29,29,
29,29,29,29,29,29,32,-1,34,29,29,29,29,29,29,
29,29,29,29,29,29,32,-1,34,29,29,29,29,29,29,
29,29,29,29,29,29,32,-1,34,29,29,29,29,29,29,
25,25,25,25,25,25,44,-1,34,29,29,29,29,29,29,
-1,-1,-1,-1,-1,-1,-1,-1,34,29,29,29,29,29,29,
41,41,41,41,41,41,41,41,42,29,29,24,25,25,25,
29,29,29,29,29,29,29,29,29,29,29,32,-1,-1,-1,
29,29,29,29,29,29,39,29,29,29,29,32,-1,35,41,
29,29,29,29,29,29,29,29,29,29,29,32,-1,34,29,
29,29,29,29,29,29,29,29,37,29,29,32,-1,34,29;

You can achieve this by saving the following example.py script in the scripts directory:

from tiled import *

class Example(Plugin):
@classmethod
def nameFilter(cls):

return "Example files (*.example)"

@classmethod
def shortName(cls):

return "example"

@classmethod
def write(cls, tileMap, fileName):

with open(fileName, 'w') as fileHandle:
for i in range(tileMap.layerCount()):

if isTileLayerAt(tileMap, i):
tileLayer = tileLayerAt(tileMap, i)
for y in range(tileLayer.height()):

tiles = []
for x in range(tileLayer.width()):

(Fortsetzung auf der nächsten Seite)

102 Kapitel 17. Python Scripts

Tiled Documentation, Release 1.10.2

(Fortsetzung der vorherigen Seite)

if tileLayer.cellAt(x, y).tile() != None:
tiles.append(str(tileLayer.cellAt(x, y).tile().id()))

else:
tiles.append(str(-1))

line = ','.join(tiles)
if y == tileLayer.height() - 1:

line += ';'
else:

line += ','
print(line, file=fileHandle)

return True

Then you should see an „Example files“ entry in the type dropdown when going to File > Export, which allows you to
export the map using the above script.

Bemerkung: This example does not support the use of group layers.

17.2 Debugging Your Script

Any errors that happen while parsing or running the script are printed to the Console, which can be enabled in View >
Views and Toolbars > Console.

17.3 API Reference

It would be nice to have the full API reference documented here, but for now please check out the source file for available
classes and methods.

Bemerkung: Any help with maintaining the Python plugin would be very appreciated. See open issues related to
Python support

17.2. Debugging Your Script 103

https://github.com/bjorn/tiled/blob/master/src/plugins/python/tiledbinding.py
https://github.com/bjorn/tiled/issues?utf8=%E2%9C%93&q=is%3Aissue+is%3Aopen+python+in%3Atitle
https://github.com/bjorn/tiled/issues?utf8=%E2%9C%93&q=is%3Aissue+is%3Aopen+python+in%3Atitle

Tiled Documentation, Release 1.10.2

104 Kapitel 17. Python Scripts

KAPITEL 18

Libraries and Frameworks

There are many libraries available for reading and/or writing Tiled maps (either stored in the TMX Map Format or the
JSON-Kartenformat) as well as many development frameworks that include support for Tiled maps. This list is divided
into two sections:

• Support by Language

• Support by Framework

The first list is for developers who plan on implementing their own renderer. The second list is for developers already
using (or considering) a particular game engine / graphics library who would rather pass on having to write their own
tile map renderer.

Bemerkung: For updates to this page please open a pull request or issue on GitHub, thanks!

18.1 Support by Language

These libraries typically include only a TMX parser, but no rendering support. They can be used universally and should
not require a specific game engine or graphics library.

18.1.1 C

• cute tiled - JSON map loader with examples (zlib/Public Domain).

• libtmj - JSON map and tileset loader with zlib/gzip/zstd support (BSD 2-Clause)

• TMX - TMX map loader with Allegro5 and SDL2 examples (BSD).

105

https://github.com/bjorn/tiled/issues
https://github.com/RandyGaul/cute_headers
https://github.com/Zer0-One/libtmj
https://github.com/baylej/tmx/

Tiled Documentation, Release 1.10.2

18.1.2 C++

• C++/TinyXML based tmxparser (BSD)

• C++/Qt based libtiled, used by Tiled itself and included at src/libtiled (BSD)

• C++11x/TinyXml2 libtmx-parser by halsafar. (zlib/tinyxml2)

• C++11/TinyXml2 libtmx by jube, for reading only (ISC licence). See documentation.

• TMXParser General *.tmx tileset data loader. Intended to be used with TSXParser for external tileset loading.
(No internal tileset support)

• TSXParser General *.tsx tileset data loader. Intended to be used with TMXParser.

• TMXLoader based on RapidXml. Limited functionality (check the website for details).

• tmxlite C++14 map parser with compressed map support but no external linking required. Includes examples for
SFML and SDL2 rendering. Currently has full tmx support up to 0.16. (Zlib/libpng)

• tinytmx A C++17 library to parse maps generated by Tiled Map Editor. Requires no external linking, all depen-
dencies are included.

• Tileson - A Tiled JSON parser for modern C++ (C++17) by Robin Berg Pettersen (BSD)

18.1.3 C#/.NET

• TiledCS: A dotnet library for loading Tiled tilesets and maps (TMX/TSX or JSON).

• MonoGame.Extended has a Tiled map loader and renderer that works with MonoGame on all platforms that
support portable class libraries.

• The following projects appear to be no longer maintained, but might still be useful: TiledSharp, NTiled, tmx-
mapper-pcl, tiled-xna and TmxCSharp.

18.1.4 Common Lisp

• cl-tiled: TMX/TSX and JSON map/tileset loader.

18.1.5 Clojure

• tile-soup: Parses and validates a TMX file into a map. Automatically decodes Base64 and CSV formatted data
and coerces numbers when necessary. Works on both the JVM and in browsers via ClojureScript.

18.1.6 D

• tiledMap.d simple single-layer and single-tileset example to load a map and its tileset in D language. It also
contains basic rendering logic using DSFML

• dtiled can load JSON-formatted Tiled maps. It also provides general tilemap-related functions and algorithms.

106 Kapitel 18. Libraries and Frameworks

https://github.com/sainteos/tmxparser
https://github.com/bjorn/tiled/tree/master/src/libtiled
https://github.com/halsafar/libtmx-parser
https://github.com/jube/libtmx
http://jube.github.io/libtmx/index.html
https://github.com/solar-storm-studios/TMXParser
https://github.com/solar-storm-studios/TSXParser
https://github.com/martygrant/tmxloader
http://rapidxml.sourceforge.net/
http://www.midnightpacific.com/portfolio/tmxloader-for-tiled-map-editor/
https://github.com/fallahn/tmxlite
https://github.com/KaseyJenkins/tinytmx
https://github.com/SSBMTonberry/tileson
https://github.com/TheBoneJarmer/TiledCS
https://github.com/craftworkgames/MonoGame.Extended
https://github.com/marshallward/TiledSharp
https://github.com/patriksvensson/ntiled
https://github.com/aalmik/tmx-mapper-pcl
https://github.com/aalmik/tmx-mapper-pcl
https://github.com/zachmu/tiled-xna
https://github.com/gwicksted/TmxCSharp
https://github.com/Zulu-Inuoe/cl-tiled/
https://github.com/oakes/tile-soup
https://gist.github.com/gdm85/9896961
http://dlang.org/
https://github.com/Jebbs/DSFML/
https://github.com/rcorre/dtiled

Tiled Documentation, Release 1.10.2

18.1.7 Dart

• tiled: a library for loading TMX files

18.1.8 Go

• github.com/lafriks/go-tiled

• github.com/salviati/go-tmx/tmx

18.1.9 Haskell

• htiled (TMX) by Christian Rødli Amble.

• aeson-tiled (JSON) by Schell Scivally.

18.1.10 Java

• A library for loading TMX files is included with Tiled at util/java/libtiled-java.

• TiledReader is a simple TMX reader that conveys the information in Tiled files via a hand-crafted class structure,
but does not load image data.

• Android-Specific:

– AndroidTMXLoader loads TMX data into an object and renders to an Android Bitmap (limited functiona-
lity)

– libtiled-java port is a port of the libtiled-java to be used on Android phones.

18.1.11 OCaml

• tmx

18.1.12 PHP

• PHP TMX Viewer by sebbu : render the map as an image (allow some modifications as well)

18.1.13 Pike

• TMX parser: a simple loader for TMX maps (CSV format only).

18.1. Support by Language 107

https://pub.dev/packages/tiled
https://github.com/lafriks/go-tiled
https://github.com/salviati/go-tmx
http://hackage.haskell.org/package/htiled
https://github.com/chrra
https://hackage.haskell.org/package/aeson-tiled
https://github.com/schell
https://github.com/bjorn/tiled/tree/master/util/java/libtiled-java
http://www.alexheyman.org/tiledreader/
https://github.com/davidmi/Android-TMX-Loader
http://chiselapp.com/user/devnewton/repository/libtiled-android/index
http://github.com/fishyfriend/tmx
https://github.com/sebbu2/php-tmx-viewer
https://gitlab.com/tmx-parser/tmx-parser

Tiled Documentation, Release 1.10.2

18.1.14 Processing

• linux-man/ptmx: Add Tiled maps to your Processing sketch.

18.1.15 Python

• Arcade: 2D game library that uses pytiled-parser for easy loading of Tiled maps into a game. Arcade Tiled
Examples

• pytiled-parser: Python parser for TMX and JSON maps.

• pytmxlib: library for programmatic manipulation of TMX maps

• pytmxloader: Python library intended to make loading of JSON Tiled maps very easy.

• PyTMX: Python library to read TMX maps.

• ulvl: Simple Python library that can read from, among others, TMX XML files.

18.1.16 Ruby

• tmx gem by erisdiscord

18.1.17 Rust

• tiled, a rust crate for loading TMX maps

• tiled-json-rs, a crate to parse and interact with Tiled editor JSON files

18.1.18 Vala

• librpg A library to load and handle spritesets (own format) and orthogonal TMX maps.

18.2 Support by Framework

Following entries are integrated solutions for specific game engines. They are typically of little to no use if you’re not
using said game engine.

18.2.1 AndEngine

• AndEngine by Nicolas Gramlich supports rendering TMX maps

108 Kapitel 18. Libraries and Frameworks

https://github.com/linux-man/ptmx
https://api.arcade.academy
https://api.arcade.academy/en/latest/examples/index.html#using-tiled-map-editor-to-create-maps
https://api.arcade.academy/en/latest/examples/index.html#using-tiled-map-editor-to-create-maps
https://github.com/benjamin-kirkbride/pytiled_parser
http://pytmxlib.readthedocs.org/en/latest/
https://bitbucket.org/dr0id/pytmxloader/src/master/
https://github.com/bitcraft/PyTMX
https://ulvl.github.io/
https://github.com/shawn42/tmx
https://crates.io/crates/tiled
https://crates.io/crates/tiled-json-rs
https://github.com/JumpLink/librpg
http://www.andengine.org/
http://www.andengine.org/blog/2010/07/andengine-tiledmaps-in-the-tmx-format/

Tiled Documentation, Release 1.10.2

18.2.2 Allegro

• allegro_tiled integrates Tiled support with Allegro 5.

18.2.3 Bevy

• bevy_tiled, a plugin for rendering Tiled maps

• bevy_tmx, a plugin that allows you to read .tmx files as scenes

• bevy_ecs_tilemap, a tilemap rendering plugin that makes tiles entities, with support for TMX maps

18.2.4 Castle Game Engine (Object Pascal)

• Castle Game Engine has native support for Tiled maps (see the engine manual about Tiled Maps)

18.2.5 Cell2D

• The Java library Cell2D supports Tiled maps via a pipeline that starts with TiledReader, but currently has more
built-in support for orthogonal maps than for other orientations.

18.2.6 cocos2d

• cocos2d (Python) supports loading Tiled maps through its cocos.tiles module.

• cocos2d-x (C++) supports loading TMX maps through the CCTMXTiledMap class.

• cocos2d-objc (Objective-C, Swift) (previously known as: cocos2d-iphone, cocos2d-swift, cocos2d-spritebuilder)
supports loading TMX maps through CCTiledMap

• TilemapKit is a tilemapping framework for Cocos2D. It supports all TMX tilemap types, including staggered iso
and all hex variations. No longer in development.

18.2.7 Construct 2 - Scirra

• Construct 2, since the Beta Release 149, officially supports TMX maps, and importing it by simple dragging the
file inside the editor. Official Note

18.2.8 DragonRuby Game Toolkit

• DRTiled adds support for loading Tiled maps to the DragonRuby Game Toolkit. The maps can be rendered using
DRTiled Renderer.

18.2. Support by Framework 109

https://github.com/dradtke/allegro_tiled
http://alleg.sourceforge.net/
https://github.com/StarArawn/bevy_tiled
https://github.com/Kurble/bevy_tmx
https://github.com/StarArawn/bevy_ecs_tilemap
https://castle-engine.io/
https://castle-engine.io/tiled_maps
https://www.cell2d.org/
http://www.alexheyman.org/tiledreader/
http://python.cocos2d.org/
http://python.cocos2d.org/doc/programming_guide/tiled_map.html
http://www.cocos2d-x.org/
http://www.cocos2d-x.org/reference/native-cpp/V2.1.4/da/d68/classcocos2d_1_1_c_c_t_m_x_tiled_map.html
http://www.cocos2d-objc.org/
http://cocos2d.spritebuilder.com/docs/api/Classes/CCTiledMap.html
http://tilemapkit.com
http://www.scirra.com
https://www.scirra.com/construct2/releases/r149
https://github.com/wildfiler/drtiled
https://dragonruby.org/toolkit/game
https://github.com/vinnydiehl/drtiled-renderer

Tiled Documentation, Release 1.10.2

18.2.9 Flame

• flame_tiled is a library for incorporating Tiled maps into the Flame game engine.

18.2.10 Flixel

• Lithander demonstrated his Flash TMX parser combined with Flixel rendering

18.2.11 Game Maker

• Tiled ships with plugins for exporting to GameMaker: Studio 1.4 and GameMaker Studio 2.3 room files.

• Tiled2GM Converter by Dmi7ry

18.2.12 Godot

• Tiled ships with a plugin for exporting to Godot 4 as .tscn scene files.

• Tiled Map Importer imports each map as Godot scene which can be instanced or inherited (forum announcement).

• Godot Tiled importer (Mono version) imports Tiled maps exported to JSON (.tmj) format. Supports all map
orientations.

• Tiled To Godot Export is a Tiled JavaScript extension for exporting Tilemaps and Tilesets in Godot 3.2 format
(forum announcement).

18.2.13 Grid Engine

• Planimeter’s Grid Engine supports Tiled Lua-exported maps.

18.2.14 Haxe

• HaxePunk Tiled Loader for HaxePunk

• HaxeFlixel

• OpenFL „openfl-tiled“ is a library, which gives OpenFL developers the ability to use the Tiled Map Editor.

• OpenFL + Tiled + Flixel Experimental glue to use „openfl-tiled“ with HaxeFlixel

18.2.15 HTML5 (multiple engines)

• Canvas Engine A framework to create video games in HTML5 Canvas

• chem-tmx Plugin for chem game engine.

• chesterGL A simple WebGL/canvas game library

• Crafty JavaScript HTML5 Game Engine; supports loading Tiled maps through an external component Tiled-
MapBuilder.

• Excalibur, an open-source 2D HTML5 game engine, supports loading Tiled maps through the plugin excalibur-
tiled.

110 Kapitel 18. Libraries and Frameworks

https://pub.dev/packages/flame_tiled
https://pub.dev/packages/flame
http://blog.pixelpracht.net/?p=59
http://gmc.yoyogames.com/index.php?showtopic=539494
https://godotengine.org/asset-library/asset/25
http://discourse.mapeditor.org/t/importer-plugin-for-godot-engine/1833/1
https://github.com/mi-sts/godot_tiled_importer
https://github.com/MikeMnD/tiled-to-godot-export
https://discourse.mapeditor.org/t/tiled-editor-map-and-tileset-integration-with-godot-3-2/4347
https://www.planimeter.org/grid-sdk/
https://github.com/HaxePunk/tiled
https://github.com/HaxeFlixel/flixel-addons/tree/dev/flixel/addons/editors/tiled
https://github.com/Kasoki/openfl-tiled
https://github.com/kasoki/openfl-tiled-flixel
https://github.com/RSamaium/CanvasEngine
https://github.com/andrewrk/chem-tmx
https://github.com/andrewrk/chem/
https://github.com/funkaster/ChesterGL
http://craftyjs.com
https://github.com/Kibo/TiledMapBuilder
https://github.com/Kibo/TiledMapBuilder
https://excaliburjs.com/
https://github.com/excaliburjs/excalibur-tiled
https://github.com/excaliburjs/excalibur-tiled

Tiled Documentation, Release 1.10.2

• GameJs JavaScript library for game programming; a thin wrapper to draw on HTML5 canvas and other useful
modules for game development

• KineticJs-Ext A multi-canvas based game rendering library

• melonJS A lightweight HTML5 game engine

• Panda 2, a HTML5 Game Development Platform for Mac, Windows and Linux. Has a plugin for rendering Tiled
maps, both orthogonal and isometric.

• Phaser A fast, free and fun open source framework supporting both JavaScript and TypeScript (Tiled tutorial)

• linux-man/p5.tiledmap adds Tiled maps to p5.js.

• Platypus Engine A robust orthogonal tile game engine with game entity library.

• sprite.js A game framework for image sprites.

• TMXjs A JavaScript, jQuery and RequireJS-based TMX (Tile Map XML) parser and renderer.

• glazeJS A high performance 2D game engine built in Typescript. It supports the TMX format, rendering tile
layers on the GPU via WebGL (demo).

18.2.16 indielib-crossplatform

• indielib cross-platform supports loading TMX maps through the C++/TinyXML based tmx-parser by KonoM
(BSD)

18.2.17 Irrlicht

• Irrlicht, a C++ realtime 3D engine, can load TMX files through a 3rd-party library by TheMrCerebro (Zlib).

18.2.18 LibGDX

• libgdx, a Java-based Android/desktop/HTML5 game library, provides a packer, loader and renderer for TMX
maps

18.2.19 LITIENGINE

• LITIENGINE is an open source Java 2D Game Engine that supports loading, editing, saving, and rendering maps
in the .tmx format.

18.2.20 LÖVE

• Simple Tiled Implementation Lua loader for the LÖVE (Love2d) game framework.

18.2. Support by Framework 111

http://gamejs.org
https://github.com/Wappworks/kineticjs-ext
http://www.melonjs.org
https://www.panda2.io/
https://www.panda2.io/plugins
http://www.phaser.io
http://www.gamedevacademy.org/html5-phaser-tutorial-top-down-games-with-tiled/
https://github.com/linux-man/p5.tiledmap
http://p5js.org/
https://github.com/PBS-KIDS/Platypus/
https://github.com/batiste/sprite.js
https://github.com/cdmckay/tmxjs
https://github.com/rjewson/glazejs
https://rjewson.github.io/glazejs/
http://www.indielib.com
http://code.google.com/p/tmx-parser/
https://irrlicht.sourceforge.io/
https://github.com/TheMrCerebro/irrTiled
http://libgdx.badlogicgames.com/
https://libgdx.com/wiki/graphics/2d/tile-maps
https://litiengine.com
https://github.com/Karai17/Simple-Tiled-Implementation

Tiled Documentation, Release 1.10.2

18.2.21 MOAI SDK

• Hanappe Framework for MOAI SDK.

• Rapanui Framework for MOAI SDK.

18.2.22 Monkey X

• bit.tiled Loads TMX file as objects. Aims to be fully compatible with native TMX files.

• Diddy is an extensive framework for Monkey X that contains a module for loading and rendering TMX files.
Supports orthogonal and isometric maps as both CSV and Base64 (uncompressed).

18.2.23 Node.js

• node-tmx-parser - loads the TMX file into a JavaScript object

18.2.24 Oak Nut Engine (onut)

• Oak Nut Engine supports Tiled maps through Javascript and C++. (see TiledMap Javascript or C++ samples)

18.2.25 Orx Portable Game Engine

• TMX to ORX Converter Tutorial and converter download for Orx.

18.2.26 Pygame

• Pygame map loader by dr0id

• PyTMX by Leif Theden (bitcraft)

• tmx.py by Richard Jones, from his 2012 PyCon ‚Introduction to Game Development‘ talk.

• TMX, a fork of tmx.py and a port to Python3. A demo called pylletTown can be found here.

18.2.27 Pyglet

• JSON map loader/renderer for pyglet by Juan J. Martínez (reidrac)

• PyTMX by Leif Theden (bitcraft)

18.2.28 PySDL2

• PyTMX by Leif Theden (bitcraft)

112 Kapitel 18. Libraries and Frameworks

https://github.com/makotok/Hanappe
https://github.com/ymobe/rapanui
https://github.com/bitJericho/bit.tiled
https://code.google.com/p/diddy/
https://github.com/andrewrk/node-tmx-parser
http://daivuk.github.io/onut/
https://github.com/Daivuk/onut/tree/master/samplesJS/TiledMap
https://github.com/Daivuk/onut/tree/master/samples/TiledMap
https://wiki.orx-project.org/en/tutorials/tools/tmx_to_orx
http://www.pygame.org/project/1158/
https://github.com/bitcraft/PyTMX
https://bitbucket.org/r1chardj0n3s/pygame-tutorial/src/a383dd24790d/tmx.py
http://pyvideo.org/video/615/introduction-to-game-development
https://github.com/renfredxh/tmx
https://github.com/renfredxh/pylletTown
https://github.com/reidrac/pyglet-tiled-json-map
https://github.com/bitcraft/PyTMX
https://github.com/bitcraft/PyTMX

Tiled Documentation, Release 1.10.2

18.2.29 RPG Maker MV

• Tiled Plugin for RPG Maker MV by Dr.Yami & Archeia, from RPG Maker Web

18.2.30 SDL

• C++/TinyXML/SDL based loader example by Rohin Knight (limited functionality)

18.2.31 SFML

• STP (SFML TMX Parser) by edoren

• C++/SFML Tiled map loader by fallahn. (Zlib/libpng)

• C++/SfTileEngine by Tresky (currently limited functionality)

18.2.32 Slick2D

• Slick2D supports loading TMX maps through TiledMap.

18.2.33 Solar2D (formerly Corona SDK)

• ponytiled is a simple Tiled Map Loader for Solar2D (forum announcement)

• Dusk Engine is a fully featured Tiled map game engine for Solar2D (no longer maintained, but may still be
useful)

• Berry is a simple Tiled Map Loader for Solar2D.

• Qiso is an isometric engine for Solar2D that supports loading Tiled maps, and also handles things like path-
finding for you.

18.2.34 Sprite Kit Framework

• SKTilemap is built from the ground up in Swift. It’s up to date, full of features and easy to integrate into any
Sprite Kit project. Supports iOS and OSX.

• SKTiled - A Swift framework for working with Tiled assets in SpriteKit.

• JSTileMap is a lightweight SpriteKit implementation of the TMX format supporting iOS 7 and OS X 10.9 and
above.

18.2.35 TERRA Engine (Delphi/Pascal)

• TERRA Engine supports loading and rendering of TMX maps.

18.2. Support by Framework 113

https://archeia.itch.io/tiled-plugin-for-rpg-maker-mv
http://yami.moe/
https://forums.rpgmakerweb.com
http://usefulgamedev.weebly.com/c-tiled-map-loader.html
https://github.com/edoren/STP
http://trederia.blogspot.co.uk/2013/05/tiled-map-loader-for-sfml.html
https://github.com/Tresky/sf_tile_engine
http://slick.ninjacave.com
http://slick.ninjacave.com/javadoc/org/newdawn/slick/tiled/TiledMap.html
https://github.com/ponywolf/ponytiled
http://discourse.mapeditor.org/t/new-lua-coronasdk-framework-ponytiled/1826
https://github.com/GymbylCoding/Dusk-Engine
https://github.com/ldurniat/Berry
https://qiso.qweb.co.uk
https://github.com/TomLinthwaite/SKTilemap
https://github.com/mfessenden/SKTiled
https://github.com/slycrel/JSTileMap
http://pascalgameengine.com/

Tiled Documentation, Release 1.10.2

18.2.36 Unity

• SuperTiled2Unity is a collection of C# Unity scripts that can automatically import Tiled map editor files directly
into your Unity projects.

• Tiled TMX Importer, imports into Unity 2017.2’s new native Tilemap system.

• Tiled to Unity is a 3D pipeline for Tiled maps. It uses prefabs as tiles, and can place decorations dynamically on
tiles. Supports multiple layers (including object layers).

• Tuesday: A generic C# serializer and deserializer plus a set of Unity editor scripts that allow you to drag and
drop TMX files into your scene, make edits, and save back out as TMX files. MIT license.

• UniTiled, a native TMX importer for Unity.

• X-UniTMX supports almost all Tiled 0.11 features. Imports TMX/XML files into Sprite Objects or Meshes.

• Orthello Pro (2D framework) offers Tiled map support.

18.2.37 Unreal Engine 4

• Paper2D provides built-in support for tile maps and tile sets, importing JSON exported from Tiled.

18.2.38 Urho3D

• Urho3D natively supports loading Tiled maps as part of the Urho2D sublibrary (Documentation, HTML5 exam-
ple).

18.2.39 XNA

• FlatRedBall Glue tool ships with a Tiled plugin that loads TMX maps into the FlatRedBall engine, providing
rich integration with its features.

• XTiled by Michael C. Neel and Dylan Wolf, XNA library for loading and rendering TMX maps

• XNA map loader by Kevin Gadd, extended by Stephen Belanger and Zach Musgrave

114 Kapitel 18. Libraries and Frameworks

https://seanba.itch.io/supertiled2unity
https://assetstore.unity.com/packages/tools/sprite-management/tiled-tmx-importer-102928
https://assetstore.unity.com/packages/tools/integration/tiled-to-unity-17260
https://github.com/ShreveportArcade/Tuesday
https://yjaffal.itch.io/unitiled
https://bitbucket.org/Chaoseiro/x-unitmx
http://www.wyrmtale.com/products/unity3d-components/orthello-pro
http://www.wyrmtale.com/orthello-pro/tilemaps
https://forums.unrealengine.com/showthread.php?3539-Project-Paper2D
http://urho3d.github.io/
http://urho3d.github.io/documentation/1.4/_urho2_d.html
http://urho3d.github.io/documentation/1.4/class_urho3_d_1_1_tile_map2_d.html
http://urho3d.github.io/samples/36_Urho2DTileMap.html
http://urho3d.github.io/samples/36_Urho2DTileMap.html
http://flatredball.com/
http://flatredball.com/documentation/tools/tiled-plugin/
https://bitbucket.org/vinull/xtiled
https://github.com/zachmu/tiled-xna

KAPITEL 19

TMX Map Format

Version 1.8
TMX and TSX are Tiled’s own formats for storing tile maps and tilesets, based on XML. TMX provides a flexible way
to describe a tile based map. It can describe maps with any tile size, any amount of layers, any number of tile sets and
it allows custom properties to be set on most elements. Beside tile layers, it can also contain groups of objects that can
be placed freely.

Note that there are many libraries and frameworks available that can work with TMX maps and TSX tilesets.

In this document we’ll go through each element found in these file formats. The elements are mentioned in the headers
and the list of attributes of the elements are listed right below, followed by a short explanation. Attributes or elements
that are deprecated or unsupported by the current version of Tiled are formatted in italics. All optional attributes are
either marked as optional, or have a default value to imply that they are optional.

Have a look at the changelog when you’re interested in what changed between Tiled versions.

Bemerkung: A DTD-file (Document Type Definition) is served at http://mapeditor.org/dtd/1.0/map.dtd. This file is
not up-to-date but might be useful for XML-namespacing anyway.

Bemerkung: For compatibility reasons, it is recommended to ignore unknown elements and attributes (or raise a
warning). This makes it easier to add features without breaking backwards compatibility, and allows custom variants
and additions to work with existing tools.

115

http://www.mapeditor.org
http://mapeditor.org/dtd/1.0/map.dtd

Tiled Documentation, Release 1.10.2

19.1 <map>

• version: The TMX format version. Was „1.0“ so far, and will be incremented to match minor Tiled releases.

• tiledversion: The Tiled version used to save the file (since Tiled 1.0.1). May be a date (for snapshot builds).
(optional)

• class: The class of this map (since 1.9, defaults to „“).

• orientation: Map orientation. Tiled supports „orthogonal“, „isometric“, „staggered“ and „hexagonal“ (since
0.11).

• renderorder: The order in which tiles on tile layers are rendered. Valid values are right-down (the default),
right-up, left-down and left-up. In all cases, the map is drawn row-by-row. (only supported for orthogonal
maps at the moment)

• compressionlevel: The compression level to use for tile layer data (defaults to -1, which means to use the algo-
rithm default).

• width: The map width in tiles.

• height: The map height in tiles.

• tilewidth: The width of a tile.

• tileheight: The height of a tile.

• hexsidelength: Only for hexagonal maps. Determines the width or height (depending on the staggered axis) of
the tile’s edge, in pixels.

• staggeraxis: For staggered and hexagonal maps, determines which axis („x“ or „y“) is staggered. (since 0.11)

• staggerindex: For staggered and hexagonal maps, determines whether the „even“ or „odd“ indexes along the
staggered axis are shifted. (since 0.11)

• parallaxoriginx: X coordinate of the parallax origin in pixels (defaults to 0). (since 1.8)

• parallaxoriginy: Y coordinate of the parallax origin in pixels (defaults to 0). (since 1.8)

• backgroundcolor: The background color of the map. (optional, may include alpha value since 0.15 in the form
#AARRGGBB. Defaults to fully transparent.)

• nextlayerid: Stores the next available ID for new layers. This number is stored to prevent reuse of the same ID
after layers have been removed. (since 1.2) (defaults to the highest layer id in the file + 1)

• nextobjectid: Stores the next available ID for new objects. This number is stored to prevent reuse of the same
ID after objects have been removed. (since 0.11) (defaults to the highest object id in the file + 1)

• infinite: Whether this map is infinite. An infinite map has no fixed size and can grow in all directions. Its layer
data is stored in chunks. (0 for false, 1 for true, defaults to 0)

The tilewidth and tileheight properties determine the general grid size of the map. The individual tiles may have
different sizes. Larger tiles will extend at the top and right (anchored to the bottom left).

A map contains three different kinds of layers. Tile layers were once the only type, and are simply called layer, object
layers have the objectgroup tag and image layers use the imagelayer tag. The order in which these layers appear is
the order in which the layers are rendered by Tiled.

The staggered orientation refers to an isometric map using staggered axes.

The tilesets used by the map should always be listed before the layers.

Can contain at most one: <properties>, <editorsettings> (since 1.3)

Can contain any number: <tileset>, <layer>, <objectgroup>, <imagelayer>, <group> (since 1.0)

116 Kapitel 19. TMX Map Format

Tiled Documentation, Release 1.10.2

19.2 <editorsettings>

This element contains various editor-specific settings, which are generally not relevant when reading a map.

Can contain at most one: <chunksize>, <export>

19.2.1 <chunksize>

• width: The width of chunks used for infinite maps (default to 16).

• height: The width of chunks used for infinite maps (default to 16).

19.2.2 <export>

• target: The last file this map was exported to.

• format: The short name of the last format this map was exported as.

19.3 <tileset>

• firstgid: The first global tile ID of this tileset (this global ID maps to the first tile in this tileset).

• source: If this tileset is stored in an external TSX (Tile Set XML) file, this attribute refers to that file. That TSX
file has the same structure as the <tileset> element described here. (There is the firstgid attribute missing and
this source attribute is also not there. These two attributes are kept in the TMX map, since they are map specific.)

• name: The name of this tileset.

• class: The class of this tileset (since 1.9, defaults to „“).

• tilewidth: The (maximum) width of the tiles in this tileset. Irrelevant for image collection tilesets, but stores the
maximum tile width.

• tileheight: The (maximum) height of the tiles in this tileset. Irrelevant for image collection tilesets, but stores
the maximum tile height.

• spacing: The spacing in pixels between the tiles in this tileset (applies to the tileset image, defaults to 0). Irrelevant
for image collection tilesets.

• margin: The margin around the tiles in this tileset (applies to the tileset image, defaults to 0). Irrelevant for image
collection tilesets.

• tilecount: The number of tiles in this tileset (since 0.13). Note that there can be tiles with a higher ID than the
tile count, in case the tileset is an image collection from which tiles have been removed.

• columns: The number of tile columns in the tileset. For image collection tilesets it is editable and is used when
displaying the tileset. (since 0.15)

• objectalignment: Controls the alignment for tile objects. Valid values are unspecified, topleft, top,
topright, left, center, right, bottomleft, bottom and bottomright. The default value is unspecified,
for compatibility reasons. When unspecified, tile objects use bottomleft in orthogonal mode and bottom in
isometric mode. (since 1.4)

• tilerendersize: The size to use when rendering tiles from this tileset on a tile layer. Valid values are tile (the
default) and grid. When set to grid, the tile is drawn at the tile grid size of the map. (since 1.9)

19.2. <editorsettings> 117

Tiled Documentation, Release 1.10.2

• fillmode: The fill mode to use when rendering tiles from this tileset. Valid values are stretch (the default) and
preserve-aspect-fit. Only relevant when the tiles are not rendered at their native size, so this applies to
resized tile objects or in combination with tilerendersize set to grid. (since 1.9)

A tileset can be either based on a single image, which is cut into tiles based on the given parameters, or a collection of
images, in which case each tile defines its own image. In the first case there is a single child 
</tile>
<tile id="[n]">
<!-- an individually referenced image for a single tile -->
<image source="file.png"/>

</tile>
...

</tileset>

134 Kapitel 20. TMX Changelog

https://github.com/encukou/pytmxlib

Tiled Documentation, Release 1.10.2

20.22 Tiled 0.8

• Tilesets can now have custom properties (using the properties child element, just like everything else).

• Tilesets now support defining a drawing offset in pixels, which is to be used when drawing any tiles from that
tileset. Example:

<tileset name="perspective_walls" tilewidth="64" tileheight="64">
<tileoffset x="-32" y="0"/>
...

</tileset>

• Support for tile rotation in 90-degree increments was added by using the third most significant bit in the global
tile id. This new bit means „anti-diagonal flip“, which swaps the x and y axis when rendering a tile.

20.22. Tiled 0.8 135

Tiled Documentation, Release 1.10.2

136 Kapitel 20. TMX Changelog

KAPITEL 21

JSON-Kartenformat

Tiled kann Karten als JSON-Dateien exportiern. Wählen Sie dazu einfach „Datei > Exportieren unter“ und wählen Sie
den JSON-Dateityp. Sie können Json von der Kommandozeile mit der Option --export-map exportieren.

Die Felder im JSON-Format unterscheiden sich geringfügig von denen im TMX Map Format, aber die Bedeutungen
sollten dieselben sein.

Die folgenden Felder können in der Tiled JSON Datei gefunden werden:

137

Tiled Documentation, Release 1.10.2

21.1 Karte

Feld Typ Beschreibung
Hintergrundfar-
be

Zeichenkette Hex-formatierte Farbe (#RRGGBB or #AARRGGBB) (optional)

class Zeichenkette The class of the map (since 1.9, optional)
Komprimie-
rungsgrad

Ganzzahl (int) Die Kompressionsstufe für Daten der Kachelebene (Standard: -1, bedeutet,
die Voreinstellung des Algorithmus wird verwendet)

Höhe Ganzzahl (int) Anzahl der Kachelreihen
hexsidelength Ganzzahl (int) Länge einer sechseckigen Kachel in Pixeln (nur für hexagonale Karten gül-

tig(
unendlich Boolean

(wahr/falsch)
Ob die Karte unendliche Dimensionen hat

Ebenen Array Array von Ebenen
nextlayerid Ganzzahl (int) Erhöht sich automatisch für jede Ebene
nextobjectid Ganzzahl (int) Erhöht sich automatisch für jedes platzierte Objekt
Ausrichtung Zeichenkette rechtwinklig, isometrisch, gestaffelt oder sechseckig
parallaxoriginx double X coordinate of the parallax origin in pixels (since 1.8, default: 0)
parallaxoriginy double Y coordinate of the parallax origin in pixels (since 1.8, default: 0)
Eigenschaften Array Array von Eigenschaften
Zeichenreihen-
folge

Zeichenkette rechts-runter (Standard), rechts-hoch, links-runter oder
links-hoch (wird nur für rechtwinklige Karten unterstützt)

staggeraxis Zeichenkette x or y (staggered / hexagonal maps only)
staggerindex Zeichenkette ungerade oder gerade (nur für gestaffelte/ hexagonale Karten)
tiledversion Zeichenkette Die Tiled Version, mit der die Datei gespeichert wurde
Tile-Höhe Ganzzahl (int) Kartenrasterhöhe
Tilesets Array Array von Kachelsätzen
Tile-Breite Ganzzahl (int) Kartenrasterbreite
Typ Zeichenkette Karte (seit 1.0)
Version Zeichenkette Das JSON-Format (früher eine Zahl, seit 1.6 eine Zeichenkette)
Breite Ganzzahl (int) Anzahl der Kachelspalten

21.1.1 Beispielkarte

{
"backgroundcolor":"#656667",
"height":4,
"layers":[],
"nextobjectid":1,
"orientation":"orthogonal",
"properties":[
{
"name":"mapProperty1",
"type":"string",
"value":"one"

},
{
"name":"mapProperty2",
"type":"string",
"value":"two"

(Fortsetzung auf der nächsten Seite)

138 Kapitel 21. JSON-Kartenformat

Tiled Documentation, Release 1.10.2

(Fortsetzung der vorherigen Seite)

}],
"renderorder":"right-down",
"tileheight":32,
"tilesets":[],
"tilewidth":32,
"version":1,
"tiledversion":"1.0.3",
"width":4

}

21.2 Ebene

Feld Typ Beschreibung
chunks Array Array of chunks (optional). tilelayer only.
class Zeichenkette The class of the layer (since 1.9, optional)
Komprimierung Zeichenkette zlib, gzip, zstd (seit Tiled 1.3) oder leer (Standard). Nur Kachelebene.
Daten Feld oder Zei-

chenkette
Array of unsigned int (GIDs) or base64-encoded data. tilelayer only.

Zeichenreihen-
folge

Zeichenkette topdown (default) or index. objectgroup only.

Kodierung Zeichenkette csv (Standard) oder base64. nur tilelayer.
Höhe Ganzzahl (int) Row count. Same as map height for fixed-size maps. tilelayer only.
ID Ganzzahl (int) Incremental ID - unique across all layers
Bild Zeichenkette Image used by this layer. imagelayer only.
Ebenen Array Array of layers. group only.
locked Boolean

(wahr/falsch)
Whether layer is locked in the editor (default: false). (since Tiled 1.8.2)

Name Zeichenkette Name der dieser Ebene zugeordnet ist
Objekte Array Array von Objekten. nur objectgroup.
offsetx double Horizontal layer offset in pixels (default: 0)
offsety double Vertical layer offset in pixels (default: 0)
Deckkraft double Wert zwischen 0 und 1
parallaxx double Horizontal parallax factor for this layer (default: 1). (since Tiled 1.5)
parallaxy double Vertical parallax factor for this layer (default: 1). (since Tiled 1.5)
Eigenschaften Array Array von Eigenschaften
repeatx Boolean

(wahr/falsch)
Whether the image drawn by this layer is repeated along the X axis.
imagelayer only. (since Tiled 1.8)

repeaty Boolean
(wahr/falsch)

Whether the image drawn by this layer is repeated along the Y axis.
imagelayer only. (since Tiled 1.8)

startx Ganzzahl (int) X coordinate where layer content starts (for infinite maps)
starty Ganzzahl (int) Y coordinate where layer content starts (for infinite maps)
tintcolor Zeichenkette Hex-formatted tint color (#RRGGBB or #AARRGGBB) that is multiplied

with any graphics drawn by this layer or any child layers (optional).
transparentcolor Zeichenkette Hex-formatierte Farbe (#RRGGBB or #AARRGGBB) (optional). Nur für

imagelayer.
Typ Zeichenkette tilelayer, objectgroup, imagelayer or group
Sichtbar Boolean

(wahr/falsch)
Ob die Ebene im Editor sichtbar oder versteckt ist

Fortsetzung auf der nächsten Seite

21.2. Ebene 139

Tiled Documentation, Release 1.10.2

Tab. 1 – Fortsetzung der vorherigen Seite
Feld Typ Beschreibung
Breite Ganzzahl (int) Column count. Same as map width for fixed-size maps. tilelayer only.
x Ganzzahl (int) Horizontal layer offset in tiles. Always 0.
y Ganzzahl (int) Vertical layer offset in tiles. Always 0.

21.2.1 Beispiel für Kachelebene

The data of a tile layer can be stored as a native JSON array or as base64-encoded and optionally compressed binary
data, the same as done in the TMX format. The tiles are referenced using Global Tile IDs.

{
"data":[1, 2, 1, 2, 3, 1, 3, 1, 2, 2, 3, 3, 4, 4, 4, 1],
"height":4,
"name":"ground",
"opacity":1,
"properties":[
{
"name":"tileLayerProp",
"type":"int",
"value":1

}],
"type":"tilelayer",
"visible":true,
"width":4,
"x":0,
"y":0

}

21.2.2 Object Layer Example

{
"draworder":"topdown",
"height":0,
"name":"people",
"objects":[],
"opacity":1,
"properties":[
{
"name":"layerProp1",
"type":"string",
"value":"someStringValue"

}],
"type":"objectgroup",
"visible":true,
"width":0,
"x":0,
"y":0

}

140 Kapitel 21. JSON-Kartenformat

Tiled Documentation, Release 1.10.2

21.3 Chunk

Chunks are used to store the tile layer data for infinite maps.

Feld Typ Beschreibung
Daten Feld oder Zei-

chenkette
Array of unsigned int (GIDs) or base64-encoded data

Höhe Ganzzahl (int) Height in tiles
Breite Ganzzahl (int) Width in tiles
x Ganzzahl (int) X coordinate in tiles
y Ganzzahl (int) Y coordinate in tiles

21.3.1 Beispielkarte

{
"data":[1, 2, 1, 2, 3, 1, 3, 1, 2, 2, 3, 3, 4, 4, 4, 1,],
"height":16,
"width":16,
"x":0,
"y":-16,

}

21.4 Objekt

Feld Typ Beschreibung
Ellipse Boolean

(wahr/falsch)
Markiert ein Objekt als Ellipse

gid Ganzzahl (int) Global tile ID, only if object represents a tile
Höhe double Height in pixels.
ID Ganzzahl (int) Incremental ID, unique across all objects
Name Zeichenkette String assigned to name field in editor
Punkt Boolean

(wahr/falsch)
Markiert ein Objekt als Punkt

Polygon Array Array of Points, in case the object is a polygon
polyline Array Array of Points, in case the object is a polyline
Eigenschaften Array Array von Eigenschaften
Rotation double Angle in degrees clockwise
template Zeichenkette Reference to a template file, in case object is a template instance
text Text Only used for text objects
Typ Zeichenkette The class of the object (was saved as class in 1.9, optional)
Sichtbar Boolean

(wahr/falsch)
Whether object is shown in editor.

Breite double Width in pixels.
x double X coordinate in pixels
y double Y coordinate in pixels

21.3. Chunk 141

Tiled Documentation, Release 1.10.2

21.4.1 Object Example

{
"gid":5,
"height":0,
"id":1,
"name":"villager",
"properties":[
{
"name":"hp",
"type":"int",
"value":12

}],
"rotation":0,
"type":"npc",
"visible":true,
"width":0,
"x":32,
"y":32

}

21.4.2 Ellipse Example

{
"ellipse":true,
"height":152,
"id":13,
"name":"",
"rotation":0,
"type":"",
"visible":true,
"width":248,
"x":560,
"y":808

}

21.4.3 Rectangle Example

{
"height":184,
"id":14,
"name":"",
"rotation":0,
"type":"",
"visible":true,
"width":368,
"x":576,
"y":584

}

142 Kapitel 21. JSON-Kartenformat

Tiled Documentation, Release 1.10.2

21.4.4 Point Example

{
"height":0,
"id":20,
"name":"",
"point":true,
"rotation":0,
"type":"",
"visible":true,
"width":0,
"x":220,
"y":350

}

21.4.5 Polygon Example

{
"height":0,
"id":15,
"name":"",
"polygon":[
{
"x":0,
"y":0

},
{
"x":152,
"y":88

},
{
"x":136,
"y":-128

},
{
"x":80,
"y":-280

},
{
"x":16,
"y":-288

}],
"rotation":0,
"type":"",
"visible":true,
"width":0,
"x":-176,
"y":432

}

21.4. Objekt 143

Tiled Documentation, Release 1.10.2

21.4.6 Polyline Example

{
"height":0,
"id":16,
"name":"",
"polyline":[
{
"x":0,
"y":0

},
{
"x":248,
"y":-32

},
{
"x":376,
"y":72

},
{
"x":544,
"y":288

},
{
"x":656,
"y":120

},
{
"x":512,
"y":0

}],
"rotation":0,
"type":"",
"visible":true,
"width":0,
"x":240,
"y":88

}

21.4.7 Text Example

{
"height":19,
"id":15,
"name":"",
"text":
{
"text":"Hello World",
"wrap":true

},
"rotation":0,

(Fortsetzung auf der nächsten Seite)

144 Kapitel 21. JSON-Kartenformat

Tiled Documentation, Release 1.10.2

(Fortsetzung der vorherigen Seite)

"type":"",
"visible":true,
"width":248,
"x":48,
"y":136

}

21.5 Text

Feld Typ Beschreibung
bold Boolean

(wahr/falsch)
Whether to use a bold font (default: false)

color Zeichenkette Hex-formatierte Farbe (#RRGGBB or #AARRGGBB) (Standard: #000000)
fontfamily Zeichenkette Font family (default: sans-serif)
halign Zeichenkette Horizontal alignment (center, right, justify or left (default))
italic Boolean

(wahr/falsch)
Whether to use an italic font (default: false)

kerning Boolean
(wahr/falsch)

Whether to use kerning when placing characters (default: true)

pixelsize Ganzzahl (int) Pixel size of font (default: 16)
strikeout Boolean

(wahr/falsch)
Whether to strike out the text (default: false)

text Zeichenkette Text
underline Boolean

(wahr/falsch)
Whether to underline the text (default: false)

valign Zeichenkette Vertical alignment (center, bottom or top (default))
wrap Boolean

(wahr/falsch)
Whether the text is wrapped within the object bounds (default: false)

21.5. Text 145

Tiled Documentation, Release 1.10.2

21.6 Tileset

Feld Typ Beschreibung
Hintergrundfar-
be

Zeichenkette Hex-formatierte Farbe (#RRGGBB or #AARRGGBB) (optional)

class Zeichenkette The class of the tileset (since 1.9, optional)
columns Ganzzahl (int) The number of tile columns in the tileset
fillmode Zeichenkette The fill mode to use when rendering tiles from this tileset (stretch (default)

or preserve-aspect-fit) (since 1.9)
firstgid Ganzzahl (int) GID corresponding to the first tile in the set
grid Grid (optional)
Bild Zeichenkette Image used for tiles in this set
imageheight Ganzzahl (int) Height of source image in pixels
imagewidth Ganzzahl (int) Width of source image in pixels
margin Ganzzahl (int) Buffer between image edge and first tile (pixels)
Name Zeichenkette Name given to this tileset
objectalignment Zeichenkette Alignment to use for tile objects (unspecified (default), topleft, top,

topright, left, center, right, bottomleft, bottom or bottomright)
(since 1.4)

Eigenschaften Array Array von Eigenschaften
source Zeichenkette The external file that contains this tilesets data
spacing Ganzzahl (int) Spacing between adjacent tiles in image (pixels)
terrains Array Array of Terrains (optional)
tilecount Ganzzahl (int) The number of tiles in this tileset
tiledversion Zeichenkette Die Tiled Version, mit der die Datei gespeichert wurde
Tile-Höhe Ganzzahl (int) Maximum height of tiles in this set
tileoffset Tile Offset (optional)
tilerendersize Zeichenkette The size to use when rendering tiles from this tileset on a tile layer (tile

(default) or grid) (since 1.9)
tiles Array Array of Tiles (optional)
Tile-Breite Ganzzahl (int) Maximum width of tiles in this set
transformations Transformations Allowed transformations (optional)
transparentcolor Zeichenkette Hex-formatierte Farbe (#RRGGBB or #AARRGGBB) (optional)
Typ Zeichenkette tileset (for tileset files, since 1.0)
Version Zeichenkette Das JSON-Format (früher eine Zahl, seit 1.6 eine Zeichenkette)
wangsets Array Array of Wang sets (since 1.1.5)

Each tileset has a firstgid (first global ID) property which tells you the global ID of its first tile (the one with local tile
ID 0). This allows you to map the global IDs back to the right tileset, and then calculate the local tile ID by subtracting
the firstgid from the global tile ID. The first tileset always has a firstgid value of 1.

146 Kapitel 21. JSON-Kartenformat

Tiled Documentation, Release 1.10.2

21.6.1 Grid

Specifies common grid settings used for tiles in a tileset. See <grid> in the TMX Map Format.

Feld Typ Beschreibung
Höhe Ganzzahl (int) Cell height of tile grid
Ausrichtung Zeichenkette orthogonal (default) or isometric
Breite Ganzzahl (int) Cell width of tile grid

21.6.2 Tile Offset

See <tileoffset> in the TMX Map Format.

Feld Typ Beschreibung
x Ganzzahl (int) Horizontal offset in pixels
y Ganzzahl (int) Vertical offset in pixels (positive is down)

21.6.3 Transformations

See <transformations> in the TMX Map Format.

Feld Typ Beschreibung
hflip Boolean

(wahr/falsch)
Tiles can be flipped horizontally

vflip Boolean
(wahr/falsch)

Tiles can be flipped vertically

rotate Boolean
(wahr/falsch)

Tiles can be rotated in 90-degree increments

preferuntrans-
formed

Boolean
(wahr/falsch)

Whether untransformed tiles remain preferred, otherwise transformed tiles
are used to produce more variations

21.6.4 Tileset Example

{
"columns":19,
"firstgid":1,
"image":"..\/image\/fishbaddie_parts.png",
"imageheight":480,
"imagewidth":640,
"margin":3,
"name":"",
"properties":[
{
"name":"myProperty1",
"type":"string",
"value":"myProperty1_value"

(Fortsetzung auf der nächsten Seite)

21.6. Tileset 147

Tiled Documentation, Release 1.10.2

(Fortsetzung der vorherigen Seite)

}],
"spacing":1,
"tilecount":266,
"tileheight":32,
"tilewidth":32
}

21.6.5 Tile (Definition)

Feld Typ Beschreibung
Animation Array Array of Frames
ID Ganzzahl (int) Local ID of the tile
Bild Zeichenkette Image representing this tile (optional, used for image collection tilesets)
imageheight Ganzzahl (int) Height of the tile image in pixels
imagewidth Ganzzahl (int) Width of the tile image in pixels
x Ganzzahl (int) The X position of the sub-rectangle representing this tile (default: 0)
y Ganzzahl (int) The Y position of the sub-rectangle representing this tile (default: 0)
Breite Ganzzahl (int) The width of the sub-rectangle representing this tile (defaults to the image

width)
Höhe Ganzzahl (int) The height of the sub-rectangle representing this tile (defaults to the image

height)
Objektgruppe Ebene Layer with type objectgroup, when collision shapes are specified (optio-

nal)
probability double Percentage chance this tile is chosen when competing with others in the edi-

tor (optional)
Eigenschaften Array Array von Eigenschaften
terrain Array Index of terrain for each corner of tile (optional, replaced by Wang sets since

1.5)
Typ Zeichenkette The class of the tile (was saved as class in 1.9, optional)

A tileset that associates information with each tile, like its image path, may include a tiles array property. Each tile
has an id property, which specifies the local ID within the tileset.

For the terrain information, each value is a length-4 array where each element is the index of a terrain on one corner
of the tile. The order of indices is: top-left, top-right, bottom-left, bottom-right.

Example:

{
"id":11,
"properties":[
{
"name":"myProperty2",
"type":"string",
"value":"myProperty2_value"

}],
"terrain":[0, 1, 0, 1]

}

148 Kapitel 21. JSON-Kartenformat

Tiled Documentation, Release 1.10.2

21.6.6 Frame

Feld Typ Beschreibung
Dauer Ganzzahl (int) Frame duration in milliseconds
Kachel-ID Ganzzahl (int) Local tile ID representing this frame

21.6.7 Terrain

Feld Typ Beschreibung
Name Zeichenkette Name of terrain
Eigenschaften Array Array von Eigenschaften
tile Ganzzahl (int) Local ID of tile representing terrain

Example:

{
"name":"ground",
"tile":0

}

21.6.8 Wang Set

Feld Typ Beschreibung
class Zeichenkette The class of the Wang set (since 1.9, optional)
colors Array Array of Wang colors (since 1.5)
Name Zeichenkette Name of the Wang set
Eigenschaften Array Array von Eigenschaften
tile Ganzzahl (int) Local ID of tile representing the Wang set
Typ Zeichenkette corner, edge or mixed (since 1.5)
wangtiles Array Array of Wang tiles

Wang Color

Feld Typ Beschreibung
class Zeichenkette The class of the Wang color (since 1.9, optional)
color Zeichenkette Hex-formatierte Farbe (#RRGGBB or #AARRGGBB)
Name Zeichenkette Name of the Wang color
probability double Probability used when randomizing
Eigenschaften Array Array of Properties (since 1.5)
tile Ganzzahl (int) Local ID of tile representing the Wang color

Example:

21.6. Tileset 149

Tiled Documentation, Release 1.10.2

{
"color": "#d31313",
"name": "Rails",
"probability": 1,
"tile": 18

}

Wang Tile

Feld Typ Beschreibung
Kachel-ID Ganzzahl (int) Local ID of tile
wangid Array Array of Wang color indexes (uchar[8])

Example:

{
"tileid": 0,
"wangid": [2, 0, 1, 0, 1, 0, 2, 0]

}

21.7 Objektvorlage

Eine Objektvorlage wird in einer eigenen Datei gespeichert von allen Instanzen dieser Vorlage referenziert.

Feld Typ Beschreibung
Typ Zeichenkette Vorlage
Tileset Tileset Externes, von der Vorlage verwendetes Tileset (optional)
Objekt Objekt Das auf Grundlage dieser Vorlage erzeugte Objekt

21.8 Eigenschaft

Feld Typ Beschreibung
Name Zeichenkette Name der Eigenschaft
Typ Zeichenkette Type of the property (string (default), int, float, bool, color, file,

object or class (since 0.16, with color and file added in 0.17, object
added in 1.4 and class added in 1.8))

propertytype Zeichenkette Name of the custom property type, when applicable (since 1.8)
value value Wert der Eigenschaft

150 Kapitel 21. JSON-Kartenformat

Tiled Documentation, Release 1.10.2

21.9 Punkt

A point on a polygon or a polyline, relative to the position of the object.

Feld Typ Beschreibung
x double X coordinate in pixels
y double Y coordinate in pixels

21.10 Changelog

21.10.1 Tiled 1.10

• Renamed the class property on Tile (Definition) and Objekt back to type, to keep compatibility with Tiled 1.8
and earlier. The property remains class in other places since it could not be renamed to type everywhere.

21.10.2 Tiled 1.9

• Renamed the type property on Tile (Definition) and Objekt to class.

• Added class property to Karte, Tileset, Ebene, Wang Set and Wang Color.

• Added x, y, width and height properties to Tile (Definition), which store the sub-rectangle of a tile’s image
used to represent this tile. By default the entire image is used.

• Added tilerendersize and fillmode properties to Tileset, which affect the way tiles are rendered.

21.10.3 Tiled 1.8

• Added support for user-defined custom property types. A reference to the type is saved as the new propertytype
property of Eigenschaft.

• The Eigenschaft element can now have an arbitrary JSON object as its value, in case the property value is a
class. In this case the type property is set to the new value class.

• Added parallaxoriginx and parallaxoriginy properties to Karte.

• Added repeatx and repeaty properties to Ebene (applies only to image layers at the moment).

21.10.4 Tiled 1.7

• The Tile (Definition) objects in a tileset are no longer always saved with increasing IDs. They are now saved in
the display order, which can be changed in Tiled.

21.9. Punkt 151

Tiled Documentation, Release 1.10.2

21.10.5 Tiled 1.6

• The version property is now written as a string („1.6“) instead of a number (1.5).

21.10.6 Tiled 1.5

• Unified cornercolors and edgecolors properties of Wang Set as the new colors property and added a type
field.

• Wang Color can now store properties.

• Added transformations property to Tileset (see Transformations).

• Removed dflip, hflip and vflip properties from Wang Tile (no longer supported).

• Added parallaxx and parallaxy properties to the Ebene object.

21.10.7 Tiled 1.4

• Added objectalignment to the Tileset object.

• Added tintcolor to the Ebene object.

• Added object as possible type of Eigenschaft.

21.10.8 Tiled 1.3

• Added an editorsettings property to top-level Karte and Tileset objects, which is used to store editor specific
settings that are generally not relevant when loading a map or tileset.

• Added support for Zstandard compression for tile layer data ("compression": "zstd" on tile layer objects).

• Added the compressionlevel property to the Karte object, which stores the compression level to use for com-
pressed tile layer data.

21.10.9 Tiled 1.2

• Added nextlayerid to the Karte object.

• Added id to the Ebene object.

• The tiles in a Tileset are now stored as an array instead of an object. Previously the tile IDs were stored as string
keys of the „tiles“ object, now they are stored as id property of each Tile object.

• Custom tile properties are now stored within each Tile instead of being included as tileproperties in the
Tileset object.

• Custom properties are now stored in an array instead of an object where the property names were the keys. Each
property is now an object that stores the name, type and value of the property. The separate propertytypes and
tilepropertytypes properties have been removed.

152 Kapitel 21. JSON-Kartenformat

Tiled Documentation, Release 1.10.2

21.10.10 Tiled 1.1

• Added a chunked data format, currently used for infinite maps.

• Templates were added. Templates can be stored as JSON files with an Objektvorlage object.

• Tilesets can now contain Terrain Sets. They are saved in the new Wang Set object (since Tiled 1.1.5).

21.10. Changelog 153

Tiled Documentation, Release 1.10.2

154 Kapitel 21. JSON-Kartenformat

KAPITEL 22

Global Tile IDs

Several of the map formats supported by Tiled, including its native TMX and JSON map formats, use the same data
representation for individual tiles in layers: global tile IDs with flip flags. These GIDs are „global“ because they may
refer to a tile from any of the tilesets used by the map, rather than being local to a specific tileset. To get at a specific
tile from a GID, you will first need to extract and clear the flip flags, then you will need to determine which tileset the
tile belongs to, and which tile within the tileset it is.

Bemerkung: Despite the „global“ name, GIDs are only global within a single map. A given tile may have a different
GID in a different map, if that map has different tilesets, or has its tilesets in a different order.

22.1 Tile Flipping

The highest four bits of the 32-bit GID are flip flags, and you will need to read and clear them before you can access
the GID itself to identify the tile.

Bit 32 is used for storing whether the tile is horizontally flipped, bit 31 is used for the vertically flipped tiles. In ortho-
gonal and isometric maps, bit 30 indicates whether the tile is flipped (anti) diagonally, which enables tile rotation, and
bit 29 can be ignored. In hexagonal maps, bit 30 indicates whether the tile is rotated 60 degrees clockwise, and bit 29
indicates 120 degrees clockwise rotation.

Bemerkung: Even if you’re parsing a non-hexagonal map, remember to clear bit 29 after you’ve read the flags. Tiled
keeps and outputs that flag even if the map orientation is changed. If not cleared, you may get an invalid tile ID.

When rendering an orthographic or isometric tile, the order of operations matters. The diagonal flip is done first,
followed by the horizontal and vertical flips. The diagonal flip should flip the bottom left and top right corners of the
tile, and can be thought of as an x/y axis swap. For hexagonal tiles, the order does not matter.

155

Tiled Documentation, Release 1.10.2

22.2 Mapping a GID to a Local Tile ID

Every tileset has its own, independent local tile IDs, typically (but not always) starting at 0. To avoid conflicts within
maps using multiple tilesets, GIDs are assigned in sequence based on the size of each tileset. Each tileset is assigned a
firstgid within the map, this is the GID that the tile with local ID 0 in the tileset would have.

To figure out which tileset a tile belongs to, find the tileset that has the largest firstgid that is smaller than or equal
to the tile’s GID. Once you have identified the tileset, subtract its firstgid from the tile’s GID to get the local ID of
the tile within the tileset.

Bemerkung: The firstgid of the first tileset is always 1. A GID of 0 in a layer means that cell is empty.

As an example, here’s an excerpt from a TMX file with three tilesets:

<tileset firstgid="1" source="TilesetA.tsx"/>
<tileset firstgid="65" source="TilesetB.tsx"/>
<tileset firstgid="115" source="TilesetC.tsx"/>

In this map, tiles with GIDs 1-64 would be part of TilesetA, tiles with GIDs 65-114 would be part of TilesetB, and tiles
with GIDs 115 and above would be part of tileset C. A tile with GID 72 would be part of TilesetB since TilesetB has
the largest firstgid that’s less than or equal to 72, and its local ID would be 7 (72-65).

22.3 Code example

The following C++ pseudo-code, using TMX as an example, should make it all clear, it deals with flags and deduces
the appropriate tileset:

// Bits on the far end of the 32-bit global tile ID are used for tile flags
const unsigned FLIPPED_HORIZONTALLY_FLAG = 0x80000000;
const unsigned FLIPPED_VERTICALLY_FLAG = 0x40000000;
const unsigned FLIPPED_DIAGONALLY_FLAG = 0x20000000;
const unsigned ROTATED_HEXAGONAL_120_FLAG = 0x10000000;

...

// Extract the contents of the <data> element
string tile_data = ...

// If the data is encoded and compressed, decode and decompress:
unsigned char *data = decompress(base64_decode(tile_data));

unsigned tile_index = 0;

// Here you should check that the data has the right size
// (map_width * map_height * 4)

for (int y = 0; y < map_height; ++y) {
for (int x = 0; x < map_width; ++x) {
//Read the GID in little-endian byte order:
unsigned global_tile_id = data[tile_index] |

data[tile_index + 1] << 8 |
(Fortsetzung auf der nächsten Seite)

156 Kapitel 22. Global Tile IDs

Tiled Documentation, Release 1.10.2

(Fortsetzung der vorherigen Seite)

data[tile_index + 2] << 16 |
data[tile_index + 3] << 24;

tile_index += 4;

// Read out the flags
bool flipped_horizontally = (global_tile_id & FLIPPED_HORIZONTALLY_FLAG);
bool flipped_vertically = (global_tile_id & FLIPPED_VERTICALLY_FLAG);
bool flipped_diagonally = (global_tile_id & FLIPPED_DIAGONALLY_FLAG);
bool rotated_hex120 = (global_tile_id & ROTATED_HEXAGONAL_120_FLAG);

// Clear all four flags
global_tile_id &= ~(FLIPPED_HORIZONTALLY_FLAG |

FLIPPED_VERTICALLY_FLAG |
FLIPPED_DIAGONALLY_FLAG |
ROTATED_HEXAGONAL_120_FLAG);

// Resolve the tile
for (int i = tileset_count - 1; i >= 0; --i) {
Tileset *tileset = tilesets[i];

if (tileset->first_gid() <= global_tile_id) {
tiles[y][x] = tileset->tileAt(global_tile_id - tileset->first_gid());
break;

}
}

}
}

(Since the above code was put together on this wiki page and can’t be directly tested, please make sure to report any
errors you encounter when basing your parsing code on it, thanks!)

22.3. Code example 157

Tiled Documentation, Release 1.10.2

158 Kapitel 22. Global Tile IDs

KAPITEL 23

Scripting

23.1 Einführung

Tiled can be extended with the use of JavaScript. See the Tiled Scripting API for a reference of all available functionality.

TypeScript definitions of the API are available as the @mapeditor/tiled-api NPM package, which can provide auto-
completion in your editor. The API reference is generated based on these definitions.

On startup, Tiled will execute any script files present in extension folders. In addition it is possible to run scripts directly
from the console, as well as to evaluate a script file from the command-line. All scripts share a single JavaScript context.

Bemerkung: A few example scripts and links to existing Tiled extensions are provided at the Tiled Extensions repo-
sitory: https://github.com/mapeditor/tiled-extensions

159

https://www.mapeditor.org/docs/scripting/
https://www.npmjs.com/package/@mapeditor/tiled-api
https://github.com/mapeditor/tiled-extensions

Tiled Documentation, Release 1.10.2

23.1.1 JavaScript Host Environment

Tiled uses the JavaScript engine shipping with Qt’s QML module. The QML runtime generally implements the 7th
edition of the standard, with some additions. See the JavaScript Host Environment documentation for details.

It may also be helpful to check out the List of JavaScript Objects and Functions that are available.

23.1.2 Scripted Extensions

Extensions can be placed in a system-specific or project-specific location.

The system-specific folder can be opened from the Plugins tab in the Preferences dialog. The usual location on each
supported platform is as follows:

Windows

C:/Users/<USER>/AppData/Local/Tiled/
extensions/

macOS

~/Library/Preferences/Tiled/extensions/

Linux

~/.config/tiled/extensions/

The project-specific folder defaults to „extensions“, relative to the directory of the .tiled-project file, but this can
be changed in the Project Properties.

Warnung: Since Tiled 1.7, project-specific extensions are only enabled by default for projects you created. When
opening any other project, a popup will notify you when the project has a scripted extensions directory, allowing
you to enable extensions for that project.

Always be careful when enabling extensions on projects you haven’t created, since extensions have access to your
files and can execute processes.

An extension can be placed either directly in an extensions directory, or in a sub-directory. All scripts files found in
these directories are executed on startup.

When using the .mjs extension, script files are loaded as JavaScript modules. They will then be able to use the import
and export statements to split up their functionality over multiple JavaScript files. Such extensions also don’t pollute
the global scope, avoiding potential name collisions between different extensions.

When any loaded script is changed or when any files are added/removed from the extensions directory, the script engine
is automatically reinstantiated and the scripts are reloaded. This way there is no need to restart Tiled when installing
extensions. It also makes it quick to iterate on a script until it works as intended.

Apart from scripts, extensions can include images that can be used as the icon for scripted actions or tools.

160 Kapitel 23. Scripting

https://doc.qt.io/qt-6/qtqml-index.html
https://doc.qt.io/qt-6/qtqml-javascript-hostenvironment.html
https://doc.qt.io/qt-6/qtqml-javascript-functionlist.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export

Tiled Documentation, Release 1.10.2

23.1.3 Console View

In the Console view (View > Views and Toolbars > Console) you will find a text entry where you can write or paste
scripts to evaluate them.

You can use the Up/Down keys to navigate through previously entered script expressions.

23.1.4 Command Line

To execute a script (.js) or to load a module (.mjs) from the command-line, you can pass the --evaluate option (or
-e), followed by the file name. Tiled will quit after executing the script.

The UI will not be instantiated while evaluating scripts on the command-line. This means functions that rely on the UI
being present will do nothing and some properties will be null. However, scripts are able to load and save maps and
tilesets through the available formats (see tiled.mapFormats and tiled.tilesetFormats), as well as to make any
modifications to these assets.

Any additional non-option arguments passed after the script file name are available to the script as tiled.
scriptArguments.

If you want to evaluate several scripts, use --evaluate for each file. Note that evaluating the same JavaScript module
(.mjs) does not work, since modules are loaded only once.

23.2 API Reference

See the Tiled Scripting API.

The following global variable is currently not documented in the generated documentation, since it conflicts with nodejs
types:

__filename
The file path of the current file being evaluated. Only available during initial evaluation of the file and not when
later functions in that file get called. If you need it there, copy the value to local scope.

23.2. API Reference 161

https://www.mapeditor.org/docs/scripting/

	Einführung
	Über Tiled
	Erste Schritte
	Ein neues Projekt erstellen
	Neue Karte erstellen

	Projekte
	Bestandteile eines Projektes
	Sessions
	Opening a File in the Project

	Working with Layers
	Layer Types
	Tile Layers
	Object Layers
	Image Layers
	Group Layers

	Parallax Scrolling Factor
	Parallax Reference Point

	Tinting Layers

	Editing Tile Layers
	Stamp Brush
	Terrain Brush
	Bucket Fill Tool
	Shape Fill Tool
	Eraser
	Selection Tools
	Managing Tile Stamps

	Working with Objects
	Placement Tools
	Rechteck einfügen
	Punkt einfügen
	Ellipse einfügen
	Polygon einfügen
	Polylines

	Kachel einfügen
	Vorlage einfügen
	Text einfügen

	Objekte auswählen
	Aus- und Abwählen
	Verschieben
	Größe ändern
	Drehen
	Stapelreihenfolge ändern
	Flipping Objects

	Edit Polygons
	Objekte verbinden

	Editing Tilesets
	Two Types of Tileset
	Tileset Properties
	Tile Properties
	Terrain Information
	Tile Collision Editor
	Tile Animation Editor

	Custom Properties
	Adding Properties
	Custom Types
	Custom Enums
	Custom Classes

	Tile Property Inheritance
	Typed Tiles

	Using Templates
	Creating Templates
	Creating Template Instances
	Editing Templates
	Detaching Template Instances

	Using Terrains
	Define the Terrain Information
	Creating the Terrain Set
	Adding Terrains
	Marking the Tiles
	Patterns View

	Editing with the Terrain Brush
	Terrain Fill Mode
	Tile and Terrain Probability
	Probability for Variations

	Tile Transformations
	Final Words

	Using Infinite Maps
	Creating an Infinite Map
	Editing the Infinite Map
	Conversion from Infinite to Finite Map and Vice Versa

	Working with Worlds
	Welt festlegen
	Welt bearbeiten
	Musterabgleich verwenden
	Nur direkte Nachbarn werden angezeigt

	Using Commands
	The Command Button
	Editing Commands
	Substituted Variables

	Example Commands

	Automapping
	Was ist Automapping?
	Setting Up the Rules File
	Setting Up a Rule Map
	Defining Inputs
	Input Example
	Matching Special Cases

	Defining Outputs
	Random Output Example

	Automapping Properties
	Map Properties
	Layer Properties
	Object Properties

	Examples
	RPG Cliffs
	Automap While Drawing

	Sidescroller Details

	Updating Legacy Rules
	Credits

	Export Formats
	Generic File Formats
	JSON
	Lua
	CSV

	Defold
	defold
	Custom Properties

	defoldcollection
	Custom Properties

	GameMaker: Studio 1.4
	Object Instances
	Views
	Map Properties
	General
	Physics

	Layer Properties

	GameMaker Studio 2.3
	References to Existing Assets
	Exporting a Tiled Map
	Tile Layers
	Object Layers
	Object Instances
	Tile Graphics
	Sprite Graphics

	Image Layers

	Special Cases and Custom Properties
	Rooms
	General
	Room Settings
	Viewports and Cameras
	Physics

	Sprite References
	Pfade
	Views
	Layers

	Godot 4
	Layer Properties
	Tileset Properties
	Tile Properties
	Map Properties
	Limitations

	tBIN
	Other Formats
	Custom Export Formats
	Using JavaScript
	Using Python
	Using C++

	Export as Image

	Tastenkürzel
	General
	Bei ausgewählter Kachelebene
	Bei ausgewählter Objektebene
	Im Eigenschaften-Dialog

	User Preferences
	General
	Saving and Loading
	Export Options

	Interface
	Interface
	Updates

	Keyboard
	Theme
	Custom Interface Font

	Plugins

	Python Scripts
	Example Export Plugin
	Debugging Your Script
	API Reference

	Libraries and Frameworks
	Support by Language
	C
	C++
	C#/.NET
	Common Lisp
	Clojure
	D
	Dart
	Go
	Haskell
	Java
	OCaml
	PHP
	Pike
	Processing
	Python
	Ruby
	Rust
	Vala

	Support by Framework
	AndEngine
	Allegro
	Bevy
	Castle Game Engine (Object Pascal)
	Cell2D
	cocos2d
	Construct 2 - Scirra
	DragonRuby Game Toolkit
	Flame
	Flixel
	Game Maker
	Godot
	Grid Engine
	Haxe
	HTML5 (multiple engines)
	indielib-crossplatform
	Irrlicht
	LibGDX
	LITIENGINE
	LÖVE
	MOAI SDK
	Monkey X
	Node.js
	Oak Nut Engine (onut)
	Orx Portable Game Engine
	Pygame
	Pyglet
	PySDL2
	RPG Maker MV
	SDL
	SFML
	Slick2D
	Solar2D (formerly Corona SDK)
	Sprite Kit Framework
	TERRA Engine (Delphi/Pascal)
	Unity
	Unreal Engine 4
	Urho3D
	XNA

	TMX Map Format
	<map>
	<editorsettings>
	<chunksize>
	<export>

	<tileset>
	<tileoffset>
	<grid>
	<image>
	<terraintypes>
	<terrain>

	<transformations>
	<tile>
	<animation>
	<frame>

	<wangsets>
	<wangset>
	<wangcolor>
	<wangtile>

	<layer>
	<data>
	<chunk>
	<tile>

	<objectgroup>
	<object>
	<ellipse>
	<point>
	<polygon>
	<polyline>
	<text>

	<imagelayer>
	<group>
	<properties>
	<property>

	Template Files
	<template>

	TMX Changelog
	Tiled 1.10
	Tiled 1.9
	Tiled 1.8
	Tiled 1.7
	Tiled 1.5
	Tiled 1.4
	Tiled 1.3
	Tiled 1.2.1
	Tiled 1.2
	Tiled 1.1
	Tiled 1.0
	Tiled 0.18
	Tiled 0.17
	Tiled 0.16
	Tiled 0.15
	Tiled 0.14
	Tiled 0.13
	Tiled 0.12
	Tiled 0.11
	Tiled 0.10
	Tiled 0.9
	Tiled 0.8

	JSON-Kartenformat
	Karte
	Beispielkarte

	Ebene
	Beispiel für Kachelebene
	Object Layer Example

	Chunk
	Beispielkarte

	Objekt
	Object Example
	Ellipse Example
	Rectangle Example
	Point Example
	Polygon Example
	Polyline Example
	Text Example

	Text
	Tileset
	Grid
	Tile Offset
	Transformations
	Tileset Example
	Tile (Definition)
	Frame
	Terrain
	Wang Set
	Wang Color
	Wang Tile

	Objektvorlage
	Eigenschaft
	Punkt
	Changelog
	Tiled 1.10
	Tiled 1.9
	Tiled 1.8
	Tiled 1.7
	Tiled 1.6
	Tiled 1.5
	Tiled 1.4
	Tiled 1.3
	Tiled 1.2
	Tiled 1.1

	Global Tile IDs
	Tile Flipping
	Mapping a GID to a Local Tile ID
	Code example

	Scripting
	Einführung
	JavaScript Host Environment
	Scripted Extensions
	Console View
	Command Line

	API Reference

