

 Tight is a microframework created and optimized for serverless runtimes. With tight-cli and tight you can quickly scaffold serverless applications that are conventional, testable by default and free of boilerplate.

Tight currently supports AWS Lambda and the Python2.7 runtime.

Getting Started & Tutorial

	Introduction
	Overview

	Motivation & Philosophy

	Getting Started

	Installation
	tight-cli

	tight

	Quickstart
	Install

	Generate a Tight App

	Install Environment Dependencies

	Install Application Dependencies

	Generate Environment File

	Generate a Function & Tests

	Tutorial
	1. Setup
	Virtual Environment

	Package Installation

	2. Generate An App
	Generate Project Directory

	The Anatomy of a Default App

	Install Dependencies

	Environment Dependencies

	App Dependencies

	Conclusion

	3. Generate Environment Files
	Working With dist.env.yml

	App Environment Variables

	4. Generate A Function
	Lambda Proxy Event Controllers

	Test Stubs

	5. Working with Tight Core
	Lambda App

	Lambda Proxy Event

	Clients

	Test Helpers

	6. Models and Data
	DynamoDb Support

	Generate a Model

	Install DynamoDb Locally

	Running DynamoDb Locally

	Testing DynamoDb Interactions

	7. Working with Responses
	Using Serializers

	8. Creating an Artifact

	9. Deploy to AWS
	Create Lambda Function

	Create API Gateway

	10. Deploy With Serverless
	Create Serverless Project

	Define Serverless Service

Reference & Usage

	tight-cli
	tight generate

	tight pip

	tight dynamo

	tight
	tight.providers

	tight.core.logger

Introduction

Tight is a microframework created and optimized for serverless runtimes. With tight-cli and tight you can quickly scaffold serverless applications that are conventional, testable-by-default and free of boilerplate.

Tight currently supports AWS Lambda and the Python2.7 runtime.

Overview

The modules provided by tight make it easy to write lambda functions that act as REST resource controllers. Simply author your function, following Tight’s conventional naming and directory schemes (don’t worry, tight-cli can generate these files and directories for you!):

my_app/app/functions/my_controller/handler.py:

import tight.providers.aws.controllers.lambda_proxy_event as lambda_proxy

@lambda_proxy.get
def get_handler(*args, **kwargs):
 return {
 'statusCode': 200,
 'body': {
 'hello': 'world'
 }
 }

@lambda_proxy.post
def post_handler(*args, **kwargs):
 event = kwargs.pop('event')
 # Process request event...
 # ...
 return {
 'statusCode': 201,
 }

@lambda_proxy.put
def put_handler(*args, **kwargs):
 event = kwargs.pop('event')
 return {
 'statusCode': 200,
 }

@lambda_proxy.patch
def patch_handler(*args, **kwargs):
 pass

@lambda_proxy.delete
def delete_handler(*args, **kwargs):
 pass

Import and run a tight app (as generated by tight generate app my_app:

my_app/app_index.py:

Project structure generated by `tight generate app my_app`
Dependencies installed by running `tight pip install --requirements`
from app.vendored.tight.providers.aws.lambda_app import app as app
app.run()

And call the controller on the module defined by app_index.py:

app_index.my_controller

And as mentioned the tight-cli command line tool will scaffold services, functions with test stubs and much more!

Create an application:

[image: ../_images/generate_app.gif]
Create functions with tests:

[image: ../_images/generate_function.gif]

Motivation & Philosophy

Tight is inspired by tools and frameworks such as Sinatra, Ember, Flask, Chalice, and Serverless – to name just a few. Tight aspires to help you and your team build servereless applications in a repeatable and conventional manner. To achieve this goal Tight provides two distinct packages: tight [https://github.com/lululemon/tight] and tight-cli [https://github.com/lululemon/tight-cli].

The core package, tight [https://github.com/lululemon/tight], provides modules that map request events to REST style resource handlers – this makes it easy to author declarative resource controllers that group method handlers logically and legibly. Additional modules help you interact with external services, like DynamoDb, in an intuitive and fluent manner. Finally, a suite of test helpers makes it easy to record and simulate HTTP requests and AWS SDK calls.

The Tight command line tool, tight_cli [https://github.com/lululemon/tight-cli], helps you quickly scaffold and test Tight applications and functions. The tutorials walk through every tight-cli command and will demonstrate how to:

	Generate application directories and files

	Generate functions and tests

	Install and manage application dependencies

	Install, configure, and run a local instance of DynamoDb.

The tight-cli package does the dirty work of preparing your application for predictable and hassle-free deployments. With tight-cli you can easily generate CloudFormation compatible DynamoDb schemas from application model definitions as well as create deployable artifacts that can be used with a variety of deployment strategies. Tight does not make assumptions or prescriptions about which approach you and your team follow; Tight apps can be deployed directly through the AWS console or in conjunction with other tools and services.

Tight doesn’t try to enforce a specific application deployment process, rather it allows you to get your application to a deployable state quickly and in a convention-over-configuration manner. This is where Tight differs with existing serverless-specific tools like Serverless, Chalice, Gordon and Zappa. Another significant divergence from other frameworks and tools (all of which have inspired Tight in some way!) is that Tight doesn’t provide a mechanism to invoke or run applications locally via a development server or some other “simulated” service. This is because Tight makes writing tests easy which in turn makes building resilient apps and services approachable and frictionless.

Getting Started

The best way to get started with Tight is to follow the tutorial, which will guide you through the process of building and deploying an app. There are also references for both tight and tight-cli.

Installation

The tight and tight-cli packages are both available to install via Github while the packages are in preview.

tight-cli

$ pip install git+git://github.com/lululemon/tight-cli.git#egg=tight-cli

tight

$ pip install git+git://github.com/lululemon/tight.git#egg=tight

Quickstart

For a through introduction to Tight and all that it offers read through and follow the tutorials. This quickstart guide is designed to show you the sequence of commands you have to run to get a new project up and running and ready for development.

Install

Install tight-cli via, Git.

$ pip install git+git://github.com/lululemon/tight-cli.git#egg=tight-cli

Generate a Tight App

$ tight generate app my_service

Install Environment Dependencies

$ cd my_service
$ pip install -r requirements.txt

Install Application Dependencies

$ cd my_service
$ tight pip install --requirements

Generate Environment File

$ cd my_service
$ tight generate env
{CI: false, NAME: my-service, STAGE: dev}

Generate a Function & Tests

$ cd my_service
$ tight generate function my_function

=== test session starts ===
platform darwin -- Python 2.7.10, pytest-3.0.5, py-1.4.32, pluggy-0.4.0
rootdir: /Users/michael/Development/my_service, inifile:
collected 2 items

tests/functions/integration/my_function/test_integration_my_function.py .
tests/functions/unit/my_function/test_unit_my_function.py .

== 2 passed in 0.12 seconds ===
Successfully generated function and tests!

Tutorial

	1. Setup
	Virtual Environment

	Package Installation

	2. Generate An App
	Generate Project Directory

	The Anatomy of a Default App

	Install Dependencies

	Environment Dependencies

	App Dependencies

	Conclusion

	3. Generate Environment Files
	Working With dist.env.yml

	App Environment Variables

	4. Generate A Function
	Lambda Proxy Event Controllers

	Test Stubs

	5. Working with Tight Core
	Lambda App

	Lambda Proxy Event

	Clients

	Test Helpers

	6. Models and Data
	DynamoDb Support

	Generate a Model

	Install DynamoDb Locally

	Running DynamoDb Locally

	Testing DynamoDb Interactions

	7. Working with Responses
	Using Serializers

	8. Creating an Artifact

	9. Deploy to AWS
	Create Lambda Function

	Create API Gateway

	10. Deploy With Serverless
	Create Serverless Project

	Define Serverless Service

1. Setup

To get up and running with tight-cli you’ll have to install the package to a virtual environment. Fore more information about setting up and installing virtual environments, visit virtualenv [https://virtualenv.pypa.io/en/stable/].

Virtual Environment

Create a new virtual environment:

$ mkvirtualenv my_tight_app_env

Or activate an existing environment:

$ workon my_tight_app_env

The commands mkvirtualenv and workon are provided by virtualenvwrapper [https://virtualenvwrapper.readthedocs.io/en/latest/].

Package Installation

Currently, the tight-cli package is installed via git. Once you are in your virtual environment you can install the package by issuing the following command:

$ pip install git+git://github.com/lululemon/tight-cli.git#egg=tight-cli

You are now ready to start building a Tight app!

2. Generate An App

Tight has been designed to aid in fast and repeatable development of microservices. As such, Tight provides a suite of commands that generate files and directories that are common to all projects. The very first generate command that we are going to explore is tight generate app.

Generate Project Directory

Navigate to the location where you want to create your app. I like to keep my code projects in the Development directory in my home location, so I’ll head that way.

$ cd ~/Development

Now I’m going to use tight generate app to generate a new project. Simply provide a name as the command’s only argument:

$ tight generate app tight_app

Your app has been generated! To verify, you can list the contents of the tight_app directory.

drwxr-xr-x 12 user group 408B Jan 2 14:56 .
drwxr-xr-x@ 24 user group 816B Jan 2 14:56 ..
-rw-r--r-- 1 user group 143B Dec 25 17:07 .gitignore
drwxr-xr-x 8 user group 272B Jan 2 14:56 app
-rw-r--r-- 1 user group 76B Dec 25 16:38 app_index.py
-rw-r--r-- 1 user group 476B Jan 2 14:56 conftest.py
-rw-r--r-- 1 user group 56B Dec 26 02:28 env.dist.yml
-rw-r--r-- 1 user group 60B Dec 17 18:03 requirements-vendor.txt
-rw-r--r-- 1 user group 40B Dec 17 18:05 requirements.txt
drwxr-xr-x 4 user group 136B Dec 23 12:39 schemas
drwxr-xr-x 4 user group 136B Dec 23 11:22 tests
-rw-r--r-- 1 user group 54B Jan 2 14:56 tight.yml

The Anatomy of a Default App

app/

The app directory, not surprisingly, contains your application’s runtime logic. This directory organizes your application’s function code along with dependencies and share libraries.

List the contents of the directory to see what was created:

$ ls -la app

drwxr-xr-x 8 user group 272B Jan 2 14:56 .
drwxr-xr-x 13 user group 442B Jan 2 14:57 ..
-rw-r--r-- 1 user group 339B Dec 23 11:22 __init__.py
drwxr-xr-x 3 user group 102B Dec 17 17:25 functions
drwxr-xr-x 3 user group 102B Dec 23 11:22 lib
drwxr-xr-x 3 user group 102B Dec 23 10:46 models
drwxr-xr-x 3 user group 102B Dec 23 10:46 serializers
drwxr-xr-x 3 user group 102B Jan 2 14:56 vendored

app/__init__.py

The app directory’s __init__.py file augments the current environment so that application dependencies are discoverable for import.

The generator currently produces the following file:

import sys, os
here = os.path.dirname(os.path.realpath(__file__))
sys.path = [os.path.join(here, "./vendored")] + sys.path
sys.path = [os.path.join(here, "./lib")] + sys.path
sys.path = [os.path.join(here, "./models")] + sys.path
sys.path = [os.path.join(here, "./serializers")] + sys.path
sys.path = [os.path.join(here, "../")] + sys.path

These statements are what allow function code to import packages in the vendored, lib, models, and serializers directories without having to use relative imports. If you do not wish to alter the environment’s import path, the contents of this file can be removed. However, do not remove the file completely.

app/functions/

The functions directory is where your application’s business logic lives. Later in the tutorial, when we start creating functions, we’ll explain the naming and file conventions that should be followed within the functions directory.

For now all you need to know is that the directory is identified as a package, since it has a blank __init__.py file.

app/lib/

The lib directory is where you should keep modules and packages that are shared across functions but that aren’t installable via pip.

app/models/

The models directory is where the domain objects that your application manipulates should be stored. Like the function directory, files placed in the model directory should conform to Tight’s conventions.

Modules in this directory should define a single model and the name of the model and file should be the same.

Imagine creating an Account model:

$ ls -la app/models
drwxr-xr-x 4 user group 136B Jan 2 15:27 .
drwxr-xr-x 8 user group 272B Jan 2 14:56 ..
-rw-r--r-- 1 user group 80B Jan 2 15:27 Account.py
-rw-r--r-- 1 user group 460B Dec 23 10:46 __init__.py

$ less Account.py

def Account(id):
 """ Account factory """
 return {
 'id': id
 }

app/models/__init__.py

Unlike the other directories that get created inside of app, the __init__.py file inside of models is not empty. This file will loop through the files in the directory and automatically import the models that are defined. So long as the convention described above is followed, you will be able to succinctly import models into function modules.

The Acccount model defined above would be imported like so:

from Account import Account

app/serializers/

Tight encourages you to maintain serialization logic separately from model modules. As such, Tight provides a location where serializers can be kept.

app/vendored/

The vendored directory is where your _application’s_ pip packages are installed.

app_index.py

This is the module that is used to route Lambda events to the correct function.

from app.vendored.tight.providers.aws.lambda_app import app as app
app.run()

The function tight.providers.aws.lambda_app.run collects functions from app/functions and sets attributes on the module for each function found. This means that when you go to configure your Lambda function within AWS, you can refer to module attributes that mirror functions:

app_index.a_function_in_your_app

This will call the handler function on the module located at app/functions/a_function_in_your_app/handler.py.

conftest.py

conftest.py provides the minimum confugration needed to run function tests. The module also imports the tight.core.test_helpers module, which exposes test fixtures and other goodies to help you start writing tests right away.

env.dist.yml

This file contains the default values for the environment variables that your application expects. You shouldn’t store sensitive or environment specific values here. By default, this file specifies that the environment variables, CI and STAGE are expected:

Define environment variables here
CI: False
STAGE: dev

As your application evolves remember to update this file with new names:

Define environment variables here
CI: False
STAGE: dev
SOME_API_KEY: <optionally provide a default value>

requirements-vendor.txt

Specify pip package dependencies, which will be installed to app/vendored by default.

requirements.txt

Specify pip package dependencies that are to be installed to the virtual environment. Typically this is where you’ll define dependencies that are required for developing and testing your app.

Dependencies specified here will not be packaged with your application artifact.

schemas/

This directory will contain CloudFormation compatible DynamoDb schemas, which can be auto-generated from model definitions.

tests/

Tight really wants to help you develop your application test-first. It would be a tragedy and an embarrasment if Tight didn’t provide you a place to store your tests. Once we stater generating functions, we’ll dive deeper into the structure of this directory.

tight.yml

tight.yml is this Tight app’s configuration file. There’s nothing too fancy about it and throughout the course of the tutorial, you’ll rarely have to modify it. Just be aware that it exists and that it is the location from which the command line tool pulls the application name. Every time a tight command is run, this file is discovered and parsed and the values it defines are used throughout various commands.

Install Dependencies

Now that our application structure has been scaffolded, it’s time to install our dependencies. First we’ll install our virtual environment depedencies and then we’ll install our application specific dependencies.

Environment Dependencies

Install environment dependencies just as you would for any other virtual environment.

$ pip install -r requirements.txt

App Dependencies

Application dependencies are also installed via pip but we need to be sure that they get installed to the correct location so that when our application artifact is deployed, any third-party libraries that your application relies on are available. To install your application dependencies, navigate to your project root and run tight pip install --requirements:

$ tight pip install --requirements

When you run this command, you’ll notice that at the very end of the run you are notified that the boto3 and botocore packages have been removed from the app/vendored directory. This is because both packages are supplied by the AWS Lamba execution environment. Generally, you shouldn’t include these packages in your application artifact.

Conclusion

By now, you have scaffolded your first Tight app and should have a basic grasp of the purpose and reason for the auto-generated files and directories.

You also learned how to install your application and virtual environment dependencies.

Continue reading to learn about how Tight helps you initialize and manage application environment variables.

3. Generate Environment Files

Working With dist.env.yml

App Environment Variables

4. Generate A Function

Lambda Proxy Event Controllers

Test Stubs

5. Working with Tight Core

Lambda App

Lambda Proxy Event

Clients

Logger

Safeget

DynamoDb

Test Helpers

6. Models and Data

DynamoDb Support

Generate a Model

Install DynamoDb Locally

Running DynamoDb Locally

Testing DynamoDb Interactions

7. Working with Responses

Using Serializers

8. Creating an Artifact

9. Deploy to AWS

Create Lambda Function

Create API Gateway

10. Deploy With Serverless

Create Serverless Project

Define Serverless Service

tight-cli

The tight-cli package is one of two components, which together form Tight: the toolset that helps you build event driven applications for serverless runtimes. tight-cli helps you scaffold and maintain Tight apps. This document describes the available commands exposed by tight-cli. For a more thorough discussion of how to use tight-cli to create and manage your application visit the tutorials.

Once installed, you can invoke tight-cli simply by calling tight from the command line:

$ tight

Usage: tight [OPTIONS] COMMAND [ARGS]...

Options:
 --help Show this message and exit.

Commands:
 dynamo
 generate
 pip

tight generate

The generate group currently supports two sub-commands: app and function. Use these commands to quickly scaffold your application, functions, and tests.

tight generate app

Usage: tight generate app [OPTIONS] NAME

Options:
 --provider TEXT Platform providers
 --type TEXT Provider app type
 --target TEXT Location where app will be created.
 --help Show this message and exit.

tight generate app only currently supports the default values for provider and type. Therefore, NAME is really all that is currently required. If you don’t want to generate the app in the current directory, you can override the write target by specifying the --target option.

$ tight generate app my_service
$ cd my_service
$ ls -la

drwxr-xr-x 12 user group 408B Dec 30 14:40 .
drwxr-xr-x@ 24 user group 816B Dec 30 14:40 ..
-rw-r--r-- 1 user group 143B Dec 25 17:07 .gitignore
drwxr-xr-x 8 user group 272B Dec 23 11:22 app
-rw-r--r-- 1 user group 76B Dec 25 16:38 app_index.py
-rw-r--r-- 1 user group 477B Dec 30 14:40 conftest.py
-rw-r--r-- 1 user group 56B Dec 26 02:28 env.dist.yml
-rw-r--r-- 1 user group 60B Dec 17 18:03 requirements-vendor.txt
-rw-r--r-- 1 user group 40B Dec 17 18:05 requirements.txt
drwxr-xr-x 4 user group 136B Dec 23 12:39 schemas
drwxr-xr-x 4 user group 136B Dec 23 11:22 tests
-rw-r--r-- 1 user group 55B Dec 30 14:40 tight.yml

tight generate function

Quickly generate a function and test stubs in a Tight app.

Usage: tight generate function [OPTIONS] NAME

Options:
 --provider [aws] Platform providers
 --type [lambda_proxy] Function type
 --help Show this message and exit.

This command will generate a function module and will also stub integration and unit tests for the generated module:

$ tight generate function my_controller
=== test session starts ===
platform darwin -- Python 2.7.10, pytest-3.0.5, py-1.4.32, pluggy-0.4.0
rootdir: /Users/michael/Development/my_service, inifile:
collected 2 items

tests/functions/integration/my_controller/test_integration_my_controller.py .
tests/functions/unit/my_controller/test_unit_my_controller.py .

== 2 passed in 0.10 seconds ===
Successfully generated function and tests!

This command generates the following files and directories:

|-app/
|---functions/
|-----my_controller/
|-------handler.py
|-tests/
|---functions/
|-----unit/
|-------my_controller/
|---------test_unit_my_controller.py
|-----integration/
|-------my_controller/
|---------expectations/
|-----------test_get_method.yml
|---------placebos/
|---------test_integration_my_controller.py

The contents of the generated files:

app/functions/my_controller/handler.py

from tight.providers.aws.clients import dynamo_db
import tight.providers.aws.controllers.lambda_proxy_event as lambda_proxy
db = dynamo_db.connect()

@lambda_proxy.get
def get_handler(*args, **kwargs):
 return {
 'statusCode': 200,
 'body': {
 'hello': 'world'
 }
 }

@lambda_proxy.post
def post_handler(*args, **kwargs):
 pass

@lambda_proxy.put
def put_handler(*args, **kwargs):
 pass

@lambda_proxy.patch
def patch_handler(*args, **kwargs):
 pass

@lambda_proxy.options
def options_handler(*args, **kwargs):
 pass

@lambda_proxy.delete
def delete_handler(*args, **kwargs):
 pass

tests/functions/integration/my_controller/test_integration_my_controller.py

import os, json
here = os.path.dirname(os.path.realpath(__file__))
from tight.core.test_helpers import playback, record, expected_response_body

def test_get_method(app, dynamo_db_session):
 playback(__file__, dynamo_db_session, test_get_method.__name__)
 context = {}
 event = {
 'httpMethod': 'GET'
 }
 actual_response = app.my_controller(event, context)
 actual_response_body = json.loads(actual_response['body'])
 expected_response = expected_response_body(here, 'expectations/test_get_method.yml', actual_response)
 assert actual_response['statusCode'] == 200, 'The response statusCode is 200'
 assert actual_response_body == expected_response, 'Expected response body matches the actual response body.'

tests/functions/integration/my_controller/expectations/test_get_method.yml

body: '{"hello":"world"}'
headers: {Access-Control-Allow-Origin: '*'}
statusCode: 200

tests/functions/unit/my_controller/test_unit_my_controller.py

def test_no_boom():
 module = __import__('app.functions.my_controller.handler')
 assert module

tight generate model

Generate a Flywheel model [http://flywheel.readthedocs.io/en/latest/topics/models/basics.html] and write to app/models.

Usage: tight generate model [OPTIONS] NAME

Options:
 --help Show this message and exit.

Example:

$ tight generate model account
$ cd app/models
$ ls
-rw-r--r-- 1 user group 390B Dec 30 15:28 Account.py
-rw-r--r-- 1 user group 460B Dec 23 10:46 __init__.py

The generated model:

from flywheel import Model, Field, Engine
import os

DynamoDB Model
class Account(Model):
 __metadata__ = {
 '_name': '%s-%s-accounts' % (os.environ['NAME'], os.environ['STAGE']),
 'throughput': {
 'read': 1,
 'write': 1
 }
 }

 id = Field(type=unicode, hash_key=True)

 # Constructor
 def __init__(self, id):
 self.id = id

tight generate env

This command will generate a env.yml file, merging values defined in env.dist.yml and values in the current shell environment.

$ tight generate env
{CI: false, NAME: my-service, STAGE: dev}

tight pip

tight pip is a lightweight command that helps manage dependencies in the context of a Tight app.

tight pip install

Usage: tight pip install [OPTIONS] [PACKAGE_NAME]...

Options:
 --requirements / --no-requirements Defaults to --no-requirements
 --requirements-file [``CWD``] Requirements file location
 --target [``tight.yml::vendor_dir``] Target directory.
 --help Show this message and exit.

Typically, after generating an app you’ll want to run tight pip install --requirements from the application root directory. This will install the dependencies to the app/vendored directory and then remove the boto3 and botocore packages; these libraries should not be shipped woth your app since they are provided by AWS in the default Lambda environment.

As you are developing a Tight app, you will undoubtedly need to install additional pip packages. You have two options for installing new dependencies. You can either add the dependency to requirements-vendor.txt and re-run tight pip install --requirements or you can run tight pip install PACKAGE_NAME, which will install the dependencies to app/vendored and then append PACKAGE_NAME to requirements-vendor.txt.

tight dynamo

One of Tight’s primary goals is to make it quick and easy to scaffold RESTful APIs. To help achieve this goal, tight-cli provides a group of commands that helps you manage, run, and test interactions with DynamoDB.

tight dynamo installdb

Run this command to download and expand the latest stable version of DynamoDB. The downloaded tarball will be extracted to the directory dynamo_db.

tight dynamo rundb

This command will run the version of DynamoDB which was downloaded via tight dynamo installdb. This command runs dynamo using a shared database file which is written to dynamo_db/shared-local-instance.db.

This file is deleted on startup if it exsits.

Additionally, this command will traverse the app/models directory and automatically generate tables for models. Models should be instances of Flywheel models [http://flywheel.readthedocs.io/en/latest/topics/models/basics.html].

Before executing this command, you should have run tight generate env or otherwise have defined app/env.yml.

$ tight dynamo rundb

Initializing DynamoDB Local with the following configuration:
Port: 8000
InMemory: false
DbPath: ./dynamo_db
SharedDb: true
shouldDelayTransientStatuses: false
CorsParams: *

This engine has the following tables [u'my-service-dev-accounts']

As demonstrated in the example above, the command will report on the tables generated from auto-discovered model classes.

tight dynamo generateschema

This command will generate CloudFormation compatible DynamoDB resources from Flywheel models [http://flywheel.readthedocs.io/en/latest/topics/models/basics.html].

Given the following model:

from flywheel import Model, Field, Engine
import os

DynamoDB Model
class Account(Model):
 __metadata__ = {
 '_name': '%s-%s-accounts' % (os.environ['NAME'], os.environ['STAGE']),
 'throughput': {
 'read': 1,
 'write': 1
 }
 }

 id = Field(type=unicode, hash_key=True)

 # Constructor
 def __init__(self, id):
 self.id = id

Running tight dynamo generateschema will write a YAML file to app/schemas/dynamo:

$ tight dynamo generateschema
$ cd schemas/dynamo
$ ls
-rw-r--r-- 1 user group 265B Dec 30 15:55 accounts.yml

The contents of acounts.yml will be:

Properties:
 AttributeDefinitions:
 - {AttributeName: id, AttributeType: S}
 KeySchema:
 - {AttributeName: id, KeyType: HASH}
 ProvisionedThroughput: {ReadCapacityUnits: 1, WriteCapacityUnits: 1}
 TableName: my-service-dev-accounts
Type: AWS::DynamoDB::Table

tight

tight.providers

The tight package currently supports only one provider: AWS.

tight.providers.aws.lambda_app.app

Use this package to create an entry point module. Typical usage is quite simple, as demonstrated in the following code example. Read on to learn about how module internals work.

from app.vendored.tight.providers.aws.lambda_app import app
app.run()

When creating an app using tight-cli a file, app_index.py, will be automatically generated which will contain code like the snippet above.

	
tight.providers.aws.lambda_app.app.collect_controllers()

	” Inspect the application directory structure and discover controller modules.

Given the following directory structure, located at TIGHT.APP_ROOT:

|-app_index.py
|-app/
|---functions/
|-----controller_a/
|-------handler.py
|-----controller_b/
|-------handler.py
|-----not_a_controller/
|-------some_module.py

Descend into TIGHT.APP_ROOT/app/functions and collect the names of directories that contain a file named handler.py. The directory structure above would produce the return value:

['controller_a', 'controller_b']

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Returns

	A list of application controller names.

	
tight.providers.aws.lambda_app.app.create(current_module)

	Attach functions to the app entry module.

Introspect the application function root and create function attributes on the provided
module that map to each application controller. An application controller
is defined as any directory in the app root that contains a handler.py file.
The name of the controller is the enclosing directory.

Given the following app structure:

|-app_index.py
|-app/
|---functions/
|-----controller_a/
|-------handler.py
|-----controller_b/
|-------handler.py
|-----not_a_controller/
|-------some_module.py

The controller names collected would be:

controller_a and controller_b

Notice that not_a_controller is omitted because there is no handler.py file in the directory.

Assuming that app_index.py is the module from which create is called, the result would be that
app_index.py will behave as if it had been statically defined as:

def controller_a(controller_module_path, controller_name, event, context):
 controller_module_path # 'app.functions.controller_a.handler'
 controller_name # controller_a
 callback = importlib.import_module(controller_module_path, 'handler')
 return callback.handler(event, context, **kwargs)

def controller_b(controller_module_path, controller_name, event, context):
 controller_module_path # 'app.functions.controller_b.handler'
 controller_name # controller_b
 callback = importlib.import_module(controller_module_path, 'handler')
 return callback.handler(event, context, **kwargs)

This means that the handler value provided to lambda can follow the format:

'app_index.controller_a'
'app_index.controller_b'

So long as app.functions.controller_a.handler and app.functions.controller_b.handler define
functions that are decorated by tight.providers.aws.controllers.lambda_proxy_event the call to
app_index.controller_a or app_index.controller_b will in turn call the correct handler for the
request method by mapping event['httpMethod'] to the correct module function.

	
tight.providers.aws.lambda_app.app.run()

	Call create on sys.modules['app_index'] and catch any errors.

Typical usage would be to import this module and call run immediately:

from app.vendored.tight.providers.aws.lambda_app import app
app.run()

tight.core.logger

	
tight.core.logger.error(*args, **kwargs)

	

	
tight.core.logger.info(*args, **kwargs)

	Log a message using the system logger.

	Parameters

	
	args –

	kwargs –

	Returns

	None

	
tight.core.logger.warn(*args, **kwargs)

	

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 tight	

 	
 	
 tight.core.logger	

 	
 	
 tight.providers.aws.lambda_app.app	

Index

 C
 | E
 | I
 | R
 | T
 | W

C

 	
 	collect_controllers() (in module tight.providers.aws.lambda_app.app)

 	
 	create() (in module tight.providers.aws.lambda_app.app)

E

 	
 	error() (in module tight.core.logger)

I

 	
 	info() (in module tight.core.logger)

R

 	
 	run() (in module tight.providers.aws.lambda_app.app)

T

 	
 	tight.core.logger (module)

 	
 	tight.providers.aws.lambda_app.app (module)

W

 	
 	warn() (in module tight.core.logger)

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/logo.png

_static/minus.png

_static/generate_app.gif
3. clear (zsh)

_static/generate_function.gif
(tight_app)
~/Development/my_service
® D system

_static/plus.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 <no title>

 		
 Introduction

 		
 Overview

 		
 Motivation & Philosophy

 		
 Getting Started

 		
 Installation

 		
 tight-cli

 		
 tight

 		
 Quickstart

 		
 Install

 		
 Generate a Tight App

 		
 Install Environment Dependencies

 		
 Install Application Dependencies

 		
 Generate Environment File

 		
 Generate a Function & Tests

 		
 Tutorial

 		
 Setup

 		
 Virtual Environment

 		
 Package Installation

 		
 Generate An App

 		
 Generate Project Directory

 		
 The Anatomy of a Default App

 		
 Install Dependencies

 		
 Environment Dependencies

 		
 App Dependencies

 		
 Conclusion

 		
 Generate Environment Files

 		
 Working With dist.env.yml

 		
 App Environment Variables

 		
 Generate A Function

 		
 Lambda Proxy Event Controllers

 		
 Test Stubs

 		
 Working with Tight Core

 		
 Lambda App

 		
 Lambda Proxy Event

 		
 Clients

 		
 Test Helpers

 		
 Models and Data

 		
 DynamoDb Support

 		
 Generate a Model

 		
 Install DynamoDb Locally

 		
 Running DynamoDb Locally

 		
 Testing DynamoDb Interactions

 		
 Working with Responses

 		
 Using Serializers

 		
 Creating an Artifact

 		
 Deploy to AWS

 		
 Create Lambda Function

 		
 Create API Gateway

 		
 Deploy With Serverless

 		
 Create Serverless Project

 		
 Define Serverless Service

 		
 tight-cli

 		
 tight generate

 		
 tight generate app

 		
 tight generate function

 		
 tight generate model

 		
 tight generate env

 		
 tight pip

 		
 tight pip install

 		
 tight dynamo

 		
 tight dynamo installdb

 		
 tight dynamo rundb

 		
 tight dynamo generateschema

 		
 tight

 		
 tight.providers

 		
 tight.providers.aws.lambda_app.app

 		
 tight.core.logger

_images/generate_app.gif
3. clear (zsh)

_images/generate_function.gif
(tight_app)
~/Development/my_service
® D system

_static/up-pressed.png

_static/up.png

