ThreadPool Documentation
Release 0.1

Loic Reyreaud

Nov 26, 2018

Contents:

Getting Started

1.1 Imstall

1.2 First Pool

Pool Control
2.1 Pool size

2.2 Stopping the pool
2.3 Checking the pool

Pool Performance

Pool Hooks

4.1 Writing hooks
4.2 Registering hooks

43 Example

ThreadPool Doxygen
5.1 Public ThreadPool
5.2 Private ThreadPool

Changelog

6.1 Unreleased
6.2 [3.0.0]-2018-11-26
6.3 [2.0.0]-2018-09-21
6.4 [1.0.0]-2018-06-26
6.5 List of releases

Indices and tables

W W

AN L L

ThreadPool Documentation, Release 0.1

ThreadPool is a modern C++ header only library. It features perfect tasks forwarding and return value retrieval through
futures and start/top mechanism.

You can find all code examples in the repository under doc/src/examples.

Contents: 1

ThreadPool Documentation, Release 0.1

2 Contents:

CHAPTER 1

Getting Started

1.1 Install

First, you need the threadpool . hpp header file. You can simply copy it into your source tree, or you can install

it. To install run the following commands:

git clone git@github.com:reyreaud-1/threadpool.git
cd threadpool

mkdir build

cd build

cmake

make install

v

This will make the header available in your system.

1.2 First Pool

Let’s see a simple use of the threadpool

#include "threadpool.hpp"

#include <iostream>

int main ()
{
ThreadPool: :ThreadPool mypool (1) ;
auto task = mypool.run([] () { std::cout << "Hello therel!"
std::cout << "General Kenobi!" << std::endl;
task.wait ();

<< std:

:endl;

)i

ThreadPool Documentation, Release 0.1

Note that we instantiate a task and wait for it to make sure the task is ran. With such a short program, it is possible that
mypool will be deleted before a worker is woke up to pick the task and run it. Waiting for the result ensure the task is
ran. It is possible to use this syntax if you don’t care about the return value or don’t want to wait for a task to end:

mypool.run([] () { std::cout << "Hello there!" << std::endl; });

This concludes a very basic example to set up the threadpool!

4 Chapter 1. Getting Started

CHAPTER 2

Pool Control

2.1 Pool size

You can control the threadpool size when instantiating it with the constructors. Here are the different constructors you
can use:

ThreadPool: :ThreadPool: : ThreadPool (std::size_t pool_size)
Constructs a ThreadPool.
Parameters
e pool_size: Number of threads to start.
ThreadPool: :ThreadPool: : ThreadPool (std::size_t pool_size, std::shared_ptr<Hooks> hooks)
Constructs a ThreadPool.
Parameters
* pool_size: Number of threads to start.

* hooks: Hooks to register in the pool.

The pool_size parameter will determine the number of workers(threads) the pool will start when instantiating.

2.2 Stopping the pool

You can stop the pool with:

void ThreadPool: : ThreadPool: :stop ()
Stop the ThreadPool.

A stopped ThreadPool will discard any task dispatched to it. All workers will discard new tasks, but the threads
will not exit.

ThreadPool Documentation, Release 0.1

You can check if the pool is stopped with:
bool ThreadPool: : ThreadPool: :is_stopped () const
Check the state of the threadpool.

Return True if the ThreadPool is stopped, false otherwise.

2.3 Checking the pool

You can check the current state of the workers with:

std::size_t ThreadPool: : ThreadPool: :threads_available () const
Check on the number of threads not currently working.

The number might be imprecise, as between the time the value is read and returned, a thread might become
unavailable.

Return The number of threads currently waiting for a task.

std::size_t ThreadPool: : ThreadPool: :threads_working () const
Check on the number of threads currently working.

The number might be imprecise, as between the time the value is read and returned, a thread might finish a task
and become available.

Return The number of threads currently working.

6 Chapter 2. Pool Control

CHAPTER 3

Pool Performance

The pool performance can be measured using benchmarks.

Benchmark with neighbors work stealing enabled:

Running ./benchbin
Run on (4 X 3500 MHz CPU s)
CPU Caches:
L1 Data 32K (x4)
L1 Instruction 32K (x4)
L2 Unified 256K (x4)
L3 Unified 6144K (x1)

bm_work_tasks/8 0 ms
bm_work_tasks/64 0 ms
bm_work_tasks/512 1 ms
bm_work_tasks/4096 5 ms
bm_work_tasks/32768 36 ms
bm_work_tasks/262144 302 ms
bm_work_tasks/2097152 2370 ms
bm_blocking_tasks/8 0 ms
bm_blocking_tasks/64 1 ms
bm_blocking_tasks/512 8 ms
bm_blocking_tasks/4096 66 ms
bm_blocking_tasks/32768 525 ms
bm_blocking_tasks/262144 4160 ms

250

ms

Benchmark with work stealing across all workers enabled:

Running ./benchbin
Run on (4 X 3500 MHz CPU s)
CPU Caches:

L1 Data 32K (x4)

L1 Instruction 32K (x4)

(continues on next page)

ThreadPool Documentation, Release 0.1
(continued from previous page)

L2 Unified 256K (x4)

L3 Unified 6144K (x1)
Benchmark Time CPU Iterations
bm_work_tasks/8 0 ms 0 ms 12669
bm_work_tasks/64 0 ms 0 ms 7430
bm_work_tasks/512 1 ms 1 ms 1146
bm_work_tasks/4096 5 ms 5 ms 153
bm_work_tasks/32768 37 ms 36 ms 19
bm_work_tasks/262144 311 ms 308 ms 2
bm_work_tasks/2097152 2459 ms 2443 ms 1
bm_blocking_tasks/8 0 ms 0 ms 11270
bm_blocking_tasks/64 1 ms 0 ms 5836
bm_blocking_tasks/512 8 ms 1 ms 600
bm_blocking_tasks/4096 65 ms 4 ms 100
bm_blocking_tasks/32768 516 ms 30 ms 10
bm_blocking_tasks/262144 4125 ms 244 ms 1
Benchmark with work no work stealing:
Running ./benchbin
Run on (4 X 3500 MHz CPU s)
CPU Caches:

L1 Data 32K (x4)

L1 Instruction 32K (x4)

L2 Unified 256K (x4)

L3 Unified 6144K (x1)
Benchmark Time CPU Iterations
bm_work_tasks/8 0 ms 0 ms 12989
bm_work_tasks/64 0 ms 0 ms 6765
bm_work_tasks/512 1 ms 1 ms 1181
bm_work_tasks/4096 5 ms 5 ms 157
bm_work_tasks/32768 36 ms 36 ms 19
bm_work_tasks/262144 307 ms 305 ms 2
bm_work_tasks/2097152 2407 ms 2393 ms 1
bm_blocking_tasks/8 0 ms 0 ms 8766
bm_blocking_tasks/64 1 ms 0 ms 4970
bm_blocking_tasks/512 9 ms 1 ms 600
bm_blocking_tasks/4096 67 ms 4 ms 100
bm_blocking_tasks/32768 529 ms 30 ms 10
bm_blocking_tasks/262144 4224 ms 242 ms 1

Chapter 3. Pool Performance

CHAPTER 4

Pool Hooks

4.1 Writing hooks

Hooks are written by creating a class or a struct which inherits from the class ThreadPool: : Hooks. You can then
override whichever hooks you need.

4.1.1 Tasks Hooks

virtual void ThreadPool: :Hooks: :pre_task_hook ()

Hook called before picking a task.

This hook will be called by a worker before a task is executed. The worker will not have anything locked when
calling the hook. The worker will call in a “working” state. That means that if the hook takes too long, the
worker will hold on the task execution and not run it.

virtual void ThreadPool: :Hooks: :post_task_hook ()

Hook called after a task is done.

This hook will be called by a worker after a task is done. The worker will not have anything locked when calling
the hook. The worker will call in a “working” state. That means that if the hook takes too long, the worker will
hold and not pick a task until the hook is completed.

4.1.2 Workers Hooks

virtual void ThreadPool: :Hooks: :on_worker add ()

Hook called when a worker is added for a single task.

This hook will be called by the main thread (the thread making the call to run). It is called only when the
ThreadPool automatically scales to add one more worker. The initials workers created by the ThreadPool will
not notify this hook.

virtual void ThreadPool: :Hooks: :on_worker die ()

Hook called when a worker dies.

23

24

25

26

27

ThreadPool Documentation, Release 0.1

This hook will be called by the thread the ThreadPool is detroyed with. All workers will notify this hook.

4.2 Registering hooks

Hooks can be used to be notified when actions happens in the pool. The hooks are registered in the pool using the

function:

void ThreadPool: : ThreadPool: : register_hooks (std::shared_ptr<Hooks> hooks)

Register a ThreadPool::Hooks class.

Parameters

* hooks: The class to be registered

4.3 Example

Here is a simple example to use hooks with the Pool.

#include <iostream>
#include <memory>

#include "threadpool.hpp"

struct TestHooks : public ThreadPool: :Hooks
{

void pre_task_hook () final

{

std::cout << "pre_task_hook\n";

void post_task_hook () final
{

std::cout << "post_task_hook\n";
}
i

int main (void)

{
ThreadPool: :ThreadPool pool (1) ;
std::shared_ptr<TestHooks> hooks (new TestHooks());
pool.register_hooks (hooks);

auto res = pool.run([] () { return 0; });
res.wait ();

10

Chapter 4. Pool Hooks

CHAPTER B

ThreadPool Doxygen

5.1 Public ThreadPool

class ThreadPool
ThreadPool implement a multiple queues/multiple workers threadpool.

When created, the pool will start the workers(threads) immediatly. The threads will only terminate when the
pool is destroyed.

This class implements a one queue per worker strategy to dispatch work.

Public Functions

ThreadPool ()
Constructs a ThreadPool.

The number of workers will be deduced from hardware.
ThreadPool (std::size_t pool_size)

Constructs a ThreadPool.

Parameters

* pool_size: Number of threads to start.

ThreadPool (std::shared_ptr<Hooks> hooks)
Constructs a ThreadPool.

Parameters

* hooks: Hooks to register in the pool.

ThreadPool (std::size_t pool_size, std::shared_ptr<Hooks> hooks)
Constructs a ThreadPool.

11

ThreadPool Documentation, Release 0.1

Parameters
* pool_size: Number of threads to start.
* hooks: Hooks to register in the pool.
~ThreadPool ()
Stops the pool and clean all workers.

template <typename Function, typename... Args>
auto run (Function &&f, Args&&... args)
Run a task in the SingleQueue.

When a task is ran in the SingleQueue, the callable object will be packaged in a packaged_task and put in
the inner task_queue. A waiting worker will pick the task and execute it. If no workers are available, the
task will remain in the queue until a worker picks it up.

Return Returns a future containing the result of the task.

void stop ()
Stop the ThreadPool.

A stopped ThreadPool will discard any task dispatched to it. All workers will discard new tasks, but the
threads will not exit.

void register_hooks (std::shared_ptr<Hooks> hooks)
Register a ThreadPool::Hooks class.
Parameters
* hooks: The class to be registered

bool is_stopped () const
Check the state of the threadpool.

Return True if the ThreadPool is stopped, false otherwise.
std::size_t threads_available () const

Check on the number of threads not currently working.

The number might be imprecise, as between the time the value is read and returned, a thread might become
unavailable.

Return The number of threads currently waiting for a task.

std::size_t threads_working () const
Check on the number of threads currently working.

The number might be imprecise, as between the time the value is read and returned, a thread might finish
a task and become available.

Return The number of threads currently working.

5.2 Private ThreadPool

class ThreadPool
ThreadPool implement a multiple queues/multiple workers threadpool.

When created, the pool will start the workers(threads) immediatly. The threads will only terminate when the
pool is destroyed.

12 Chapter 5. ThreadPool Doxygen

ThreadPool Documentation, Release 0.1

This class implements a one queue per worker strategy to dispatch work.

Private Functions

void start_pool ()
Starts the pool when the pool is constructed.

It will starts _pool_size threads.

void clean ()
Clean the pool and join threads of dead workers.

This method may be called at any time by any thread putting a job in the queue. This function acquires a
lock on the pool vector.

void terminate ()
Joins all threads in the pool.

Should only be called from destructor. This method will stop all the worker and join the corresponding
thread.

std::size_t get_dispatch_worker ()
Find the worker for which to dispatch the tasks.

Return The index in the worker array to which a task should be dispatch.

template <typename TaskType>
void dispatch_work (const std::size_t idx, TaskType rask)
Dispatch a task to a given worker.
Parameters
* idx: Index of the worker to dispatch the work at
* task: Task to dispatch into the worker
void check_spawn_single_worker ()
Check if the pool can spawn more workers, and spawn one for a single task.

It will check the current number of spawned threads and if it can spawn or not a new thread. If a thread
can be spawned, one is created.

Private Members

std::vector<std::pair<std::thread, std::unique_ptr<Worker>>> pool
Vector of thread, the actual thread pool.

Emplacing in this vector construct and launch a thread.

std::mutex pool_lock
Mutex regulating acces to the pool.

std::atomic<std::size_t>waiting_threads
Number of waiting threads in the pool.

std::atomic<std::size_t> working_threads
Number of threads executing a task in the pool.

5.2. Private ThreadPool 13

ThreadPool Documentation, Release 0.1

std::atomic<bool> st opped
Boolean representing if the pool is stopped.

std::shared_ptr<Hooks> hooks
Struct containing all hooks the threadpool will call.

const std::size_t pool_size
Size of the pool.

struct Worker
Inner worker class. Capture the ThreadPool when built.

The only job of this class is to run tasks. It will use the captured ThreadPool to interact with it.

Private Members

ThreadPool *pool
Captured ThreadPool that the worker works for.

14 Chapter 5. ThreadPool Doxygen

CHAPTER O

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

6.1 Unreleased

6.2 [3.0.0] - 2018-11-26

6.2.1 Added

* Added overloading constructor which deducts number of available thread from the hardware.
* All code now lies in the ThreadPool namespace.

¢ Add an option to either download dependencies or use system wide install.

* Added work stealing in the ThreadPool to increase performance.

* Add multiple macros to select whether or not you wish to enable work stealing.

6.2.2 Changed

¢ ThreadPool implementation is now using multiple queues with multiple workers.
* Remove hook copy overload (it was wrong)

* Changed dependency management (gtest/gbench) to be downloaded at compile time and not at configure time.

6.2.3 Removed

¢ The ThreadPool is now a fixed size pool. I removed the ability to adapt the number of threads at runtime.

15

https://keepachangelog.com/en/1.0.0/
https://semver.org/spec/v2.0.0.html

ThreadPool Documentation, Release 0.1

6.3 [2.0.0] - 2018-09-21

6.3.1 Added

* Code examples from the doc are now buildable standalone programs.
e Tasks hooks.

* Workers hooks.

* Documentation generation with breath and sphinx.

* Deploy documentation on read the doc.

 Uninstall target in CMake.

* Changelog section in documentation.

6.3.2 Changed

* CI now check linux/osx with multiples compiler.

¢ Documentation is now hosted on read the doc. The documentation now also includes doxygen using breathe
sphinx plugin.

6.4 [1.0.0] - 2018-06-26

6.4.1 Added

* First release (lyay).
* Fixed/Variable pool size.
 Fetch result of task with futures.

* Fetch number of waiting/working workers.

6.5 List of releases

* Unreleased
* 3.0.0
¢ 2.0.0
* 1.0.0

16 Chapter 6. Changelog

https://github.com/reyreaud-l/threadpool/compare/v3.0.0...HEAD
https://github.com/reyreaud-l/threadpool/compare/v2.0.0...v3.0.0
https://github.com/reyreaud-l/threadpool/compare/v1.0.0...v2.0.0
https://github.com/reyreaud-l/threadpool/compare/3e51279...v1.0.0

CHAPTER /

Indices and tables

* genindex

17

ThreadPool Documentation, Release 0.1

18 Chapter 7. Indices and tables

Index

T

ThreadPool::Hooks::on_worker_add (C++ function), 9
ThreadPool::Hooks::on_worker_die (C++ function), 9
ThreadPool::Hooks::post_task_hook (C++ function), 9
ThreadPool::Hooks::pre_task_hook (C++ function), 9
ThreadPool:: ThreadPool::is_stopped (C++ function), 6
ThreadPool:: ThreadPool::register_hooks (C++ function),
10
ThreadPool::ThreadPool::stop (C++ function), 5
ThreadPool::ThreadPool::ThreadPool (C++ function), 5
ThreadPool::ThreadPool::threads_available (C++ func-
tion), 6
ThreadPool:: ThreadPool::threads_working (C++ func-
tion), 6

19

	Getting Started
	Install
	First Pool

	Pool Control
	Pool size
	Stopping the pool
	Checking the pool

	Pool Performance
	Pool Hooks
	Writing hooks
	Registering hooks
	Example

	ThreadPool Doxygen
	Public ThreadPool
	Private ThreadPool

	Changelog
	Unreleased
	[3.0.0] - 2018-11-26
	[2.0.0] - 2018-09-21
	[1.0.0] - 2018-06-26
	List of releases

	Indices and tables

