thr Documentation
Release 0.0.1

Fabien MARTY

November 18, 2015

Contents

Getting started

1. HelloTHR
1.2 Settingup limits

http2redis configuration

redis2http configuration

API Reference

4.1 thrhttp2redis oo
42 thrredis2http L. L o

Indices and tables

thr Documentation, Release 0.0.1

THR stands for Tornado HTTP Router, Tornado HTTP over Redis or Toulouse HTTP Router, your choice! It’s an
HTTP proxy based on Tornado and Redis allowing to do all sorts of things with your incoming HTTP traffic such as
application-level QoS, request rewriting, etc.

This project is hosted on GitHub: https://github.com/thefab/thr

Contents 1

https://github.com/thefab/thr

thr Documentation, Release 0.0.1

2 Contents

CHAPTER 1

Getting started

1.1 Hello THR

THR is made of two programs:

* http2redis takes incoming requests and performs actions on those requests according to rules. One of the
most common actions consists in inserting requests into Redis queues that will get consumed by redis2http.
When appending a request to a queue, http2redis specifies on which Redis key it expects to receive the
response and waits for a response on that key.

e redis2http reads requests from incoming Redis queues, calls the actual underlying web services and writes
responses back to the requested Redis key.

To get started, let’s create a minimal web service that responds “Hello World” to any request:

from wsgiref.simple_server import make_server

def hello_world_app(environ, start_response):
start_response (status='200 OK', headers=[('Content-type', 'text/plain')])
return ["Hello World\n"]

HTTP_PORT = 9999
print ("Serving app on http://localhost:{}".format (HTTP_PORT))
make_server ('', HTTP_PORT, hello_world_app) .serve_forever ()

Let’s create a minimal configuration file for http2redis:

from thr.http2redis.rules import add_rule, Criteria, Actions

Match any incoming request and push it to thr:queue:hello
add_rule(Criteria(), Actions(set_redis_queue='thr:queue:hello'"))

And here is a minimal configuration file for redis2http:

from thr.redis2http.queue import add_qgueue

Pop requests from thr:queue:hello and forward them to our service
add_queue ('thr:queue:hello', http_port=9999)

Start the app server:

thr Documentation, Release 0.0.1

$ python app_server.py
Serving app on http://localhost:9999

Start http2redis:

$ http2redis —--config=http2redis_conf.py
Start http2redis on http://localhost:8888

Start redis2http:

$ redis2http —--config=redis2http_conf.py
[T 150701 10:18:06 stack_context:275] redis2http started

Make an HTTP request:

$ curl http://localhost:8888
Hello World

The source code for this example can be found in directory examples/hello.

1.2 Setting up limits

One of the interesting things about THR is the ability to do rate-limiting based on various criteria. The source code
for these examples can be found in directory examples/limits.

1.2.1 Fixed limit values

In order to demonstrate how THR can do rate-limiting, we musn’t be limited by the backend ability to server multiple
simultaneous requests. The basic single-threaded “Hello World” example from the previous section won’t be suitable,
so we prepare a minimal app that can be served with Gunicorn:

import time

def application(environ, start_response):
time.sleep (1)
data = "Hello World!\n"
start_response (status='200 OK', headers=][
('Content-type', 'text/plain'),
('Content-length', str(len(data))),
1)

return [data]

We start this app with ten workers processes using Gunicorn:

$ gunicorn --workers 10 —--bind 0.0.0.0:9999 app_server:application

[2015-07-10 17:17:28 +0000] [13971 [INFO] Starting gunicorn 19.2.1

[2015-07-10 17:17:28 +0000] [13971] [INFO] Listening at: http://127.0.0.1:8000 (13971)
[2015-07-10 17:17:28 +0000] [13971 [INFO] Using worker: sync

[2015-07-10 17:17:28 +0000] [13976] [INFO] Booting worker with pid: 13976

[...]

Now we add a limit to redis2http configuration file using the add_max_limit () function:

4 Chapter 1. Getting started

http://gunicorn.org/

thr Documentation, Release 0.0.1

from thr.redis2http.queue import add_queue
from thr.redis2http.limits import add_max_limit

Pop requests from thr:queue:hello and forward them to our service
add_queue ('thr:queue:hello', http_port=9999)

def limit_foo(request) :
return request.headers.get ('Foo') or 'none'

Limit requests based on a header
add_max_limit ('limit_foo_header', limit_foo, "bar", 2)

This says that we won’t allow more that two simultaneous requests that have the HTTP header Foo with a value of
bar.

After restarting redis2http with the new configuration, let’s see how the limit affects performance. First, let’s
try ten concurrent requests that don’t match the criteria and therefore shouldn’t be affected by the limit. We use the
Apache benchmarking tool to do that:

$ ab -cl0 -nl0 -H "Foo: baz" http://127.0.0.1:8888/|grep 'Time taken'
Time taken for tests: 1.045 seconds

Each request takes one second to be served, but since we are able to serve all requests at the same time, it still takes
one second overall to serve ten requests. Now let’s see what happens with requests that do match the limit criteria:

$ ab -cl0 -nl0 -H "Foo: bar" http://127.0.0.1:8888/|grep 'Time taken'
Time taken for tests: 5.055 seconds

Our limit of two simultaneous requests being now applied, it takes five seconds to serve ten requests.

1.2.2 Dynamic limit values

If instead of passing a value as the third argument to add_max_limit (), we repeat the second argument, then
the limit will be applied on requests for which the function returns the same value. Let’s change our redis2http
configuration accordingly:

from thr.redis2http.queue import add_gueue
from thr.redis2http.limits import add_max_limit

Pop requests from thr:queue:hello and forward them to our service
add_queue ('thr:queue:hello', http_port=9999)

Just return header value
def limit_foo(request) :
return request.headers.get ('Foo')

Limit requests based on same header value
add_max_limit ('limit_foo_header', limit_foo, limit_foo, 2)

The Apache benchmarking tool won’t allow us to set dynamic headers so we’re going to write a small Python script
using the Tornado asynchronous client to send ten concurrent requests with ten different values for the Foo header:

1.2. Setting up limits 5

https://httpd.apache.org/docs/2.2/programs/ab.html

thr Documentation, Release 0.0.1

from tornado import gen, ioloop, httpclient

@gen.coroutine
def make_requests() :
client = httpclient.AsyncHTTPClient ()
Send 10 requests concurrently
requests = [
client.fetch('http://127.0.0.1:8888/"', headers={
'Foo': 'value_%s' % 1
}) for i in range(10)

]

responses = yield requests # Block until we've received all responses
assert all (response.code == 200 for response in responses)
ioloop.IOLoop.current () .run_sync (make_requests)

Let’s measure its execution time:

$ time python dynamic_header_benchmark.py

real Oml.235s
user Om0.106s
sys Om0.093s

Since each request has a different value for the Foo header, no limit is applied and all ten requests are served concur-
rently. If however we send the same header with each request, we observe that the limit of two simultaneous requests
is applied:

$ ab -cl0 -nl0 -H "Foo: baz" http://127.0.0.1:8888/|grep 'Time taken'
Time taken for tests: 5.051 seconds

1.2.3 Statistics file

THR keeps real-time statistics by default in /tmp/redis2http_stats. json. You may watch this file while
doing your tests to see what is going on:

$ cat /tmp/redis2http_stats.json
{

"bus_reinject_counter": 12,
"blocked_requests": 2,
"running_requests": {
"1886432e05954a23b471fd76eb2elfb4d": {
"url": "http://localhost:9999/",
"big_priority": 5,
"method": "GET",
"since_ms": 495

}7
"13b6fc2a9d394d54ad55e7a432e306c9": {
"url": "http://localhost:9999/",
"big_priority": 5,
"method": "GET",
"since_ms": 491

b

"expired_request_counter": 0,

6 Chapter 1. Getting started

thr Documentation, Release 0.0.1

"running_bus_reinject_handler_number": 1,
"epoch": 1437383921.08562,
"stopping_mode": 0,
"bus_reinject_qgueue_localhost:6379_size": 0,
"total_request_counter": 6,
"running_request_redis_handler_number": 1,
"counters": {
"limit_foo_header_globalblocks": 26,
"limit_foo_header_globalvalue": 2,
"limit_foo_header_limit": 2

This shows you that six requests have been processed (total_ request_counter), two requests are currently run-
ning (running_requests) and two requests are waiting to be processed (blocked_requests). The location
of the statistics file can be customized with the ——stats_file option of the redis2http command.

1.2. Setting up limits 7

thr Documentation, Release 0.0.1

8 Chapter 1. Getting started

CHAPTER 2

http2redis configuration

http2redis must be configured with a Python script based on a simple API. You just need to know about one function
and two classes to get started. The add_rule () function is used to create a new rule. add_rule () takes two
mandatory parameters: an instance of the Criteria class and an instance of the Actions class. You may also use
the optional st op keyword argument to tell THR that if a request matches the rule, it should ignore subsequent rules
for that request.

Here is an example:

myconfig.py
from thr.http2redis.rules import add_rule, Criteria, Actions

add_rule (Criteria(path='/forbidden'), Actions (set_status_code=403), stop=1)
add_rule(Criteria(path="'/allowed'), Actions (set_status_code=200))

Using this configuration, any request made to / forbidden will trigger a 403 response code. Requeststo /allowed
should trigger a 200 response.

To use a configuration file, start ht tp2redis with the ——config argument:

$ http2redis --config=myconfig.py
Start http2redis on http://localhost:8888

Now you can send requests to verify that the configuration file is taken into acount:

$ curl -D - http://localhost:8888/forbidden
HTTP/1.1 403 Forbidden
[...]

$ curl -D - http://localhost:8888/allowed
HTTP/1.1 200 OK
[...]

thr Documentation, Release 0.0.1

10 Chapter 2. http2redis configuration

CHAPTER 3

redis2http configuration

redis2http is configured with a Python script calling essentially two functions:
* add_qgueue ()
* add_max_limit ()

Here is an example of configuration file for redis2http:

from thr.redis2http.limits import add_max_limit
from thr.redis2http.queue import add_gqueue

def priority_hash (request) :
priority int (request.headers.get ("X-MyApp-Priority", "5"))
return "low" if priority > 6 else "high"

Pop requests from a Redis queue named thr:queue:hello and forward them to port 9999
add_queue ('thr:queue:hello', http_port=9999)

Limit rate of requests with an X-MyApp-Priority header greater than 6
add_max_limit ("low_priority", hash_func=priority_hash,
hash_value="low", max_limit=50)

To use a configuration file, start redis2http with the ——config argument:

$ redis2http —--config=redis2http_conf.py
[T 150701 16:43:28 stack_context:275] redis2http started

11

thr Documentation, Release 0.0.1

12 Chapter 3. redis2http configuration

CHAPTER 4

API Reference

4.1 thr.http2redis

4.2 thr.redis2http

13

thr Documentation, Release 0.0.1

14 Chapter 4. API Reference

CHAPTER 5

Indices and tables

¢ genindex
* modindex

e search

15

	Getting started
	Hello THR
	Setting up limits

	http2redis configuration
	redis2http configuration
	API Reference
	thr.http2redis
	thr.redis2http

	Indices and tables

